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 A B S T R A C T

Digital Twins are often intertwined with machine learning and, more recently, deep reinforcement learning 
methods in their architecture to process data and predict future outcomes based on input data. However, 
concerns about the trustworthiness of the output from deep learning models persist due to neural networks 
generally being regarded as a black box model. In our work, we developed crop rotation policies using 
explainable tabular reinforcement learning techniques. We compared these policies to those generated by a 
deep Q-learning approach by generating five-step rotations, i.e. producing a series of five consecutive crops. 
The aim of the rotations is to maximise crop yields while maintaining a healthy nitrogen level in the soil and 
adhering to established planting rules. Crop yields may vary due to external factors such as weather patterns or 
changes in market prices, so perturbations have been added to the reward signal to account for those influences. 
The deployed explainable tabular reinforcement learning methods collect, on average, at least as much reward 
over 100 crop rotation plans when randomly starting with any crop compared to the deep learning model. For 
the perturbed case, robust tabular reinforcement learning methods collect similar amounts of reward across 
100 crop rotation plans compared to the non-random reward setting, whereas the deep reinforcement learning 
agent collects even fewer rewards compared to learning on non-perturbed rewards. Thus, we contribute a 
novel random rewards approach and a corresponding robustification to increase the resilience of the proposed 
crop rotation planning methodology. By consulting with farmers and crop rotation experts, we demonstrate 
that the derived policies are reasonable to use and more resilient towards external perturbations. Furthermore, 
the use of interpretable and explainable reinforcement learning techniques increases confidence in resulting 
policies, thereby increasing the likelihood that farmers will adopt the suggested policies.
1. Introduction

Digital Twins are important tools in various critical infrastructures, 
such as energy production and distribution, food security, healthcare 
and information security (Botín-Sanabria et al., 2022; Purcell and 
Neubauer, 2023; Neubauer et al., 2024), when aiming to optimise 
operations and evaluate potential scenarios (Manschadi et al., 2022, 
2021). Digital Twins replicate real-world entities and operations using 
sensor data and existing domain knowledge. They frequently incor-
porate machine learning models to simulate scenarios based on this 
replication (Brucherseifer et al., 2021). Reinforcement learning is a 
particularly promising machine learning technique to use in Digital 
Twins as it can leverage the Digital Twins virtual environment to learn 
optimal strategies within it (Sutton and Barto, 2018). Recent devel-
opments have made deep reinforcement learning a promising tool for 
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realising optimisation potential and increasing productivity (Li, 2018). 
Despite its increasing popularity, a significant disadvantage of using 
deep reinforcement learning to solve these tasks is that their decision-
making process might be hard to trace and understand. However, 
the model’s decisions must be understandable, especially in critical 
infrastructure security, as they control systems vital to many people. 
This transparency makes it easier for the users of the models to assess 
the consequences and opportunities of the current or future situations, 
to build trust in the decisions made, and, in the event of malfunctions 
or failures in the system, to investigate the causes. On the part of the 
model developer, an explainable decision-making process facilitates the 
maintainability of the models, as weak points or undesirable results can 
be identified more quickly (Shukla et al., 2020).
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Global food production is one critical system that is experiencing 
increasing pressure towards optimisation as population numbers grow 
and climate change presents increasingly difficult challenges (Malhi 
et al., 2021; World Bank Group, 2024; Burgos and Ivanov, 2021; Lobell 
and Gourdji, 2012). An aspect of food production that has yet to 
see much attention concerning reinforcement learning-based Digital 
Twins is crop rotation planning (Goldenits et al., 2024). Reinforcement 
learning-based Digital twins in this work refer to Digital twins that use 
some form of reinforcement learning as their machine learning model. 
There is an implementation by Fenz et al. (2023a), which uses a deep 
reinforcement learning agent to derive optimal crop rotation policies. 
Within their virtual environment, the rewards, which are the expected 
crop yields, are fixed for each crop succession. Using fixed crop yields 
for each planning step is generally inaccurate in the real world because 
factors influencing the yields, such as weather, soil nutrient levels 
and market prices, can vary massively. However, it is necessary to 
incorporate these fluctuations in the learning process to represent the 
real world more accurately and to derive more robust crop rotation 
policies.

Therefore, this work aims to implement a tabular reinforcement 
learning agent as an alternative to deep reinforcement learning to 
derive explainable crop rotation policies. The goal is to show that the 
tabular agents can perform at least equally as well when the rewards 
for each state–action pair are fixed and outperform deep reinforcement 
learning when the rewards are perturbed. Moreover, the learning pro-
cess of the tabular agent will be adapted to be especially suitable for 
learning with random rewards and deliver reward-robust, explainable 
crop rotation policies. The collected rewards will be compared as 
an evaluation measure on the model side. On the application side, 
domain experts will evaluate the quality of the crop rotations and their 
resilience towards external perturbations. The goals of this work can 
be summarised in the following two theses and corresponding research 
question:

RT1 Tabular reinforcement learning will lead to better explainable 
policies while maintaining similar model performance to deep 
reinforcement learning methods when the training is done with 
non-noisy rewards.

RT2 Noisy rewards in tabular reinforcement learning algorithms will 
lead to worse model performance regarding collected rewards 
and make explanations of performed actions less interpretable 
compared to tabular reinforcement learning algorithms trained on 
non-noisy rewards.

RQ1 How can reinforcement learning methods help to improve crit-
ical infrastructure management in the long term by ensuring 
accountability, resilience and adaptability?

The work will be structured as follows: First, we summarise work re-
lated to this one in Section 2, before we discuss the employed concepts, 
techniques and corresponding definitions in Section 3. Furthermore, we 
examine the consequences of the violation of the Markov property and 
how to work around it. We also present the measures to robustify the 
training process and how the random rewards are set. The experimental 
design setup is described in Section 3. In Section 5, we present the 
results, which are then discussed in Section 6. This includes a discussion 
on the collected rewards and the effects of the robustification measures, 
as well as the opinions of the domain experts regarding the applicability 
and resilience of the derived crop rotations. Section 7 concludes this 
work, and we present future research directions.

2. State of the art & related work

This section briefly summarises the current state of the art regard-
ing Digital Twins in agriculture and crop rotation planning. Further-
more, it summarises current developments in explainable reinforcement 
learning and relevant works on random rewards.
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Goldenits et al. (2024) found that while reinforcement learning-
based Digital Twins play an essential role in various agricultural ap-
plications, such as pest and disease detection, water and fertiliser 
management, or greenhouse climate control, crop rotation planning 
has been a mostly unexplored topic. Furthermore, in most cases, some 
form of deep reinforcement learning (DRL) was used, which may 
deliver useful results but lacks the ability to make the decision process 
explainable.

Two notable exceptions are the works by Fenz et al. (2023a,b), 
who introduce a crop successor suitability matrix based on the NDVI 
score and show that strategies based on that matrix outperform crop 
rotations that use the Kolbe matrix as a source. Furthermore, in their 
works, they set up a reinforcement learning environment and used 
a deep reinforcement learning agent to obtain crop rotation poli-
cies. The environment they set up will be the foundation for the 
tabular reinforcement learning agents presented in this work. In this 
environment, yield data for 26 crops are available. Furthermore, the 
successor suitabilities based on the NDVI score are collected, and crop-
growing rules contributed by domain experts are included. The agent 
obtains a negative reward if any rule or unsuitable succession is chosen. 
For suitable crop successions, the available yield amount will be the 
reward.

Milani et al. (2022) summarise advances in explainable reinforce-
ment learning methods and categorise them based on where the expla-
nations are derived from in the algorithm, dividing them into feature 
importance, learning process and MDP, and policy level. This work’s 
findings fall into the last category.

Xu et al. (2022) attempt to structure the work on robustness, safety 
and generalisability by introducing trustworthy reinforcement learning. 
According to the authors, dealing with noisy rewards is one part of the 
robustness aspect of trustworthy reinforcement learning, as it may lead 
to a conservative or bad policy.

Another method involves average reward reinforcement learning, 
as Wang et al. (2020) demonstrate. Their core idea is to use a dis-
cretised continuous reward space and maintain a confusion matrix 
containing the probability that a random reward is sampled given the 
known true reward in a state. In an algorithm they present, the goal is 
to use this matrix to estimate the true reward and use that for updating 
the Q-values.

An algorithm that has been used especially in the context of average 
reward learning is RVI Q-learning. Abounadi et al. (2001) study the 
asymptotic behaviour of this method and show that it converges to 
an optimal solution.Wang et al. (2023) expand on RVI Q-learning by 
introducing a robust version of it, which they also show to converge to 
an optimal solution in a non-robust average-reward MDP.

Bellemare et al. (2017) also achieved promising results using a 
Bayesian approach to the noisy reward problem. Instead of using 
the expected future rewards in the Bellman equation as a target for 
optimisation, they try to estimate the underlying reward distribution 
and replace the expected value with it.

A different commonly used approach in reinforcement learning 
is experience replay. In this approach, the agent is presented with 
all the rewards and actions it has faced when encountering a state 
multiple times, thus breaking apart temporal dependencies between 
them. Generally, the advantage of using experience replay is considered 
a more stable learning process (Adam et al., 2012).

3. Methodology

This work aims to use tabular reinforcement learning methods to 
derive explainable crop rotation policies in a random reward setting. 
First, we show that tabular methods can match or outperform deep 
reinforcement learning by comparing the collected rewards for crop 
rotations derived in the non-random reward setting. This comparison 
justifies using tabular methods instead of deep reinforcement learning 
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for crop rotation planning. In the next step, random rewards are im-
plemented based on historical crop yield and crop price data in Austria 
and the data foundation provided by Fenz et al. (2023a). Then, the 
reinforcement learning models with the best hyperparameter settings 
from the non-random reward setting were trained on the perturbed 
rewards. To ensure results that are resilient towards these perturba-
tions, the tabular reinforcement learning methods are adapted in the 
action decision step and the planning phase — in case a technique 
uses a model. The goal of these adaptations is, on the one hand, to 
match the performances in the non-random reward setting and, on the 
other hand, to gain additional insights into the training process. Lastly, 
the crop rotation policies are evaluated by domain experts to assess 
how useful the suggestions are and whether the explanations are clear 
to understand and provide additional confidence in adopting decision 
support for crop rotation planning.

3.1. Definitions

Digital Twins: The core concept of Digital Twins is that they replicate 
real-world entities, systems, or organisms in a virtual environment. 
Michael Grieves published the first use case for Digital Twins in 2003, 
in which he tried to optimise a factory process by virtually replicating 
it (Grieves and Vickers, 2017). Digital Twins often rely on sensor data 
and expert knowledge to transfer a real system as accurately as possible 
to the virtual space, thus making them usable in various Internet of 
Things (IoT) applications.

A key component of most Digital Twins is some form of machine 
learning model that is used to run simulations within the environment. 
These simulations aim to create potential scenarios that might, under 
certain circumstances, be encountered in the real world and serve to 
guide decision-making for the real-life scenario. In addition, the effects 
of deliberate changes to a system can be observed, and preparations for 
unseen scenarios can be made (Brucherseifer et al., 2021).
Reinforcement Learning: The main goal of reinforcement learning is to 
find the best course of action among a list of available states and 
actions in a Markov Decision Process(MDP). That means an agent 
aims to derive an optimal policy to maximise a reward signal it re-
ceives by interacting with the environment. In most cases, like, for 
example, learning to play Chess (Silver et al., 2017) or controlling 
vehicles (Ardakani and Cheshmehzangi, 2021), the collected rewards 
for a state–action pair are deterministic, meaning that the same action 
always yields the same reward. However, modelling unknown uncer-
tainties in the real world like this is generally inaccurate. An accurate 
representation of the real world is crucial for a well-functioning system 
representation. In the context of reinforcement learning, this means 
that decisions are made, and the subsequent (positive or negative) 
consequences are observed. However, as the effects of the same action 
can vary, in the case of reinforcement learning, this can mean that 
the optimal actions for a given situation are not learnt. Therefore, 
resilience to variations in the consequences of actions is essential to 
the model training process. A robust model increases confidence in 
decisions and enables the development of optimal action strategies, 
even in previously unobserved situations.

A key property of a MDP is that the Markov Property needs to be 
satisfied. That means there are no temporal dependencies between the 
history of visited states and the current and future states.

Before function approximation to the quality function of each state–
action pair based on artificial neural networks (ANNs) in the form 
of deep reinforcement learning was invented, tabular reinforcement 
learning was the most common form of reinforcement learning. As 
the name suggests, a table containing each state–action pair’s quality 
values is maintained and incrementally updated using the Bellman 
equation (Bellman, 1966). Given enough training time, tabular agents 
will find the optimal solution, and by maintaining tables, they allow to 
derive explanations in the learning process. However, handling large 
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Table 1
Tabular RL categories.
 On-policy Off-policy  
 Model based Model-based policy iteration;

Monte Carlo Tree Search 
(MCTS)

DynaQ  

 Model free SARSA (on-policy) n-step Q-learning;
Q-learning with function 
approx.

 

state spaces is computationally expensive due to the need to maintain 
the tables (Sutton and Barto, 2018).

Crop rotation planning aims to derive an optimal sequence of crops 
to grow in succession. It involves finding suitable planting sequences 
for cash crops, break crops, and cover crops. The goal is to ensure 
farmers’ income, break pest and disease cycles, and build soil fertility 
and health. Crop rotation plans can range from short-term plans of two 
to three years to longer-term plans of up to ten years or more. These 
plans are customised to suit the needs of individual farmers or fields 
and specify which crops to plant and when to plant them (Mohler, 
2009).

Explainability: An important focus point of this work is the explain-
ability of the behaviour of reinforcement learning agents and the 
interpretability thereof within a real-life context. Explaining the de-
cision process can be split into two parts. Firstly, explanations that 
are primarily relevant for the model developer. These include tracking 
the change of Q-values, which indicate the quality of an action com-
pared to other actions, and recording the development of the optimal 
strategy throughout the learning process. Observations based on these 
two approaches help capture the influences of (random) rewards on 
the overall strategy and the decisions themselves and help identify 
the algorithm’s strengths and weaknesses. Secondly, the stakehold-
ers are mainly interested in why the reinforcement learning agent 
suggests certain decisions over others, what results can be expected 
from a particular strategy, and what potential risks a strategy holds; 
i.e., interpreting the decision-making within real-life contexts.

3.2. Reinforcement learning methods

The general literature on reinforcement learning (Sutton and Barto, 
2018), as well as the literature specifically focusing on agricultural 
problems (Goldenits et al., 2024), contains many different reinforce-
ment learning approaches that can be used to find a solution. This 
section discusses the models relevant to the crop rotation planning 
problem.

3.3. Tabular reinforcement learning methods

A set of candidate agents need to be defined as a first step towards 
improving the crop rotation solution with tabular reinforcement learn-
ing methods. Among tabular reinforcement learning methods that are 
summarised in Table  1, there are generally four groups that can be 
categorised by two decisions.

1. Model-based vs. model-free techniques (Sutton and Barto, 2018). 
In model-based methods, rewards for state action pairs visited 
during training are stored as memories, which enables tracing 
the learning behaviour but comes at a higher computational cost.

2. On-policy vs. off-policy reinforcement learning
(Sutton and Barto, 2018). The difference between these two 
variants is how the Q value for each state–action pair gets 
updated. In an on-policy setting, the 𝑞-value update is based 
on the next action reward and under the assumption that the 
current policy will be followed in the future. In contrast, an off-
policy agent updates its q values as if it followed a greedy policy 
even though it does not.
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For this work, three methods were chosen, which are also described in 
detail in (Sutton and Barto, 2018):

1. A basic 1-step tabular Q-learning method that is off-policy and 
model-free. This is one of the simplest versions of reinforcement 
learning and is, therefore, easy to implement. However, it has 
no internal memory, which might lead to bad results in training 
on random rewards.

2. DynaQ is an off-policy and model-based algorithm that is more 
advanced than the 1-step tabular Q-learning as it combines 
learning and planning by maintaining a model of the environ-
ment. The model, which can essentially be seen as memory, 
is useful for deriving explainable policies and can ensure good 
learning results even when rewards for the same state–action 
pair vary over the course of training. The reason for this is that 
in addition to the exploration and exploitation phase, there is an 
additional step in the algorithm that can be influenced to learn 
good results. Maintaining and updating the model increases the 
computational cost compared to the 1-step tabular Q-learning.

3. The Expected SARSA algorithm will be tested as an on-policy 
alternative. This agent is a model-free variation of the frequently 
used SARSA algorithm that updates its Q-values based on the 
average Q-values of future actions. The idea behind choosing 
expected SARSA over its basic version was that fluctuations 
based on perturbed rewards might be mitigated by selecting 
actions based on the expected value.

For all agents, we choose an 𝜖-greedy policy. After a grid search for 
each agent, we obtained the best results for parameters 𝜖 = 0.5, discount 
rate 𝛿 = 0.5, and learning rate 𝛼 = 0.3 for both the DynaQ agent and 
the expected SARSA agent. The same hyperparameters also gave the 
best result for the 1-step tabular model, except for the discount factor, 
which was better at 𝛿 = 0.8.

3.4. Markov property

A key component of each Markov Decision Problem (MDP) and, 
therefore, reinforcement learning is that the Markov Property (Karr, 
1990) is satisfied. This means that the current state is independent of 
every previous decision or observation. In the case of crop rotation 
planning, this cannot be true. Deciding on what crop to grow next 
highly depends on what crops were grown on the same plot before the 
current one, as they influence soil nutrient levels or what kind of roots 
remain in the soil. Therefore, the historical information of each plot is 
essential in order to take the best action in the future.

This problem can also be exemplified by considering a simplified 
environment where only five crops numbered 1 to 5 exist, and an agent 
wants to plan a sequence of four crops. Two potential sequences at some 
point during the training might look like this:

1. 1 → 4 → 3 →?
2. 1 → 5 → 3 →?

In both sequences, the current state is "crop 3’’, and the goal is to 
plan one more step. All five crops are candidates for the last remaining 
step in both cases. However, certain rules are in place; for example, 
there needs to be a break of two seasons before planting the same crop 
again. Adhering to this rule means that in sequence 1, crop 4 and in 
sequence 2, crop 5 cannot be used in the next step, thus showing that 
even though in both sequences the current state is "crop 3", the next 
decision depends on what happened before the current state occurred, 
which violates the Markov Property.

One way of dealing with this situation is to work with a partially 
observable MDP (POMDP) (Shi et al., 2020). However, solving POMDPs 
requires computationally expensive solutions, reworking the existing 
environment, and, therefore, loses the ability to compare the results to 
the DQN implementation. Instead, the violation is fixed by expanding 
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the state space and, in doing so, avoiding working on a partially 
observable MDP (POMDP) and instead working with an MDP. That 
means instead of working with a 26 × 26 table for each planning step, 
a 26𝑛 × 26 table must be considered for each planning step 𝑛, 𝑛 ≥ 1. 
That is because starting at a random crop, there are 26 potential actions 
for this crop. This is true for each starting crop and results in 26 × 26
potential states after the first planning step — and 26 potential actions. 
That means for four planning steps, the agent would have to maintain 
four tables of the following sizes:

1. 26 × 26
2. 676 × 26
3. 17.576 × 26
4. 456.976 × 26

While these tables are not too large to handle by most systems, they do 
increase memory usage and lead to longer runtimes when values need 
to be updated.

However, for this publication, the problem can be mitigated by 
having the agent explore the entire state space once before learning 
anything and omitting infeasible crop rotation trajectories from the 
state space. Trajectories were deemed infeasible if taking an action 
would result in a domain expert’s rule violation. This also includes 
eliminating trajectories if a rule was violated at some later point during 
planning. For example, if four planning steps are required and an 
action would violate a rule, this trajectory would be eliminated. After 
exploring the state space ‘‘forward’’ once and deleting the infeasible 
trajectories, a ‘‘backward’’ control has to be run. After the forward 
exploration, some actions are left without any feasible successor actions 
as all trajectories have been eliminated immediately or when they be-
came infeasible at a later planning stage. These states without feasible 
successors have to be omitted, too, as otherwise, the agent would be 
able to explore the states but would be unable to plan any further, even 
though the desired crop rotation length was not reached.

Performing this procedure decreases the state space, so now the 
table dimensions are:

1. 26 × 26
2. 578 × 26
3. 11.648 × 26
4. 206.002 × 26

While this reduction certainly mitigates the computational complexity, 
we acknowledge that this approach has its limitations when more crops 
are available or when longer crop rotations are planned. However, 
regarding planning length, two of the interviewed experts, whose re-
sponses are discussed in detail in Section 6, find that five-year plans 
are suitable amidst the currently changing climate conditions.

3.5. Robustifying tabular algorithms

As stated in Section 2 on the related work, research on robust 
reinforcement learning strategies usually focuses on experience re-
play (Adam et al., 2012), robust algorithms (Abounadi et al., 2001; 
Wang et al., 2023) or Bayesian learning (Bellemare et al., 2017). While 
these strategies exist, the goal of altering an existing simple algorithm 
as little as possible is not meat or unattainable. In the case of experience 
replay, more robust results are achieved by removing temporal depen-
dencies of states and actions. However, as was discussed in Section 3.4, 
fixing the violation of the Markov property heavily relies on the exact 
sequence of states and actions. Regarding robust algorithms, they are 
specifically developed to deal with reward perturbations but are more 
difficult to implement and may not necessarily be suitable for develop-
ing explainable strategies. Furthermore, they require to estimate many 
more parameters, increasing the computational costs even more. The 
Bayesian approach that works on estimating the underlying reward 
distribution might be interesting for how the random rewards were set 
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Fig. 1. Q-value trajectories for three potential decisions.
up in this work. However, the concept so far has been developed mostly 
for use in deep reinforcement learning applications as the estimated 
distribution is used to calculate a cross-entropy loss.

So, instead of expanding on one of these concepts, we identified 
the algorithms’ exploitation phase as the key contributor to making the 
results more robust. In addition, using the DynaQ agent model allows 
altering the planning phase by not using only the last observed reward 
of a state–action pair in the planning step.

One would consider these robustification strategies here because 
when agents learn their actions based on fluctuating rewards, these 
variations might lead to exploring and exploiting a bad strategy by ac-
cident. This is particularly problematic when the training is completed, 
and a suboptimal action has the highest Q-value and is, therefore, 
suggested by the agent as the best one.

A situation like this is depicted in Fig.  1, where the current state is 
‘‘8’’ and the potential actions are ‘‘10’’, ‘‘11’’ or ‘‘12’’. As can be seen, 
in this case, the best action, according to the algorithm, is action 11. 
However, a brief look at the Q-value trajectory of action 10 indicates 
that it might, in reality, be the better decision, as the Q-values over 
the course of the training have been higher and, therefore, they have 
been used more frequently in the exploitation phase. This could mean 
that, on the one hand, the agent might truly have discovered a new, 
better strategy for pursuing action 11 instead of action 10. On the 
other hand, the fluctuation might have occurred due to the fluctuating 
rewards, where for action 10, unusually low rewards were observed, 
whereas, for action 11, they were higher than usual. Thus, the number 
of updates and the general trend of the trajectory of a specific Q-value 
hold additional information that has not been used in the training 
process.

This observation leads to the idea of using a weighted 1-step Q-value 
prediction to favour strategies that have been explored more frequently 
and have a positive trend. Regarding the prediction of the next Q-value, 
the goal is to extract the general trend of a trajectory to determine 
whether a decrease or increase is the consequence of a newly discov-
ered, better strategy or due to the noisy rewards. Therefore, a simple 
linear regression model is fit to the last 25 percent of the observed Q-
value updates for an action that has been explored frequently. If there 
were eight or fewer updates to a Q-value, all observations are used for 
the prediction. The reason for this is that for very short trajectories, 
taking only the last 25 percent of it captures too little information. If 
an action has only been explored once, there is no linear prediction; 
instead, the only observed value is the predicted value.

For the weighting part, let 𝑁𝑄𝑖
 be the number of updates for Q-value 

𝑄  and 𝑁 = 𝑚𝑎𝑥(𝑁 ) for 𝑖 ∈ {1,… , 𝑁 }. Each predicted Q-value 
𝑖 𝑚𝑎𝑥 𝑄𝑖 𝑠𝑡𝑎𝑡𝑒𝑠
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𝑄𝑖 is multiplied by a weight factor of

𝑤 = 1
2
∗ (1 + ((1 +𝑁𝑄𝑖)∕(1 +𝑁𝑚𝑎𝑥))

1
8 )

In case the maximum Q-value of a decision is negative, instead, the 
factor was set to w = 2 − w to still be able to wrap an argmax function 
around the scaled Q-values and to avoid distinguishing between two 
cases.

A major challenge in developing this factor was to achieve a balance 
between favouring the decision with the most updates and considering 
strategies that were truly developing into becoming the best decisions 
but have not been explored that much. To aid the agent in choosing the 
best decision with respect to that balance, the reasons for this particular 
factor are:

1. In the weight w, the fraction gets taken to the power of 1
8 , 

thus punishing small differences between 𝑁𝑄𝑖
 and 𝑁𝑚𝑎𝑥 less, 

compared to choosing a larger value in the exponent while still 
having a reasonably fast decay for larger differences of 𝑁𝑄𝑖

 and 
𝑁𝑚𝑎𝑥

2. The factor is bound to the interval ( 12 , 1], which ensures the 
importance of the Q-values 𝑄𝑖 in the decision-making, as bounds 
of 0 and 1 would almost exclusively base the decisions on the 
number of observations.

3. The new argmax function was only used after 75 per cent of 
the training was done on the regular argmax function because 
the new argmax still favours more frequently updated decisions. 
This hinders training initially as exploration is more important, 
but later in the process, the new argmax helps to improve over 
regular exploitation.

3.6. Robust planning

A key strength that is unique to DynaQ within the context of 
this work is combining exploring and planning using a model of the 
observed states. In a regular non-noisy reward setting, once a state–
action pair is observed, the reward is stored in the model and then used 
in the planning phase. Introducing randomness changes the reward of 
each state–action pair every time it is explored. To closely resemble the 
non-random version of the DynaQ agent, the algorithm was adapted 
to store the last observed reward for each state–action pair and use 
that in the planning phase. However, doing this disregards all the other 
outcomes of a state–action pair and means that the last reward is ‘‘the 
most’’ correct one going into the planning phase. In the way that the 
random rewards are set up, this is, in most cases, not true. Therefore, 
there are two alternative strategies that can be pursued regarding the 
planning phase and the model.
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1. Firstly, one way to ensure that all rewards to the same state–
action pair are of equal importance is to collect all of these 
rewards and, in the planning phase, randomly select one of them 
to be used in the planning step.

2. Secondly, another way of thinking about these rewards and giv-
ing equal importance to each of them is to construct an estimator 
for the mean of the underlying distribution and use this value as 
a target in the planning phase. Implementing this estimator is 
simple, as the average of the observed rewards is unbiased for 
the true sample mean. Using the unweighted average also puts 
equal importance on each observed reward.

Therefore, three different planning strategies, in addition to the up-
dated argmax function, help to robustify the algorithm’s crop rotation 
policies.

3.7. Deep reinforcement learning method

This work uses Fenz et al.’s (Fenz et al., 2023a) implementation 
as a benchmark. Therefore, the same Deep Q-network (DQN) that is 
implemented in the Python machine learning library Keras-rl2 was 
chosen for the DRL method to solve the crop rotation problem. That 
means the DQN is not duelling, and double DQN is disabled. Similarly 
to the tabular agents, the exploration policy is epsilon greedy, and the 
learning rate is 0.9.

Changes to the model architecture, such as using a duelling model, 
impact the resulting performance. However, we do not want to change 
the model settings in favour of being able to directly compare the re-
sults to an implementation that has already been proven and published.

3.8. Setting the random rewards

Since the target of the crop rotation plans is to maximise the 
marginal crop yields, measured in Euro/ha, data containing the vari-
ation in yields are of interest. Unfortunately, data for marginal crop 
yields in Austria is not readily available. Therefore, the marginal yields 
were reconstructed based on the data given by Fenz et al. (2023a), 
available only for the year 2022, crop yield data (t/ha) and market 
price data, which are both collected by Statistics Austria and available 
for the past 28 years (1995–2023) and 17 of the 26 crops of interest. 
The missing market price data for broad beans for the first eight 
and last five years of the time series were imputed based on the 
changes in market prices for peas because, for the available data, the 
prices behaved very similarly. In the next step for these 17 crops, the 
proportion of the marginal yield of the total yield for the year 2022 
was determined. The resulting values were then multiplied by the total 
yield data of all the other years.

This process assumes that total revenue and marginal yield are 
always in the same proportion, which is probably too strong of an 
assumption. However, this method still produces yield fluctuations that 
are strongly correlated to the actual crop yields and, therefore, implic-
itly capture external perturbations and natural crop yield development.

The marginal yield time series for the remaining nine crops were 
reconstructed by multiplying the available marginal yields with the 
average yearly change in marginal yields for all other available crops. 
That means for the year 2022, the multiplying factor was 1, as it is 
chosen as the reference year. For the year 2021, the average marginal 
yields were 25 percent lower, which is why the value from 2022 
was multiplied by a factor of 0.75 to simulate the price for 2021. 
This procedure was carried out over the entire time series and thus 
completes the base data set on which the random rewards are built.

The empiric distributions of each crop’s marginal yield time se-
ries were determined to efficiently use the data. For nine crops, a 
Kolmogorov–Smirnov Test (Kolmogorov, 1951) could not reject the null 
hypothesis that these marginal yields are normally distributed. For the 
remaining 17 cases, a Gibbs Sampling scheme (Casella and George, 
6 
1992) was implemented to simulate normal distributions for the mean 
and variance of the yield to also be able to draw samples from a dis-
tribution. Arguably, randomly selecting just from the observed values 
would have been an option to avoid creating distributions. However, 
sampling from distributions is advantageous, as a wider variety of 
values can be sampled, and it is more likely to sample values closer 
to the mean, thus making the random rewards more resilient towards 
repeatedly drawing outlier values.

In addition to the distributions, trends over the observed period of 
time could be observed for most crop yields. Therefore, a linear model 
was fit with crop yields as the dependent variable and time (in years) as 
the independent variable. For crops where the trend was significant, the 
coefficient of the estimator was used to add a time-dependent constant 
to the crop yield.

To illustrate how the learning algorithm changes compared to the 
non-random reward setting and why the rewards are random to the 
agent, we briefly want to highlight the differences in an example.

In reinforcement learning, an agent observes its current state. In our 
case, the state corresponds to the current position in the crop rotation. 
In this state, the agent takes an action, which corresponds to choosing 
the next crop in the plan and choosing a crop comes with some reward. 
These steps are identical in both cases. The reward the agent gets, 
however, is different.

• Non-random rewards: In the non-random reward setting, the 
reward for choosing the same crop is identical all the time. That 
means whenever a particular crop is used in the plan, the reward 
will be the same and, therefore, is not random to the agent.

• Random rewards: In contrast, in the random rewards setting, 
choosing the same crop comes with different rewards each time, 
according to the yield distribution that was described above. 
Specifically, when a crop is chosen, the reward is sampled from 
the crop yields’ random distribution. Thus, from the agent’s per-
spective, the rewards for choosing the same crop change each 
time and are, therefore, random.

4. Experimental design and setup

The aim of this work is to plan crop rotations efficiently while 
accounting for unknown variabilities by introducing randomness into 
the process. Additionally, as outlined earlier, certain robustifications 
are necessary to accommodate randomness while ensuring reliable 
results from the proposed reinforcement learning approach. This led 
to several experimental setups being evaluated and tested against each 
other for crop rotation planning.

Overall, there are 26 crops available that can be used in the crop 
rotation plan. These crops, in particular, were chosen because they 
accounted for 95% of the crops grown in Austria between 2017 and 
2021 (Fenz et al., 2023b). For each pair of crops, the direct successor 
suitability based on the NDVI score is available, which indicates how 
beneficial a direct crop succession is. Among these crops, the goal of 
the plans is to maximise crop yields that the agents receive as a reward, 
which are a direct consequence of available yield data for each crop as 
well as the successor suitability. In case, a suitable crop succession is 
planned, the expected crop yield gets multiplied by a factor of 1.1 or 
1.2, depending on how beneficial according to the NDVI score this plan 
is. Should any of four rules introduced by domain experts be violated 
or an unsuitable crop is planned, the agent receives a negative reward 
of −2times highest positive reward instead, thus discouraging it from 
that plan. The experts’ rules are:

• Soil nitrogen levels must not fall below 0
• There is a long enough break before planning the same crop again
• There cannot be two root crops in direct succession
• A crop can only occur a fixed number of times within a crop 
rotation plan
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Fig. 2. Schematic representation of crop rotation planning for a 5-year plan.
The length of the plans was chosen because it allows to plan far enough 
ahead to estimate influences of the plans on soil nitrogen levels and 
expected yields. A depiction of the crop rotation planning process can 
be seen in Fig.  2.

Thus, to test tabular reinforcement learning and deep reinforcement 
learning for crop rotation planning, all agents were tasked to learn 
optimal five-step crop rotation policies for all 26 starting crops by 
training over 37.500 training episodes. The number of training episodes 
was fixed at 37.500 because the DQN model performed best at 150.000 
training steps — where one step equals planning one step in an episode. 
Firstly, the regular non-random rewards for each crop yield are used 
for each agent and in the second step, these deterministic rewards are 
replaced by their randomised versions. The observations in that setting 
motivate the approaches to robustify the training process, and in the 
last step, the effects of the changes to an algorithm with respect to the 
learned strategies are studied.

Records during the training process are used for explanatory charts 
to obtain insights into the tabular agents’ decision-making process. 
For the deep reinforcement learning model, analyses of the results are 
possible only after the training is completed.

Domain experts evaluate the crop rotation plans and the respective 
explanation of the learning processes to validate the results and find 
avenues for further improvements.

A schematic representation of the experimental design is depicted 
in Fig.  3.
7 
5. Results

In the following, the resulting crop rotation plans from the tabular 
and deep learning agents in the non-random and random reward set-
tings are presented and discussed. First, the focus lies on the technical 
side of the results regarding the collected rewards. Secondly, expert 
opinions and real-world applicability are discussed.

5.1. DRL vs. tabular RL: Non-random rewards

To begin with, we want to demonstrate that tabular Q-learning 
agents, using the updated larger Q-tables that help to fix the violation of 
the Markov Property, can match Deep Reinforcement Learning in terms 
of collected rewards and also deliver better explainable strategies.

5.1.1. Overall rewards during training
During the DQN’s training process, the rewards for each episode 

were stored, and therefore, the success of the training process at each 
iteration can be tracked. Of course, other metrics, like the loss function, 
can be used for measuring training success. However, they are unique 
to function approximations and cannot be used when comparing results 
to tabular agents.

For the tabular agents, the rewards during training were com-
puted differently to obtain more robust results. After each 500 training 
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Fig. 3. This figure depicts the pipelines we employed for designing crop rotations. From left to right: Crop yield information for 26 crops is used in the environment for both 
tabular reinforcement learning (RL) and deep reinforcement learning (DRL) agents. The agents train on these yields as deterministic rewards to derive crop rotation plans. For the 
perturbed yields, robustifications are applied to the tabular RL agents before all agents learn on the randomised rewards. Experts evaluate the resulting plans and the additional 
explanations obtained during the learning process.
Table 2
Strategy results non-random rewards.
 DQN 1-step Q-learning DynaQ Expected SARSA 
 Number of best strategies 1 7 15 18  
 Reward best strategy 3573 (12) 4759 (1) 5337 (4) 5447 (1)  
 Reward 2nd best strategy 3515 (3) 4645 (1) 4722 (2) 5337 (1)  
 Reward 3rd best strategy −602 (2) 4604 (1) 4645 (1) 5140 (1)  
episodes, 100 episodes were run, always starting with a different crop, 
and the best strategies and the corresponding rewards were collected 
and averaged. As depicted in Fig.  4, the results show that all tabular 
agents learn faster and reach higher rewards during training, indicating 
a better performance of the crop rotations.

A closer look at the best strategies summarised in Table  2 for 
each starting crop reveals that DQN is best for 1 starting crop, while 
the 1-step algorithm performs best for 7 crops, DynaQ for 15 crops, 
and expected SARSA for 18 crops. These results further strengthen 
the confidence in the tabular agents since the SARSA agent performs 
particularly well, but also the very simple 1-step Q-learning approach 
yields reasonable results. Note that these numbers do not add up to 
26 as the agents train independently of each other and can arrive at 
the same conclusion for the best strategy for a given starting crop. In 
general, not all crops are suitable starting crops for rotations; for some, 
adhering to all expert rules and finding suitable crops is not feasible. 
But not all crops need to be a good starting point, which is why focusing 
on the most rewarding strategies also allows to gain insights into the 
quality of the algorithm results. The DQN agent unsurprisingly also has 
the lowest maximum rewards, but interestingly, its highest rewarding 
strategy was found for twelve of the 26 crops. The reason for this is that 
the agent found two very promising four-step rotations, which were 
applied to a variety of starting crops. This works in most cases but 
does not allow for a comparatively high peak performance. Regarding 
the tabular agents, the expected SARSA algorithm seems to find very 
specific strategies with great performance, while the DynaQ agent 
seems to find promising crop rotations for a range of crops overall. The 
1-step Q-learning agent is definitely the worst of the tabular agents, but 
the results are still very respectable.

One of the main reasons for DQN’s underperformance is that fixing 
the violation of the Markov Property is not easy for this particular use 
8 
case. Techniques like combining sequences of states into one state and 
using it as experience replay fail because the goal is to plan one step at 
a time without fixing the sequences beforehand.

In conclusion, combining the results confirms that tabular reinforce-
ment learning agents can match DQN performance for crop rotation 
planning and can even outperform them in most cases.

5.1.2. Explainability for non-random rewards
Regarding the explainability and interpretability of the obtained 

results, we see that tabular agents are also favourable compared to the 
DQN agent, as their design allows to derive explanations of the training 
process and the results. Each Q-value update for each state–action pair 
can be stored for the tabular agents during the training phase. This 
allows to analyse the training process afterwards and gain insights into 
which decisions were favoured at some point during training. Further-
more, especially in the case of fixed rewards, a notion of convergence 
can be visually determined, indicating whether the value of certain 
actions still increases or has already peaked. Fig.  5 below depicts the 
Q-value development for the first action after starting in state 4 for 
the 1-step Q-learning algorithm. Two things are of particular interest. 
Firstly, the value of Decision 10 steadily increased until it seemed to 
have peaked at a value of around 1500. However, after some time, a 
better policy following decision 10 was found, and its value increased 
to around 1800. Secondly, for the current best decision, 11, the training 
has not been fully completed, as the updates to the Q-value still increase 
the value.

To gain insights into a broader, chronological picture, the best 
strategy during each point in training can be tracked for each starting 
state. Fig.  6 shows the strategy development for starting state 4 and the 
1-step agent.
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Fig. 4. Comparison of average rewards development during training on non-random rewards for DQN and tabular agents.
Fig. 5. Non-chronological Q-value development during the training process for all 
potential actions in State 4.

While these explanations are useful for developing and improving 
the model as the state of convergence or the current best strategies can 
be examined, the plots might not be the most useful to stakeholders. 
For them, explanations behind decisions or visualisations for yield and 
nitrogen level might be way more useful. An example of visualising 
9 
these relations can be seen in Fig.  7 — this graph can also be derived 
from the DQN agent.

The explainability tree, however, depicted in Graph  8, is exclusive 
to the tabular agents because each step of the training process can be 
tracked, thus allowing to gain insights at which point in training which 
decisions were favoured and also why it was favoured.

With this interactive graph, at each point during the decision pro-
cess, it is traceable which actions violated which expert rule, what the 
yield of the best decision is, and how it defers from the other decisions 
that did not violate any rule but were also unsuitable. The mentioned 
information is available when hovering over the respective squares of 
the tree.

These graphs show that tabular reinforcement learning for crop 
rotation is advantageous in terms of the explainability of strategies 
compared to DQN. This also confirms the first thesis: Tabular rein-
forcement learning will lead to better explainable policies while maintaining 
similar model performance to deep reinforcement learning methods when 
the training is done with non-noisy rewards, as it was shown that tabular 
agents can outperform DQN in collected reward and in addition add 
explainability to the decision-making process.

Regarding model performance, there is an argument to be made that 
there exist more refined DRL methods, including duelling or double 
DQN implementations, which could lead to better results. While more 
advanced methods could lead to better results, our goal was to use an 
already existing, published DRL model as a benchmark to compare our 
model to. Considering this, we decided to retain the used DRL model to 
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Fig. 6. Chronological Development of the best Strategy for Starting Crop 4.
Fig. 7. Soil nitrogen and yield development.
10 
ensure that our results are easily and fully comparable to the existing 
approach without having to account for trying a different DRL.

5.2. DRL vs. tabular RL: Random rewards

After justifying the use of tabular reinforcement learning by show-
ing its advantages in a non-random reward setting, the next step is to 
examine how randomised rewards affect the strategies. In general, the 
idea behind using random rewards is to better replicate the real world 
by allowing the capture of fluctuations in crop yield that may arise 
due to market volatility or unpredictable weather patterns, for example. 
The goal, then, is to find more resilient crop rotation strategies and/or 
estimate the potential risks of planting a certain crop.

5.3. Overall rewards during training

Similar to before, the reward developments during the training 
phase can be compared as seen in Fig.  9. This time, the focus lies on the 
differences between the same agent’s non-random and random training 
behaviour. For completeness, the DQN rewards are also shown here. 
In this side-by-side overview, it can be observed that the non-random 
strategies perform better, as the average rewards during the training 
process are higher, which can be seen when comparing the graphs 
row by row. The reason for that is that fluctuations in rewards lead 
to fluctuating Q-values, as they are directly influenced by the rewards. 
Thus, Q-values for good decisions can be lower than they should be, and 
conversely, for worse decisions, they can be unnaturally high, which 
misguides the agent in learning the optimal crop rotation plans and, 
therefore, results in lower average rewards.

Diving a bit deeper into the strategy level again reveals that there 
are still strategies for each agent that are the same regardless of which 
rewards have been used. As can be seen in Table  3, for most agents, 
there are 4 to 8 strategies where the random rewards do not affect 
the best policy, 11 to 15 starting crops where the non-random rewards 
produce better policy and a bit surprisingly 7 to 10 strategies they are 
better when trained on the random rewards. The latter observation 
can be explained by discovering better strategies when certain rewards 
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Fig. 8. Explainability Tree that shows from top to bottom the suggested crop rotation. To the right of each suggestion, there are boxes that depict how many crops violated which 
rule and how many were unsuitable in the regard that they have lower yields.
Table 3
Strategy differences based on non-random or random reward when taking each crop 
at the start of the crop rotation once.
 Non-random better Equal Random better 
 1-step Q-learning 11 5 10  
 DynaQ 11 8 7  
 Expected SARSA 15 4 7  

are unusually higher or lower than in the other setting. From the 
table, it can also be inferred that the 1-step Q-learning agent is the 
most susceptible to discovering better crop rotations, while the random 
rewards do not lead to a lot of better strategies for the expected SARSA 
agent. The numbers for the DynaQ agent are between the numbers 
of the other agents, but the number of equal strategies between non-
random and random rewards is higher than that of the other two 
models. Note that the rewards shown here are as if the strategies were 
executed on non-random rewards to make the results comparable.

Examining the reasons why some strategies differ reveals that for 
some starting crops, there was a better strategy at some point during 
training, but due to randomness in rewards, the quality of the best 
action was sometimes assessed incorrectly, leading to a worse rotation 
to be considered the best. An example of such a scenario for the DynaQ 
11 
agent can be observed in Fig.  10, where the strategy corresponding to 
the highest accumulated rewards was 8, 10, 0, 7, 20 while the best 
strategy after the training, according to the agent, was 8, 11, 6, 23, 
10, even though it had a lower overall reward and a lower overall 
Q-value. The reason why the agent suggests a worse strategy is that 
due to fluctuating rewards, crop 11 is preferred over crop 10 in the 
second planning step, which leads to a suboptimal result. The Q-value 
development of this state–action pair was used as an example in Fig. 
1. Note that only the last part of the training process is visualised for 
better readability. In order to avoid such results and increase the overall 
model performance, the robustification measures that are discussed in 
Section 3.6 are implemented.

5.3.1. Update argmax for exploration
The effects of the changes to the argmax function on the training 

of the DynaQ agent are exemplified below. In Fig.  11, the reward 
developments during the training process over 37.500 episodes are 
compared. The red line indicates the point after which the argmax 
functions differ. Both to the left and to the right of the red line, there are 
500 data points, where one data point is the average over 100 training 
episodes at this stage of training. For better comparability of the results, 
all training episodes in both cases started with the same crop. Visibly, 
there are no huge differences between the two graphs, but comparing 
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Fig. 9. Comparison of average rewards development during training on random rewards for DQN and tabular agents.
Table 4
 Non-random rewards vs. random rewards.
 Median reward Mean reward SD reward 
 Regular argmax 3286 3283 204  
 New argmax 3316 3316 192  

some summary statistics as in Table  4 only of the parts to the right of 
the red line reveals that the new argmax function finds better strategies.

On a decision level, Fig.  12 reveals the differences between the two 
approaches. The three graphs show the Q-value development for all 
potential actions in state 8, whose final Q-value is positive. Simply 
put, that means that currently, crop 8 is growing or the last of a 
previous plan, and one of the crops 10, 11 or 12 is a potentially suitable 
successor. The leftmost plot shows the Q-value development up to the 
point where the different argmax strategies take over. In the plot in 
the middle, the regular argmax function – that was also used up until 
that point and was depicted in Fig.  1 – is continuously used, while 
in the rightmost plot, the above-described new version is shown. In 
the case where the regular argmax function was continued, action 11 
was explored more frequently as it had the higher absolute Q-value. In 
contrast, the new argmax version favoured exploring decision 10 as it 
12 
has been explored more frequently up until that point and also had an 
overall increasing trend of Q-values, whereas the values for decision 
11 stagnated. Thus, the new argmax found the overall better decision 
here, which led to a better performance of this strategy overall.

5.3.2. Differing planning strategies for DynaQ
Comparing the results of the three different planning approaches, 

which all use the update argmax function, using each of the 26 crops 
as a start of a crop rotation does not indicate that any of the planning 
versions is decisively better than the others. The agent that uses the last 
value for planning delivers the highest rewarding strategies for 16 crops 
and the worst strategies for 8 crops. In contrast, the agent that uses 
the average observed rewards in planning finds the highest rewarding 
strategy in 11 cases and the worst in 13 cases, while the agent that 
plans from randomly sampling previously observed rewards is the best 
in 11 cases and the worst in 12 cases. Note that the numbers for best 
and worst strategies do not add up to 26 as there are ties between 
the agent’s strategies. As a consequence of these inconclusive results, 
the final suggestions of the DynaQ agent in the random reward setting 
will be an ensemble of these three planning versions, where for each 
crop, the highest rewarding strategy from either of these agents will be 
suggested.
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Fig. 10. Chronological development of the best strategy for Starting Crop 8.

Fig. 11. Comparison of average rewards during training for old and new argmax function for the DynaQ agent.

Fig. 12. Q-value development comparison between old and new argmax function for 1 state–action pair.
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Fig. 13. Chronological Development of the Best Strategy for Starting Crop 8 - Robust Learning.
5.4. Robust random reward learning vs. non-random reward learning

In Chapter 5.3, the motivation behind robustifying the learning 
process was to prevent the agent from choosing a worse strategy than 
the current best due to reward and, therefore, Q-value fluctuations. 
Compared to Figs.  10, 13 shows that there are cases, such as the 
one depicted, where this goal was achieved, and a better result was 
maintained. Even though improvements to the tested agents were 
made, randomly selecting rewards for the same state–action pairs still 
costs some performance in terms of collected rewards. Each previously 
described robust DynaQ version gets outperformed by training on non-
random rewards. However, combining the agents into one ensemble 
even leads to a better average score compared to its non-random coun-
terpart. The flexibility to adapt two major components, exploration 
policy and planning, in this fairly simple algorithm compared to the 
other two tabular reinforcement learning agents allows for the intro-
duction of enough improvements so that the performance increases 
significantly.

An overview of the achieved average score over all starting crops on 
the final planning suggestion can be seen in Table  5. These results can 
also be seen when comparing different strategies again. In Table  6, the 
same comparison is depicted as in Table  3 in Section 5.3; however, now, 
the robustification measures are used to train the models on the random 
rewards. The most notable thing that can be observed is that the DynaQ 
ensemble now finds better crop rotations for 11 out of 26 starting 
crops, and in 10 cases, the strategies are identical to the non-random 
ones. There are also slight improvements in the 1-step Q-learning 
algorithm’s strategies; however, for the Expected SARSA algorithm, 
the robustification approaches did not yield the desired results. The 
reason for that is that the Q-value trajectories for the state–action pairs 
gradually decrease after the initial steep increase. That happens because 
there are usually more unsuitable actions for each decision, which come 
with a negative reward, thus reducing the expected Q-value over all 
decisions, which leads to decreasing Q-value trajectories. This declining 
trend seems to collide with the idea of choosing the greatest increase 
to favour a particular action.

We conclude that for the crop rotation planning problem as we 
formulated it, the Expected SARSA algorithm is outperformed by the 
14 
Table 5
 Average rewards over all final suggestions for each starting crop - non-random rewards 
vs. random rewards.
 Non-random rewards random rewards 
 1-step Q-learning 3188 3022  
 DynaQ (Ensemble) 3550 3740  
 Expected SARSA 3172 2473  

Table 6
 Strategy differences based on non-random or random Reward when taking each crop 
at the start of the crop rotation once - after robustification.
 Non-random better Equal Random better 
 1-step Q-learning 9 6 11  
 DynaQ (Ensemble) 5 10 11  
 Expected SARSA 16 6 4  

DynaQ ensemble and shows that the Expected SARSA algorithm is not 
as suitable for solving this problem. Therefore, for the domain expert 
evaluation, we used only the DynaQ Ensemble to present planned crop 
rotations using other perturbed rewards.

5.4.1. Summary
We outlined and extensively discussed the results obtained from our 

experiments in the previous part of this section. Here again, we briefly 
summarise our findings with respect to performance and expandability 
according to the pipeline depicted in Fig.  3.

Initially, three tabular reinforcement learning algorithms, 1-step 
Q-learning, DynaQ and Expected SARSA, were tested against a DQN 
model to predict 5-step crop rotation policies among a corpus of 26 
available crops. We showed that the tabular methods collected more 
rewards for the obtained crop rotations, thus underlining a superior 
performance. Furthermore, due to their tabular nature, better explana-
tions of the training process and the results can be obtained, which 
greatly increases the understanding of why the agents made their 
decisions.
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We also showed that using randomised rewards, which aim at 
better replicating the real world, negatively impacts the performance 
of all tested models. To improve the results of training on the random 
rewards and to obtain more resilient crop rotation plans, robustifi-
cation measures were taken. These include the proposed changes to 
the argmax function to encourage the agent to stick to well-explored 
decisions and the discussed changes to the planning phase of the DynaQ 
agent, which resulted in three different DynaQ versions. The robust 
planning increased the model performance of the 1-step Q-learning al-
gorithm and greatly increased the performance of the DynaQ approach 
when combining the three different models into an ensemble. However, 
the Expected SARSA algorithm did not show signs of improvement 
for favouring strategies trained on random rewards and, therefore, 
the DynaQ Ensemble is deemed the best approach and is used for 
computing the results for the domain expert evaluation.

We also note that obtaining a lower model performance when 
comparing learning on perturbed rewards to learning on deterministic 
rewards is not necessarily a negative sign with regard to the model 
domain. The reason for that is that deterministic rewards might be an 
idealised but unrealistic representation of the real world, and thus, the 
rewards may be better on paper but produce worse results when trying 
to implement them.

5.5. Domain expert evaluation

To test how the results could uphold in the real-world domain, 
experts David Mayer, farmer and consultant at the Organisation of 
the Austrian Chamber of Agriculture in Lower Austria (ger.: Land-
wirtschaftskammer Niederösterreich), Annika Mayer, from BOKU Vi-
enna, Martin Auer, a farmer in Lower Austria and Simon Zoubek, an 
organic farmer from Biohof Adamah, kindly took their time to validate 
the results. The focus of the evaluation was to answer whether crop 
rotations suggested by learning with random rewards are preferable 
overall and more resilient regarding crop yields compared to those 
learned with deterministic rewards. Additionally, the evaluation fo-
cused on prior experiences with AI in crop rotation planning and 
whether explanations of the agent’s decision-making process would en-
courage farmers to adopt these decision-support tools to tools without 
any explanations. Lastly, the experts were asked to voice concerns and 
opportunities for using AI in crop rotation planning.

Regarding prior experiences with crop rotation planning and AI, all 
experts currently use crop rotations on their farms; however, none of 
them uses any software or AI tool to create the rotation plans. The 
reasons why no software is used are that prior experience is available, 
there is no interest in investing time to learn it, and there is no 
knowledge of any existing product that would do that.

To determine which crop rotation is better to use, the experts were 
asked to choose their preferred strategy for six different starting crops 
(Spring Barley, Grain Peas, Grain Maize, Summer Oat, Potatoes and 
Winter Rye). The starting crops were chosen because they cover root 
crops, grains, and legumes and because highly rewarding strategies 
were found for those crops. For each crop, up to three different strate-
gies could be chosen: one was derived from a non-random DynaQ agent, 
one from the random DynaQ ensemble and in the case where three op-
tions were possible, the majority vote of all models was chosen too. The 
optimal strategy was the same for potatoes for both the non-random 
and noisy rewards. The experts did not know which crop rotation was 
derived from which agent in order to avoid biases in any direction. 
For Spring Barley, Grain Maize and Winter Rye, the suggested strategy 
learned on the non-random rewards scored higher, and for Grain Maize 
and Grain Peas, the random reward strategy collected more rewards. 
Therefore, cases where the experts chose a lower rewarding strategy 
over a higher one are of particular interest as based on those, more 
insights into improving the model can be gained. In addition, based 
on a Likert scale, the experts answered how income resilient towards 
external perturbations they deemed each strategy to be (not only their 
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Table 7
Crop rotation preference as answered by the domain experts.
 Starting crop Preference

 Non-random Random None 
 Spring Barley 1 2 -  
 Grain Maize 1 1 1 -  
 

Non-random
scores higher 

Winter Rye 2 1 -  
 Grain Peas 0 3 -  
 
Random
scores higher Summer Oat 0 2 1  

 Equal score Potatoes – – –  

preferred one). The possible options on the Likert scale are: 1: not risky 
at all, 2: not risky, 3: acceptable, 4: risky, 5: very risky.

The results of the interviews regarding the preference of each crop 
rotation are summarised in Table  7. Interestingly, for the three starting 
crops where the better strategy was obtained in the deterministic 
reward setting, the experts’ choice was mixed. In the case of spring 
barley the random strategy was deemed more suitable because it better 
adhered to the principle that root crops and stalk plants should alter-
natingly be planted. Furthermore, according to one expert, the plan is 
useful for growing crops to feed cattle. However, they also found the 
perturbed reward strategy useful, especially in the context of organic 
farming. Another expert preferred the non-random strategy because 
lucernes grow over multiple years and, therefore, cover the soil over 
a longer period of time.

The opinions on the strategies for grain maize vary a lot. For the 
organic farmer, it is important that the lucernes are present in the 
rotation as they loosen the soil. In contrast, one expert liked to use 
pumpkins in the rotation. In the case where none of the strategies was 
preferred, both were deemed impractical as the root material of the 
soybeans hinders the growth of the pumpkin crops and for the second 
option, lucernes are not economically feasible.

Again, the alternation between root crops and stalk crops was pre-
ferred for the available strategies for winter rye in the random strategy. 
The reasons for choosing the non-random suggestions are that soybeans 
are sought after, and for the organic farmer, the random strategy had 
too much wheat in suboptimal crop breaks.

Compared to the crop rotations plans that were more rewarding in 
the non-random setting, the opinions on the plans that performed better 
in the noisy reward setting are way less divided.

For grain peas, all experts agreed on the same plan, as this is a 
known plan for two farmers. For the organic farmer, peas, in general, 
are a promising organic culture, and again, he liked that Wheat is 
grown before potatoes as it requires less work on the soil and, therefore, 
allows for some regeneration.

Lastly, for summer oats, the random strategy prevailed, as it twice 
contained some form of Wheat, avoided the aforementioned difficulties 
for soybeans and pumpkin, and was economically the most promising. 
Refilling soil nutrients is of greater importance only for the organic 
farmer, which is why he preferred growing clover, which is suggested 
by the majority of all models, excluding the DynaQ ensemble.

Regarding the economic risk of the strategies, it is no surprise that 
the preferred strategy was also seen as the less risky one, as economic 
considerations play a crucial role when deciding on a crop rotation. In 
Table  8, an overview of the risk assessment of the preferred strategy 
is shown, which indicates that most crop rotation plans are deemed 
acceptable or not risky. Only for grain maize, the plans were seen as 
very risky, which also coincides with the answer of the expert that none 
of the plans is feasible.

Overall, the risk assessment aimed at answering the question of 
whether the crop rotations are seen as resilient towards external pertur-
bations like weather influences or market price fluctuations. According 
to the answers given, the strategies are resilient enough that they 
mostly come at an acceptable economic risk. This again emphasises the 
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Table 8
Risk evaluation as answered by the domain experts.
 Starting crop Economical risk
 Not Risky at all Not risky Acceptable Risky Very risky 
 Spring Barley – 1 2 – –  
 Grain Maize 1 1 – – 1  
 

Non-random
scores higher 

Winter Rye – 1 2 – –  
 Grain Peas – 1 2 – –  
 
Random
scores higher Summer Oat – 1 1 1 –  

 Equal score Potatoes – 1 2 – –  
importance of using the random rewards as present in this work, as 
nine of the plans preferred originate from training on random rewards, 
compared to only five choices for plans derived from deterministic 
rewards.

To examine the importance of explainable AI decision support tools, 
the experts were shown a sample explainability tree, like in Fig.  8 and 
the soil nitrogen and yield development Fig.  7 and concluded that they 
could determine why the agent made its decision. They also said that 
such explanations generally increased the chances of AI tools being 
adopted in crop rotation planning. One expert, however, was sceptical 
about using AI for their farming operations, and even explanations 
would not convince them to adopt such decision-support tools. In 
contrast, one expert was very impressed, especially by the line chart, 
as they reasoned that crop yields are eventually what economically 
sustainable farming boils down to, which is why having the ability to 
somehow estimate the potential future yields is essential. Furthermore, 
nutrient development is also a key factor for deciding on a crop rotation 
plan, especially in organic farming, when fertiliser usage is not easily 
possible.

At the end of the interviews potential concerns as well as future 
opportunities about using AI for crop rotation planning could be voiced. 
One major concern with respect to AI tools is that people blindly 
follow the suggestions without considering potential consequences. 
Furthermore, there are doubts that AI will ever know a plot as well 
as a farmer’s and will, therefore, lead to worse decisions.

However, the experts also see a great opportunity to develop AI 
tools for crop rotation planning. An idea that they came up with in 
one interview is to develop an app where farmers can enter the crops 
they want to grow and on which plot of land they want to grow it. 
Based on the input crops and plot history, a crop rotation plan is created 
that may be AI-powered and includes explanations such as the one 
presented in this work that not only considers suitable crop successors 
but also regulatory needs, potential funding sources, and cover crops. 
In addition, real-time market price data of crops should be considered, 
as they are sometimes known for some years in advance.

In general, a lot was talked about the scale on which such AI models 
could be applied. Frequently, in the interviews, it was concluded that 
farming practices are very region-dependent as weather conditions, soil 
nutrient levels, the slope of the field as well and elevation above sea 
level all contribute to crop growth and, in addition to market price data, 
influence the final yield. In all interviews, the farmers found that if this 
information is available, AI would be able to handle it and contribute 
to their crop rotation plans.

6. Discussion

In our study, we conducted a series of experiments and interviews to 
explore the potential of tabular reinforcement learning models in crop 
rotation planning. Our investigation encompassed two primary threads: 
a technical analysis of their performance under varying conditions and 
expert interviews to evaluate the practical application of these models 
in real-world scenarios. The following discusses insights gathered from 
the comparison of the different reinforcement learning approaches, the 
conducted interviews, and the key findings that highlight the potential 
and limitations of AI for planning crop rotations within the given 
context.
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Our experiments demonstrated how our tabular reinforcement
learning approaches compare to deep reinforcement learning
approaches. We examined how both approaches handle variability 
in the observed system by introducing noisy rewards, how tabular 
reinforcement learning approaches can be robustified under these 
conditions, the differences between these approaches, and how these 
differences can be interpreted in a real-life context.

Furthermore, the conducted interviews revealed that the presented 
reinforcement learning models, particularly those trained on random 
rewards, can be used to model reasonable, resilient, and explainable 
crop rotations. Although none of the experts interviewed currently 
rely on software or AI tools for creating crop rotation plans, two 
of them acknowledged the potential of using such technology in the 
future, especially when explanations of the decision-making process 
and the potential consequences of the plans are provided. While this 
demonstrates the potential of using AI in crop rotation planning, further 
improvements are needed, such as incorporating additional soil data for 
organic farming, using funding information, and enabling the model to 
predict crop rotations on an individual field level to fully unlock AI’s 
potential in this domain.

In summary, the main takeaways from our experiments and the 
conducted interviews are:

• A more accurate real-world representation of crop yields, mod-
elled by randomised rewards in the learning process, decreases 
the quality of crop rotation policies learned by reinforcement 
learning agents.

• Robustification measures guide the agents towards overcoming 
some of the negative influences of the noisy rewards and, there-
fore, lead to better and more resilient crop rotation plans.

• The interviewed domain experts overall favoured the crop rota-
tion plans obtained from the noisy reward training, indicating 
that accounting for external factors that influence crop yields 
improves the quality of the crop rotation plans.

• Explanatory graphics, such as the ones presented in this work, 
are deemed necessary by the domain experts to understand why 
a crop rotation plan was suggested and what effects on the income 
and the field following that plan has.

Even though related work in agriculture frequently employs DRL meth-
ods, tabular reinforcement learning should not be disregarded when 
explainable decisions are desired. As the interviews showed, explana-
tory mechanisms in machine learning greatly contribute to gaining trust 
in decision support tools and to assessing risks that suggested crop 
rotation plans have.

Furthermore, stakeholders and users of the crop rotation plans are 
mainly interested in how well a crop rotation fits their agricultural 
and economic needs. Therefore, efforts such as modelling uncertain-
ties through noisy rewards and then dealing with their effects on 
the learning behaviour are necessary to make these models attractive 
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for real-world applications. Another contributing factor to increasing 
interest in these models is to allow for individualised crop rotation 
planning that can be enabled through means such as the app mentioned 
before.

Tabular reinforcement learning is a powerful machine learning tool 
that we have shown and can encompass both of these desires. It can 
deal with reward perturbations and still deliver crop rotation plans that 
farmers want to use, which mostly come at an acceptable degree of 
risk. Moreover, tabular reinforcement learning can deliver the desired 
explanations, thus making its use easier and more approachable for 
its users. Another advantage of using reinforcement learning in the 
crop rotation planning problem is that it allows for the optimisation of 
multiple targets at the same time. The relation between these targets 
does not have to be known in advance. In general, it suffices to reward 
behaviour that leads to the desired outcome and punishes undesired 
crop rotations. For example, an organic farmer might want to have 
crop rotations focused more on retaining soil nutrient levels over the 
course of multiple years while still gaining acceptable profits. A farmer 
that uses fertiliser, on the other hand, might favour profits over all 
other factors. The main challenge in achieving various goals at the same 
time is to appropriately set the rewards such that they aid the learning 
process in the desired direction.

6.1. Practical application

While the discussion above mainly focused on the technical im-
plementation, its advantages and results, we also want to review the 
resulting crop rotations and their practical uses.

An important aspect of our approach is that the data we used in this 
work is tailored to conditions and crops as they are in Austria or regions 
with similar climate and soil conditions. On the one hand, the domain 
expert evaluation showed that the results are satisfying for farmers 
within the specific geographical region, which, therefore, underscores 
the ability of our approach to successfully tailor crop rotation plans to 
specific countries or regions.

On the other hand, relying on the data used in this publication also 
means that while the reinforcement learning method we presented is 
generally applicable for crop rotation planning, the practical results 
are limited in generalisability. To overcome this limitation, we want 
to briefly give a mini guide on which data is necessary to use the 
proposed reinforcement learning approach for a custom use case in 
another region and different kinds of crops.

• Soil Nitrogen Level:
An estimate of the current soil nitrogen level in a field or region 
is necessary to plan which crops can be grown, ensure optimal 
growth, and prevent soil nitrogen depletion.

• Crop Nitrogen usage:
Estimating how much nitrogen each crop adds or removes from 
the soil is necessary, particularly for organic farming, where 
fertiliser usage is limited.

• Crop marginal yields:
Marginal yields measured in ‘‘currency’’ per ‘‘area’’ (e.g. euro/ha) 
for each crop are required to compute a reward signal for the 
reinforcement learning agent. If this data is available over a 
longer period, the distribution of the marginal yields can be used 
to draw randomised rewards.

• Additional rules (Optional):
Additional constraints, such as which crops must not be grown 
within a certain time span of another crop or how long the break 
for regrowing the same crop has to be, can also be added and 
customised to a region-specific use case.

We acknowledge that deploying the presented crop rotation plan-
ning tool for customised use cases requires a considerable data col-
lection effort. However, the benefits of using such a decision support 
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system were noticeable during the interviews, as the experts could 
estimate the economic risk and the impact on soil nitrogen levels 
of implementing a specific plan. Moreover, in question 2, we asked 
the experts to list their prior experiences with any software or AI 
tools used for crop rotation planning, and none of the respondents 
had used or knew of existing tools. Therefore, as presented in this 
work, the reinforcement learning-based crop rotation planning concept 
contributes to more efficient farming practices and provides a novel, 
explainable, and AI-powered approach to tool-based farming decision 
support systems. 

7. Conclusion & future research

This work showed that the tabular reinforcement learning agents 
Q-learning, expected SARSA and DynaQ can outperform a DQN im-
plementation for a crop rotation problem in both the classical deter-
ministic reward setting and for noisy rewards. Furthermore, it was 
shown that introducing perturbations to collected rewards decreases 
the model performance. However, measures such as using weighted 
Q-values and different approaches in the DynaQ planning step can 
mitigate the effects of the random rewards. The evaluation done by 
domain experts revealed that explainable AI tools increase the trust de-
cisions they suggested and, therefore, the chance of them being used in 
crop rotation planning. Moreover, the evaluation showed that random 
rewards in crop rotation planning contribute to obtaining better plans 
and that these plans are more resilient towards external influences on 
crop yields.

While this work contributes to improving reinforcement learning-
based crop rotation strategies by increasing model performance and 
making them more explainable for the model developer and the stake-
holder, there is still room for further improvement. As for most machine 
learning problems, additional data such as soil potassium and phos-
phorus could contribute to more accurate crop rotations as these soil 
nutrients ensure healthy crop growth. Furthermore, other learning 
objectives could be targeted, such as minimising the number of crops 
in a rotation or aiming for plans that naturally maintain soil nutrient 
levels. The introduction of random rewards also allows to aim for crop 
rotations that minimise the yield variance and thus again put emphasis 
on resilience.
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