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Abstract. Steady-state detection (SSD) is a critical task in the analysis
of dynamic systems, as it enables the reliable evaluation of system be-
havior by differentiating between stable and unstable states. While SSD
techniques have been developed and tested in domains such as signal pro-
cessing and industrial systems, their application in the information sys-
tems domain, particularly in process mining, has been largely overlooked.
Specifically, event logs that record the executed behavior of a business
process often contain data from both steady and non-steady states, which
can distort process mining results, such as performance analysis and re-
maining time prediction. This paper highlights the importance of SSD in
the process mining domain and investigates the applicability of existing
SSD solutions. To operationalize this, we propose a two-step framework
for detecting steady states in business processes. The framework extracts
relevant process characteristics from an event log and applies established
SSD techniques to identify periods during which a business process oper-
ated in a steady state. We evaluate the framework through experiments
that assess its accuracy within a controlled environment using simulated
event logs and that demonstrate the benefits of SSD for a downstream
process mining task: remaining time prediction. The findings emphasize
the potential of SSD for obtaining more accurate process mining insights.
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1 Introduction

Business processes are often supported by information systems that record exe-
cution data in event logs, which are then used in process mining to extract data-
driven insights [1]. However, these event logs often capture business processes
executed in both steady and non-steady states. Steady states refer to periods
when process behavior remains stable and consistent over time [10], while non-
steady states are marked by fluctuations and irregularities due to the dynamic
environments in which processes operate. These non-steady states can arise from
factors such as increased case arrivals during peak seasons or reduced resource
availability during holidays, causing the process to deviate from its usual oper-
ations and performance levels.
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The distinction between steady and non-steady states of processes is cru-
cial for various process mining tasks. As shown later in this work, failing to
distinguish between such states can, for instance, distort performance insights
obtained through lead-time analysis or hurt the accuracy of predictive process
monitoring models. Recognizing the impact that state fluctuations have in dy-
namic environments, the task of steady-state detection (SSD) aims to identify
periods when a system operates in a steady state (or when it does not). Vari-
ous techniques for this task have already been developed and tested in different
application contexts, such as industrial systems [14] and signal processing [6].
However, their application in process mining has so far been largely overlooked,
despite the potential of SSD to improve the accuracy of process mining insights.

Therefore, this paper highlights the importance of SSD in process mining and
investigates the applicability of existing SSD solutions within this domain. To
operationalize this, we propose a framework designed to identify steady states
in business processes based on event data. The framework consists of two steps:
(1) extracting time series from an event log that capture the progression of rel-
evant process characteristics and (2) applying an established SSD technique to
detect steady and non-steady states per process characteristic and aggregating
these results to detect steady states at the process level. The effectiveness of
our framework is evaluated in two experiments: one assessing its accuracy in
a controlled environment based on simulated event logs and the other demon-
strating its practical benefits in a downstream process mining task, specifically
for remaining time prediction. Our findings showcase that our framework indeed
enables the use of SSD for process mining and highlight the potential of SSD to
provide more accurate insights into the operations of organizations.

The remainder of this paper is organized as follows. Section 2 provides back-
ground and illustrates the importance of SSD in process mining. Section 3 intro-
duces our proposed framework for SSD for business processes. In Section 4, we
present the results of our evaluation experiments, demonstrating the framework’s
accuracy and usefulness. Finally, Section 5 discusses the relationship between
SSD and other related problems in process mining, while Section 6 summarizes
our findings and suggests potential directions for future work.

2 Background and Problem Illustration

In this section, we provide background information on steady states and demon-
strate the importance of their consideration in process mining.
Steady states and the SSD problem. A steady state refers to a condition
in which the behavior of a system remains constant over time [10], making its
behavior predictable and allowing for more precise and meaningful analysis. The
study of steady states has a long history and has proven to be important in var-
ious fields, including mechanics [4], biology [11], ecology [22], and economics [5].
Steady state of a business process. In process mining, we define a business process
to be in a steady state if its system-level behavior remains stable and consistent
over time. As shown in Figure 1, a business process can be represented as a
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Fig. 1: Two key properties of a steady state.

system with its inputs, internal characteristics, and outputs. The steady state of
a business process can then be characterized by the following two properties:
1. Balance of system inputs and outputs: A system in a steady state maintains

a balance between input and output, ensuring that no significant fluctuation
occurs over time. In the context of a business process, this means, e.g., that
the number of incoming and completed cases remains consistent over time.

2. Constant system characteristics: The characteristics of a system in a steady
state remain consistent. For a business process, this could mean that, e.g.,
the number of active cases and available resources remain stable.

It is important to note that when examining the system-level behavior of a
process, we focus on process characteristics that provide a holistic description of
its behavior that evolves over time, exhibiting notable fluctuation.

The SSD problem. In the context of process mining, we define the SSD problem
as the task of detecting periods when system-level process behavior, derived
based on information recorded in an event log, remains in a steady state.

Importance of SSD in process mining. To illustrate the importance of
SSD in process mining, we examine how the performance of a business process,
measured by average and median lead times, can differ between steady and non-
steady periods, and the implications this may have on a downstream process
mining task. For this purpose, we use a real-life event log describing a permit
application process at a municipality (BPIC2015-2) [7] as a running example.
The event log contains 44,354 events, capturing the execution of 832 cases over
a period of approximately 5 years. During this period, the process exhibits an
average lead time of 22.9 weeks, with a median lead time of 15.5 weeks. For
simplicity, we focus on a single system-level process characteristic, namely the
number of active cases, when examining the steady state of a business process.

The number of active cases, shown in Figure 2, indicates that the process was
not steady throughout the recorded timeframe, with both stable and unstable
periods. For instance, in Period 1, spanning 5 months and involving 23 cases,
the process shows instability, marked by a significant drop in active cases. The
average lead time is 10.7 weeks, with a median of 11.3 weeks. Period 2, also 5
months long with 23 cases, is more stable, with fewer fluctuations in active cases.
The average lead time is 5.6 weeks, and the median is 3.6 weeks. Lastly, Period
3 exhibits a rise and fall in active cases, indicating a non-steady state. It has an
average lead time of 12.1 weeks and a median lead time of 13.9 weeks.
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Steady State

Measure Event log Period 1 Period 2 Period 3

Number of traces 832 23 23 25

Duration 56 months 5 months 5 months 5 months

Average lead time 22.9 weeks 10.7 weeks 5.6 weeks 12.1 weeks

Median lead time 15.5 weeks 11.3 weeks 3.6 weeks 13.9 weeks
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Fig. 2: Comparison of process performance between different periods.

As observed, performance in the steady state (Period 2) is nearly twice as
good as in the other periods and about four times better than the overall average
across all recorded cases. Such differences are particularly relevant for process
mining tasks such as remaining time prediction, as demonstrated in our evalua-
tion. Specifically, when significant performance differences exist between steady
and non-steady states, it may be beneficial to use SSD as a bucketing method
to split the event log into sublogs representing steady and non-steady states.
Separate models can then be trained for each sublog, allowing the appropriate
model to be applied based on whether the process is currently in a steady or
non-steady state, improving the accuracy of predictions for ongoing cases.

3 Steady-State Detection Framework for Process Mining

This section describes our proposed SSD framework. As illustrated in Figure 3,
the framework takes an event log as input and then extracts time series that
represent the progression of relevant process characteristics over time. These
time series are then analyzed using existing SSD techniques to identify periods
when a process is in a steady state. As output, the framework provides the
detected steady-state periods along with a sublog of traces corresponding to
them. In the following, we describe these two main steps.

3.1 Time Series Extraction

In Step 1, we generate time series from an event log to capture the evolution of
process characteristics relevant to SSD. Such transformations are widely used in
process mining, for purposes including business process simulation [19], assessing
process resilience [13], and evaluating process complexity [26]. Below, we outline
the specifics of this step.
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Fig. 3: Overview of the main steps of our framework.

Input. Our approach takes an event log L, which we define as a collection
of events recorded by a process-aware information system. Each event e ∈ L
is represented as a tuple with at least three attributes e = (caseID, activity,
timestamp), where caseID is the unique identifier for the executed case, activity
indicates the executed process activity, and timestamp denotes the event mo-
ment. A trace σ is a sequence of events from L with the same caseID, ordered
by their timestamps. We denote ΣL as the ordered collection of all traces from
L, arranged according to the timestamp of their first event.

Windowing. We divide the entire timeframe of an event log L into n ∈ N
equally spaced time windows Wl = ⟨w1, . . . , wn⟩, each with a fixed length l (e.g.,
a day or a week). Consequently, each event e ∈ L is assigned to exactly one time
window wt, where t ∈ {1, . . . , n}.

Time series construction. Next, we construct time series over wt ∈ Wl for
different process characteristics. In our framework, we consider 3 process char-
acteristics that are relevant for SSD and can be derived from a standard event
log L: the number of active cases (ac), the number of completed cases (cc), and
the average lead time (alt) of completed cases during a time window wt. If the
event log includes further information, such as resource details, additional pro-
cess characteristics can be considered to enrich the process representation.

Fig. 4: Outcome of the first framework step.
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We use yfwt
∈ R to denote the value of a characteristic (or feature) f ∈

F = {ac, cc, alt} during a time window wt. For each feature, we concatenate
these values into a time series {yfwt

}nt=1, which captures the evolution of f over
the time windows in Wl. Figure 4 shows the outcome of this step with weekly
windowing for the BPIC2015-2 event log, serving as a running example.

3.2 Steady-State Detection

After extracting time series, the next step is to identify time windows when a
process is in a steady state. This involves performing SSD at the time series level
(i.e., per characteristic) and then at the process level.
SSD at time series level. For each time series {yfwt

}nt=1, we derive a corre-
sponding binary time series {pfwt

}nt=1, with pfwt
∈ {0, 1} for each time window

wt using an existing SSD technique. This binary time series indicates whether
the corresponding process characteristic is in a steady state during wt, where
pfwt

= 1 signifies a steady state and pfwt
= 0 indicates a non-steady state.

To obtain {pfwt
}nt=1, we can use an SSD technique from a range of existing

ones. Our framework’s implementation currently supports the following options:
– Rolling Window (RW) [28] : The RW technique detects steady states in a

time series by comparing the short-term and long-term rolling averages of
its values. It identifies a drift when the deviation between the short-term
and long-term averages exceeds a threshold that is scaled by the standard
deviation of the long-term average.

– Cumulative Sum (CS) [8] : The CS algorithm monitors cumulative increases
and decreases in the data and flags a change when these values exceed a
predefined threshold. Once a change is identified, the cumulative calculation
resets to ensure continued monitoring.

– Variance Filter (VR) [23] : The VR method proposed by Rhinehart uses a
variance filter to distinguish between steady and non-steady states based on
statistical analysis. It applies a filter that evaluates the ratio of the variance
of the signal, with thresholds used to identify steady states.

– ED Pelt with Transitions (EDP) [9] : The EDP technique identifies steady
states in a time series by splitting the time series into “statistically homoge-
neous” segments using the pruned exact linear time (Pelt) change point de-
tection algorithm. The Pelt method guarantees optimal segmentation while
maintaining a linear computational complexity.

Beyond these techniques, our framework is compatible with any SSD method
that accepts a real-valued time series and generates a binary time series.
SSD at process level. After performing SSD per process characteristic, we next
aggregate the information from the binary time series to determine if indeed the
entire process can be considered to be in a steady state during a given time
window. Our framework supports several aggregation techniques for this:

Kernel-based aggregation computes a steady-state probability curve as a time
series {Pwt

}nt=1 with Pwt
∈ [0, 1],∀wt that represents the likelihood of a time

window wt to record a steady state of a process. To do this, we first aggregate
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Fig. 5: SSD using the probability curve and consensus threshold.

insights from different process characteristics by calculating the average value
across all binary time series {pfwt

}nt=1 for each time window. We then apply a
Gaussian filter [17] with a kernel of 4 standard deviations to smooth the curve
and reduce fluctuations. After smoothing, the time series is rescaled using Min-
Max normalization to ensure that the values lie between 0 and 1. Finally, to
identify the steady states of a business process, we compare the values of the
steady-state probability curve with a consensus threshold τ ∈ [0, 1]. If Pwt

≥ τ ,
the time window wt is considered to be part of a steady state; otherwise, as
non-steady. Figure 5 illustrates the outcome of this transformation for the time
series shown in Figure 4, assuming a consensus threshold τ = 0.7.

In addition to the kernel-based aggregation technique, our framework also
supports more straightforward aggregation techniques. Consensus-based aggre-
gation considers a time window wt as a steady state if pfwt

= 1 for all process
characteristics. Majority-based aggregation deems a time window wt as a steady
state if pfwt

= 1 holds for at least 50% of the process characteristics. Finally,
single-source aggregation classifies a time window wt as a steady state if pfwt

= 1
holds for at least one process characteristic f .

As output, we obtain the time windows W ′
l = ⟨wi1 , . . . , wim⟩ as a subsequence

of Wl with 1 ≤ i1 < im ≤ n, where the process is in a steady state.

Detection of steady-state periods and a sublog. Finally, after identifying
time windows that characterize a process in a steady state, we define steady-
state periods Sp = ⟨s1, . . . , sd⟩ by merging consecutive time windows from W ′

l

into continuous intervals. In Figure 5, we detect a total of 5 steady-state periods.
In addition, to enable downstream process mining task, we identify traces

that correspond to the detected steady-state periods. To do this, we analyze
each trace σ ∈ ΣL and check whether the timestamps of its events fall within
the identified periods in Sp. If the proportion of such events relative to the
total number of events in σ exceeds a predefined trace acceptance threshold θ ∈
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[0, 1], the trace is classified as a trace that belongs to a steady-state sublog. For
example, if 3 out of 5 events in a trace fall within one or more periods from Sp

and θ = 0.5, the trace is classified as belonging to a steady state since 3/5 > θ.
Otherwise, the trace does not belong to a steady state. This results in a sublog
ΣS

L ⊆ ΣL, containing traces associated with the process in a steady state.
Depending on the downstream process mining task, the assignments of traces

to steady-state periods can also be done at the event or sub-trace level if more
fine-granular information is desired.

4 Evaluation

This section presents two conducted evaluation experiments. In the first exper-
iment, detailed in Section 4.1, we evaluate the accuracy of our framework in
detecting steady states using synthetic data. The second experiment, explained
in Section 4.2, demonstrates the usefulness of the framework using real-life event
logs and a concrete process mining task, i.e., the prediction of the remaining time
for ongoing cases. To ensure reproducibility, we have provided the data, imple-
mentation, configurations, and raw results in a publicly accessible repository3.

4.1 Experiment 1: Accuracy

In the first experiment, we assess the ability of our framework to identify steady
states in event logs. In the following, we discuss the data collection, setup, eval-
uation measure, and obtained results.
Data collection. In this experiment, we generate data by simulating an order-
to-cash process for a medium-sized company, as described in the work by Zaho-
ransky et al. [27]. The simulation model is built using the CIW library [18],
an open-source tool for discrete event simulation.4 To introduce steady and
non-steady states, we vary the number of incoming cases during the simula-
tion, ensuring a balanced distribution between steady and non-steady periods.
Specifically, we create non-steady states by applying periods of linear increases
and decreases in the arrival rate, followed by periods of constant arrival rate
to establish steady states. We implement up to 5 changes in the arrival rates,
starting with either increases or decreases, resulting in 10 distinct scenarios, as
shown in Figure 6. To ensure robust evaluation, we generate 10 event logs for
each scenario, producing a total of 100 event logs.
Setup. In Step 1 of our framework, we apply weekly windowing and consider
3 process characteristics: the number of active cases, the number of completed
cases, and the average lead time of completed cases, i.e., f ∈ {ac, cc, alt}.

In Step 2, we evaluate all four implemented techniques for SSD: Rolling Win-
dow (RW), Cumulative Sum (CS), Variance Filter (VR), and ED Pelt with Tran-
sitions (EDP). For each technique, we test a variety of parameter combinations,5

3 Project repository: https://gitlab.uni-mannheim.de/processanalytics/ssd.
4 Available online: https://ciw.readthedocs.io/en/latest/index.html
5 The exact parameters tested for each technique are specified in our repository.

https://gitlab.uni-mannheim.de/processanalytics/ssd
https://ciw.readthedocs.io/en/latest/index.html
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Fig. 6: Simulated number of arrived cases for each scenario.

resulting in a total of 564 evaluations per event log. To detect steady states of the
process, we evaluate 4 aggregation techniques (i.e., aggregation-based SSD) with
a trace acceptance threshold of θ = 0.8: kernel-based, consensus-based, majority-
based, and single-source. For the kernel-based approach, we set the consensus
threshold to τ = 0.7. Additionally, we compare the results of our framework
when the decision about steady states is made based solely on a single process
characteristic (i.e., feature-based SSD).

Evaluation measure. To measure our framework’s accuracy in classifying each
time window as a steady or non-steady state, we use the ϕ coefficient [15], a
widely used binary classification metric for assessing the strength of observed
associations. This metric offers a balanced evaluation by considering all compo-
nents of the confusion matrix. It is defined as follows::

ϕ =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

where TP, FP, TN, and FN represent true positives (correctly predicted steady-
state windows), false positives (incorrectly predicted steady-state windows), true
negatives (correctly predicted non-steady state windows), and false negatives
(incorrectly predicted non-steady state windows), respectively. The ϕ coefficient
ranges from -1 to +1, where +1 indicates perfect classification, 0 indicates ran-
dom guessing, and -1 indicates complete disagreement.

Results. Table 1 presents the results obtained on our data collection, showing
the average and standard deviations of the ϕ coefficient for both feature-based
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Table 1: Results of Experiment 1: The average ϕ coefficient along with its stan-
dard deviation.

SSD configuration SSD technique

RW CS VF EDP

Feature-based

Active cases 0.35 ± 0.03 0.27 ± 0.08 0.19 ± 0.06 0.43 ± 0.12
Avg. lead time 0.21 ± 0.06 0.38 ± 0.12 0.37 ± 0.10 0.04 ± 0.07
Case completions 0.36 ± 0.03 0.26 ± 0.05 0.25 ± 0.06 0.43 ± 0.08

Aggregation-based

Kernel-based 0.47 ± 0.04 0.33 ± 0.06 0.32 ± 0.10 0.35 ± 0.09
Consensus-based 0.32 ± 0.03 0.25 ± 0.05 0.32 ± 0.13 0.35 ± 0.09
Majority-based 0.34 ± 0.03 0.30 ± 0.06 0.18 ± 0.05 0.42 ± 0.08
Single-source 0.25 ± 0.04 0.40 ± 0.10 0.20 ± 0.07 0.07 ± 0.09

Note: The highlighted values show the best results in each row.

and aggregation-based configurations. The table shows that the SSD technique
using rolling windows (RW) achieves the highest ϕ coefficient of 0.47 with kernel-
based aggregation, indicating a moderate positive association between the pre-
dicted steady and non-steady states. The EDP technique produces similar out-
comes, with a ϕ coefficient around 0.43 when using either the number of active
cases or the number of case completions. In contrast, the VF technique demon-
strates the lowest performance, consistently underperforming relative to other
techniques across all configurations.

When comparing these results with the results observed in other domains [25],
we see that the accuracy is slightly lower. The main reason for this is the specific
and more complex interrelations between different process characteristics in a
business process, compared to other domains where relationships typically follow
well-defined laws or equations. For example, in a business process, an increase
in the arrival rate does not automatically lead to an increase in the average lead
time, since the process may have additional capacities that allow it to handle
the increased workload without significant changes in system behavior.

Overall, existing SSD techniques can be applied in process mining, but the
evaluation shows room for improvement due to the unique properties and in-
terrelations of process characteristics, requiring domain-specific adjustments to
SSD for better accuracy and applicability.

4.2 Experiment 2: Usefulness

In this experiment, we demonstrate the usefulness of our SSD framework by
considering a well-known task in process mining, namely the remaining time
prediction problem. Specifically, we compare the prediction accuracy of vari-
ous state-of-the-art approaches applied to entire event logs with their accuracy
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when using only data from steady states. In the following, we discuss the data
collection, setup, and obtained results.

Table 2: Characteristics of the employed event logs.
Event
log

Number of Case length Duration (days)

Cases Variants Events Classes Avg Max Avg Max

Steady and non-steady states (ΣL)
Hospital 100 000 1020 451 359 18 4.5 217 127.2 1035
Sepsis 1050 846 15 214 16 14.5 185 28.5 422
Helpdesk 4580 226 21 348 14 4.7 15 40.9 60
BPIC12 13 087 4366 262 200 36 20.0 175 8.6 137
BPIC15-1 1199 1170 52 217 398 43.6 101 95.9 1486
BPIC15-2 832 828 44 354 410 53.3 131 160.3 1326
BPIC15-3 1409 1349 59 681 383 42.4 123 62.2 1512
BPIC15-4 1053 1049 47 293 356 44.9 115 116.9 927
BPIC15-5 1156 1153 59 083 389 51.1 153 98.0 1344

Steady states (ΣS
L)

Hospital 8315 176 27 117 15 3.3 217 54.3 773
Sepsis 439 378 6242 16 14.2 170 35.8 422
Helpdesk 745 92 3742 10 5.0 14 40.4 60
BPIC12 5692 1417 81 125 36 14.2 142 5.0 67
BPIC15-1 682 667 29 956 377 43.9 93 99.8 1486
BPIC15-2 311 310 17 823 341 57.3 132 152.9 1171
BPIC15-3 521 505 22 363 303 42.9 101 58.3 1261
BPIC15-4 677 674 30 813 321 45.5 116 104.9 831
BPIC15-5 520 519 27 462 329 52.8 108 86.9 812

Data collection. Our data collection consists of 9 publicly available real-life
event logs that are commonly used for predicting the remaining runtime of on-
going cases.6 As summarized in Table 2, these logs represent the execution of
various processes and display diverse characteristics across multiple dimensions,
including the number of cases, variants (i.e., unique traces), recorded events,
event classes (i.e., unique activities), average case lengths and durations. In ad-
dition to the characteristics of the original event logs that include all traces
(ΣL), we include the characteristics of the sublogs with traces that correspond
to steady states (ΣS

L), as identified using our framework.

Setup. Next, we discuss the framework configurations, employed data split, and
used remaining time prediction approaches.

6 We excluded event logs from the BPI Challenge 2013 and 2020 due to long periods
of process inactivity, the Traffic Fine log for its strong batching behavior, and the
Environment Permit log for having too few events, making further segmentation
unsuitable for training a prediction model.
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Configurations. In Step 1 of our framework, we apply weekly windowing for
all event logs, except for the BPIC12 event log, which covers a relatively short
time period. For this log, we use daily windowing instead. We again consider 3
process characteristics, i.e., f ∈ {ac, cc, alt}. In Step 2, we use the configuration
that yielded the best results in Experiment 1, specifically the rolling window
(RW) and kernel-based aggregation with a consensus threshold of τ = 0.7 and a
trace acceptance threshold of θ = 0.8.

Data split and prefix generation. We use a 64%-16%-20% chronological holdout
split that divides data into training, validation, and testing sets while preserv-
ing the natural chronological order. This method mitigates data leakage and
simulates real-world scenarios where predictions are made based on historical
data [24]. For each trace σ in a split, we extract all prefixes between lengths 2
and |σ| − 1 to establish prediction problems.

Approaches. We consider 3 remaining time prediction approaches that estimate
the remaining time of an ongoing case based on the sequence of already executed
activities (and possibly other available attributes):
– DUMMY: A simple baseline that predicts the remaining time of an ongoing

case by averaging the remaining time of training cases that share the same
sequence of executed activities.

– DALSTM: This deep learning model, based on the LSTM architecture, out-
performs other LSTM-based approaches in remaining time prediction [21].

– PGTNet: This approach employs graph transformers to balance learning
from the local contexts with capturing long-range dependencies [2], demon-
strating state-of-the-art results.

For DALSTM and PGTNet, we use the settings reported in the original papers.

Evaluation measures. To evaluate the impact of SSD on prediction accuracy,
we consider three evaluation measures:
– Mean Absolute Error (MAE) quantifies the average magnitude of absolute

errors between predicted and actual remaining time. It is formally defined as:
MAE = 1

n

∑n
i=1|yi − ŷi|, where n is the number of predictions, yi represents

the actual observed values, and ŷi denotes the predicted values. Lower MAE
values indicate higher predictive accuracy.

– Average Performance Change (APC) measures the average change in MAI
across all approaches when comparing values obtained for all traces in an
event log, denoted as ΣL, with those obtained for traces belonging to steady-

state periods, denoted as ΣS
L . It is defined as: APC = 1

3

∑3
i=1

MAE
ΣS

L
i

MAE
ΣL
i

− 1,

where the index i iterates over the three remaining time prediction ap-
proaches considered in this experiment. An APC value closer to zero in-
dicates smaller differences in prediction accuracy between ΣL and ΣS

L .
– Steady-State Ratio (SSR) represents the proportion of steady-state traces

relative to the total number of traces in each event log. It is calculated as:
SSR =

|ΣS
L|

|ΣL| . This measure provides context for the APC by showing the
prevalence of steady-state traces within the event log.
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Results. Table 3 presents the MAE values for all traces in an event log (ΣL) and
those associated with steady-state periods (ΣS

L), along with the corresponding
APC and SSR values for each event log. To enhance interpretability, the rows
are sorted in ascending order based on the APC values.

First, we observe that for most event logs, the APC is negative, ranging
from -27.1% to -5.7%. This indicates that the MAE for traces executed in a
steady state (columns ΣS

L) is, on average, lower than when predictions are made
using the entire dataset (columns ΣL). This is expected, as many processes in
steady states have shorter lead times with less fluctuation, allowing for more
accurate predictions of the remaining time for ongoing cases compared to non-
steady states7. In some event logs, such as BPIC15 Municipalities 2, 3, and
5, this trend holds consistently across different approaches. For the remaining
time prediction task, this finding highlights the importance of training separate
models: one tailored for steady states and another optimized for non-steady
states. This strategy is likely to provide more accurate predictions in terms of
MAE compared to using a single model that is trained on the entire event log.

Table 3: Mean Absolute Error for remaining time prediction.

Event log DUMMY DALSTM PGTNet APC SSR

ΣL ΣS
L ΣL ΣS

L ΣL ΣS
L in % in %

BPIC15-4 77.2 86.5 72.7 45.4 82.7 36.6 −27.1 64.3
BPIC15-3 24.2 22.5 15.1 10.6 15.0 10.3 −22.6 37.0
BPIC15-5 48.3 45.4 43.6 32.9 36.3 32.6 −13.6 44.0
BPIC15-2 72.9 61.4 47.0 43.8 68.8 59.2 −12.1 37.4
BPIC12 7.6 7.5 8.0 4.8 5.5 5.9 −11.3 43.5
Helpdesk 12.3 10.6 12.9 10.9 5.4 6.1 −5.7 16.3
BPIC15-1 38.2 40.9 29.3 37.9 20.4 27.3 23.6 56.9
Sepsis 32.7 43.4 15.7 22.2 16.4 24.9 41.8 41.8
Hospital 47.9 66.8 36.7 35.9 24.2 59.0 60.4 8.3

However, in some event logs, the APC is positive, meaning the MAE has
increased. This can be attributed to the specific characteristics of the recorded
processes. In the Sepsis event log, the APC is 40%, due to the process’s long
warm-up and cool-down phases, which together account for over 50% of the total
recorded time. As a result, steady states are detected too early, misclassifying the
warm-up period and causing inaccurate detection. This highlights a challenge in
business process mining, where SSD techniques from other fields may struggle to
accurately detect and differentiate steady states from warm-up and cool-down
phases. In the Hospital event log, the APC is also positive. However, the SSR

7 SSD remains useful when traces in a non-steady state have shorter lead times. For
example, an emergency call center may receive a surge of calls during a disaster,
prompting faster processing to assist more people, reducing average lead time.
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is only 8%, indicating that the proportion of traces belonging to a steady state
is very low. Consequently, the steady-state sublog may be too small to yield
reliable results. Finally, for the BPIC15-1 event log, the APC is approximately
24%. A closer analysis of the detected steady states reveals that the event log
may contain multiple steady states with different properties. The detected steady
state at the beginning of the event log occurs when the number of active cases
is high, while the second part features a lower number of active cases, leading to
a qualitatively different steady state. In this case, a more appropriate approach
would be to consider these two steady states independently.

Overall, this experiment demonstrates that our SSD framework can notably
impact the insights for a downstream process mining task, making it a valuable
preprocessing step, such as bucketing in the case of remaining time prediction.
While the applicability of our framework may be influenced by certain specific
characteristics of the recorded process behavior, it remains a highly effective
approach for many business processes.

5 Related Work

In this section, we relate the SSD problem to other problems in process mining.
Concept drift detection. The problem of SSD is related to concept drift
detection in process mining, but they address different aspects. Concept drift
detection identifies changes in the process that lead to a new process version [3],
which operates for a certain period. In contrast, SSD focuses on the system-level
behavior of the process, identifying periods where key process characteristics re-
main stable over time. These aspects are not necessarily correlated. For example,
if a new activity (drift in the control flow) creates a bottleneck due to limited
resource capacity, it is likely to impact system-level characteristics such as the
average lead time. This would disrupt the steady state, potentially leading to
a non-steady state or another steady state. However, if the new activity does
not create a bottleneck, the system may remain in the same steady state despite
transitioning to a new process version. Conversely, a business process can tran-
sition from a steady state to a non-steady state without changing its process
version, for example, due to fluctuations in the arrival rate.
Business process simulation. In business process simulation, SSD can be used
to address the initialization bias (or startup issue) of simulation models [20].
Many simulations begin from an empty state, causing early fluctuations that
distort results and limit analysis. The primary goal of SSD in process simula-
tion is to identify when a process reaches a steady state, which is essential for
predicting reliable long-term insights. Despite the similar terminology, the SSD
problem discussed in this paper is distinct, focusing on detecting the steady state
of a business process based on past recorded behavior in an event log, and serv-
ing as a crucial preprocessing step for various offline process mining techniques.
We believe that the SSD problem discussed in this paper could also impact fu-
ture applications in business process simulation, particularly in the automated
extraction of business process simulation models from event logs.
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Anomaly detection. Anomaly detection seeks to identify outliers or unusual
patterns at the case level that deviate from expected process behavior [12]. In
contrast, SSD focuses on identifying periods of stable, consistent process behav-
ior across all active cases for a given period. However, SSD can provide a baseline
for anomaly detection, making it easier to identify and explain unexpected be-
haviors. Once a steady state is reached, significant deviations can signal potential
irregularities, while anomalies during non-steady states can often be explained
by the process’s inherent instability during that period.

Statistical quality control. The problem of SSD is closely related to statistical
quality control (SQC) [16], with both aiming to monitor process stability over
time. However, SSD focuses on identifying when a process has reached a steady
state, where its characteristics remain relatively stable. In contrast, SQC em-
phasizes detecting deviations from a desired range, typically defined by specific
process characteristics that reflect the process’s quality or efficiency. Moreover,
it is important to note that reaching a steady state does not necessarily mean
the process is operating within the optimal performance range that SQC seeks
to maintain. A process can be stable but still fall outside the desired limits.

6 Conclusion

This paper addresses the problem of steady-state detection (SSD) in business
processes, emphasizing its importance in process mining and examining the ap-
plicability of existing SSD solutions within this domain. We propose a framework
for identifying when a process is in a steady state in a data-driven manner using
information recorded in event logs. The framework first generates time series to
represent key process characteristics and applies established SSD techniques to
identify steady states in the time series and process levels, producing a sublog
that captures the process behavior during these periods. The evaluation demon-
strates that the framework effectively detects steady states in many real-life
business processes and can enhance the accuracy and reliability of insights de-
rived from a downstream process mining task.

In future work, we plan to pursue two key directions: enhancing the proposed
framework and further investigating how SSD affects process mining tasks. To
strengthen the SSD framework, we aim to develop a technique specifically tai-
lored to the unique characteristics of business processes. Our evaluation has
demonstrated that existing generic SSD techniques from other domains are not
fully effective, highlighting the need for a specialized approach. This tailored
SSD technique would be applicable to any event log and account for atypical
behaviors, such as extended warm-up periods or periods of inactivity that may
occur within event logs. To develop a more comprehensive understanding of the
impact of SSD on process mining, we plan to investigate its effects across a wider
range of tasks, including process discovery, conformance checking, concept drift
detection, and more. This investigation will further highlight the importance of
SSD and demonstrate its value in process mining research and practice.
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