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Abstract. As artificial intelligence continues to advance, Reinforcement Learn-
ing (RL) has established itself as a core approach for developing intelligent agents
that make decisions over time. As RL systems grow in complexity, the need for
standardized training practices becomes critical. This paper introduces a rule-
based assessment approach to enforce best practices in RL training. We define a
comprehensive set of architectural rules focused on RL pipeline practices, mod-
els versioning, multi-agents deployment and managing models in inference. Our
methodology integrates Large Language Models (LLMs) and custom-based code
detectors to ensure compliance with these best practices across diverse RL sys-
tems. We developed a ML pipeline insights service to automatically validate RL
training practices directly from the source code. We validate our approach by
applying it in a large-scale industrial case study and sixteen open-source case
studies. Our evaluation showed that custom-based detectors achieved near-perfect
precision and recall (F1 ≈ 0.98), while LLM-based detectors provided scalable
validation with moderate F1 scores (0.67–0.71), demonstrating the hybrid ap-
proach’s strength in balancing accuracy and automation. The results demonstrate
our tool’s accuracy in identifying and enforcing best practices with high precision
and recall rates, highlighting its practical applicability and automation feasibility.

Keywords: Reinforcement Learning, Best Practices, Machine Learning, Architecture
Rules, Case Studies

1 Introduction

Reinforcement Learning has emerged as a major paradigm for training intelligent agents
to make sequential decisions in the dynamic field of artificial intelligence and machine
learning. As RL architectures become increasingly complex and scalable, practices re-
garding training strategies and their impact on software architecture grow more intri-
cate. Several studies have aimed to document patterns and best practices in training
strategies within RL architectures [9,1,11].

Reliable RL pipelines go beyond training, they require careful planning for devel-
opment, management, and deployment [2]. Key stages include data collection, training,
evaluation, and deployment, with automation ensuring efficiency and consistency. In
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RL, frequent model updates make version tracking essential for reproducibility and
collaboration.

Multi-agent reinforcement learning (MARL) adds complexity due to agent interac-
tions. Developers address this with modular pipelines, communication strategies, and
tools like graph neural networks for coordination and hierarchical frameworks for scal-
able learning [21,14].

To address the complexities and variations in RL training practices, we propose a
method, based on our previous approach [13], which investigates how well LLMs can
identify patterns and practices, to automatically evaluate RL training-related practices
directly from source code. This involves expanding our prior set of architectural rules
to a comprehensive collection of thirty-two rules and the corresponding detectors. The
framework is designed as an ML pipeline insights service, leveraging a service-based
architecture to provide real-time insights into ML training and inference processes.

To validate our approach’s applicability and the performance of the defined rules,
we performed a large-scale industrial case study of applying RL in a cyber-physical
system for production automation and sixteen open-source case studies of RL systems.
The industrial case study uses the insights service to observe multiple CI/CD pipelines
across production facilities. This comprehensive evaluation allows us to assess the prac-
tical implementation of our rules across diverse RL environments and training practices,
demonstrating our approach’s practical applicability and automation feasibility.

The paper is organized as follows: Section 2 introduces RL practices. The method-
ology and specifics of automatic rule checking are discussed in Section 3. Case studies
are presented in Section 4. The quantitative evaluation and case study are discussed in
Section 5. Section 6 interprets the results, while Section 7 addresses potential validity
threats. Related work is reviewed in Section 8, and Section 9 concludes the paper.

2 Background on Reinforcement Learning Practices

This section provides background information on the RL practices in the focus of this
work.

RL Pipeline Implementation To ensure everything runs properly, it is important to fol-
low a certain process: starting with collecting the right data, then training the model,
testing its performance, and finally putting it into action. By following these steps, RL
workflows are more scalable, easy to reproduce, and dependable [2]. One key part of
building an effective pipeline is automating the repetitive tasks.

Model Versioning A key practice is that in RL versioning models is used to ensure
that experiments are reproducible, changes are traceable, and collaborative development
runs smoothly [8]. Since RL models are frequently updated in response to new data
or policy changes, having a structured way to track different versions becomes very
important. Version control tools such as Git make it easier to log changes to models and
training data, which is critical for comparing performance across different iterations [2].
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Multi-Agent Aspects and Deployment Practices MARL adds an extra layer of com-
plexity because it involves several autonomous agents interacting within the same en-
vironment. To make MARL work well in practice, it needs certain strategies for things
such as coordination, communication, and scaling, especially since the environment can
change over time and agents often do not have full visibility of it [21]. One of the biggest
factors in successful MARL systems is strong communication between agents. Recent
techniques using graph neural networks [12] have advanced the field by modeling how
agents relate to each other, which helps improve cooperation in tasks like multi-agent
collaborations.

Managing Models in Inference Managing models efficiently during inference is critical
when RL systems are deployed in the real world scenario. For maintaining speed and
responsiveness, recent practices focus on reducing the computation, for instance, using
sparse computation techniques [3]. These practices help RL models make quick deci-
sions even when resources are limited. Another aspect that is important to understand
is why a model makes a certain decision. This is relevant to interpretability. By linking
RL with probabilistic inference frameworks, it can make the decision-making process
more transparent [10].

3 Approach

This section describes the research methods followed in this study and our rule-based
assessment approach to ensure best practices. The data used in and produced as part of
this study have been made available online for reproducibility1.

3.1 Research Methods

We initially reviewed various knowledge sources on RL-specific best practices, in-
cluding practitioner books, blogs, scientific literature ([18,16,19,4,7]), and open-source
repositories. Subsequently, we conducted a qualitative analysis using Grounded Theory
(open and axial coding), to analyze the collected data and extract relevant practices.
We then formulated thirty-two rules and developed two types of source code detectors,
custom-based and LLM-based detectors, to automate compliance with each practice
described in Section 2. Next, we selected a number of case studies, analyzed them, and
used for evaluation. The main steps after analysis are:

Architectural Rule Definitions We defined key rules to improve RL training reliabil-
ity and performance across four areas: pipeline design, model versioning, multi-agent
deployment, and inference. Pipeline rules ensure modularity and reproducibility. Ver-
sioning rules promote traceable, automated model management using registries and
tools like Kubernetes or Helm. For multi-agent setups, rules address coordination, scal-
ability, and conflict handling. Inference rules support versioned models, and real-time
monitoring.

1 https://doi.org/10.5281/zenodo.15487181

https://doi.org/10.5281/zenodo.15487181
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Development of Detectors and Insights Service In the next step, we developed a proto-
type tool with source code detectors and an insights service for automating the valida-
tion of RL training practices to be in compliance with the specified rules. This includes
writing advanced code detectors that met the rules requirements. The detectors were in-
tegrated into the RL systems, enabling them to parse source code and generate outputs
in JSON format with the detected patterns and compliance values.

Application to Case Studies and Validation The final step of our approach involves the
usage of the insights service for evaluating different RL systems. This involved thor-
ough validation in different scenarios, including one industrial case study and sixteen
open-source RL systems. This evaluation showed the weaknesses and strengths of the
RL training practices.

3.2 Architecture of the ML Pipeline Insights Service

The ML pipeline insights service architecture consists of several key modules, each
playing a crucial role in the analysis and validation process. The major components
of the architecture are as follows: The Service orchestrates the analysis workflow by
taking project source code as input and running rule-based detectors. These detectors,
which check for best practices and issues in RL code, are split into two types: built-in
rules for common patterns and custom rules tailored to specific project needs. Rule-
based detectors are integrated in a Code Analyzer, which parses RL source code and
checks for rule compliance. It identifies violations and passes the findings to the Result
Generation component, which outputs detailed JSON reports.

Figure 1 provides an overview of the architecture of the ML pipeline insights ser-
vice. The service runs within the MLOps pipeline of the ML project or as a standalone
service. It provides its reports to the Web-based Insights UI, enabling a continuous feed-
back loop with the ML specialists and software architects working on the project.

3.3 Architecture of LLM-Based Detection Approach

The LLM-based detection framework is crafted as a modular and intelligent system
for automating the discovery of best practices within RL-based software architectures.
Figure 1 shows the architecture of the framework.

The main component of the system is the LLM Code Flow Executor, which runs full
validation workflows or targeted checks. These workflows, defined in the LLM Code
Flows module, specify rule-aligned detection steps. The LLM module abstracts dif-
ferent language models, while the Conversation class handles structured interactions,
allowing detectors to query and interpret LLM responses within context. The interac-
tions between the detection logic and the LLM are managed by the Conversation class
within the LLM module. It maintains conversational state, enabling detectors to pose
structured queries and interpret the LLM’s contextual responses as part of the detection
process. The LLM-based Detectors module implements the detection routines respon-
sible for verifying the architectural rules. Each detector receives a shared Data Transfer
Object, the LLM Code Flow DTO, which encapsulates critical context such as project
metadata, source file paths, and accumulated validation results. As the object moves
through the detector pipeline, it gradually builds a compliance report.
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Fig. 1. (1): Architecture of the ML Pipeline Insights Service, (2): Architecture of the LLM-Based
Detectors

3.4 Rules and Detectors

Rules Tables 1 2 3 4 present a binary classification of architectural rules used in this
study. A rule is considered true when the associated architectural principle is evidently
implemented in the source code. Conversely, a rule is false if the implementation either
contradicts or lacks the required elements.

For example, in the evaluation of CS11, the rule R11: Maintain a centralized model
registry holds true because all trained RL models are saved in uniquely named direc-
tories, with comprehensive metadata including training level, mode, and performance
logs, as implemented across files. Similarly, the rule R13: Implement versioning seman-
tics is also supported: while semantic versioning is not explicitly used, the code applies
a structured naming convention with incremental epoch tracking and level-based model
restoration, ensuring backward compatibility and traceability.

Rule-Based Detectors The rule-based detectors consist of specialized functions that
analyze source code to determine rule compliance. These detectors use regular expres-
sions, pattern matching, and parsing techniques to identify relevant implementation pat-
terns.

Custom rule-based detectors directly analyze functional roles. For example, in CS12,
detectors identify structured logging via logging.debug() and track evaluation
callbacks like EvalLogCallback, while verifying modularity through the separa-
tion of classes and function responsibilities across independent files.

LLM-based detectors leverage LLMs to examine source code, identify patterns, and
assess the adherence of these patterns to architectural rules. Unlike rule-based systems,
these detectors are capable of flexible reasoning, allowing them to recognize relevant
structures in the code even when they do not precisely conform to predefined syntactic
patterns.

Our design emphasizes a high degree of modularity: Each LLM-based detector fo-
cuses on identifying a specific fragment of code that contributes to realizing a particular
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Table 1. RL Pipeline Implementation Rules

Rule Description

R01 Maintain a dedicated configuration file specifying all RL pipeline parameters, including environ-
ment settings, agent hyperparameters, and training policies.

R02 Ensure modular design by separating environment creation, agent design, training logic, and eval-
uation into distinct components.

R03 Incorporate structured logging mechanisms to record events and metrics at each stage of the RL
pipeline, including environment setup, training progress, reward trends, and evaluation outcomes.

R04 Define consistent data formats (e.g., CSV, JSON) for storing training metrics, policy weights, and
performance records to facilitate analysis and reproducibility.

R05 Implement checks to ensure that trained agents are compatible with various versions of the envi-
ronment before deployment.

R06 Integrate hyperparameter optimization frameworks (e.g., Grid Search, Bayesian Optimization) to
automate the tuning process.

R07 Incorporate checkpointing strategies that save the model’s state at regular intervals.
R08 Regularly test policy generalization by evaluating the trained agent on variations of the environ-

ment.
R09 Set fixed random seeds and track software/library versions to ensure that training experiments are

reproducible.
R10 Establish evaluation protocols that compare agent performance against baseline policies and pre-

defined benchmarks.

rule. Rather than attempting to assess an entire rule, each detector contributes a single
piece to the overall validation. This granularity has two distinct advantages: it enhances
the precision and reliability of the LLM’s responses, and it allows for transparent trace-
ability between the rule and its concrete realizations in the source code.

The detection workflow follows structured steps: the LLM scans code for relevant
elements, checks them against architectural rules, and links any violations to specific
code lines. It works within a larger framework that manages data, settings, and report-
ing, ensuring reliable validation.

4 Case Studies

In this section, we describe the case studies used to evaluate our approach and test the
performance of the rule detection. Table 5 summarizes the case studies.

4.1 Industrial Case Study

To test our rule-based assessment approach, we applied our ML pipeline insights ser-
vice to a real industrial system. This system is a flexible framework for training both
single-agent and multi-agent reinforcement learning (RL) models across different envi-
ronments. It includes modules for managing agents, customizing training environments,
and running both centralized and decentralized learning. The framework also supports
advanced hyperparameter tuning and optimization to improve AI performance.
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Table 2. RL Model Versioning and Lifecycle Management Rules

Rule Description

R11 Maintain a centralized model registry to store all trained RL models along with comprehensive
metadata (version ID, training environment conditions, hyperparameters, performance metrics).

R12 Interactions with the model registry or other system components (training pipelines, deployment
orchestrators, inference services) should only occur via defined HTTP APIs.

R13 Implement versioning semantics (e.g., semantic versioning or incremental numeric identifiers)
consistently across all models stored in the registry.

R14 Deployments of RL models should use Kubernetes manifests or Helm charts for scalability and
controlled rollouts.

R15 Implement automated rollback mechanisms triggered by threshold breaches or deployment er-
rors.

R16 Integrate a standardized model evaluation step within the pipeline, systematically comparing can-
didate RL models using predefined metrics.

R17 Automate the selection and promotion of the optimal RL model candidate based on evaluation
results.

R18 Define and monitor key indicators (e.g., environment state changes, performance degradation)
explicitly as automated triggers to initiate RL model retraining pipelines without manual inter-
vention.

R19 Use configurable threshold parameters for retraining triggers via YAML, JSON, or similar con-
figuration files.

R20 Implement structured logging of retraining events, capturing trigger reasons, timestamps, relevant
metrics, and outcomes.

R21 Store metadata such as training parameters, environment configurations, simulation settings, and
performance metrics.

R22 Upon successful training in simulation, automatically register the new model version in the model
registry along with its metadata.

R23 Ensure that deployment stages reference specific model versions from the registry.
R24 Maintain separate stages (e.g., development, staging, production) with distinct model versions to

facilitate safe testing and deployment. e.g. canary releases and A/B testing.
R25 Incorporate small real-world testing of newly deployed models.

Table 3. Multi-Agent System Deployment Rules

Rule Description

R26 Utilize established messaging libraries or frameworks to facilitate inter-agent communication.
R27 Employ frameworks that support dynamic agent management and scalability.
R28 Implement logging mechanisms to monitor inter-agent interactions.
R29 Implement conflict detection and resolution mechanisms within the agent framework.

The platform is used to automate production tasks with AI and is designed to work
smoothly in real factory settings. Our insights service is integrated into its MLOps
pipeline, offering real-time feedback on training and inference to support best prac-
tices. Developed by a large team, the framework is being rolled out across factories
worldwide. It helps standardize production processes and gives ML engineers and soft-
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Table 4. Rules for Managing Models in Inference

Rule Description

R30 Utilize frameworks that optimize resource usage during model inference.
R31 Maintain a versioned repository of models to track changes.
R32 Implement monitoring tools to evaluate model performance metrics in real-time.

Table 5. Overview of Python-based systems and their functionalities

ID Description
ICS This system focuses on an advanced framework for single-agent and multi-agent RL. It enables thorough testing and

optimization of AI policies in diverse environments (See Section 4.1 for details).
CS1 In this system, zombies originate at the top border of the screen and move downward along varying, unpredictable trajec-

tories until they reach the bottom border. https://pettingzoo.farama.org/tutorials/sb3/kaz/
CS2 In this system, Waterworld, the simulation revolves around archaea organisms navigating their environment in a quest for

survival. https://pettingzoo.farama.org/tutorials/sb3/waterworld/
CS3 This system is a Chess example. It uses the observation and action spaces similar to the AlphaZero method, with slight

modifications. https://pettingzoo.farama.org/tutorials/sb3/connect_four/
CS4 This system is a game that uses physics-based challenge where the objective is to guide a ball to the left wall of the game’s

boundary. https://pettingzoo.farama.org/tutorials/rllib/pistonball/
CS5 This system is a game where 2 players must connect four of their tokens vertically, horizontally, or diagonally. https:

//docs.agilerl.com/en/latest/tutorials/pettingzoo/dqn.html
CS6 This system is a classic Atari game, where there are two ships controlled by two players who are each trying to maximize

their score. https://pettingzoo.farama.org/tutorials/agilerl/MADDPG/
CS7 This system trains AI agents to play Tic-Tac-Toe using the PettingZoo environment. https://github.com/

Farama-Foundation/PettingZoo/blob/master/tutorials/Tianshou/3_cli_and_logging.py
CS8 In this system, there are two agents: the ’speaker’ and the ’listener’. The ’speaker’ agent possesses the ability to com-

municate verbally but lacks the capability to move autonomously.https://docs.agilerl.com/en/latest/
tutorials/pettingzoo/matd3.html#matd3-tutorial

CS9 This system is also a classic Atari game similar to CS6. https://github.com/vwxyzjn/cleanrl/blob/
master/cleanrl/ppo_pettingzoo_ma_atari.py

CS10 This system is similar to CS1. It trains agents in the "Knights-Archers-Zombies" environment using Black Death wrapper
to handle agent deaths effectively. https://pettingzoo.farama.org/tutorials/sb3/kaz/

CS11 This system, HHMARL 2D, simulates hierarchical multi-agent air combat scenarios, where heterogeneous aircraft agents
perform fight or escape maneuvers coordinated by a high-level commander policy. https://github.com/IDSIA/
hhmarl_2D

CS12 This system, NFVdeep, applies deep reinforcement learning to dynamically orchestrate service function chains in network
function virtualization environments. https://github.com/CN-UPB/NFVdeep

CS13 This system, IMIL (Infosys Model Inference Library), offers a unified, high-performance framework for loading
and deploying machine learning models across diverse platforms and formats. https://github.com/Infosys/
Infosys-Model-Inference-Library

CS14 This system implements a multi-agent concierge using LlamaIndex Workflows, where customizable agents equipped with
tools collaboratively manage tasks and interact with users in a coordinated environment. https://github.com/run-
Llama/multi-agent-concierge

CS15 This system applies distributed Proximal Policy Optimization (PPO) to manage multi-agent traffic light control in a SUMO-
based urban grid, where each intersection acts as an independent reinforcement learning agent. https://github.com/
maxbrenner-ai/Multi-Agent-Distributed-PPO-Traffc-light-control

CS16 This system, JAT (Jack of All Trades), is a multi-purpose transformer agent capable of handling diverse reinforcement
learning and vision-language tasks using a unified architecture. https://github.com/huggingface/jat

ware architects clear insights into how training pipelines are built and maintained across
projects. This case study shows our tool works well in a complex, real-world environ-
ment.
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5 Validation

In this section, we validate our approach by demonstrating how the defined rules support
best practices in RL systems. Our evaluation uses three popular LLMs, OpenAI GPT-
4o, Qwen2.5 72B, and Llama 3.3 70B. The OpenAI models were run on Microsoft
Azure2, while the five freely available models were deployed via OLlama3 on a Cisco
UCS C245 M6 server. We evaluated their effectiveness across diverse RL settings and
addressed the following research questions.

This paper aims to answer the following research questions:
– RQ1 Accuracy: How accurately does the LLM-based rule checking mechanism

ensure compliance with best practices for RL training compared to the custom-
based rule checking mechanism?

– RQ2 Automation: How to automatically validate these architectural rules?

5.1 Validation Setup

The validation involved three main steps: defining architecture rules covering RL pipelines,
model versioning, multi-agent setups, and inference; implementing a tool to automati-
cally check code against these rules; and applying this tool in a case study to assess rule
compliance in real RL systems.

To evaluate our rule-based detectors, we use three metrics: precision, recall, and F1-
score. True Positives (TP) are correctly identified best practice cases, False Positives
(FP) are incorrect detections, and False Negatives (FN) are missed valid cases. We
exclude True Negatives (TN) since our ground truth only includes compliant code.

P =
TP

TP + FP
R =

TP

TP + FN
F1 =

2PR

P +R

Precision (P) shows how accurate the detections are, recall (R) shows how complete
they are, and the F1-score balances both to give an overall performance measure. This
focus helps us assess how well the method detects compliant code.

5.2 Results

This section presents the validation results, summarized in Tables 6 7 8 9, assessing the
accuracy of the rule-based detectors.

5.3 Results on the Industrial Case Study

The custom-based detectors achieved consistently high performance across all cate-
gories, with perfect precision, recall, and F1 scores in most cases. These detectors
were particularly effective at capturing the structure and logic of RL-specific patterns
such as checkpointing, modular training loops, version control mechanisms, and agent-
environment configuration.

2 https://azure.com
3 https://oLlama.com

https://azure.com
https://oLlama.com
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All LLMs also performed strongly, especially for general RL pipeline rules and
multi-agent setup, where they achieved perfect scores. These models reliably identified
practices such as agent orchestration, modular environment definitions, and deployment-
ready configurations. However, their recall dropped significantly in rules related to
model versioning and inference management. While their precision remained high (1.0),
indicating correct predictions when rules were found, the low recall (0.5) shows that
they missed many relevant code instances. These suggest that while LLMs can identify
well-known or syntactically explicit practices, they are less sensitive to subtler imple-
mentation patterns or project-specific naming conventions, especially in version control
and inference flows.

The N/A in the tables indicate cases where no relevant rules were supported or de-
tected within the system.

5.4 Results on the Open-Source Case Studies

RL Pipeline Implementation. The custom-based detectors demonstrated strong and
consistent performance across all case studies, with F1 scores generally exceeding
0.90 and reaching 1.0 in systems such as CS6–CS9 and CS12–CS15. These detectors
successfully identified best practices such as modular environment and agent creation,
structured logging, and separation of training logic. In comparison, Qwen2.5 and Llama
3.3 also showed high precision but varied in recall. Qwen2.5, for instance, scored well
in CS3 and CS7 (F1 = 0.91 and 0.89), but underperformed in CS4 and CS14 (F1 = 0.50
and 0.46). GPT-4o generally had lower recall, such as in CS6 and CS7, indicating it
often failed to identify some rule occurrences even when predictions were accurate.

Model Versioning and Lifecycle Management. Custom detectors consistently achieved
perfect scores across all systems (F1 = 1.0), showing strong capability in detecting prac-
tices such as checkpointing with metadata, rollback mechanisms, and version tracking.
In contrast, all LLM-based detectors exhibited performance degradation in this cate-
gory. Recall values were particularly low, resulting in low to moderate F1 scores. For
example, in CS4 and CS9, Qwen2.5 and Llama had F1 scores as low as 0.12–0.13.
GPT-4o showed relatively better recall in CS2 and CS5 (F1 = 0.75 and 0.60), but still
fell short of the custom-based detector performance.

Multi-Agent Aspects and Deployment. For this practice, custom-based detectors again
performed optimally in all relevant systems, achieving perfect precision and recall.
These detectors effectively recognized common multi-agent configurations, commu-
nication mechanisms, and environment setups. The LLM-based detectors showed vari-
able performance. While Qwen2.5 had strong results in CS14 (F1 = 0.86), it performed
poorly or failed entirely in systems like CS3, CS12–CS16. GPT-4o and Llama 3.3
achieved strong results in CS9 and CS14 (F1 = 0.80–0.86) but showed limited recall
elsewhere. The inconsistencies suggest that multi-agent patterns that are not explicit or
follow custom abstractions challenge the LLMs.

Managing Models in Inference. Inference rules performing models and their integration
into evaluation scripts—were reliably captured by custom detectors in all applicable
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Table 6. Results on Rules for RL Pipeline Implementation

Case Study Custom-Based Qwen 2.5 GPT-4o LLaMA 3.3
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

ICS 1.00 0.89 0.94 0.90 1.00 0.95 0.89 0.89 0.89 0.90 1.00 0.95

CS1 1.00 0.80 0.89 1.00 0.60 0.75 0.56 1.00 0.71 0.83 1.00 0.91
CS2 1.00 0.80 0.89 1.00 0.60 0.75 0.50 0.60 0.55 0.67 0.80 0.73
CS3 1.00 0.80 0.89 0.83 1.00 0.91 0.50 0.80 0.62 0.50 0.80 0.62
CS4 1.00 0.75 0.86 0.38 0.75 0.50 0.50 0.50 0.50 0.33 0.75 0.46
CS5 1.00 0.89 0.94 0.86 0.67 0.75 0.88 0.78 0.82 0.88 0.78 0.82
CS6 1.00 1.00 1.00 0.56 0.83 0.67 1.00 0.17 0.29 0.60 1.00 0.75
CS7 1.00 1.00 1.00 0.80 1.00 0.89 0.50 0.12 0.20 0.80 1.00 0.89
CS8 1.00 1.00 1.00 0.60 1.00 0.75 0.60 0.50 0.55 0.56 0.83 0.67
CS9 1.00 1.00 1.00 0.44 1.00 0.62 0.40 0.50 0.44 0.44 1.00 0.62
CS10 1.00 0.80 0.89 0.67 0.40 0.50 0.50 0.80 0.62 0.67 0.80 0.73
CS11 1.00 0.88 0.93 0.80 1.00 0.89 0.78 0.88 0.82 0.80 1.00 0.89
CS12 1.00 1.00 1.00 0.70 1.00 0.82 0.62 0.71 0.67 0.70 1.00 0.82
CS13 1.00 1.00 1.00 0.50 1.00 0.67 0.44 0.80 0.57 0.50 1.00 0.67
CS14 1.00 1.00 1.00 0.30 1.00 0.46 0.12 0.33 0.18 0.30 1.00 0.46
CS15 1.00 1.00 1.00 0.60 1.00 0.75 0.62 0.83 0.71 0.60 1.00 0.75
CS16 1.00 0.83 0.91 0.60 1.00 0.75 0.60 1.00 0.75 0.60 1.00 0.75

systems. In contrast, LLMs struggled across most systems, with frequent N/A entries
indicating no rule detections. When applicable, Qwen2.5 and Llama achieved moderate
results (e.g., CS5–CS9 with F1 between 0.50–0.80). GPT-4o performed slightly better
in CS9, CS11–CS13, but generally failed to detect rules in systems where inference
handling was not explicitly coded or used unconventional naming.

6 Discussion

This section examines the research questions and discusses other lessons learned.

RQ1. Accuracy The evaluation across the industrial case study and the sixteen open-
source case studies confirms that the overall detection accuracy of the approach is high
when using custom rule-based detectors. These detectors consistently achieved near-
perfect scores across all rule categories (Precision: 1.0, Recall: 0.96, and F1-score: 0.98
on average), demonstrating their effectiveness in capturing full rule implementations,
including practices like metadata tracking, inference-ready model handling, or agent
orchestration.

LLM-based detectors showed promising results but exhibited variance across rule
types and systems. Qwen2.5 achieved an average Precision of 0.71, Recall of 0.74,
and F1-score of 0.69, with relatively strong performance in common RL pipeline con-
figurations and multi-agent aspects but lower sensitivity for versioning and inference
patterns. GPT-4o and Llama 3.3 performed similarly, with GPT-4o reaching an aver-
age F1 of 0.67 and Llama 3.3 achieving 0.68, both affected by recall drops in complex
or less explicit code structures. These results indicate that LLMs can detect many true
positives but still miss implicit or tightly coupled implementations.

RQ2. Automation Both evaluated detection approaches support fully automated exe-
cution once configured. However, the degree of required manual setup and adaptation
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Table 7. Results on RL Model Versioning and Lifecycle Management Rules

Case Study Custom-Based Qwen 2.5 GPT-4o LLaMA 3.3
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

ICS 1.00 1.00 1.00 0.33 1.00 0.50 0.33 1.00 0.50 0.33 1.00 0.50

CS1 1.00 1.00 1.00 0.25 0.33 0.29 0.33 1.00 0.50 0.22 0.67 0.33
CS2 1.00 1.00 1.00 0.50 0.33 0.40 0.60 1.00 0.75 0.20 0.33 0.25
CS3 1.00 1.00 1.00 0.33 0.67 0.44 0.27 1.00 0.43 0.25 1.00 0.40
CS4 1.00 1.00 1.00 0.07 1.00 0.13 0.33 1.00 0.50 0.07 1.00 0.13
CS5 1.00 1.00 1.00 0.36 0.83 0.50 0.43 1.00 0.60 0.38 0.83 0.53
CS6 1.00 1.00 1.00 0.23 1.00 0.38 1.00 0.33 0.50 0.20 1.00 0.33
CS7 1.00 1.00 1.00 0.14 0.67 0.24 0.67 0.67 0.67 0.20 1.00 0.33
CS8 1.00 1.00 1.00 0.20 1.00 0.33 0.50 0.67 0.57 0.23 1.00 0.38
CS9 1.00 1.00 1.00 0.07 1.00 0.12 0.08 1.00 0.15 0.07 1.00 0.13
CS10 1.00 1.00 1.00 0.50 0.33 0.40 0.60 1.00 0.75 0.25 0.67 0.36
CS11 1.00 1.00 1.00 0.33 1.00 0.50 0.36 1.00 0.53 0.33 1.00 0.50
CS12 1.00 1.00 1.00 0.20 1.00 0.33 0.38 1.00 0.55 0.20 1.00 0.33
CS13 1.00 1.00 1.00 0.07 1.00 0.12 0.07 1.00 0.12 0.07 1.00 0.12
CS14 N/A N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A
CS15 1.00 1.00 1.00 0.27 1.00 0.42 0.17 0.50 0.25 0.27 1.00 0.42
CS16 1.00 1.00 1.00 0.13 1.00 0.24 0.13 1.00 0.24 0.13 1.00 0.24

effort varies significantly. The custom detectors provide the highest accuracy across all
rule categories but require rule-specific implementation tailored to the project context.
This includes coding logic to trace rule-specific workflows, such as verifying inference-
time model loading sequences.

In contrast, LLM-based detectors require no manual coding per rule but show vary-
ing performance across environments and rule types. They generalize well for common
RL pipeline patterns, especially for modular design or agent orchestration, but struggle
in accurately detecting rules that involve implicit logic or custom abstractions, such as
lifecycle hooks or inference flow logic. These models offer a low-effort automation en-
try point but require post-hoc validation or fallback detection when full rule coverage
is critical.

Further Lessons Learned While LLMs provide flexibility and adaptability across
projects and libraries without explicit reimplementation, their limitations in rule com-
pleteness and traceability remain evident. For example, in systems like CS4, CS13, and
CS16, LLMs failed to detect rules that custom detectors handled precisely. This high-
lights the benefit of hybrid use: LLMs can quickly scan unfamiliar systems, whereas
custom detectors should be employed when consistent detection or complete traceabil-
ity is required. We recommend applying LLM-based detectors in early review phases
for a broad but coarse overview, then refining findings with custom detectors where crit-
ical rules or complex code structures are involved. This staged use ensures scalability
for ML observability pipelines, such as in CI/CD scenarios, while maintaining trust in
detection accuracy.

7 Threats to Validity

In this section, we discuss the potential threats to the validity and the steps taken to
mitigate these threats.
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Table 8. Results on Multi-Agent Aspects and Deployment Rules

Case Study Custom-Based Qwen 2.5 GPT-4o LLaMA 3.3
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

ICS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CS1 1.00 1.00 1.00 1.00 0.33 0.50 1.00 1.00 1.00 1.00 0.33 0.50
CS2 1.00 1.00 1.00 1.00 0.50 0.67 0.67 1.00 0.80 1.00 0.50 0.67
CS3 1.00 1.00 1.00 0.00 0.00 0.00 0.50 1.00 0.67 0.67 1.00 0.80
CS4 1.00 1.00 1.00 0.50 1.00 0.67 1.00 0.50 0.67 0.33 0.50 0.40
CS5 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00 0.67
CS6 1.00 1.00 1.00 0.50 1.00 0.67 1.00 0.50 0.67 0.50 1.00 0.67
CS7 1.00 1.00 1.00 0.33 0.50 0.40 1.00 1.00 1.00 0.50 1.00 0.67
CS8 1.00 1.00 1.00 0.50 1.00 0.67 0.67 1.00 0.80 0.50 1.00 0.67
CS9 1.00 1.00 1.00 0.50 1.00 0.67 0.67 1.00 0.80 0.67 1.00 0.80
CS10 1.00 1.00 1.00 N/A 0.00 N/A 0.75 1.00 0.86 1.00 0.33 0.50
CS11 1.00 1.00 1.00 0.50 1.00 0.67 0.50 1.00 0.67 0.50 1.00 0.67
CS12 N/A N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A
CS13 N/A N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A
CS14 1.00 1.00 1.00 0.75 1.00 0.86 0.75 1.00 0.86 0.75 1.00 0.86
CS15 N/A N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A
CS16 N/A N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A

External validity refers to the generalizability of our findings. While our study in-
cludes one industrial and sixteen open-source case studies, broader testing across more
domains is needed to strengthen generalizability. The current diversity helps mitigate
threats, but future work will expand the dataset.

Internal validity ensures the accuracy of results and their attribution to the inter-
ventions. We maintained internal validity by rigorously defining and applying rules
with our assessment framework. Detection algorithms were carefully implemented and
manually verified to identify true positives and false negatives. Multiple researchers
cross-checked the results to minimize biases, ensuring that did not introduce issues.

Construct validity checks if the study measures what it intends to. Our construct
validity relies on accurately specifying and detecting RL training best practices. We mit-
igated threats by basing rule definitions on a thorough literature review and established
practices. Acknowledging interpretations and expertise, we incorporated feedback from
experts to refine the rules and ensure they reflect best practices accurately.

8 Related Work

In this section, we discuss related studies and compare them to our study.
Several studies explore various aspects of RL methodologies and applications. Lee

et al.[9] analyze the evolution of RL algorithms, emphasizing the transition from single-
agent to multi-agent systems, focusing on distributed optimization. Canese et al.[1] out-
line multi-agent algorithms, comparing them across key attributes essential for multi-
agent RL applications such as non-stationarity, scalability, and observability.

A survey by Samsami and Alimadad [15] provides an overview of distributed RL
techniques, discussing key challenges such as efficient data usage and the balance be-
tween exploration and exploitation. Similarly, Hoffman et al. [6] introduced Acme, a
modular framework designed to simplify the implementation of scalable RL algorithms.
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Table 9. Results on Managing Models in Inference Rules

Case Study Custom-Based Qwen 2.5 GPT-4o LLaMA 3.3
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

ICS 1.00 1.00 1.00 0.33 1.00 0.50 0.33 1.00 0.50 0.33 1.00 0.50

CS1 N/A N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A
CS2 N/A N/A N/A 0.00 N/A N/A N/A N/A N/A 0.00 N/A N/A
CS3 N/A N/A N/A N/A N/A N/A 0.00 N/A N/A 0.00 N/A N/A
CS4 1.00 1.00 1.00 0.33 1.00 0.50 N/A 0.00 N/A 0.33 1.00 0.50
CS5 1.00 1.00 1.00 1.00 0.50 0.67 1.00 0.50 0.67 0.67 1.00 0.80
CS6 1.00 1.00 1.00 0.33 1.00 0.50 N/A 0.00 N/A 0.33 1.00 0.50
CS7 1.00 1.00 1.00 0.67 1.00 0.80 N/A 0.00 N/A 0.67 1.00 0.80
CS8 1.00 1.00 1.00 0.33 1.00 0.50 N/A 0.00 N/A 0.33 1.00 0.50
CS9 1.00 1.00 1.00 0.50 0.50 0.50 0.67 1.00 0.80 1.00 1.00 1.00
CS10 N/A N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A
CS11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CS12 1.00 1.00 1.00 0.67 1.00 0.80 1.00 0.50 0.67 0.67 1.00 0.80
CS13 1.00 1.00 1.00 0.33 1.00 0.50 0.33 1.00 0.50 0.33 1.00 0.50
CS14 N/A N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A
CS15 1.00 1.00 1.00 0.67 1.00 0.80 1.00 0.50 0.67 0.67 1.00 0.80
CS16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

In multi-agent RL settings, Zhu et al. [22] proposed MSRL, a training system that em-
ploys fragmented dataflow graphs to execute RL algorithms in a flexible and scalable
manner. Liang et al. [11] developed RLlib, a library focused on making RL training
more scalable by distributing computational tasks efficiently.

The complexities of MARL are addressed by Hernandez-Leal et al. [5] in their com-
prehensive survey, which tackles challenges such as non-stationarity and scalability in
training multiple agents in dynamic environments. Zhang, Yang, and Basar [20] provide
an overview of theories and algorithms in MARL, focusing on cooperative and com-
petitive settings and emphasizing the need for robust training practices. While these
studies provide theoretical and algorithmic insights into MARL, our work applies these
concepts by defining specific rules for multi-agent training and validating their imple-
mentation through automated tools.

In automated code analysis and rule-based systems, Schneider et al. [17] discuss
rule-based security analysis for microservices. Their work underscores the importance
of automated rule checking to maintain best practices in software systems. Our work
is similar in its goal of automating the enforcement of best practices, but it focuses
specifically on RL training practices rather than security analysis.

9 Conclusions and Future Work

This paper introduced a rule-based assessment approach to automatically validate best
practices in RL training pipelines. The approach was implemented as a modular pipeline
insights service and evaluated using an industrial system and sixteen diverse open-
source case studies. The key RL aspects assessed include RL pipeline practices, model
versioning, multi-agent deployment and managing models in inference. The evaluation
demonstrated that the custom rule-based detectors consistently achieved high accuracy
across all systems and rule categories, with near-perfect precision and recall. In con-
trast, LLM-based detectors enabled fully automated, low-effort validation but showed
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variable recall. These findings show that while LLMs provide a scalable and adaptable
first level of analysis, custom detectors are indispensable to achieve complete and reli-
able coverage of rule implementations. This hybrid detection setup allows fast insights
in early development stages and deep validation when rules must be strictly enforced.

Future work will expand the rules to include distributed training and environment-
specific patterns. We also plan to integrate rule checks into CI/CD pipelines for real-
time validation, enhancing transparency of RL systems.
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