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Abstract. Business processes are typically supported by information
systems that log execution data, enabling the prediction of remaining
time for ongoing process instances. Deep learning models are often used
for this task due to their accuracy, but they only provide point es-
timates, without accounting for uncertainty. This limits their reliabil-
ity, as decision-making often benefits from prediction intervals. Uncer-
tainty quantification techniques can help by estimating both expected
values and uncertainty. However, existing techniques are often poorly
calibrated, computationally expensive, or not adaptable to different deep
learning models. This paper examines these challenges and proposes a
simple, efficient solution using Laplace approximation and calibrated re-
gression. Our approach distinguishes between model and data uncer-
tainty, integrates easily with any deep learning model, and can be ap-
plied to pre-trained networks. Benchmarking on 10 real-world event logs
shows that our method matches state-of-the-art performance while sig-
nificantly reducing training and inference time. This makes it a strong
yet simple baseline for uncertainty-aware remaining time prediction in
business processes.

Keywords: Remaining time prediction · Uncertainty quantification ·
Predictive process monitoring · Deep learning.

1 Introduction

Predictive process monitoring (PPM) leverages recorded event data to forecast
how ongoing instances of a business process will progress to completion. A key
task in PPM is predicting the remaining time of these instances to provide re-
liable estimates for customers and stakeholders. It also enables timely interven-
tions to prevent service level agreement (SLA) violations, and support resource
allocation and scheduling decisions [17,26].

Remaining time prediction is often done using deterministic models that only
provide point estimates (i.e., the expected remaining time) without measuring
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their own uncertainty. However, decision-makers prefer prediction intervals and
need information about uncertainty [27]. For example, in a supply chain setting,
it is considerably more helpful to learn that an anticipated delivery of raw ma-
terials should occur in the next 7 to 10 days, with 95% confidence, rather than
just receiving the information that the expected delivery date is in 8 days. This
issue is especially relevant in deep learning models, which, despite their high ac-
curacy [20, 26], operate as black boxes and often overestimate their confidence,
making their predictions less reliable for decision-making [15,28].

To address this, various uncertainty quantification techniques have been pro-
posed for neural networks [1, 8]. The key challenge is to simultaneously esti-
mate both model (epistemic) and data (aleatoric) uncertainty, while provid-
ing well-calibrated predictions. Common techniques include Monte Carlo (MC)
dropout [7] for epistemic uncertainty and heteroscedastic regression [10] for
aleatoric uncertainty, both of which have been applied to PPM tasks like re-
maining time prediction [27, 28]. Although combining these techniques [10] can
estimate both types of uncertainty, they have four key limitations. First, MC
dropout requires architectural modifications, limiting its applicability to cer-
tain deep learning models [11]. Second, it requires sampling (i.e., multiple for-
ward passes in the neural network), introducing significant computational over-
head during inference and validation [14, 18]. Third, uncertainty-aware models
are not necessarily more accurate than deterministic ones. Finally, both MC
dropout and heteroscedastic regression often produce miscalibrated prediction
intervals [11,12] that fail to capture the true remaining time.

To overcome these limitations, we propose an approach that combines Laplace
approximation [6] with calibrated regression [11] in the context of PPM. It trans-
forms a pre-trained deterministic neural network into a Bayesian model, allowing
uncertainty estimation without reducing accuracy. The approach has two steps.
First, we apply Laplace approximation to estimate epistemic and aleatoric un-
certainty while keeping the predicted point estimate from the original model. By
restricting Laplace approximation to the final linear layer, our approach remains
flexible, allowing process analysts to test different deep learning architectures to
find the best fit for their data. In the second step, we use calibrated regression
to refine uncertainty estimates. Specifically, we improve the standard calibrated
regression technique by introducing a process-aware variant that learns sepa-
rate recalibration models for ongoing process instances of different lengths. This
accounts for variations in model error across different stages of process execu-
tion and ensures well-calibrated prediction intervals. We evaluate our approach
against state-of-the-art baselines and show that it achieves comparable perfor-
mance while significantly reducing computational costs. This makes it a simple
yet effective baseline for uncertainty-aware remaining time prediction.

The paper is structured as follows: Section 2 motivates probabilistic remain-
ing time prediction, which is formally defined in Section 3. Our proposed ap-
proach is detailed in Section 4 and evaluated in Section 5. Section 6 reviews
related work, and finally, Section 7 summarizes our findings and outlines direc-
tions for future research.



Uncertainty-Aware Remaining Time Prediction 3

2 Motivating Example

To motivate the benefits of accurate probabilistic remaining time predictions,
consider a logistics process that is subject to a SLA stating that 95% of packages
must be delivered within 5 days of ordering. For four packages currently in the
system, Table 1 shows their actual remaining time to delivery (in days), as well
as the predictions made by three different prediction models.

Table 1. Ground truth and predictions for remaining time to delivery, PE: Point
Estimate, ϵ: error, PI: Prediction Interval (95% confidence), IW: Interval Width.

# Remaining
time

model A model B model C
PE ϵ PI ϵ IW PI ϵ IW

P1 6.0 4.5 −1.5 [5.0 , 9.0] +1.0 4.0 [4.0 , 5.0] −1.5 1.0
P2 4.0 4.2 +0.2 [3.0 , 9.0] +2.0 6.0 [3.8 , 6.2] +1.0 2.4
P3 3.0 3.9 +0.9 [0.5 , 3.9] −0.8 3.4 [0.8 , 3.2] −1.0 2.4
P4 4.4 5.8 +1.4 [3.6 , 4.8] −0.2 1.2 [3.3 , 4.5] −0.5 1.2

Although all models have the same mean absolute error (1.0 days), their
usefulness when it comes to recognizing at-risk packages varies considerably:
– Model A is a deterministic model that produces point estimates. It fails to

detect the true delay for P1 while potentially triggering unnecessary cor-
rective actions for P4 (by falsely predicting a delay). Additionally, it lacks
uncertainty estimation, displaying the same confidence level for all predic-
tions, thus not giving any indication about the likelihood that this estimate
will be correct or how the expected deviation could be.

– Model B is a probabilistic model, for which the prediction intervals (PI)
with 95% confidence are reported. It correctly predicts a delay for P1 and
on-time delivery for P3 and P4, while maintaining well-calibrated predic-
tions—ensuring all actual dates fall within its prediction intervals. It also
signals high uncertainty (i.e., wider interval) for less reliable predictions (e.g.,
for P2 ). This enables decision-makers to intervene for P1 while consulting
experts or deferring action on P2 until more data becomes available.

– Model C is also probabilistic but offers a desirable advantage over model B:
it produces narrower prediction intervals. However, P1 ’s actual delivery date
falls outside the predicted range. While this toy example includes only four
packages, the issue becomes more significant if the pattern generalizes—e.g.,
if the prediction intervals for 95% confidence level fail to capture the ground
truth in 25% of cases, the model is overconfident. Moreover, the model’s
largest error coincides with its lowest uncertainty, indicating that uncertainty
estimates fail to reflect actual errors. This inconsistency reduces trust in its
predictions for decision-making.

Next to highlighting the benefits of probabilistic models over deterministic ones,
this illustration reveals key qualities that such models should have: (1) their pre-
diction intervals should include the actual value, (2) their uncertainty—reflected
by interval width—should correlate with actual errors, and (3) their prediction
intervals should be narrow, without compromising the other two qualities.
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3 Probabilistic remaining time prediction

This section covers key concepts used throughout the paper. We first define the
problem of probabilistic remaining time prediction in Section 3.1 and then intro-
duce the two main types of uncertainty—epistemic and aleatoric—in Section 3.2.

3.1 Problem Definition

We assume that process execution data is stored in an event log, which is a
collection of traces. Each trace captures the sequence of events recorded for
a single process instance, i.e., ψ = ⟨e1, e2, ..., en⟩, where each event is a tuple
e = (a, t,∆), with a its activity, t its timestamp, and ∆ an attribute-value map
that contains optional data payload. For a trace ψ = ⟨e1, e2, ..., en⟩, the partial
execution trace, hdk(ψ) = ⟨e1, ..., ek⟩ represents its prefix of length k ∈ [1, n−1].

Remaining time prediction is typically framed as a regression problem with
three main steps: feature extraction, training, and inference. In the feature ex-
traction step, prefixes of varying lengths are generated from each completed trace
in the event log to represent different stages of execution. Each prefix is then
mapped to a feature set x with a target value y, representing the remaining time
until the trace is completed. These prefixes are treated as independent training
examples, forming the training dataset D = (x, y).

During training, a function y = fw(x) is learned to predict the remaining
time from the feature set. Deep neural networks are commonly used for this due
to their high predictive accuracy [20, 26]. Training finds the optimal network
weights, ŵ, by minimizing a loss function. During inference, the same feature
extraction process is applied to an unseen prefix to generate a predictive feature
set x∗. The trained network with optimal weights then estimates the expected
remaining time as µx∗ = fŵ(x∗). However, this yields only a point estimate with-
out accounting for predictive uncertainty. To address this, we define probabilistic
remaining time prediction as follows.
Probabilistic remaining time prediction. We treat the remaining time as a
continuous random variable and estimate its posterior probability distribution,
P (y∗ | x∗,D). This distribution captures the likelihood of the remaining time
for an unseen prefix (y∗), given its predictive features (x∗) and the training
dataset D. We refer to this as the posterior distribution of the remaining time.
Probabilistic remaining time prediction integrates an uncertainty quantification
technique into a deep learning model to estimate this distribution.

Although the posterior distribution can take any form, it is commonly as-
sumed to follow a Gaussian distribution: P (y∗ | x∗,D) ∼ N (µx∗ , σx∗2). Proba-
bilistic remaining time prediction involves estimating its mean (µx∗) and stan-
dard deviation (σx∗), where the mean represents the expected remaining time,
and the standard deviation quantifies predictive uncertainty. This uncertainty
stems from two sources—epistemic and aleatoric—as discussed next.
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3.2 Epistemic vs. Aleatoric Uncertainty

This section defines epistemic (model) and aleatoric (data) uncertainty and re-
views existing techniques for estimating them.
Epistemic uncertainty. Epistemic uncertainty reflects a prediction model’s
limited knowledge of the process that generated the training data. Event logs
capture only part of possible process behavior, with most prefixes representing
common process behavior. As a result, the model may exhibit high variance or
overfit to frequent patterns, leading to errors when predicting rare but critical
cases such as delays. Likewise, if the process changes over time (i.e., concept
drift), the model may produce unreliable predictions for unseen prefixes. A ro-
bust probabilistic model recognizes its limited knowledge about out-of-data ex-
amples and quantifies it as epistemic uncertainty when encountering unfamiliar
situations [25].
Aleatoric uncertainty. Aleatoric uncertainty captures the noise inherent in
observations, reflecting the ambiguity and variability in remaining time y given
input features x [25, 28]. It stems from noisy event logs or unknown factors not
represented in the input features. Accurate remaining time prediction depends
on estimating both processing and waiting times, which are influenced by un-
known factors. For instance, waiting times may result from resource contention,
synchronization between resources (within or across processes), batching, and
task handovers [13]. Capturing these factors requires inter-case encoding [22],
which is absent in leading remaining time prediction approaches [2–4,17].
Uncertainty quantification (UQ). The main objective of probabilistic re-
maining time prediction is to estimate total uncertainty (σx∗) by combining
epistemic (σe

x∗) and aleatoric (σa
x∗) uncertainty, as shown in Equation 1.

σx∗ =
√
(σe

x∗)2 + (σa
x∗)2 (1)

Epistemic uncertainty can be reduced by collecting more data, particularly
in low-density regions of the feature space (e.g., traces from infrequent process
behaviors). In contrast, aleatoric uncertainty, which reflects process complexity,
cannot be reduced by collecting more data. Therefore, an effective UQ tech-
nique should not only provide an accurate estimate of total uncertainty but also
distinguish between these two types of uncertainty.

Bayesian neural networks (BNNs) estimate epistemic uncertainty by treating
network weights (w) as probabilistic variables and learning their posterior distri-
bution, p(w|D). Predictions are generated by averaging outputs over all possible
weights [6, 7]. However, exact inference in BNNs is often intractable, so MC
dropout [7] is used as an approximation. Dropout is a regularization technique
in neural networks where, during training, random neurons are ignored with
probability p to prevent overfitting. During inference, dropout is turned off, and
all neurons are used, with their activations scaled by p to compensate for the
reduced number of active neurons during training. In MC dropout, instead of
turning off dropout during inference, multiple stochastic forward passes are made
with dropout enabled to estimate the average and variance of predictions [7].
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Learning aleatoric uncertainty requires estimation of observation noise (i.e.,
the difference between observed remaining time and its predicted value). Het-
eroscedastic regression [10] models the observation noise as a Gaussian distri-
bution ϵ ∼ N (0, ε2(x∗)), with ε(x∗) learned from input features. This approach
modifies standard neural network training by adjusting the output layer to pre-
dict both the expected remaining time and the log-variance of the noise, and by
adapting the loss function to account for varying noise levels. This encourages a
strong correlation between uncertainty and prediction errors [10].

MC dropout and heteroscedastic regression can be combined to quantify both
types of uncertainty [10] and have been applied to PPM tasks [28]. However, this
approach can produce overconfident predictions, may reduce accuracy compared
to deterministic models, and is limited to specific deep learning architectures.
Additionally, it incurs high computational costs due to sampling during inference
and validation. To overcome these issues, we propose a simple, efficient, and
calibrated UQ approach as outlined in the next section.

4 Approach

Figure 1 outlines our two-step approach: estimating predictive uncertainty via
Laplace approximation and refining it with calibrated regression. Given an event
log, we first generate prefixes and extract features to construct the training
dataset (D) as described in Section 3. A deterministic neural network (DNN)
is then trained to produce point estimates of the remaining time. Instead of
training a probabilistic model from scratch [10, 28], we apply Laplace approxi-
mation to convert the DNN into a Bayesian model that captures epistemic and
aleatoric uncertainty. To refine the predicted uncertainty, we use the validation
set (Dv ⊂ D) to learn recalibration models for prefixes of different lengths. At
inference, we extract features for a running instance, predict the remaining time
using the DNN, estimate uncertainty via the Laplace model, and refine it us-
ing the appropriate recalibration model. The following sections detail Laplace
approximation (Section 4.1) and calibrated regression (Section 4.2).

Laplace
Approximation

Calibrated
RegressionFeature 

Extraction

Event Log

Trained
DNN

Probabilistic 
Predictions

Features

Running 
Instance

Model 
Training

Laplace 
Model

Recalibration
Models

Fig. 1. Overview of our probabilistic remaining time prediction approach.
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4.1 Laplace Approximation

We apply Laplace approximation (LA) [6] to estimate the predictive uncertainty
of a pre-trained neural network fw. For epistemic uncertainty, LA treats the
network weights (w) as probabilistic variables, and approximates p(w|D) as a
Gaussian distribution. The mean of this distribution is the optimal weights (ŵ)
obtained from deterministic training. The covariance (Σ) is estimated as the
negative inverse Hessian of the loss function evaluated at optimal weights [6].
For aleatoric uncertainty, LA assumes the observation noise follows a Gaussian
distribution with zero mean and constant standard deviation across all prefixes:
ϵ ∼ N (0, ε2). The noise level (ε) is inferred by maximizing the likelihood of the
observed data given the optimal network weights [6].

We treat the weights of the last linear layer of the network probabilistically,
keeping all other weights fixed at their optimal deterministic values. In this setup,
the posterior distribution of remaining time follows a Gaussian distribution:
P (y∗ | x∗,D) ∼ N (µx∗ , σx∗2). The expected value of remaining time is given
by the deterministic network: µx∗ = fŵ(x∗). The standard deviation represents
the total uncertainty, which includes both epistemic and aleatoric uncertainty
components (see Equation 1). These components are estimated through LA as
shown in Equation 2, where J(x) is the Jacobian matrix of network weights, I
is the identity matrix, and ⊺ denotes the transpose operation [6].

σe
x∗ =

√
J(x)

⊺
ΣJ(x) σa

x∗ = εI (2)

LA is an efficient UQ technique involving two simple steps: computing the
Hessian of the loss function, and inferring constant observation noise. Since LA
is applied only to the last linear layer, it can be used with any pre-trained neural
network, regardless of its architecture. Unlike MC dropout [28], which is limited
to recurrent and convolutional networks, our approach offers more flexibility,
enabling uncertainty estimation with other deep learning architectures [2, 3].

Using the expected value (µx∗) and the total uncertainty (σx∗) estimated by
LA, prediction intervals for remaining time is computed as µx∗ ± z-score × σx∗ ,
where the z-score is determined from the standard normal table based on the
confidence level. A well-calibrated prediction ensures that the prediction intervals
contains the true remaining time with the expected probability. However, LA
makes simplifying assumptions, such as probabilistic weights only in the last layer
and constant observation noise, which may lead to miscalibrated uncertainty
estimates. To mitigate this, we apply post-hoc calibrated regression [11], training
auxiliary models to adjust the uncertainty estimates provided by LA.

4.2 Calibrated Regression

The second step in our approach applies calibrated regression to refine the uncer-
tainty estimates from LA. We first define calibration and introduce the standard
approach for calibrated regression [11]. Then, we explain how we extend this ap-
proach by learning separate recalibration models for prefixes of different lengths.
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Calibration. Calibration measures how well the prediction intervals align with
observed remaining times [5]. For a confidence level p, the prediction interval
coverage probability, PICP (p), measures the proportion of observed remaining
times falling within the model’s predicted interval [9]. Calibration is commonly
evaluated using a calibration plot, with PICP (p) on the y-axis and p ∈ [0, 1] on
the x-axis. The area between this plot and the parity line (PICP (p) = p), known
as the miscalibration area (MA), reflects the model’s calibration performance.
A perfectly calibrated model satisfies PICP (p) = p and has a miscalibration
area of zero [5]. For instance, the 95% credible prediction intervals should ideally
contain the true value in 95% of prefixes. The miscalibration area ranges between
0 and 0.5.

Standard calibrated regression. Calibrated regression begins by creating a
calibration dataset. For prefixes in the validation set, we form a set of tuples
(xt, yt, µxt , σxt) ∈ Dv, where yt is the true remaining time, and µxt and σxt

are the predicted mean and standard deviation. These values are then used to
calculate the cumulative distribution function (CDF) value, Ft(yt) : R → [0, 1],
for each tuple. Next, we compute the empirical probability P̂ (p), which is the
fraction of true values yt that fall below the corresponding quantile F−1

t (p) across
all t. This is repeated for different confidence levels p, forming a calibration
dataset with pairs (Ft(yt), P̂ (Ft(yt))). Each pair consists of a predicted CDF
value and its corresponding empirical probability [11].

Calibrated regression learns a recalibration model R : [0, 1] → [0, 1] to adjust
the CDF values so that they match the empirical probability. Kuleshov et al., [11]
proposed isotonic regression to train model R, as it ensures higher predicted
probabilities correspond to higher empirical probabilities. A similar approach
involves learning a constant scaling factor λ such that the adjusted standard
deviation σ′

xt
= λσxt minimizes miscalibration area for prefixes in the validation

set. In this paper, we experiment with both approaches. We first apply calibrated
regression to adjust total uncertainty and then scale epistemic and aleatoric
uncertainties proportionally to maintain their original ratio.

The standard recalibration approach assumes consistent prediction errors
across prefix lengths, ignoring the iterative nature of remaining time prediction.
However, as a process unfolds, the model updates its predictions using longer pre-
fixes, and errors should generally decrease with more available information. This
means shorter prefixes are more prone to miscalibration and require stronger
adjustments. To address this, we propose a process-aware calibrated regression
that trains a separate recalibration model for prefixes of similar lengths.

Process-aware calibrated regression. We extend standard calibrated regres-
sion by partitioning prefix lengths into multiple groups and learning a separate
recalibration model for each group. In the simplest case, all prefixes form a sin-
gle group, reducing our approach to the standard recalibration. At the other
extreme, each prefix length forms its own group, but this risks sparsely popu-
lated calibration datasets, leading to unreliable calibration. To balance this, we
group similar prefix lengths together.
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Partitioning algorithm: Given the validation set Dv, the sorted list of all prefix
lengths S and the maximum number of groups G, we create a partition over S
and use it to create multiple calibration datasets from Dv. The set of all prefixes
of length k in Dv is denoted as Dk

v . Our algorithm proceeds in two steps:
1. We initialize an empty group gℓ and set gℓ to count the number of prefixes

from Dv that their corresponding length is assigned to gℓ. We then assign
the smallest length k ∈ S to gℓ, update gℓ = gℓ+ | Dk

v |, and remove k from
S. We continue assigning lengths to the same group until gℓ ≤| Dv | /G.
Once this condition is met, gℓ is finalized, and we create a new group. This
process repeats until all prefix lengths are assigned, forming the partition
Π = {gℓ | ℓ ∈ L}, where L is the set of group indices.

2. For each group π ∈ Π, we obtain {Dv}π =
⋃

k∈π Dk
v , the set of all prefixes

with lengths in π. We then construct a separate calibration dataset for {Dv}π
using the standard calibrated regression approach.

The output of partitioning algorithm is a set of calibration datasets. For each
dataset, we learn a recalibration model Rπ and use it to adjust the total uncer-
tainty for its corresponding prefixes in the validation set following the standard
calibrated regression approach. After applying all recalibration models, we com-
pute their aggregated performance on the validation set. This process is repeated
by calling the partitioning algorithm for different values of G ∈ {1, 10, 20, ..., 100}
to find the partition that minimizes the sparsification error, as defined next.
Sparsification error: The sparsification error measures how well a model’s un-
certainty estimate correlates with its prediction error. It is computed by sorting
predictions by their uncertainty and progressively removing subsets with the
highest uncertainty (1% at a time). The mean absolute error on the remain-
ing predictions is then plotted against the fraction of removed examples, form-
ing the error curve. A monotonically decreasing error curve indicates that the
model assigns higher uncertainty to less accurate predictions. In contrast, ran-
domly removing subsets results in a nearly flat random curve. The Area Under
the Random Gain curve (AURG) is the area between the error curve and the
random curve, quantifies the sparsification error [18]. A higher AURG indicates
lower sparsification error, meaning the predicted uncertainties provide a useful
estimate of the model’s error.

In summary, our process-aware approach finds the best partitioning of prefix
lengths and trains separate recalibration models for prefixes with similar lengths.

5 Evaluation

This section presents the experiments used to evaluate our approach. Table 2
summarizes the characteristics of the 10 publicly available event logs used as a
basis for this. In the remainder, Section 5.1 describes the experimental setup,
followed by the results in Section 5.2. Our implementation and employed event
logs are available in our project’s public repository.3

3 https://github.com/keyvan-amiri/UQ4PPM

https://github.com/keyvan-amiri/UQ4PPM
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Table 2. Characteristics of the employed event logs (time-related attributes in days).

Event log Cases Events Activities Variants Case length Case duration
Avg. Max Avg. Max

BPIC20DD 10 500 56 437 17 99 5.37 24 11.5 469.2
BPIC20ID 6449 72 151 34 753 11.19 27 86.5 742.0
BPIC20PTC 2099 18 246 29 202 8.69 21 36.8 328.2
BPIC20RFP 6886 36 796 19 89 5.34 20 12.0 410.0
BPIC20TPD 7065 86 581 51 1478 12.25 90 87.4 1202.0
BPIC15-1 1199 52 217 398 1170 43.55 101 95.9 1486.0
BPIC13I 7554 65 533 13 2278 8.68 123 12.1 771.4
BPIC12 13 087 262 200 36 4366 20.04 175 8.6 137.2
Sepsis 1050 15 214 16 846 14.49 185 28.5 422.3
Helpdesk 4580 21 348 14 226 4.66 15 40.9 60.0

5.1 Experimental Setup

Data split. Traces in the event log are sorted chronologically based on their
start timestamp. We use the first 80% of traces for training, while the remaining
20% are reserved for testing. Within the training set, the last 20% of traces
are reserved as the validation set. We create prediction tasks by extracting all
prefixes in the range [2, n− 1] per trace of length n in the training and test sets.
Deterministic neural network (DNN). We use the data-aware long short-
term memory (LSTM) [17] due to its strong performance in a recent bench-
mark [20]. The model consists of two LSTM layers with 150 units, and a dropout
layer with a dropout rate of 0.1 in between. The model is trained using the L1-
loss and NAdam optimizer for up to 200 epochs, with early stopping patience of
50 epochs. A batch size of 64 is used during training.
Approach configurations. We first train the DNN and apply Laplace approx-
imation (LA) to estimate epistemic and aleatoric uncertainty as described in
Section 4.1. Since LA is applied only to the final linear layer, we can efficiently
use a full-rank covariance matrix to compute the Hessian of the loss function.
This avoids the need for less expressive diagonal or block-diagonal factoriza-
tions like Kronecker-factored approximate curvature and low-rank approxima-
tions. We compare two recalibration models to instantiate the process-aware
calibrated regression step (Section 4.2), yielding two approach configurations,
one using isotonic regression [11] (referred to as LA+I ) and one using a learned
constant scaling factor (LA+S ).
Baselines. We benchmark our approach against the following baselines:
– A probabilistic remaining time prediction approach [28] using MC dropout

combined with heteroscedastic regression (DA+H ). We use a dropout proba-
bility of 0.1, and the concrete dropout variant (CDA+H ), where the optimal
dropout probability is learned. Default hyperparameter values [28] are used
for training.

– Heteroscedastic regression (HR) [10]: We modify the last layer of the DNN
to estimate aleatoric uncertainty, as explained in Section 3.

– Deep ensemble (DE ) and bootstrapping ensemble with Heteroscedastic re-
gression (BE+H ) [12] train multiple models, with the ensemble size treated
as a hyperparameter. We evaluate 3–10 members for DE, and 3–40 for BE+H.
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Each BE+H model performs heteroscedastic regression and is trained on a
random 25% of the training data.

– Classification and regression diffusion model (CARD) [9]: We integrate a
denoising diffusion model into the DNN to estimate aleatoric uncertainty.

DA+H and CDA+H estimate both epistemic and aleatoric uncertainty. The
other baselines estimate only aleatoric uncertainty; among them, BE+H and
CARD are applied to a PPM task for the first time in this paper.
Performance metrics. We quantify the performance criteria using mean ab-
solute error (MAE) for accuracy, miscalibration area (MA) for calibration, and
AURG for sparsification error. We also compare the mean prediction interval
width (MPIW) [5] to evaluate the tightness of prediction intervals.

5.2 Results

Table 3 summarizes the experimental results for probabilistic remaining time
prediction across ten event logs and four performance metrics.

Additionally, we use the Wilcoxon signed-rank test to compare our approach
against the baselines, identifying significant performance differences at confi-
dence levels of 0.95, 0.90, and 0.80, with the results presented in Table 4. For
example, the entry {(LA+ I, LA+ S > CARD) : 0.90} shows that both LA+I
and LA+S outperform CARD with 90% confidence. Since higher confidence
results are valid at lower levels, redundant entries are omitted.

Overall, neither our approach nor any baseline consistently outperforms across
all event logs and metrics. Below, we summarize the key findings.
Accuracy. Both configurations of our approach achieve the highest accuracy
in 3 out of 10 event logs and perform close to the best in three others. Only
CARD performs significantly worse than both, while the other baselines show
no significant differences. Since our approach preserves the accuracy of the DNN,
this suggests that existing baselines [28] do not consistently enhance accuracy
and may sometimes reduce it.
Calibration and interval width. Both configurations of our approach signif-
icantly outperform the baselines in terms of calibration, with LA+S achieving
better results than LA+I. UQ approaches such as MC dropout and heteroscedas-
tic regression (DA+H, CDA+H, HR) tend to produce overly narrow prediction
intervals that often fail to capture the true remaining time. In contrast, LA+S
and LA+I consistently yield well-calibrated prediction intervals, as indicated by
their low MA values in Table 3. However, this calibration often comes at the
expense of wider intervals. While CDA+H, BE+H, and HR produce narrower
intervals, they frequently exhibit poor calibration. Balancing interval width and
calibration remains a core challenge in probabilistic remaining time prediction.
Notably, when the predicted mean diverges from the actual remaining time,
widening the interval becomes the only way to ensure coverage. Thus, leveraging
a DNN with higher accuracy can mitigate this trade-off.
Sparsification error. Both configurations of our approach achieve compara-
ble sparsification error compared to the baselines that capture both epistemic
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Table 3. Performance comparison for probabilistic remaining time prediction across
10 event logs. MAE and MPIW are measured in days. For all metrics except AURG,
lower values indicate better performance.

Baselines Our approach

Log Metric DA+H CDA+H HR DE BE+H CARD LA+I LA+S

BPI20DD

MAE 5.38 6.32 4.13 5.92 4.70 4.50 4.12 4.12
MA 0.34 0.41 0.23 0.30 0.20 0.05 0.11 0.04

MPIW 3.37 4.05 5.47 7.31 6.67 16.56 19.44 13.03
AURG 1.76 1.74 1.45 2.05 1.71 0.35 1.19 1.13

BPI20ID

MAE 14.62 17.09 15.40 17.26 14.08 22.26 21.72 21.72
MA 0.16 0.06 0.28 0.11 0.11 0.06 0.03 0.03

MPIW 37.59 85.76 15.77 95.11 37.67 139.63 96.09 95.87
AURG 4.45 3.31 8.36 7.80 7.01 4.36 6.16 6.13

BPI20PTC

MAE 9.45 12.83 8.36 11.08 10.45 11.86 7.73 7.73
MA 0.27 0.47 0.31 0.29 0.32 0.05 0.15 0.07

MPIW 8.19 5.13 5.41 18.52 9.22 64.13 14.91 59.06
AURG 4.56 4.77 4.52 5.43 5.71 3.15 3.18 3.06

BPI20RFP

MAE 5.09 6.30 5.59 7.35 6.62 5.71 5.19 5.19
MA 0.25 0.28 0.28 0.32 0.30 0.03 0.10 0.05

MPIW 6.50 5.52 5.29 8.06 6.18 25.5 21.09 16.00
AURG 1.74 2.55 2.36 2.61 2.49 -0.71 1.04 0.85

BPI20TPD

MAE 25.02 25.98 26.01 27.12 27.80 30.37 27.79 27.79
MA 0.15 0.08 0.31 0.05 0.19 0.05 0.34 0.05

MPIW 174.13 121.91 35.57 109.36 45.86 129.46 41.35 131.35
AURG 8.41 9.38 10.45 14.00 14.45 1.13 4.09 5.92

BPI15-1

MAE 30.29 32.23 26.93 24.71 27.23 100.43 25.28 25.28
MA 0.22 0.26 0.24 0.11 0.15 0.39 0.03 0.10

MPIW 402.67 20.25 37.52 144.43 72.38 182.0 103.12 156.59
AURG 1.53 12.61 5.89 8.65 5.44 3.74 5.42 5.25

BPI13I

MAE 3.67 4.19 3.15 3.36 3.06 4.69 5.53 5.53
MA 0.15 0.21 0.26 0.06 0.20 0.12 0.04 0.11

MPIW 12.25 14.90 8.08 21.9 8.05 29.09 20.45 14.36
AURG 0.84 1.08 0.27 0.25 0.54 1.43 0.21 1.22

BPI12

MAE 6.60 8.02 5.86 6.05 5.95 7.03 7.84 7.84
MA 0.27 0.14 0.10 0.13 0.07 0.29 0.19 0.05

MPIW 8.63 18.40 21.69 16.00 22.09 15.70 23.81 44.57
AURG 1.86 1.59 1.63 1.58 1.80 0.34 0.33 0.46

Sepsis

MAE 16.35 18.08 15.32 15.44 15.69 24.50 15.73 15.73
MA 0.11 0.37 0.07 0.04 0.13 0.18 0.21 0.06

MPIW 17.29 4.86 50.95 43.1 66.45 81.07 98.15 51.30
AURG 0.52 -4.52 4.87 4.80 3.53 8.35 1.53 2.24

Helpdesk

MAE 11.28 10.09 9.45 11.18 18.65 12.87 9.45 9.45
MA 0.25 0.40 0.44 0.28 0.34 0.17 0.24 0.12

MPIW 7.82 13.74 7.63 24.23 34.30 42.37 23.64 70.27
AURG -1.16 0.17 0.70 0.53 1.11 -0.08 1.44 1.48

Table 4. Statistically significant performance differences.

Metric Significant Performance Differences

MAE {(LA+I, LA+S > CARD): 0.90}
MA {(LA+S > DA+H, CDA+H, HR, BE+H, DE): 0.95}, {(LA+I > HR): 0.95}, {(LA+I >

CDA+H): 0.90}, {(LA+S > CARD, LA+I): 0.90}, {(LA+I > DA+H): 0.80}
MPIW {(CDA+H, HR, BE+H > LA+I, LA+S): 0.95}, {(DE > LA+S): 0.95}, {(LA+I > CARD):

0.90}
AURG {(HR, BE+H, DE > LA+I, LA+S): 0.95} , {(LA+S > CARD): 0.80}
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and aleatoric uncertainty (DA+H, CDA+H ). However, pure aleatoric baselines
like DE , BE+H and HR perform significantly better. The heteroscedastic loss
function in HR, enhances the correlation between estimated uncertainty and
model error, while greater disagreement among ensemble members in DE and
BE+H reflects greater uncertainty and indicates larger potential errors. Our
findings suggest a trade-off between capturing epistemic uncertainty and mini-
mizing sparsification error, which warrants further investigation.

We evaluated the relative contribution of epistemic uncertainty by comput-
ing its proportion in the total uncertainty, averaged across event logs. Both
our configurations (LA+I, LA+S ) and baselines (DA+H, CDA+H ) allocate a
similar share (17-18%) to epistemic uncertainty, leading to two insights. First,
it validates the simplifying assumptions of LA: despite applying Bayesian in-
ference only to the final layer and assuming constant aleatoric noise, our ap-
proach performs comparably to more complex methods like MC dropout and
heteroscedastic regression. Second, it highlights that aleatoric uncertainty dom-
inates probabilistic remaining time prediction, explaining why purely aleatoric
baselines (HR, BE+H ) still achieve strong performance.
Ablation study. We evaluate the impact of process-aware calibrated regression
via an ablation study comparing LA+I and LA+S against the uncalibrated un-
certainty estimates of the LA model, as shown in Table 5. Since calibration does
not influence MAE, it is excluded from this comparison. Both LA+I and LA+S
enhance calibration performance, albeit typically at the cost of wider predic-
tion intervals. An exception to this pattern is observed in the Sepsis log, where
improved calibration is achieved without the typical trade-off, as prediction inter-
vals become narrower rather than wider. In BPI20DD, BPI20RFP, and BPI13I
logs, the original LA model already yields well-calibrated intervals, limiting the
benefits of recalibration. Recalibration reduces sparsification error across most
logs, with the most pronounced improvements observed in Helpdesk, BPI20DD,
and BPI20TPD.

Table 5. Performance of Laplace approximation before calibrated regression.
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MA 0.07 0.15 0.28 0.06 0.41 0.15 0.04 0.32 0.15 0.37
MPIW 14.52 66.07 9.26 14.73 24.04 65.24 19.32 14.61 66.20 14.00
AURG 0.12 6.13 2.43 0.11 0.00 3.38 1.22 −0.49 2.11 −0.60

Sensitivity analysis. We analyze the sensitivity of MA, MPIW, and AURG
to the maximum number of groups (G) used for prefix lengths in process-aware
calibrated regression. Table 6 reports the coefficient of variation (i.e., the ratio
of standard deviation to mean) for each performance metric.
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Table 6. Sensitivity analysis of process-aware calibrated regression using the coefficient
of variation for each performance metric.
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LA+I
MA 0.04 0.12 0.02 0.01 0.00 0.01 0.12 0.00 0.01 0.00

MPIW 0.02 0.03 0.01 0.00 0.00 0.00 0.02 0.00 0.01 0.00
AURG 0.32 0.03 0.11 0.25 0.53 0.11 0.22 0.82 0.08 1.72

LA+S
MA 0.06 0.14 0.12 0.07 0.01 0.08 0.09 0.03 0.07 0.08

MPIW 0.06 0.05 0.23 0.08 0.04 0.04 0.06 0.01 0.08 0.01
AURG 0.35 0.02 0.07 0.35 0.33 0.11 1.06 0.78 0.02 1.10

Both MA and MPIW metrics remain generally stable across varying val-
ues of G, indicating that using separate recalibration models for different pre-
fix lengths has limited impact on these metrics. Exceptions include BPIC20ID,
BPIC20PTC, and BPIC13I, where moderate sensitivity is observed. Increasing
the number of groups narrows the prediction intervals but worsens calibration in
BPIC20ID. Both metrics deteriorate with more groups in BPIC20PTC, whereas
in BPIC13I, both improve. In contrast, AURG exhibits high sensitivity to G.
Across most event logs, increasing G consistently reduces sparsification error.
However, beyond a certain threshold, this improvement plateaus or slightly re-
verses. This trend supports the use of AURG as an objective for tuning calibrated
regression. Overall, partitioning prefixes into a few length-based groups and ap-
plying separate recalibration models can effectively reduce sparsification error,
though excessive partitioning often fails to yield further improvement.
Training and inference time. Training and inference times were averaged
across 10 event logs using an NVIDIA RTX A6000 GPU. Training the DNN
took 35 minutes, with our approach configurations adding only 2 minutes. In
contrast, DA+H and CDA+H were up to 20 times more computationally ex-
pensive than the deterministic model, even surpassing ensembles (DE , BE+H ).
By avoiding sampling during validation, our approach significantly reduces train-
ing time compared to existing baselines for capturing both types of uncertainty.
Inference times per prefix for DA+H, CDA+H, and CARD ranged from 35 to
440 milliseconds due to sampling, while our approach configurations and other
baselines required only 0.10 to 0.55 milliseconds. The low inference time of our
approach make it suitable for real-time probabilistic predictions.
Limitations and threats to validity. Our findings are limited to the 10 event
logs used, and significance holds only within this scope. Additionally, we evalu-
ated only LSTMs with sequential encoding; results may not generalize to other
architectures or encodings.

In summary, our approach maintains the accuracy of the DNN while deliv-
ering well-calibrated prediction intervals. Our results demonstrate that efficient
uncertainty estimation with LA and process-aware calibrated regression performs
similarly to state-of-the-art baselines. Moreover, due to its efficiency and com-
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patibility with any pre-trained DNN, our approach offers a simple yet powerful
solution for probabilistic predictive analysis.

6 Related Work

This section provides a brief overview of related work on remaining time predic-
tion and uncertainty quantification with neural networks.
Remaining time prediction. Approaches for predicting remaining time can
be broadly classified into two categories: annotated process models and machine
learning models [26]. In the first category, transition systems have been enhanced
with queuing models [23] or machine learning models [19]. However, pure ma-
chine learning approaches generally outperform annotated process models, with
neural networks achieving the highest accuracy [20, 26]. Various deep learning
architectures have been proposed for this problem, including recurrent neural
networks [4, 17], Transformers [3], and graph neural networks [2]. Nevertheless,
these approaches only predict the expected remaining time and lack uncertainty
estimates required for generating prediction intervals. Stochastic Petri nets [21]
address this gap by providing probabilistic predictions, but they rely on process
models and are generally less accurate than deep learning models [26]. Integrat-
ing uncertainty quantification into neural networks provides a more accurate
solution for probabilistic remaining time prediction.
Uncertainty Quantification. Uncertainty quantification in deep learning has
led to significant advancements in areas like computer vision [1,10] and reinforce-
ment learning [1,7,14], particularly in safety-critical applications like self-driving
cars and healthcare [1,8,18]. Various approaches have been proposed to estimate
predictive uncertainty, including MC dropout [7], heteroscedastic regression [10],
deep ensembles [18], Laplace approximation [6], diffusion models [9], and simul-
taneous quantile regression [25], with comprehensive reviews providing insights
into these approaches and their applications [1,8]. Despite its success in other do-
mains, uncertainty quantification remains largely unexplored in business process
management. Existing approaches include probabilistic outcome prediction us-
ing gradient boosting decision trees [24], and probabilistic event processing time
prediction with quantile regression forests [16] and MC dropout [15]. Notably,
the only existing approach for probabilistic remaining time prediction combines
MC dropout with heteroscedastic regression [27,28].

7 Conclusion

In this paper, we proposed an uncertainty-aware remaining time prediction ap-
proach. Unlike deterministic models that only provide the expected values with-
out uncertainty estimation, it estimates both epistemic and aleatoric uncertainty
to generate well-calibrated prediction intervals. Specifically, we applied Laplace
approximation to transform a pre-trained deterministic neural network into a
Bayesian model and refined the uncertainty estimates using a process-aware cal-
ibrated regression technique. Benchmarking on 10 real-world event logs against
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state-of-the-art approaches for probabilistic remaining time prediction, our ap-
proach delivers comparable performance while significantly reducing computa-
tional costs. Moreover, it preserves the accuracy of the pre-trained network and
generates well-calibrated prediction intervals. Finally, our approach is compati-
ble with any deep learning model, regardless of architecture. By combining flex-
ibility, efficiency, and strong predictive performance, it offers a valuable tool for
developing uncertainty-aware information systems that support decision-making
in business processes.

This work opens several directions for future research. In calibrated regres-
sion step, we exclusively relied on the predicted expected remaining time, associ-
ated uncertainty, and ground truth values, without incorporating the predictive
features. A natural extension is to leverage the pre-trained network to learn
embeddings of prefixes, which can serve as input representations for learning
recalibration models. We also plan to investigate alternative prefix grouping
strategies, such as clustering based on process semantics. Additionally, we will
explore various feature extraction techniques and deep learning architectures to
assess whether enhancing predictive accuracy can reduce the trade-off between
calibration and narrow prediction intervals. We also intend to investigate how
information loss during feature extraction and the expressive power of different
models affect epistemic and aleatoric uncertainty, as well as the quality of proba-
bilistic predictions. Finally, we aim to apply our approach to classification tasks,
such as probabilistic process outcome prediction.
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