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Abstract—Machine learning (ML) models were shown to be
vulnerable to model stealing attacks, which lead to intellectual
property infringement. Among other attack methods, substitute
model training is an all-encompassing attack applicable to any
machine learning model whose behaviour can be approximated
from input-output queries. Whereas previous works mainly
focused on improving the performance of substitute models
by, e.g. developing a new substitute training method, there
have been only limited ablation studies that try to understand
the impact the strength of an attacker has on the substitute
model’s performance. As a result, different authors came to
diverse, sometimes contradicting, conclusions. In this work, we
exhaustively examine the ambivalent influence of different factors
resulting from varying the attacker’s capabilities and knowledge
on a substitute training attack.

Our findings suggest that some of the factors that have
been considered important in the past are, in fact, not that
influential; instead, we discover new correlations between attack
conditions and success rate. In particular, we demonstrate that
better-performing target models enable higher-fidelity attacks
and explain the intuition behind this phenomenon. Further, we
propose to shift the focus from the complexity of target models
toward the complexity of their learning tasks. Therefore, for the
substitute model, rather than aiming for a higher architecture
complexity, we suggest focusing on getting data of higher com-
plexity and an appropriate architecture. Finally, we demonstrate
that even in the most limited data-free scenario, there is no need
to overcompensate weak knowledge with unrealistic capabilities
in the form of millions of queries. Our results often exceed
or match the performance of previous attacks that assume a
stronger attacker, suggesting that these stronger attacks are
likely endangering a model owner’s intellectual property to a
significantly higher degree than shown until now.

Index Terms—Adversarial Machine Learning, Model Stealing,
Model Extraction, Ablation Study

I. INTRODUCTION

The rapid evolution of Machine Learning (ML) has added

significant value to ML-based solutions, especially to the

models they are built upon. However, model owners might

need to expose their models to third parties, for instance,

through APIs, hence endangering their intellectual property

to so-called model stealing (extraction) attacks [1]. As one

form of this attack, a malicious end user can exploit the

interaction channel with the model to collect labelled data and

train a substitute model to behave similarly to the original

target model [2]. As a result, malicious third parties can

possess an illegitimate (approximate) copy of the original

model, violating the intellectual property rights of the model

owner and endangering their business model.
Substitute model attacks are suitable for targeting models

that are vital in numerous fields, including image classification

[2], image-to-image translation [3], natural language process-

ing [4], and reinforcement learning [5]. In addition to being

applicable to various task and data domains, substitute training

attacks have been demonstrated to be effective under varied

assumptions of the attacker’s strength. These assumptions

primarily relate to the attacker’s knowledge of the target model

and its training data, as well as the attacker’s capabilities,

primarily regarded as the number of queries needed to steal

a model. However, the influence of these factors has been

studied only sparsely, with most works addressing a limited

subset tailored to their specific attack methods. As a conse-

quence, a certain bias occurred in what factors are considered

decisive when an attacker’s strength is limited in a certain

way. Moreover, as findings from different works sometimes

disagree, the impact of some factors remains equivocal.
In this work, we address this gap and systematically ex-

amine the influence of different factors on the performance

of the substitute model. We demonstrate that while some

factors attracted a lot of attention, others have been under-

explored or completely overlooked. We present new insights

that not only can provide a more comprehensive explanation

of observations from previous work but also make previous

attacks more severe.
To this end, we comprehensively evaluate how the per-

formance of a substitute model is influenced by (i) target

model properties such as architecture and performance on the

original classification task, (ii) substitute architecture choice,

(iii) usage of transfer learning for training target and substitute

models, (iv) attacker’s data quality, and (v) attacker’s capa-

bilities represented by query budget and query optimisation

strategies. Our conclusions are based on an analysis of 180

attack configurations, each being applied against three target

models with different properties.
Our main contributions are:

• We are the first to demonstrate that the performance of

the target model acts as a bottleneck, limiting the fidelity

of substitute models. This stems from the ability of

http://arxiv.org/abs/2503.06188v1


substitute models to replicate the target model’s behaviour

significantly better on correctly predicted labels than on

labels incorrectly predicted by the target model. Conse-

quently, for stronger attackers, achieving high fidelity is

easier when attacking better-performing models.

• We propose to shift focus from the target model complex-

ity towards the complexity of its classification task. In

particular, the complexity of the substitute model should

be considered with respect to the data complexity rather

than the complexity of the target model, as suggested in

several prior works.

• We introduce novel insights into how the usage of transfer

learning impacts the performance of substitute training

attacks. In particular, if a substitute model is trained

from scratch, it will perform better when stealing a target

model trained from scratch than a target model with pre-

trained weights.

• We show that attacks are more effective when the com-

plexity of the attacker’s dataset is higher than the original

dataset; in contrast, attacks generally perform worse when

the attacker’s dataset has lower complexity than the origi-

nal dataset. Moreover, attackers with simpler data tend to

overestimate attack performance, whereas attackers with

more complex data tend to underestimate it.

• Finally, we are the first to perform a data-free attack that

is effective with a query budget smaller than the original

training set of the target model.

Besides, our substitute models trained on original or

problem-domain data outperform state-of-the-art, even when

assuming weaker attacker knowledge. Our data-free attack

achieves a performance comparable to both data-free attacks

and attacks using non-problem domain data while requiring

two orders of magnitude fewer queries.

The rest of the paper is organised as follows. Section II

introduces relevant terminology and metrics used in this work

for attack evaluation. Section III provides a comprehensive

overview of related work on stealing image classifiers. In Sec-

tion IV, we present our detailed analysis of factors influencing

the attack success. Section V demonstrates a comparison of

our results to the state-of-the-art, followed by a discussion in

Section VI and a conclusion in Section VII.

II. BACKGROUND

The general goal of a model stealing (or model extraction)

attack is to create an exact or approximate replica of a machine

learning model to which the attacker has some sort of restricted

access. We call the model under attack the target model

and denote it as f . We further assume that we only have

black-box access to the target model, which means that the

only information an adversary can retrieve is the predictions

(outputs) for given input samples (inputs). Moreover, in the

context of the classification tasks considered in this work, we

assume that the target models can only output top-1 predictions

(labels) for input samples. In other words, the only available

action for the adversary is to send a sample x to the target

model and obtain a label f(x) ∈ {c1, . . . , ck}. We call such

a single request to the model a query, where x is the query

input and f(x) is the query output. The adversary can create

an attacker’s dataset, exploiting the target model as an oracle

for labelling data samples. Subsequently, the attacker’s dataset

can be used to train a so-called substitute model. The substitute

model, which we denote as f̂ , can then further be used

to launch an alternative service with lower fees, potentially

leading to lower demand for the original service and profit

loss for the target model owner.

A successfully performed attack should be both efficient

and effective. In terms of efficiency, an attacker should spend

a reasonable amount of resources to collect and label the

data through the target model. The most crucial part of this

process is the number of queries required to perform the

attack. Previous work suggested reporting an efficiency score,

which shows how many queries per parameter (weight) of the

target model it takes to perform an attack [6]. In this work,

we shift focus from the target model’s complexity towards

the complexity of its training data and, therefore, measure

how many queries per target’s training sample are required

to perform the attack.

For evaluating effectiveness, the performance of a substitute

model is compared with the performance of the target model.

Three metrics are mainly used for that purpose: accuracy,

fidelity, and transferability [6]. In the following, we briefly

describe the metrics used in this work.

Accuracy shows how a substitute model performs on the

classification task that the target model was trained to solve. It

compares the outputs of the substitute model with the original

labels of a dataset. The accuracy of the substitute model f̂ on

dataset Xtest is measured as

1

|Xtest|

|Xtest|∑

i=1

1(f̂(xtest

i
)=ytest

i
).

Additionally, we introduce in this work a metric called joint

accuracy, which shows how many samples are classified

correctly by both target f and substitute f̂ models, as follows

1

|Xtest|

|Xtest|∑

i=1

1(f(xtest

i
)=f̂(xtest

i
)=ytest

i
).

Fidelity measures the similarity of target and substitute pre-

dictions by comparing the labels that the target model f and

the substitute model f̂ output on the test set Xtest. Therefore,

fidelity counts both correct and incorrect equal predictions, as

1

|Xtest|

|Xtest|∑

i=1

1(f̂(xtest

i
)=f(xtest

i
)).

III. RELATED WORK

In this section, we discuss aspects and approaches relevant

to the area of stealing image classifiers. Table I shows ag-

gregated information from 44 relevant papers, which were se-

lected based on the following criteria: (i) the paper introduces

a new substitute training attack or extends a previous work;

(ii) both target and substitute models are trained on image



TABLE I: Summary of current substitute training approaches.

Paper Attacker’s data Data crafting technique
Target

architecture
Query

optimization
Target outputs Metrics

[2] NPD X✗ RL Labels, Probab. Acc
[7] Original or NPD ✗ SSL Probab. Acc, Fid
[8] Original or PD Adver. augm. ✗ Labels Acc
[9] NPD or/and PD N/A Labels Acc
[10] NPD X✗ AL Labels, Probab. Fid
[11] Original Adver. augm. X✗ Labels, Probab. Fid
[12] NPD X RL Labels, Probab. Acc
[13] Original Adver. augm. ✗ AL N/A Acc, Fid
[14] NPD Data composition ✗ Labels Acc
[15] Artificial Generator X✗ Labels, Probab. Acc
[16] Original X✗ Gradients Acc
[17] Artificial Generator ✗ Probab. Acc
[18] Artificial Noise X Probab. Acc
[19] NPD Generator X✗ EA Probab. Acc
[20] PD Adver. augm. X✗ Probab. Acc
[21] NPD Model inversion ✗ Labels Acc, Fid
[22] Artificial Generator ✗ Probab. Acc
[23] Artificial Generator ✗ Probab. + Expl. Acc
[24] Artificial Generator ✗ Labels Acc
[25] Original Adver. augm. X✗ RL Probab. Acc
[26] NPD N/A AL Labels Acc
[27] NPD X✗ Labels Acc, Fid
[28] Original ✗ Probab. + Expl. Acc
[29] (N)PD Generator ✗ AL Probab. Acc, Fid
[30] Original, PD or NPD X AL, RL Probab. Acc, Fid
[31] Original or NPD X DR Probab. Acc
[32] Original X Probab. Acc, Fid
[33] Artificial Generator X✗ Labels, Probab. Acc
[34] Original, PD or NPD X✗ Labels Acc, Fid
[35] Artificial Generator ✗ Labels, Probab. Acc
[36] Artificial Generator ✗ Labels + Expl. Acc
[37] Original N/A Labels + Expl. Fid
[38] Artificial Generator ✗ Labels Acc
[39] Artificial Adver. augm., Generator X✗ RL Labels, Probab. Acc
[40] Original and PD N/A CBS Probab. Acc
[41] Original X✗ Labels Fid
[42] Artificial Generator ✗ Probab. Acc, Fid
[43] NPD ✗ RL Probab. Acc, Fid
[44] Original, PD or NPD ✗ SSL Probab. Fid
[45] NPD ✗ AL Labels Acc, Fid
[46] NPD ✗ AL, SSL Labels Acc, Fid
[47] Artificial Generator ✗ Labels, Probab. Acc
[48] Artificial Generator ✗ Labels, Probab. Acc
[49] NPD X AL Labels Fid

Our work Original, PD or Artificial Adver. augm., Generator X✗ AL Labels Acc, Fid

data; (iii) the substitute model is trained with the intention

of copying the behaviour (functionality) of the target model.

In the following, we review each characteristic presented in

Table I.

Attacker’s data corresponds to data categories used for

querying the target model; they comprise original, problem-

domain, non-problem domain, and artificial data [6]. Attacks

that only rely on artificial data to train substitute models

are also called data-free attacks. In Table I, we indicate in

the corresponding column which data was used by related

work. We use the connector ”and” to mark cases when a

substitute model was trained on a combination of data from

different categories. If a paper assumed that a small amount of

original or PD data is available (even if less than 5%), we still

considered those attacks as ones requiring the corresponding

type of data.

Data crafting techniques are commonly used for two

goals: generating artificial data and creating more (high-

quality) data from the one available. Below, we describe the

methods from previous work, which are listed in Table I.

Adversarial augmentation is the most common approach for

improving the quality of the data [13], [20], [25]. The idea is

to query a target model with adversarial examples crafted for

a substitute model to ”correct” the predictions of the substitute



model near its decision boundary. Data composition is an

approach proposed for increasing the quality of NPD data by

merging two images into one [14]. Model inversion is inspired

by the model inversion attack [50], which aims to reconstruct

training data from a model. In the context of model stealing, it

can be applied to extract data from the target model, leading

to more meaningful data when only NPD data is available

[21]. Generative models (generators) are common for creating

artificial data [22] and improving the quality or increasing the

quantity of the attacker’s data samples [19]. Finally, noise can

also be used as a direct input for querying a model when no

data or generative model is available [18].
If the target architecture is known, an adversary can use it

as the architecture choice for a substitute model, simplifying

the whole stealing process. In general, there are two possible

scenarios: (i) the substitute architecture differs from the target,

as the latest is assumed to be unknown (marked as ✗ in

Table I), (ii) the substitute and target architectures are the same

(marked as X in Table I). We indicate papers with X✗ if both

cases are reported. If it was unclear which strategy the authors

chose, we marked such papers as N/A.
Query optimisation includes techniques that aim to in-

crease the efficiency of an attack by reducing the number

of queries. The most common technique is using Active

Learning (AL) [10], [13], [26], [29]. Active learning was

initially introduced as an optimisation for labelling data in

supervised learning scenarios with a significant amount of

unlabelled data. Since labelling data is also part of model

stealing (with the API being the oracle), active learning can

be applied for query optimisation [51]. A few other works

trained Reinforcement Learning (RL) agents to pick samples

with the highest impact on substitute model training [2], [25].

Besides, query optimisation can also be conducted by utilising

Evolutionary Algorithms (EAs) [19], Self-Supervised Learning

(SSL) [7], [44], [46], Dataset Reduction (DR) [30] or Cluster-

Based Selection (CBD) of data samples [40].
Target outputs are the primary source of information

an adversary can obtain from the target model. The most

widespread assumptions are that the target model outputs

either labels or probabilities (confidence scores). All papers

that compared labels with probabilities concluded that the

substitute performance is better when probabilities are used

[2], [10]–[12], [15], [21]. In other scenarios, an API can reveal

even more information though explicit model gradients [16] or

model explanations, provided additionally to labels [36], [37]

or probabilities [23], [28]. We marked in Table I papers as

N/A in case it was unclear from the attack description which

target outputs were utilised.
Finally, for each paper, we specified the metrics used for

attack evaluation, namely, accuracy or fidelity.
Table I illustrates the following notable trends:

• PD data is the least explored in previous studies (18% of

works), in contrast to artificial (27%), original (33%), and

NPD (49%) data. However, as image data is nowadays

widely accessible, gathering PD data for image classifi-

cation tasks is a highly plausible scenario, making PD

TABLE II: Accuracy of target models trained on CIFAR-10.

Target model Test accuracy #parameters

SimpleNet 91.76% ∼5M
ResNet-34 (from scratch) 93.61% ∼21M
ResNet-34 (transfer learning) 97.14% ∼21M

attacks potentially the most threatening. As we demon-

strate later in Section IV-E, PD data, even of noticeably

higher complexity than the original training data, leads

to highly effective model stealing attacks.

• Most of the methods were validated with mismatch-

ing substitute and target architectures, suggesting that

knowledge about the target model architecture is not

crucial. This observation aligns with our insight from

Section IV-C that the substitute architecture choice should

correspond to the complexity of the attacker’s data rather

than be compared with the complexity of the target

model.

• None of the works that use artificial data incorporate a

query optimisation strategy. However, as we demonstrate

later in Section V, these attacks usually require millions

of queries, which makes them significantly less efficient

than attacks using non-artificial data.

IV. ATTACK FACTOR EVALUATION

In the following, we first present an overview of all attack

configurations studied in this work. The overview is followed

by a step-by-step analysis of five attack factors. For each

factor, we first present relevant findings from prior work

together with our observations, which were not necessarily

highlighted or spotted by corresponding authors. Subsequently,

we describe and analyse experiments conducted in this work

that demonstrate the influence of the attack factor. We con-

clude the analysis of each attack factor with a summary of

our insights.

A. Attack Setup

For our study, we first trained three target models and

then exploited each of them to train 180 substitute models

(see Appendix A for a detailed attack setup overview). The

substitute models varied in terms of architecture, the data they

were trained on, the amount of data, and the strategy of data

collection. Below, we describe in detail the characteristics of

each component of the attack setup.

Target model. The three target models are trained on

the CIFAR-10 dataset [52], with their accuracy scores and

complexities shown in Table II. Two target models have

ResNet-34 architecture: one is trained from scratch, and the

other is trained using transfer learning from the ImageNet

dataset. The third model has the SimpleNet [53] architecture,

which has significantly fewer parameters (around one-quarter

of ResNet-34) and is trained without transfer learning.

Substitute model. The substitute models have SimpleNet,

ResNet-18 and ResNet-34 architectures. The Simplenet model



is trained from scratch, whereas both residual networks are

trained using transfer learning from ImageNet.

Attacker’s Dataset. Three datasets are used as attacker’s

data, each corresponding to a different degree of knowledge

about the original data, namely: CIFAR-10 (as original data),

CINIC-10 (as problem-domain data), and an artificial dataset

(for a data-free attack scenario). The artificial data is generated

with a stable diffusion model1 to approximate problem domain

data (see Appendix E for more details). Each dataset is

split into 45,000 training samples used for training substitute

models and 5,000 validation samples. In all experiments, we

assume that an attacker only has access to the output labels

of the target model.

Query Budget. We carry out experiments with 5 query

budgets: 1,000, 5,000, 10,000, 20,000, and 45,000 samples.

We set the upper bound to be 45,000 for two reasons: (i) to

avoid knowledge leakage, we keep validation sets unseen by

the substitute models, and (ii) for attacks using data other than

the original, we want to have a baseline trained on the original

data with the same number of queries.

Attack Strategy. Alongside randomly selecting a subset

of the inputs from the whole dataset for querying the target

model (random sample selection), we applied three query

optimisation strategies: active learning from [10], adversarial

augmentation from [13], and their combination. These meth-

ods from previous work were slightly modified for better

efficiency and additionally combined into a single method (see

Appendix B for more details).

Evaluation. We evaluated each attack in terms of accuracy,

joint accuracy (see Section II), and fidelity. The 10,000 test

samples from the CIFAR-10 dataset were used for the final

evaluation. All attackers’ decisions about the optimal hyper-

parameter choice were based on scores obtained on 5,000

samples from the attacker’s validation set.

B. Factor 1: Target Model Properties

Prior Work Discussion. Jagielski et al. [7] demonstrated

that high fidelity of substitute models can not be guaran-

teed due to the non-deterministic nature of learning-based

approaches. We take this exploration further, showing that

fidelity is actually limited by the accuracy of the target model,

and the non-determinism occurs primarily while learning the

mistakes (wrongly classified samples) of the target model.

This insight can also be traced in other works, even though

it remained unnoticed by the authors. For instance, Pape et

al. [41] performed a substitute training attack with original

data against three target models of different complexity and

different performance. In their results, fidelity scores correlate

with the performance of the target model, being the highest

for the most complex and better-performing model. While one

might connect such a trend with the complexity of the target

model, we demonstrate that among two target models that have

identical architectures but different accuracy scores, the better-

performing one leads to higher fidelity.

1https://huggingface.co/stabilityai/stable-diffusion-2-1

Results. We present in Table III the results of attacks with

the strongest attacker’s knowledge assumption: original data

and identical architectures for target and substitute models.

The fidelity scores correlate with the performance of the target

model—the higher the accuracy of the target model, the higher

the fidelity score reached by a substitute model. Moreover,

fidelity does not exceed the target accuracy, suggesting that

the target accuracy acts as a limiting factor.

TABLE III: Performance of substitute models trained on the

original data (CIFAR-10) with the same architectures as target

models.

Test Scores

Target model
Query
budget Joint Acc Accuracy Fidelity

Target
accuracy

1k 48.07% 50.26% 50.39%
5k 69.84% 72.01% 73.01%
10k 76.39% 78.84% 79.93%
20k 82.70% 85.38% 86.33%

SimpleNet

45k 87.02% 90.27% 90.61%

91.76%

1k 76.69% 79.35% 78.74%
5k 85.32% 88.54% 87.24%
10k 88.51% 91.91% 90.51%
20k 90.73% 94.73% 92.39%

ResNet-34
(from scratch)

45k 92.15% 96.67% 93.50%

93.61%

1k 80.58% 81.61% 81.79%
5k 89.47% 90.29% 90.91%
10k 91.30% 92.26% 92.73%
20k 93.77% 94.79% 95.16%

ResNet-34
(transfer learning)

45k 95.37% 96.49% 96.84%

97.14%

TABLE IV: Accuracy of substitute models on correct and in-

correct predictions of the target model. Substitutes are trained

with 45,000 original samples and have the same architectures

as the target models.

Target model Correct predictions Incorrect predictions

SimpleNet 94.83% 43.57%
ResNet-34 (from scratch) 98.44% 21.13%
ResNet-34 (transfer learning) 98.18% 51.40%

To investigate this behaviour further, we measured how well

the substitute model learned correct and incorrect predictions

of the target model. Identical correct predictions are repre-

sented by joint accuracy. We measure the accuracy of the

substitute model on correct target predictions as

Joint accuracy

Target accuracy
× 100%.

Subsequently, for the incorrect predictions, the accuracy is

Fidelity− Joint accuracy

100%− Target accuracy
× 100%.

The results presented in Table IV clearly demonstrate that

substitute models learn correct predictions significantly better

than incorrect predictions. Therefore, if the target model makes

fewer mistakes, its behaviour is easier to copy, which is

represented by higher fidelity. Moreover, we speculate that

higher incorrect prediction accuracy for SimpleNet and pre-

trained ResNet-34 models in Table IV is the consequence

of using the same training strategy (training from scratch

https://huggingface.co/stabilityai/stable-diffusion-2-1


TABLE V: Performance of substitute models with different architectures trained on the original (CIFAR-10) data.

Target → SimpleNet
ResNet-34

(from scratch)
ResNet-34

(transfer learning)

Substitute ↓ QB Joint Acc Acc Fid Joint Acc Acc Fid Joint Acc Acc Fid

1k 48.07% 50.26% 50.39% 48.95% 50.41% 51.01% 47.32% 48.08% 48.16%
5k 69.84% 72.01% 73.01% 70.82% 72.28% 73.64% 70.50% 71.44% 71.49%

10k 76.39% 78.84% 79.93% 77.88% 79.55% 81.05% 78.14% 79.13% 79.27%
20k 82.70% 85.38% 86.33% 83.35% 85.15% 86.55% 84.32% 85.26% 85.55%

SimpleNet

45k 87.02% 90.27% 90.61% 88.34% 90.45% 91.41% 89.08% 90.12% 90.33%

1k 78.54% 82.20% 81.31% 79.89% 82.31% 82.50% 81.54% 82.56% 82.68%
5k 84.95% 89.33% 87.37% 86.25% 89.11% 88.54% 87.75% 88.73% 88.94%

10k 87.51% 92.05% 89.95% 88.79% 92.01% 91.01% 91.07% 92.07% 92.31%
20k 88.72% 93.46% 91.15% 90.09% 93.35% 92.40% 92.80% 93.87% 94.13%

ResNet-18

45k 89.84% 95.28% 91.71% 91.49% 95.29% 93.40% 94.19% 95.39% 95.44%

1k 77.72% 81.70% 80.01% 76.69% 79.35% 78.74% 80.58% 81.61% 81.79%
5k 83.93% 88.37% 86.26% 85.32% 88.54% 87.24% 89.47% 90.29% 90.91%

10k 87.60% 92.60% 89.69% 88.51% 91.91% 90.51% 91.30% 92.26% 92.73%
20k 89.36% 94.64% 91.32% 90.73% 94.73% 92.39% 93.77% 94.79% 95.16%

ResNet-34

45k 90.35% 96.29% 91.95% 92.15% 96.67% 93.50% 95.37% 96.49% 96.84%

vs transfer learning) for both target and substitute models.

We elaborate more on the usage of transfer learning later in

Section IV-D.

Conclusion. The target model performance acts as a limit-

ing factor for the fidelity of a substitute model. This behaviour

occurs because learning the mistakes of the target model

is significantly more challenging compared to the correct

predictions. Therefore, for a strong attacker, targeting a better-

performing model will lead to a better-performing attack.

C. Factor 2: Substitute Architecture Choice

Prior Work Discussion. In more than 10 recent works, the

impact of the substitute architecture was studied [2], [8], [10],

[11], [15], [20], [21], [25], [30], [34], [41], [42], [45]. While

comparing the architectures of substitute and target models,

the majority of prior studies concluded that the substitute has

to be of the same or higher complexity in order to achieve

higher effectiveness. However, some studies encountered the

opposite, with more complex models performing worse [25],

[39], [42]. In our work, we obtain a similar effect: ResNet-18,

in some cases, outperforms the more complex ResNet-34.

In general, the comparison of target and substitute architec-

tures can be misleading. The target architecture can, for some

reason, be selected to have a learning capacity significantly

larger than is needed for the classification task. However,

selecting a simple architecture that meets the task requirements

can be enough for the adversary.

The substitute model has to learn the task from the data

labelled by the target model. Therefore, data should be the

key factor in deciding on a substitute architecture. Rather

than comparing target and substitute architectures, we suggest

measuring how applicable the substitute architecture is for the

learning task. This can be done, for example, by evaluating the

performance of the substitute model on the original classifica-

tion task when trained on the original data with the original

(truth) labels.

Results. Table V presents the performance of substitute

models with different architectures trained on the original

(CIFAR-10) data. As a substitute model, SimpleNet has

the lowest scores for all target models and query budgets.

However, as a target model, SimpleNet also has the lowest

accuracy, suggesting that its learning capacity is likely too

limited to learn CIFAR-10 better.

For the smallest query budgets of 1,000 samples, ResNet-18

outperforms ResNet-34. This trend sometimes persists for up

to 20,000 queries. Therefore, having the same architecture as

the target model does not imply the best attack performance.

ResNet-34 performs the best for 45,000 queries for all target

models. As the number of samples grows, the substitute

model has to process more information. Consequently, in this

scenario, a more complex architecture is beneficial.

We observe similar trends on PD data (CINIC-10): Sim-

pleNet has the lowest performance, and ResNet-34 reaches

the highest scores for the largest query budget (see Table XIV

in Appendix D). However, unlike for original data, ResNet-

18 mostly performs worse than ResNet-34. As we show later

in Section IV-E, CINIC-10 is more complex than CIFAR-

10. Hence, it is expected that it requires a more complex

architecture such as ResNet-34.

For the artificial data, on the smaller datasets (1,000 and

5,000 queries), ResNet-18 outperforms ResNet-34 (see Ta-

ble XV in Appendix D). As we demonstrate later, the artificial

dataset is simpler than CIFAR-10 (Section IV-E). Hence,

especially for small query budgets, a ResNet-18 architecture

is complex enough to learn the artificial data.

Conclusion. The complexity of the substitute architecture

should correspond to the complexity of the attacker’s data

rather than be compared to the complexity of the target

model. A more complex substitute model should be justified by

data characteristics. In particular, selecting a more complex

architecture can be beneficial if the adversary gathers more

data or uses data of a higher complexity.



TABLE VI: Performance of substitute models trained on 45,000 samples of the original (CIFAR-10) data.

Target → SimpleNet
ResNet-34

(from scratch)
ResNet-34

(transfer learning)

Substitute ↓ Joint Acc Acc Fid Joint Acc Acc Fid Joint Acc Acc Fid

SimpleNet 87.02% 90.27% 90.61% 88.34% 90.45% 91.41% 89.08% 90.12% 90.33%
ResNet-18 89.84% 95.28% 91.71% 91.49% 95.29% 93.40% 94.19% 95.39% 95.44%
ResNet-34 90.35% 96.29% 91.95% 92.15% 96.67% 93.50% 95.37% 96.49% 96.84%

TABLE VII: Fidelity scores of SimpleNet substitute model trained on the artificial dataset.

Fidelity Target accuracy
on validation set

Target model 1k 5k 10k 20k 45k

SimpleNet 23.10% 40.77% 48.61% 58.12% 68.35% 88.46%
ResNet-34 (from scratch) 24.58% 37.78% 43.49% 54.81% 68.34% 91.40%
ResNet-34 (transfer learning) 23.57% 35.04% 38.28% 44.95% 51.01% 96.78%

D. Factor 3: Usage of Transfer Learning

Prior Work Discussion. Atli et al. [12] demonstrated

that stealing models trained from scratch results in lower

effectiveness than stealing pre-trained models. In their ex-

periments, all substitute models were trained with transfer

learning. Moreover, Zhang et al. [25] showed that without

pre-trained weights, the effectiveness of the substitute model

attacks significantly degrades. However, in their experiments,

the dataset used for transfer learning overlapped with the

original training data of the target model. Therefore, the pre-

trained weights were actually (at least partially) trained on the

original data, providing even more advantage for the adversary.

We take the previous observations further and demonstrate that

substitutes trained from scratch learn better from target models

trained from scratch compared to learning from pre-trained

target models.

Results. In our experiments, two target models were trained

from scratch (SimpleNet and ResNet-34), and one was trained

with transfer learning from ImageNet (ResNet-34). Further,

one substitute model is trained from scratch (SimpleNet),

and two are trained from pre-trained on ImageNet weights

(ResNet-18 and ResNet-34). Table VI illustrates that Sim-

pleNet as a substitute reaches higher fidelity and accuracy

scores when targeting models trained from scratch. However,

joint accuracy is higher when targeting the pre-trained model,

which also has the best performance. This observation, on the

one hand, reinforces our findings from Section IV-B that it

is easier to learn (i) from better-performing models and (2)

correct predictions. On the other hand, higher joint accuracy

together with lower fidelity means that SimpleNet can capture

mistakes of the pre-trained ResNet-34 worse than mistakes

of models trained from scratch. For the pre-trained substitute

models, all metrics, especially joint accuracy and fidelity,

increase with increasing performance of the target model.

Even when the target model has a different architecture and is

trained from scratch (SimpleNet), stealing it with a pre-trained

substitute (ResNet models) yields high scores.

When using artificial data for training substitutes from

scratch, the difference between attacks on pre-trained and

trained-from-scratch models becomes even more significant.

As Table VII illustrates, the SimpleNet substitute model

trained with artificial data has 17% lower fidelity when tar-

geting the pre-trained model. For reference, we also report the

performance of the target models on the artificial validation

set. The trend is the same as with the original data: SimpleNet

has the lowest performance, and pre-trained ResNet-34 has the

highest. Despite that, the pre-trained target leads to the lowest

attack performance.
Conclusion. Training target models from scratch does not

make them less prone to be stolen. In fact, if a substitute model

is trained from scratch, it reaches higher scores when attacking

the target model trained from scratch compared to the model

trained with transfer learning. Consequently, for the adversary,

it is beneficial to follow the same training strategy as the one

used for the target model.

E. Factor 4: Attacker’s Data Quality

Prior Work Discussion. As shown previously in Sec-

tion III, PD data has been the least explored in prior works.

Correia-Silva et al. [9] compared substitutes trained on PD

and NPD data. In some settings, models trained on NPD

data outperformed ones trained on PD data, leading to the

conclusion that random real data is enough for an effective

attack. However, in those experiments, the attack with NPD

data used significantly more queries than the attack with PD

data. In this work, we fix the query budget so that it does

not exceed the original training set and explore how PD-like

data of different quality and complexity impacts the attack

performance.
Results. Table VIII demonstrates the performance of sub-

stitute models trained with ResNet-18 architecture on dif-

ferent types of attacker’s data. The highest scores for all

target models are obtained with the original (CIFAR-10) data,

followed by PD (CINIC-10) data and PD-like artificial data.

Surprisingly, the artificial data labelled by the SimpleNet target

model was more beneficial for the attack than the artificial data

labelled by ResNet target models, even though the SimpleNet

model has the lowest performance on the artificial dataset (see

Table VII).



TABLE VIII: Performance of ResNet-18 substitute models trained on different attacker’s data.

Target → SimpleNet
ResNet-34

(from scratch)
ResNet-34

(transfer learning)

Dataset ↓ QB Joint Acc Acc Fid Joint Acc Acc Fid Joint Acc Acc Fid

1k 78.54% 82.20% 81.31% 79.89% 82.31% 82.50% 81.54% 82.56% 82.68%
5k 84.95% 89.33% 87.37% 86.25% 89.11% 88.54% 87.75% 88.73% 88.94%
10k 87.51% 92.05% 89.95% 88.79% 92.01% 91.01% 91.07% 92.07% 92.31%
20k 88.72% 93.46% 91.15% 90.09% 93.35% 92.40% 92.80% 93.87% 94.13%

CIFAR-10

45k 89.84% 95.28% 91.71% 91.49% 95.29% 93.40% 94.19% 95.39% 95.44%

1k 65.65% 68.60% 68.76% 69.14% 71.32% 71.49% 72.19% 73.20% 73.41%
5k 76.33% 79.60% 79.41% 79.79% 82.19% 82.24% 82.78% 83.81% 84.06%
10k 80.10% 83.48% 83.23% 82.25% 84.83% 84.69% 85.09% 86.13% 86.38%
20k 81.91% 85.21% 85.40% 84.84% 87.32% 87.52% 87.90% 89.01% 89.12%

CINIC-10

45k 84.28% 87.59% 87.83% 86.88% 89.43% 89.64% 90.42% 91.44% 91.76%

1k 63.28% 66.20% 65.86% 64.13% 66.06% 66.32% 66.05% 66.83% 67.10%
5k 67.90% 71.11% 70.55 67.30% 69.44% 69.52% 71.12% 71.97% 72.14%
10k 69.93% 73.04% 72.86% 71.38% 73.72% 73.40% 69.58% 70.46% 70.63%
20k 73.43% 76.72% 76.42% 73.96% 76.31% 76.19% 68.08% 69.01% 69.16%

Artificial

45k 75.69% 78.88% 78.78% 74.94% 77.10% 77.28% 72.96% 73.81% 74.00%

TABLE IX: Comparison of validation and test scores of attacks

using CINIC-10 dataset.

Validation scores Test Scores

Target model
Query
budget Acc Fid Acc Fid

1k 61.22% 66.28% 68.60% 68.76%
5k 65.51% 70.34% 79.60% 79.41%
10k 66.99% 72.20% 83.48% 83.23%
20k 66.49% 74.01% 85.21% 85.40%

SimpleNet

45k 67.24% 76.02% 87.59% 87.83%

1k 64.30% 67.70% 71.32% 71.49%
5k 68.36% 72.16% 82.19% 82.24%
10k 70.25% 74.13% 84.83% 84.69%
20k 70.23% 75.89% 87.32% 87.52%

ResNet-34
(from scratch)

45k 71.02% 77.88% 89.43% 89.64%

1k 67.16% 72.18% 73.20% 73.41%
5k 73.22% 78.65% 83.81% 84.06%
10k 74.83% 80.73% 86.13% 86.38%
20k 75.79% 81.83% 89.01% 89.12%

ResNet-34
(transfer learning)

45k 77.50% 83.48% 91.44% 91.76%

For further analysis, we compare scores obtained on the

attacker’s validation set with the CIFAR-10 test scores. This

comparison shows the difference between the performance

estimation of the attack by the adversary and the eventual real

success of the attack. For the CIFAR-10 attacker’s dataset,

validation and test scores are very similar, as both datasets are

drawn from the same distribution.

For CINIC-10 (shown in Table IX), the performance on

the attacker’s validation set is notably lower than on the

CIFAR-10 test set, indicating that CINIC-10 is more complex.

Hence, using CINIC-10, an adversary tends to underestimate

the power of their attacks. In contrast, the scores measured on

the artificial validation set are way higher than the test scores

(see Table X). For example, with a query budget of 1,000, all

substitute models reached an accuracy larger than 93% on the

validation set. With the same query budget, substitutes trained

on the CIFAR-10 data (Table III) reached at most 82% of

accuracy on the validation set. This further indicates that the

TABLE X: Comparison of validation and test scores of attacks

using artificial dataset.

Validation scores Test Scores

Target model
Query
budget Acc Fid Acc Fid

1k 93.18% 88.66% 66.20% 65.86%
5k 94.26% 89.76% 71.11% 70.55%
10k 93.46% 89.82% 73.04% 72.86%
20k 93.58% 90.22% 76.72% 76.42%

SimpleNet

45k 93.34% 90.80% 78.88% 78.78%

1k 94.58% 91.22% 66.06% 66.32%
5k 95.74% 92.24% 69.44% 69.52%
10k 95.06% 92.38% 73.72% 73.40%
20k 95.58% 92.84% 76.31% 76.19%

ResNet-34
(from scratch)

45k 95.08% 92.94% 77.10% 77.28%

1k 95.94% 95.50% 66.83% 67.10%
5k 96.92% 96.46% 71.97% 72.14%
10k 97.38% 97.10% 70.46% 70.63%
20k 97.58% 97.10% 69.01% 69.16%

ResNet-34
(transfer learning)

45k 97.74% 97.50% 73.81% 74.00%

artificial data is not complex enough, and its quality has to

be improved. Using artificial data, an adversary will likely

overestimate the performance of the substitute model on the

real data.

As Table VIII shows, attacks using the CINIC-10 dataset,

which we concluded is more complex than the original data,

in general follow the same trends as attacks using the original

data and have reasonable performance. Therefore, we conclude

that data that is more feasible for attacks should have either

comparable complexity or even be more complex than the

original data, which can be assessed by comparing validation

and test scores. However, as we only consider data with the

same context as the original data, this statement needs further

investigation for non-problem domain attacks.

Conclusion. PD data more complex than the original

training data leads to better-performing substitute models than

simpler PD data. Furthermore, based on substitute validation

scores, attackers with more complex data tend to underestimate



the performance of the substitute model. In turn, having

data simpler than the original leads to an overestimation of

substitute performance.

F. Factor 5: Attacker’s Capabilities

Prior Work Discussion. As presented earlier in Table I,

query optimisation techniques have been widely studied in

related work. Prior results suggest that with optimisation, an

attack can achieve higher scores with the same number of

queries [10], [20]. Similarly, query optimisation can help to

reach the same attack performance level while using fewer

queries. However, as we observed earlier in Section III, query

optimisation has not been applied for data-free attacks. In

earlier work, these attacks were usually carried out using

millions of queries and are the least efficient substitute training

attacks (see Section V). While our data-free attack already has

high efficiency, we demonstrate that it can be improved with

active learning.

Results. Table XI shows the performance scores of the

attacks optimised for the scenario of the weakest attacker in

terms of knowledge about the target model and its data. All

attacks in the table are performed with a ResNet-18 substitute

model trained on the artificial dataset. For each score in

Table XI, we also provide the difference to the scores from

Table VIII, which contains attacks with the same settings

but without any optimisation techniques. Therefore, a positive

number means the optimisation technique improved the per-

formance, while negative numbers indicate a degradation of

the attack’s performance. There is no reported active learning

attack with 45,000 queries, as that is the size of the whole

dataset, and applying active learning does not change the final

attacker’s set compared to the non-optimised attack.

In most of the configurations, active learning performs the

best, although for the smaller query budgets (1,000 and 5,000),

it does not always improve the baseline, and in a few cases,

other optimisation techniques reach higher scores. However,

active learning improves the attack and holds the second-best

score in all such cases. For small query budgets, the initial

seed (set of samples on which the model is trained before the

first optimisation round, see Appendix B) might be too small

for the substitute model to learn how to rank the most valuable

samples. In all configurations with a query budget of 10,000

or more, there is an optimisation technique that improves the

baseline attack. Hence, applying those techniques, especially

active learning, is most useful for mid-range query budgets.

With active learning, our data-free attack reaches more than

75% of fidelity and accuracy with a query budget of only

10,000 queries. The state-of-the-art results presented in Sec-

tion V, are, while having similar effectiveness performance,

three orders of magnitude less efficient. Therefore, we are

the first to demonstrate that even with the weakest attacker’s

knowledge, substitute training attacks can be effectively per-

formed with less data than the target model was trained on.

Conclusion. Query optimisation techniques are the most

beneficial for mid-range query budgets starting from 10,000

queries. Smaller query budgets (1,000 and 5,000) are not

enough for a substitute model to learn how to rank the most

valuable samples.

Data-free attacks on image classifiers can be effective with

query budgets smaller than the original training set. Weak

attacker’s knowledge does not require to be overcompensated

with significantly increased querying capabilities.

V. COMPARISON WITH THE STATE-OF-THE-ART

We conclude our attack analysis by comparing the per-

formance of our attacks with papers that performed model

stealing attacks against CIFAR-10 classifiers. We summarise

the performance scores in Table XII for query budgets below

40,000 and in Table XIII for query budgets from 45,000.

Additionally, we provide information about the attacker’s data,

target model outputs, and the performance of the target model

on the CIFAR-10 test set. For attack effectiveness evaluation,

TABLE XI: Performance of ResNet-18 substitute models trained on the artificial data with different query optimisation

techniques. In parentheses, we report the difference with the non-optimised attack.

Query
optimisation ↓

Target → SimpleNet ResNet-34 (from scratch) ResNet-34 (transfer learning)

QB Acc Fid Acc Fid Acc Fid

1k 64.62% (-1.58%) 64.09% (-1.77%) 68.30% (+2.24%) 68.24% (+1.92%) 68.02% (+1.19%) 68.18% (+1.08%)

5k 70.65% (-0.46%) 70.39% (-0.16%) 72.75% (+3.31%) 72.66% (+3.14%) 69.86% (-2.11%) 69.99% (-2.15%)

10k 76.64% (+3.60%) 76.14% (+3.28%) 78.51% (+4.79%) 78.55% (+5.15%) 75.39% (+4.93%) 75.61% (+4.98%)

Active
learning

20k 77.98% (+1.26%) 77.65% (+1.23%) 78.91% (+2.60%) 78.79% (+2.60%) 73.47% (+4.46%) 73.62% (+4.46%)

1k 63.60% (-2.60%) 63.03% (-2.83%) 65.69% (-0.37%) 65.83% (-0.49%) 64.45% (-2.38%) 64.78% (-2.32%)

5k 68.16% (-2.95%) 67.53% (-3.02%) 70.75% (+1.31%) 70.46% (+0.94%) 68.84% (-3.13%) 68.92% (-3.22%)

10k 69.47% (-3.57%) 69.07% (-3.79%) 76.16% (+2.44%) 76.24% (+2.84%) 70.28% (-0.18%) 70.44% (-0.19%)

20k 75.39% (-1.33%) 75.26% (-1.16%) 76.29% (-0.02%) 76.48% (+0.29%) 72.04% (+3.03%) 72.14% (+2.98%)

Adversarial
augmentation

45k 78.05% (-0.83%) 77.73% (-1.05%) 77.96% (+0.86%) 78.18% (+0.90%) 74.39% (+0.58%) 74.54% (+0.54%)

1k 63.53% (-2.67%) 63.03% (-2.83%) 65.71% (-0.35%) 65.44% (-0.88%) 64.23% (-2.60%) 64.49% (-2.61%)

5k 68.58% (-2.53%) 67.73% (-2.82%) 74.34% (+4.90%) 74.20% (+4.68%) 69.39% (-2.58%) 69.45% (-2.69%)

10k 73.84% (+0.80%) 73.71% (+0.85%) 75.70% (+1.98%) 75.72% (+2.32%) 74.57% (+4.11%) 74.86% (+4.23%)

20k 74.84% (-1.88%) 74.62% (-1.80%) 77.90% (+1.59%) 77.88% (+1.69%) 74.41% (+5.40%) 74.74% (+5.58%)

Active
adversarial

augmentation
45k 79.42% (+0.54%) 79.16% (+0.38%) 77.41% (+0.31%) 77.58% (+0.30%) 75.50% (+1.69%) 75.71% (+1.71%)



TABLE XII: Comparison of attacks implemented in this work with the state-of-the-art for query budgets below 40,000.

Query budget Data Outputs Paper Target Acc. Sub. Acc. Sub. Fid. Queries Query score

< 2.5k

Original N/A [13] >91% 77.47% 1.6k 0.032
Original N/A [44] N/A 76.40% 2k 0.04
Original Gradients [16] est. 90% est. 88% 1k 0.02
Original Probabilities [7] 95.75% 90.63% 91.39% 1k 0.02
Original Probabilities [31] 93.90% 82.28% 1k 0.02
Original Labels this work 93.61% 84.51% 84.23% 1k 0.02
PD Labels this work 93.61% 71.58% 71.99% 1k 0.02
Artificial Labels this work 93.61% 68.30% 68.24% 1k 0.02

< 10k

Original N/A [13] >91% 77.96% 6.4k 0.128
Original N/A [44] N/A 80.25% 4k 0.08
Original Probabilities+XAI [28] 92.03% est. 77% 8k 0.16
Original Probabilities [7] 95.75% 93.29% 93.99% 4k 0.08
Original Probabilities [31] 93.90% 89.74% 4k 0.08
Original Labels+XAI [37] 92.03% 72.50% 8k 0.16
Original Labels [34] 90.45% 58.95% 59.90% 8k 0.16
Original Labels this work 93.61% 90.22% 89.20% 5k 0.1
PD Labels this work 93.61% 82.96% 83.03% 5k 0.1
NPD Labels [34] 90.45% 31.21% 32.20% 8k 0.16
NPD Labels [45] 91.82% 71.65% 8.4k 0.168
NPD Labels [49] N/A 71.45% 8k 0.16
Artificial Labels this work 93.61% 74.34% 74.20% 5k 0.1

< 20k

Original N/A [13] >91% 83.61% 12.8k 0.256
Original Probabilities [31] 93.90% 92.50% 10k 0.2
Original Labels this work 93.61% 93.05% 91.93% 10k 0.2
PD Labels this work 93.61% 85.85% 85.95% 10k 0.2
NPD Probabilities [10] N/A 77.29% 10k 0.2
NPD Probabilities [21] N/A 77.80% 10k 0.2
NPD Probabilities [43] N/A est. 69% est. 68% 15k 0.3
NPD Labels [10] N/A 64.23% 10k 0.2
NPD Labels [21] N/A 75.40% 10k 0.2
NPD Labels [49] N/A 74.06% 12k 0.24
Artificial Labels this work 93.61% 78.51% 78.55% 10k 0.2

< 40k

Original N/A [13] >91% 84.12% 25.6k 0.512
Original Labels [41] 93.70% 94.09% est. 25k 0.5
Original Labels this work 93.61% 94.61% 92.89% 20k 0.4
PD Labels this work 93.61% 88.21% 88.69% 20k 0.4
NPD Probabilities [43] N/A est. 71% est. 70% 30k 0.6
NPD Labels [10] N/A 78.36% 30k 0.6
NPD Labels [26] N/A 80.90% 30k 0.6
NPD Labels [27] 91.56% 80.47% 82.14% 30k 0.6
NPD Labels [46] 92.18% 83.06% 84.12% 30k 0.6
NPD Labels [49] N/A 80.67% 20k 0.4
Artificial Labels this work 93.61% 78.91% 78.79% 20k 0.4

we report accuracy and fidelity of substitute models. Efficiency

is represented by the exact number of queries used by an

attack and query score. The latter shows how many queries

are needed per a target model’s training sample, i.e. it is

a relation between the attacker’s dataset and the CIFAR-10

training dataset (50,000 samples). If some information is not

reported by a paper, we mark it as N/A. Some values are

estimated based on the information provided in the papers

(see Appendix C for more details). For our work, we report

scores for attacks using query optimisation, ResNet-18 as a

substitute model, and ResNet-34 trained from scratch as the

target model.

We group attacks with similar query budgets in Table XII

(shown in the first column), the same data type (second col-

umn), and target outputs (third column). In general, as attacks

from the same group have the most similar attacker’s strength,

a performance comparison should only be launched within

a group. However, since often there is no work matching

ours, we also compare our attacks with ones having stronger

attacker profiles. Below, we summarise our main findings from

Table XII for each query budget.

Query budget <2.5k. All prior attacks with this query budget

relied on availability of original data. Therefore, we are the

first one to demonstrate feasibility of attacks with this query

budget for PD and artificial data. Our attack with original data

is outperformed by two prior works, both having a stronger

assumption about the target outputs, namely probabilities [7]

and gradients [16].

Query budget <10k. From a total of seven prior attacks

using original data, only one achieves higher performance than

ours [7]. However, it relies on probabilities whereas we only

use labels. Further, even our PD attack outperforms five of

prior works using original data. Moreover, our data-free attack

outperforms all previous NPD attacks, while using less queries



TABLE XIII: Comparison of attacks implemented in this work with the state-of-the-art for query budgets from 45,000.

Data Outputs Paper Target Acc. Sub. Acc. Sub. Fid. Queries Query score

Original Labels this work 93.61% 95.29% 93.40% 45k 0.9

PD
Probabilities [9] 95.30% 90.00% 269k 5.38

Labels this work 93.61% 89.71% 90.03% 45k 0.9

NPD

Probabilities [43] N/A est. 76% est. 75% 50k 1
Probabilities [9] 95.30% 94.00% 3.4m 68
Probabilities [12] 94.60% 88.20% 100k 2
Probabilities [19] 82.50% 79.00% est. >50k est. >1

Labels [14] 90.48% 89.59% est. >1m est. >20
Labels [10] N/A 81.57% 100k 2
Labels [10] N/A 84.99% 120k 2.4
Labels [12] 94.60% 53.60% 100k 2

Artificial

N/A [35] N/A 61.90% 60k 1.2

Probabilities+XAI [23] 95.50% 72.10% 1m 20
Probabilities+XAI [23] 95.50% 90.40% 10m 200
Probabilities+XAI [23] 95.50% 92.30% 20m 400

Probabilities [17] 92.26% 89.85% 30m 600
Probabilities [22] 95.50% 88.10% 20m 400
Probabilities [22] 95.50% 89.90% 30m 600
Probabilities [24] 95.50% 91.24% 8m 160
Probabilities [15] 91.93% 80.79% est. >1m est. >20
Probabilities [42] 93.00% 88.50% 92.10% 20m 400
Probabilities [47] 95.50% 91.34% 20m 400
Probabilities [33] 95.54% 94.02% 20m 400
Probabilities [48] 90.71% 84.70% 13m 260
Probabilities [39] 81.74% 70.30% 100k 2

Labels+XAI [36] 95.54% est. 90% 20m 400

Labels [24] 95.50% 84.51% 8m 160
Labels [15] 91.93% 69.64% est. >1m est. >20
Labels [47] 95.50% 78.72% 20m 400
Labels [48] 90.71% 29.58% 6m 120
Labels [33] 95.54% 87.93% 8m 160
Labels [38] 82.50% 73.10% 1.6m 32
Labels [38] 82.50% 73.81% 17.6m 352
Labels this work 93.61% 78.52% 79.06% 45k 0.9

(5,000 compared to 8,000). As earlier, we are the first to use

PD or artificial data with such query budget.

Query budget <20k. Among attacks using original data, our

has the highest accuracy and fidelity scores. As was the case

before, none of the prior studies used PD or artificial data.

However, using artificial data, we achieve higher accuracy and

fidelity than all six previous NPD attacks.

Query budget <40k. One of the prior attacks using original

data has slightly better fidelity than ours [41]. Besides, the

limitations artificial data become more visible compared to

NPD data—most of the prior works outperform our attack,

although the difference in performance remains rather small

(up to 5.5%). There are still no other PD or data-free attacks

within this query budget to compare our work with.

Notably, we are the first to demonstrate feasibility of data-

free attacks with query budgets below 40,000. Besides, for the

same query budgets, none of the prior works launched attacks

using PD data. Meanwhile, our PD attacks outperform some

prior works that use original data, more queries, and more

revealing target outputs. Furthermore, our data-free attack has

better performance than any NPD attack for query budgets

below 20,000.

We compare the last group of attacks that used at least

45,000 queries in Table XIII. No prior works used that many

queries for attacks based on the original data. For PD data, the

only prior work [9] marginally outperforms our attack, while

using significantly more queries and probabilities as target

outputs.

The most significant group of papers with large query

budgets uses artificial data for training a substitute model.

Among six data-free attack that use labels as target outputs, our

attack is marginally (by 0.2%) outperformed by one prior work

[47] and more significantly (by 6-9.5%) by two other works

[24], [33]. Both of them used 8 million of queries, which is

160 times more than the size of the target model training set.

Meanwhile, we only utilised 45,000 queries, proposing the

most efficient data-free attack as of now.

Overall, our data-free attack shows promising results for

future work. As optimising artificial data quality was not the

prime goal of this work, we expect to reach higher scores with

further research.



VI. DISCUSSION

In this section, we discuss two additional aspects important

for attack evaluation, namely the transferability of a substitute

model and defences against model stealing.

A. Transferability

In this work, we focused on accuracy and fidelity as

performance metrics. However, transferability can be very

insightful in estimating how similar two models behave close

to the decision boundary. The main difficulty with this metric

is that there is no unified way to measure it. Related work uses

different adversarial example crafting methods and various

hyperparameters defining the strength of the perturbation. For

this reason, we omitted to report transferability in Section V,

as the scores would simply be incomparable.

However, as two of our query optimisation techniques utilise

adversarial examples, we additionally measured transferability

to see if these optimisations could improve the scores. For this

purpose, we used exactly the same Deepfool algorithm as in

adversarial augmentation [13]. However, the results were poor,

varying from 0% to 16%. We speculate that the reason is that

the perturbations Deepfool makes are too minute to impact the

decision boundary and improve the transferability significantly.

Using a method with stronger perturbations would likely result

in a better score. However, it has to be considered that while

it is likely easier to achieve a high transferability score if the

adversarial examples are created with stronger perturbation,

a commonly agreed upper bound of acceptable perturbation

should be established to enable the above-mentioned compa-

rability.

B. Defences against Model Stealing

Defences against model stealing can be categorised into

proactive and reactive [6]. Most common proactive defences

are based on adding noise to model inputs or outputs to perturb

the information obtained from the target model and mislead

the substitute training process. In this work, we only assume

labels as outputs, perturbing which will directly lead to target

model performance degradation on its original classification

task (unlike confidence score perturbations). In safety-critical

settings and when the quality of service is crucial, this ap-

proach is not feasible. For this reason, we evaluated attacks

against defences that incur an acceptable loss of correctness

and perturb only a small fraction of predictions. While an

acceptable value depends on the specific scenario, we set

approximately 1% of the predicted labels to be modified. As

a result, outputs of unprotected and protected models were

identical for approximately 99% of data. We tested input

perturbation defence by Grana [54] and a region-based classi-

fier by Cao and Gong [55] as an output perturbation (output

perturbation defences designed against model stealing assume

confidence scores as outputs [56]–[58]). These defences have

shown to be ineffective—in most of the cases, the performance

of the substitute model did not decrease by more than 1%.

Another type of proactive defence is (re-)training the target

model from scratch [6] instead of building on a pre-trained

model. However, as we showed in Section IV-D, training from

scratch also does not protect the target models. Therefore,

we conclude that none of the current proactive defences can

defend against attacks on image classifiers that use only labels.

Reactive defences include ownership verification methods

(watermarking, fingerprinting) and monitors. While ownership

verification methods might be effective against our attacks,

they can not protect a model from being stolen and can only

serve as evidence. Monitors, which aim to detect an ongoing

attack by tracking suspicious queries, should, in most settings,

not mark problem-domain-like data as suspicious, as it can

lead to false positives, harming API clients. In our work, we

use original, problem domain, and problem-domain-like data

generated by a diffusion model. Therefore, none of these data

distributions should be marked as malicious.

VII. CONCLUSION

In this paper, we presented new insights into the influence

different factors have on the success rate of substitute training

attacks. In particular, we demonstrated that attacks benefit

from (i) targeting better-performing models, (ii) adopting an

architecture that fits the quality and quantity of the attacker’s

data, (iii) using the target model’s training strategy, (iv) having

more complex data, and (v) optimising queries, in particular,

for data-free attacks. While most of these findings suggest that

attacks can be improved by some modifications, our result

about the target model performance implies that previous

attacks could have been underestimated and might produce

even higher scores when targeting better models.

A key takeaway from our work is that attackers can do

better—even with less effort. We adopted a simple diffusion-

based data generation approach, performed fair hyperparam-

eter tuning on every step of the attack and boosted the

performance with query optimisation techniques. As a result,

we attained a data-free attack with a query budget of 10,000

queries and performance comparable with those using millions

of queries. With original or problem-domain data, we out-

perform the state-of-the-art, even having weaker assumptions

about model outputs while achieving a better efficiency score.

Finally, if attackers indeed can do better—can defenders do

better as well?
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APPENDIX

A. Attack Setup Overview

Figure 1 illustrates an overview of all conducted attacks.

Overall, we trained 180 substitute models against each target

model.

B. Query Optimisation Methods

1) Active Learning: In active learning, there is a model

that has to be trained on data labelled by an oracle. For

model stealing attacks, a substitute model f̂ corresponds to

that trainable model, and the target model f corresponds

to the oracle. Further, both seed (labelled data) and pool

(unlabelled) data belong to the attacker’s data. Hence, at each

active learning round, the target model labels a certain amount

of the attacker’s data.

The active learning optimisation strategy used in this work is

a slightly modified version of an approach from previous work

by Pal et al. [10]. The authors compared several active learning

strategies for image and text classification. We selected the

strategy with the best performance rate on image classification

tasks. It combines two active learning algorithms, namely

the Deepfool Active Learning (DFAL) [59], and the κ-center

algorithm [60]. Pal et al. [10] combined the algorithms in the

following way. In each active learning round, they applied

DFAL to select q samples, where q corresponds to the total

query budget. Then they applied κ-center to select k most

suitable samples out of q. In this work, in order to decrease the

computation time and make the attack more efficient, we made

the following changes: (i) reducing the number of samples

selected by DFAL to 2k, and (ii) splitting the pool into several

sub-pools, so that at each round data is selected from a single

sub-pool. The latter modification is applied to all optimisation

techniques.

We summarise the stealing process with active learning

in Algorithm 1. As for any model stealing attack, we need

target and substitute models, the attacker’s data (pool), and

the query budget. Additionally, unlike in the previous work,

we have two hyperparameters specific to attacks with query

optimisation: seed size and the number of rounds, which are

tuned on a validation dataset of the attacker’s dataset. We

assume that the seed is randomly selected from the pool, and

the substitute model is trained on it. The value of k (number of

samples to select per round) is calculated based on the query

budget, seed size, and the number of rounds. At each round, we

consequently apply DFAL and κ-center, add selected samples

to the seed, and, as suggested in previous work, train the

substitute model from scratch on the augmented dataset.

Algorithm 1: Active learning attack

Input: target model f , substitute model f̂ , data pool

D, query budget q, seed size s, number of

rounds r

Output: f̂

1 S0 ← select randomly s samples from D ;

2 y0 ← f(S0) ;

3 f̂ ← Train(f̂ , S0, y0) ;

4 k ←
q − |S0|

r
;

5 for i = 1 to r do

6 x1 . . . x2k ← DFAL(f̂ , D, 2k) ;

7 x′
1 . . . x

′
k ← κ-center(f̂ , Si−1, {x1 . . . x2k}, k) ;

8 D ← D \ {x′
1, . . . , x

′
k} ;

9 Si ← Si−1 ∪ {x
′
1, . . . , x

′
k} ;

10 yi ← yi−1 ∪ {f(x
′
1), . . . , f(x

′
k)} ;

11 f̂ ← Train(f̂ , Si, yi) ;

12 end

2) Adversarial Augmentation: The second query optimi-

sation technique used in this work is adversarial augmen-

tation. Instead of selecting the most promising samples as

active learning, adversarial augmentation modifies samples

to make them more information-revealing. Since adversarial

examples lay close to the decision boundary, it is assumed

that they should help better approximate the target model’s

Fig. 1: Overview of attack setups examined in this work.



decision boundary. Similarly to active learning, we picked an

adversarial example crafting strategy based on previous work.

Pengcheng et al. [13] compared different adversarial crafting

techniques for model stealing targeting image classifiers. As

Deepfool’s [61] performance was the most promising, we

selected it for our adversarial augmentation attack.

We summarise our implemented attack in Algorithm 2. The

input parameters are the same as for the active learning attack.

At each augmentation round, we randomly select samples

from the pool, which are then augmented with their Deepfool

adversarial examples. Both clean and adversarial samples are

then labelled by the target model and added to the seed. The

substitute model is trained from scratch after each round.

Algorithm 2: Adversarial augmentation attack

Input: target model f , substitute model f̂ , data pool

D, query budget q, seed size s, number of

rounds r

Output: f̂

1 S0 ← select randomly s samples from D ;

2 y0 ← f(S0) ;

3 f̂ ← Train(f̂ , S0, y0) ;

4 k ←
q − |S0|

r
;

5 for i = 1 to r do

6 x′
1 . . . x

′
k

2

← select randomly k
2 samples from D ;

7 x′
k

2
+1

. . . x′
k ←

Deepfool(f̂ , x′
1), . . . ,Deepfool(f̂ , x

′
k

2

) ;

8 D ← D \ {x′
1, . . . , x

′
k} ;

9 Si ← Si−1 ∪ {x
′
1, . . . , x

′
k} ;

10 yi ← yi−1 ∪ {f(x
′
1), . . . , f(x

′
k)} ;

11 f̂ ← Train(f̂ , Si, yi) ;

12 end

3) Active Adversarial Augmentation: The combined attack

is shown in Algorithm 3. The algorithm repeats the behaviour

of the adversarial augmentation attack (Algorithm 2) with one

difference: line 6 in Algorithm 2 is replaced with lines 6 and

7 in Algorithm 3. Instead of randomly selecting k
2 samples

out of the pool, they are now selected using active learning

algorithms.

C. Value Estimation for the State-of-the-Art Comparison

As mentioned in Section V, some of the values in Table XII

and Table XIII were estimated, as the exact values were

not provided by the authors. Below, we explain how each

value was configured and which information was used for the

estimation.

• The target and substitute accuracy for [16], substitute

accuracy for [28], [36], as well as substitute accuracy and

fidelity for [43] were estimated from plots, as no actual

scores were reported.

• The number of queries used by [41] is estimated as

25,000 queries as the authors mention using half of the

Algorithm 3: Active adversarial augmentation attack

Input: target model f , substitute model f̂ , data pool

D, query budget q, seed size s, number of

rounds r

Output: f̂

1 S0 ← select randomly s samples from D ;

2 y0 ← f(S0) ;

3 f̂ ← Train(f̂ , S0, y0) ;

4 k ←
q − |S0|

r
;

5 for i = 1 to r do

6 x1 . . . xk ← DFAL(f̂ , D, k) ;

7 x′
1 . . . x

′
k

2

← κ-center(f̂ , Si−1, {x1 . . . xk},
k
2 ) ;

8 x′
k

2
+1

. . . x′
k ←

Deepfool(f̂ , x′
1), . . . ,Deepfool(f̂ , x

′
k

2

) ;

9 D ← D \ {x′
1, . . . , x

′
k} ;

10 Si ← Si−1 ∪ {x
′
1, . . . , x

′
k} ;

11 yi ← yi−1 ∪ {f(x
′
1), . . . , f(x

′
k)} ;

12 f̂ ← Train(f̂ , Si, yi) ;

13 end

(CIFAR-10) training set for an attack, but explicitly the

number is not confirmed.

• The number of queries used by [19] was not reported.

However, the authors used CIFAR-100, which contains

50,000 samples, as a starting point for their evolutionary

algorithm that creates new query images. They claimed

that optimising the query budget was not a priority, so

we can assume that the number of queries could be

significantly larger than 50,000. However, as that is only

a speculation, we conservatively estimate that they used

”more than 50,000” samples.

• The authors of [14] also do not provide information

about the total number of queries. However, they have

an iterative algorithm that generates 1,000,000 samples

at each round. Assuming that there should be at least one

round, we estimated the number of queries as ”larger than

1,000,000”.

• The query budget was also not given by [15]. However,

the authors estimated the price of their attack on Ama-

zon Web Services2 to be $360,000. Pricing from 2023

suggests that the price per query for the first million

queries is usually around $0.001, getting cheaper for the

subsequent millions. That means that a million queries

cost $1000, and with this price, the authors could have

made more than 300 million queries. However, since the

prices could differ back then, we lowered our estimate to

1 million.

• Some of the papers did not report the architecture of

the target model or used a custom architecture without

reporting the number of trainable parameters. In these

2https://aws.amazon.com/rekognition/pricing/

https://aws.amazon.com/rekognition/pricing/


TABLE XIV: Performance of substitute models with different architectures trained on PD (CINIC-10) data.

Target → SimpleNet
ResNet-34

(from scratch)
ResNet-34

(transfer learning)

Substitute ↓ QB Joint Acc Acc Fid Joint Acc Acc Fid Joint Acc Acc Fid

1k 36.66% 38.62% 38.88% 39.83% 41.28% 41.62% 38.51% 39.25% 39.30%
5k 59.13% 61.10% 62.25% 61.30% 62.87% 63.87% 60.80% 61.70% 61.76%

10k 67.48% 69.70% 70.98% 69.24% 71.02% 71.91% 68.04% 68.99% 69.10%
20k 75.07% 77.46% 79.01% 76.81% 78.40% 79.94% 74.41% 75.36% 75.67%

SimpleNet

45k 82.18% 84.67% 86.38% 82.72% 84.44% 85.98% 80.48% 81.46% 81.73%
1k 65.65% 68.60% 68.76% 69.14% 71.32% 71.49% 72.19% 73.20% 73.41%
5k 76.33% 79.60% 79.41% 79.79% 82.19% 82.24% 82.78% 83.81% 84.06%

10k 80.10% 83.48% 83.23% 82.25% 84.83% 84.69% 85.09% 86.13% 86.38%
20k 81.91% 85.21% 85.40% 84.84% 87.32% 87.52% 87.90% 89.01% 89.12%

ResNet-18

45k 84.28% 87.59% 87.83% 86.88% 89.43% 89.64% 90.42% 91.44% 91.76%
1k 63.60% 66.77% 66.55% 71.10% 73.50% 73.18% 73.74% 74.73% 74.99%
5k 74.59% 78.03% 77.57% 79.31% 81.94% 81.61% 85.22% 86.11% 86.60%

10k 79.63% 83.05% 82.65% 83.17% 85.95% 85.46% 87.92% 88.84% 89.29%
20k 83.46% 86.94% 86.56% 86.36% 89.14% 88.79% 89.96% 90.97% 91.30%

ResNet-34

45k 85.17% 88.73% 88.49% 87.56% 90.15% 90.26% 92.04% 93.28% 93.25%

TABLE XV: Performance of substitute models with different architectures trained on the artificial data.

Target → SimpleNet
ResNet-34

(from scratch)
ResNet-34

(transfer learning)

Substitute ↓ QB Joint Acc Acc Fid Joint Acc Acc Fid Joint Acc Acc Fid

1k 21.27% 22.65% 23.10% 23.34% 24.39% 24.58% 22.93% 23.48% 23.57%
5k 38.51% 40.31% 40.77% 36.13% 37.5% 37.78% 34.43% 35.11% 35.04%

10k 45.87% 47.75% 48.61% 41.56% 43.02% 43.49% 37.66% 38.28% 38.28%
20k 55.06% 57.03% 58.12% 52.68% 54.33% 54.81% 44.12% 44.87% 44.95%

SimpleNet

45k 64.88% 67.10% 68.35% 65.83% 67.57% 68.34% 50.19% 50.99% 51.01%
1k 63.28% 66.20% 65.86% 64.13% 66.06% 66.32% 66.05% 66.83% 67.10%
5k 67.90% 71.11% 70.55% 67.30% 69.44% 69.52% 71.12% 71.97% 72.14%

10k 69.93% 73.04% 72.86% 71.38% 73.72% 73.40% 69.58% 70.46% 70.63%
20k 73.43% 76.72% 76.42% 73.96% 76.31% 76.19% 68.08% 69.01% 69.16%

ResNet-18

45k 75.69% 78.88% 78.78% 74.94% 77.10% 77.28% 72.96% 73.81% 74.00%
1k 62.11% 65.16% 64.37% 63.38% 65.69% 65.44% 65.39% 66.20% 66.48%
5k 66.46% 69.58% 69.02% 67.03% 69.33% 69.16% 66.09% 66.86% 67.09%

10k 71.83% 75.15% 74.46% 72.62% 74.89% 74.86% 68.83% 69.73% 69.82%
20k 75.39% 78.75% 78.17% 73.59% 76.05% 75.81% 70.75% 71.65% 71.84%

ResNet-34

45k 77.83% 81.03% 80.88% 74.94% 77.17% 77.44% 75.12% 75.97% 76.38%

cases, we could not estimate the number of parameters

of the target model and, consequently, could not report the

efficiency score of an attack. In cases when we estimated

the number of queries, we also marked the efficiency

score as estimated. In one paper [13], the authors only

mention that they use a ResNet model, referring to the

paper where ResNet models were introduced. As this

original paper mainly focuses on ResNet-34 architecture,

we assumed that ResNet-34 was used as a target archi-

tecture by [13] and calculated efficiency scores based on

this assumption.

D. Additional Results

Table XIV and Table XV show the performance of substitute

models with different architectures trained on PD (CINIC-10)

and artificial data.

E. Artificial Dataset Generation

The artificial dataset for the data-free attack was generated

using a pre-trained stable diffusion model3. For each class of

3https://huggingface.co/stabilityai/stable-diffusion-2-1

the original dataset (CIFAR-10), we create text prompts to

generate images. Each prompt consists of two parts: positive

and negative. The positive prompt corresponds to inclusion

criteria, and the negative prompt corresponds to exclusion

criteria. Positive prompts usually include either a class label

(”bird”) or its subcategory (”swan”). Using subcategories

makes the artificial data more diverse and helps to approximate

the original data better. However, if no information is provided

on the subcategories appearing in the original dataset, using

them can be even misleading for a substitute model. Negative

prompts aim to correct mistakes a diffusion model may make.

For instance, they can prevent occurrences of bad anatomy or

visual artefacts.

Table XVI shows positive and negative prompts used to gen-

erate images of each class. Sometimes, the model was biased

towards generating very similar images for the same positive

prompt. For instance, the prompt ”bird photo” rendered birds

of the same size and colour. Hence, we used a list of different

bird families to generate representatives for them, making the

dataset more diverse. We also replaced ”airplane” with ”plane”

https://huggingface.co/stabilityai/stable-diffusion-2-1


TABLE XVI: Prompts used to generate the artificial dataset.

Class Positive prompt Negative prompt

airplane plane photo 3d, grid, deformed, ugly, mutation, mutated, blurry back-
ground, bokeh, multiple images, illustration, cropped, partial
view, jpeg artifacts, grayscale

automobile car photo — automobile photo 3d, grid, deformed, ugly, mutation, mutated, blurry back-
ground, bokeh, multiple images, illustration, cropped, partial
view, jpeg artifacts, grayscale

bird cassowary photo — ostrich photo — emu photo — kiwi bird photo —
owl photo — hawk photo — grebe photo — loon photo — duck photo
— pheasant photo — tern photo — hummingbird photo — hen photo —
rooster photo — swan photo — goose photo — parrot photo — bustard
photo — tit photo — sparrow photo — woodpecker photo — pigeon
photo — cuckoo photo — raven photo — oriole photo — warbler photo
— chickadee photo — starling photo — dove photo — finch photo —
nuthatch photo — bird photo

3d, bad anatomy, duplicated eyes, no eyes, extra eyes, grid,
extra limbs, close up, deformed, ugly, mutation, mutated,
blurry background, bokeh, multiple birds, multiple images,
illustration, cropped, partial view, duplicated limbs, jpeg
artifacts, missing limb, floating limbs, disconnected limbs,
black and white, two heads

cat cat photo 3d, bad anatomy, duplicated eyes, no eyes, extra eyes, grid,
extra limbs, close up, deformed, ugly, mutation, mutated,
blurry background, bokeh, multiple cats, multiple images,
illustration, cropped, partial view, duplicated limbs, jpeg
artifacts, missing limb, floating limbs, disconnected limbs,
black and white

deer deer photo 3d, bad anatomy, duplicated head, missing head, extra head,
grid, extra limbs, close up, deformed, ugly, mutation, mutated,
blurry background, bokeh, multiple deers, multiple images,
illustration, cropped, partial view, duplicated limbs, jpeg
artifacts, missing limb, floating limbs, disconnected limbs,
black and white, grayscale, painting, watermark, signature,
two heads

dog dog photo 3d, bad anatomy, duplicated eyes, no eyes, extra eyes, grid,
extra limbs, close up, deformed, ugly, mutation, mutated,
blurry background, bokeh, multiple dogs, multiple images,
illustration, cropped, partial view, duplicated limbs, jpeg
artifacts, missing limb, floating limbs, disconnected limbs,
black and white

frog brown frog photo — green frog photo 3d, bad anatomy, duplicated eyes, no eyes, extra eyes, grid,
extra limbs, close up, deformed, ugly, mutation, mutated,
blurry background, bokeh, multiple frogs, multiple images,
illustration, cropped, partial view, duplicated limbs, jpeg
artifacts, missing limb, floating limbs, disconnected limbs

horse black horse photo — gray horse photo — chestnut horse photo — bay
horse photo — dun horse photo

3d, bad anatomy, duplicated head, missing head, extra head,
grid, extra limbs, close up, deformed, ugly, mutation, mutated,
blurry background, bokeh, multiple horses, multiple images,
illustration, cropped, partial view, duplicated limbs, jpeg
artifacts, missing limb, floating limbs, disconnected limbs,
black and white, grayscale, painting, watermark, signature,
two heads

ship watercraft photo — ship photo — sailboat photo 3d, grid, deformed, ugly, mutation, mutated, blurry back-
ground, bokeh, multiple images, illustration, cropped, partial
view, jpeg artifacts, grayscale

truck truck photo 3d, grid, deformed, ugly, mutation, mutated, blurry back-
ground, bokeh, multiple images, illustration, cropped, partial
view, jpeg artifacts, grayscale

in the positive prompt because the model always generated

the same type of aircraft, up in the air, for the ”airplane”

prompt. In contrast, ”plane” images were more diverse and

contained both flying and still vehicles. We observed similar

behaviour for the ”ship” class and addressed it by adding

two additional prompts. ”Frog” and ”horse” classes lacked

diversity in colours, so we asked the model explicitly to make

them more diverse.
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