Check for
updates

Deterministic Dynamic Maximal Matching in Sublinear Update

Time
Aaron Bernstein® Sayan Bhattacharya
bernstei@gmail.com S.Bhattacharya@warwick.ac.uk
New York University University of Warwick
New York, NY, USA Coventry, United Kingdom
Peter Kiss™ Thatchaphol Saranurak®
peterkiss@univie.ac.at thsa@umich.edu

University of Vienna University of Michigan

Vienna, Austria Michigan, Michigan, USA

Abstract ACM Reference Format:

We give a fully dynamic deterministic algorithm for maintaining
a maximal matching of an n-vertex graph in O(n/®) amortized
update time. This breaks the long-standing Q(n)-update-time bar-
rier on dense graphs, achievable by trivially scanning all incident
vertices of the updated edge, and affirmatively answers a major
open question repeatedly asked in the literature Baswana, Gupta
and Sen [FOCS 2011], Bhattacharya,Chakrabarty, Henzinger and
Nanongkai [SODA 2018], Solomon [Dagstuhl].

We also present a faster randomized algorithm against an adap-
tive adversary with é(n3/ 4) amortized update time.

Our approach employs the edge degree constrained subgraph
(EDCS), a central object for optimizing approximation ratio, in a
completely novel way; we instead use it for maintaining a matching
that matches all high degree vertices in sublinear update time so
that it remains to handle low degree vertices rather straightfor-
wardly. To optimize this approach, we employ tools never used
in the dynamic matching literature prior to our work, including
sublinear-time algorithms for matching high degree vertices, ran-
dom walks on directed expanders, and the monotone Even-Shiloach
tree for dynamic shortest paths.

CCS Concepts

« Theory of computation — Dynamic graph algorithms.

Keywords

Dynamic Algorithm, Graph Algorithm, Maximum Matching, Maxi-
mal Matching

*Supported by Sloan Fellowship, Google Research Fellowship, NSF Grant 1942010, and
Charles S. Baylis endowment at NYU.

TThis research was funded in whole or in part by the Austrian Science Fund (FWF)
10.55776/ESP6088024, This work was partially done while at the University of Warwick
iSupported by NSF Grant CCF-2238138. Part of this work was done while at INSAIT,
Sofia University “St. Kliment Ohridski”, Bulgaria. This work was partially funded from
the Ministry of Education and Science of Bulgaria (support for INSAIT, part of the
Bulgarian National Roadmap for Research Infrastructure).

This work is licensed under a Creative Commons Attribution 4.0 International License.
STOC ’25, Prague, Czechia

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1510-5/25/06

https://doi.org/10.1145/3717823.3718153

132

Aaron Bernstein, Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranu-
rak. 2025. Deterministic Dynamic Maximal Matching in Sublinear Update
Time. In Proceedings of the 57th Annual ACM Symposium on Theory of Com-
puting (STOC °25), June 23-27, 2025, Prague, Czechia. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3717823.3718153

1 Introduction

A matching M of a graph G = (V, E) is a set of vertex-disjoint edges.
We say that M is maximal if every free edge (u,v) € E \ M is not
vertex-disjoint from M. That is, a maximal matching is precisely a
set of edges that are disjoint yet intersect all other edges.

Although computing a maximal matching admits a simple linear-
time greedy algorithm, it presents interesting challenges in various
computational models and has been extensively studied since the
80s, including in the PRAM model [3, 12, 69, 86, 87, 90, 96], dis-
tributed models [15, 16, 66, 81, 82], and, more recently, the MPC
model [7, 23, 62, 68, 71, 94]. In this paper, we study this problem in
the dynamic setting.

Dynamic Maximal Matching. Inthe fully dynamic maximal match-
ing problem, we must maintain a maximal matching M of an n-
vertex m-edge graph G undergoing both edge insertions and dele-
tions. The goal is to minimize the update time for updating M,
given an edge update. Since the 90s, Ivkovi¢ and Lloyd [88] showed
the first non-trivial algorithm that has O((n + m)%7%72) amortized
update time and is deterministic.

A key milestone was made by Baswana, Gupta, and Sen [17, 19]
who showed a near-optimal randomized algorithm with O(log n)
amortized update time. This was further improved to an optimal
O(1) update time by Solomon [102]. Different poly (log n)-update-
time algorithms with additional properties were given in [22, 33, 70].
Unfortunately, all these algorithms share a common drawback; they
are all randomized and assume an oblivious adversary.!

The state of the art of deterministic algorithms is much worse.
No previous algorithms could even strictly beat the following trivial
solution: When (u, v) is inserted, match u and v if both u and v were
unmatched. When (u, v) is deleted, check if u or v can be matched by
scanning through O(n) neighbors of u and v. This straightforwardly

!Dynamic algorithms assume an oblivious adversary if they assume that the whole
update sequence is fixed from the beginning and is independent of the answers main-
tained by the algorithm. Without this assumption, we say that the algorithms work
against an adaptive adversary.

STOC °25, June 23-27, 2025, Prague, Czechia

takes O(n) update time. While there are algorithms with O(a)
worst-case update time where « is the arboricity [57, 99], they still
require Q(n) update time in dense graphs. Overcoming the Q(n)
deterministic barrier remains a long-standing open problem.

Success in Dynamic Approximate Maximum Matching. The influ-
ential result of [17, 19] also implies a fully dynamic algorithm for
maintaining 2-approximate maximum matching. Since then, the
community has shifted its focus to fully dynamic approximate max-
imum matching in various approximation regimes, including the
approximation factors of (2 +¢€) [4, 33, 39, 41-43, 49, 53, 92], (2—¢€)
[14, 20,24, 42,47,100], (1.5+€) [35,37, 74, 92], (1.5—€) [21], and (1+
€) [8, 76, 95]. Numerous papers dove into specialized topics, includ-
ing partially dynamic algorithms [10, 34, 45, 51, 52, 54, 73, 77, 89],
dynamic approximation-preserving reductions from weighted to
unweighted graphs [31, 32, 76, 105], and dynamic rounding algo-
rithms [4, 44, 48, 64, 107].

Within the last decade, these 40+ papers have made the dynamic
matching problem one of the most actively studied dynamic graph
problems. A significant part of this body of work [39, 41-43, 49, 75,
92] successfully developed deterministic algorithms whose update
times match those of their randomized counterparts.

The Barrier Remains. But despite the successes mentioned above,
the Q(n) deterministic barrier for dynamic maximal matching re-
mains unbroken. A high-level explanation is that a maximal match-
ing is far more fragile than an approximate matching. For approxi-
mate matching, via standard reductions [11, 92], it requires Q(en)
edge updates before the maximum matching size changes by a (1+€)
factor. In contrast, a single edge deletion can destroy maximality
completely.

This challenge has become a major open problem in the field
and has been repeatedly posed as an open question [18, 40, 104].
The problem remains unresolved even for randomized algorithms
against an adaptive adversary.

In this paper, we break this long-standing Q(n) deterministic
barrier.

THEOREM 1.1. There is a deterministic fully dynamic maximal
matching algorithm with O(n®'°) amortized update time. Also, there
is a randomized fully dynamic maximal matching algorithm with
O(n*/*) amortized update time that works with high probability
against an adaptive adversary.?

Thus, we give the first deterministic maximal matching algo-
rithm with sublinear update time. Using randomization but without
an oblivious adversary, we can speed up the algorithm even further.

In general, significant effort has been made towards closing
the gap between oblivious and adaptive adversaries in dynamic
graph problems, which include dynamic connectivity [58, 72, 85, 97,
98, 108], sparsifiers [28, 50, 55, 72, 80, 93, 106], and shortest paths
[26, 29, 30, 59-61, 78-80, 93]. These algorithms are crucial building
blocks in the modern development of fast static graph algorithms
[1, 2, 52, 56]. We take the first step in this direction for dynamic
maximal matching.

2The O notation hides poly log n factors.

133

Aaron Bernstein, Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak

Previous Techniques. The key question in designing dynamic
maximal matching algorithms is how to handle deletions of a
matched edge, as it is relatively easy to handle edge insertions
or deletions of an unmatched edge. A trivial solution is that, when-
ever a vertex v is unmatched, we scan through o’s neighbors and
try to match v. This takes O(deg(v)) = O(n) update time.

The previous randomized algorithms [19, 22, 70, 103] speed this
up by trying to ensure that the matched edges are not deleted too
often. For intuition, consider the following simplistic scenario when
the graph is a star with root u and leaves vy, . . ., v, and the adver-
sary only deletes edges. Suppose we sample a random edge (u, v;)
and include it in the matching. If the adversary is oblivious to our
random choices, then it will take Q(n) edge deletions in expectation
before the adversary deletes our matched edge (u,v;). Once this
happens, even if we spend O(n) time, we can charge this cost to
the Q(n) deletions, leading to O(1) amortized update time. This is
the basic idea that all previous randomized algorithms exploited
and successfully carried out beyond this simplistic scenario. Unfor-
tunately, it completely fails without an oblivious adversary, and, in
particular, for deterministic algorithms.

A Bird’s-Eye View of Our Algorithm. Our deterministic algorithm
is very different. We maintain a vertex set V* in o(n) update time
such that

(1) the maximum degree in G[V \ V*] is o(n)?, and

(2) we can further maintain a V* -perfect matching Mp,se that

matches all vertices in V* in o(n) update time.

Given this, we can maintain a maximal matching M 2 Mp,se ino(n)
update time. Indeed, if vertex v becomes unmatched, we only need
to scan through v’s neighbors in V' \ V*, which has o(n) vertices,
as all vertices in V* are already matched by Mpase. Observe that
this argument crucially requires that all vertices of V* are matched.
Maintaining a perfect matching is normally very difficult in the
dynamic setting and there are strong conditional lower bound for
this task [63, 84]. So we will need to pick a V* that has additional
structure.

New Applications of EDCS.. Surprisingly, we can obtain V* from
an edge-degree constrained subgraph (EDCS), a well-known sub-
graph H C G that is useful for (1.5 + €)-approximate maximum
matching algorithms in the dynamic setting and beyond [6, 9, 13,
20, 27, 36, 38, 46, 75]. See Definition 2.1 for definition. The outline
below presents a completely novel application of this central object
in the literature.

The set V* is simply the set of vertices with “high degree” in
the EDCS H, which can be explicitly maintained in o(n) time using
existing results [74]. By the structure of EDCS, Item 1 follows di-
rectly. To see why Item 2 should hold, we observe that the graph
Hhpilo = Eg(V*,V \ V*) has a degree gap. More precisely, for
some number X and y > 0, every vertex in V* has degree at
least X in Hpj1o, while every vertex in V \ V* has degree at most
(1 - y)X in Hhi1o- Consequently, for every set S C V*, we have
[N, 10 (S)] = (1+Q(y))]S], i.e., Hall’s condition holds with a slack.
This strong expansion implies the existence of short O(log(n)/y)-
length augmenting paths and allows us to maintain a V*-perfect
matching in o(n) update time.

3Technically, we actually show that G|V \ V*] has arboricity o(n).

Deterministic Dynamic Maximal Matching in Sublinear Update Time

New Toolkit for Dynamic Matching. To carry out the above ap-
proach, we employ tools never used in the dynamic matching liter-
ature prior to our work. For example, to maintain the V*-perfect
matching deterministically, we use the monotone Even-Shiloach
tree for dynamic shortest paths [83, 91, 101] and, for our faster ran-
domized algorithm, we apply random walks on directed expanders.
Although not necessary for breaking the Q(n) barrier, we also apply
a a sublinear-time algorithm for matching high-degree vertices [5]
to further optimize our update time.

Concurrent Work. Computing maximal matching is among the
fundamental symmetry breaking problems, that also include com-
puting maximal independent set, vertex coloring and edge coloring.
Very recently, Behnezhad, Rajaraman and Wasim [25] showed the
first randomized fully dynamic algorithm for maintaining a (A +1)-
vertex coloring against an adaptive adversary in sub-linear update
time.

Organization. We first present the preliminaries in Section 2 and
the subroutine for efficiently matching most vertices with almost
maximum degree in Section 3. They are needed for our detailed
overview in Section 4. Then, we present a complete algorithm for
maintaining perfect matching of high-degree vertices in a graph
with degree gap in Section 5. Due to page limitations we defer the
precise description of our algorithm to the full version of the paper.

2 Preliminaries

Basic Notations. Consider any graph G = (V, E). We let Ng (v) C
E denote the set of edges in G that are incident on a nodev € V,
and we define deg; (v) := [Ng ()| to be the degree of v in G.

Matching. A matching M C E in a graph G = (V, E) is a subset
of edges that do not share any common endpoint. We let V(M)
denote the set of nodes matched under M. Furthermore, for any set
S cV,welet M(S) :={(u,0) € M : {u,0} NS # 0} denote the set
of matched edges under M that are incident on some node in S.

Let M be a matching in G. We say that a vertex v is M-free if
v & V(M), otherwise it is M-matched. An augmenting path P in
G with respect to M is a path in G such that the endpoints are
M-free and its edges alternate between edges in M and edges not
in M. Let M & P stand for (M \ P) U (P \ M), the matching obtained
by extending M with the augmenting path P. We have M @ P is a
matching of size |M| + 1. Every M-matched vertex is also matched
inM®eP.

EDCS.. For any graph H and e = (u,v) where e is not neces-

sary an edge of H, the degree of e in H is defined as degz;(e) def

degpy(u) + degpy(v). The basis of our algorithm is an edge degree
constrained subgraph (EDCS).

DEFINITION 2.1. An (B, B™)-EDCS H of G is a subgraph of G such
that

e For each edge e € H, degr(e) < B, and
e Foreach edgee € G\ H, degy(e) > B™.

THEOREM 2.2 ([74]). For any parameters B < n and € > 0, there
is a deterministic algorithm that, given a graph G with n vertices
undergoing both edge insertions and deletions, explicitly maintains
a (B,B(1 - ¢€))-EDCS H of G using O(=) worst-case update time.

134

STOC 25, June 23-27, 2025, Prague, Czechia

Furthermore, there are at most two vertices u,v € V such that their
degree degy;(v), degyy(u) in the EDCS changes due to the handling
of an update.

Graph Access. We say that an algorithm has adjacency matrix
query access to graph G if it can answer queries with inputs (u,v) €
V X V returning true iff (u,0) € E in O(1) time. We say that an
algorithm has adjacency list query access to graph G if it can find
the degree of any vertex and answer queries with input (v, i) € V' x
[degs (v)] returning the i-th neighbour of vertex v in G according
to some arbitrary ordering in O(log n) time.

3 Match Most Vertices with Almost Maximum
Degree

Next, we give a useful observation that there always exists a match-
ing that matches most all vertices with almost maximum degree.
Our deterministic and randomized implementations of the algo-
rithm of Lemma 3.1 rely on a black box application of [65] and a
white box application of [5]. As the lemma can mostly be concluded
from existing results in literature we defer its proof to the complete
version of the paper.

LEmMA 3.1. Let G = (V, E) be a graph with maximum degree at
most A which can be accessed through both adjacency list and matrix
queries. Let Vi denote the set of all nodes in G with degree at least
(1 —x)A. Then, for any k > 0 there exists a matching M C E that
matches all but 2xn many nodes in Vi.

o IfA > %, then M can be computed in O(nAk log? n) time with
high probability.
® M can be deterministically computed in O(mlo%) =0(nA -
loﬁ) time.
K
REMARK 3.2. While the specific bounds of Lemma 3.1 rely on re-
cent advances in static coloring algorithms, any bound of the form
O(mpoly(A/k)) would translate to a sublinear update time for our
main result of fully dynamic maximal matching. For example, one
could instead use the classical coloring algorithm of Gabow et al. [67],
or one could start with a trivial fractional matching and use existing
tools to round it to an integral matching one (see e.g. [48]).

REMARK 3.3. The randomized algorithm of Lemma 3.1 can be im-
proved to have a running time of O(n) using a white-box modification
of [5]. As this running time difference doesn’t ultimately end up af-
fecting the update time of our final algorithm, we opted for the slower
subroutine of Lemma 3.1, because it can be obtained from [5] in a
black-box way.

4 Overview: Our Dynamic Maximal Matching
Algorithm

For ease of exposition, we first present the algorithm in a decremen-

tal setting, where the input graph only undergoes edge deletions.

We will show how to handle fully dynamic updates without increas-

ing update time at the end in Section 4.8.

The Framework. We fix two parameters B € [n] and € € (0,1)
whose values will be determined later on, and define

8 = 100e. 1)

STOC °25, June 23-27, 2025, Prague, Czechia

The reader should think of € = 1/ nf andB =1 /€2 for some absolute
constant 0 < f < 1.

Let G = (V,E) be the input graph with n nodes, undergoing
edge deletions. We maintain a (B, (1 — €)B)-EDCS H = (V,E(H))
of G at all times, as per Theorem 2.2. This incurs an update time
of O (&) The EDCS H is maintained explicitly, and we can make
adjacency-list and adjacency-matrix queries to H whenever we
want. We maintain the adjacency-lists of all vertices in H as bi-
nary search trees. Hence, we may answer an adjacency-list and
adjacency-matrix query to H in O(logn) and O(1) time respec-
tively.

Our dynamic algorithm works in phases, where each phase
consists of dn consecutive updates in G. Let Ginit = (V, Einit) and
Hinit = (V,E(Hinit)) respectively denote the status of the input
graph G and the EDCS H at the start of a given phase. Throughout
the duration of the phase, we let Heore denote the subgraph of
Hjnit restricted to the edges in G. Specifically, we define Heore =
(V,E(Hcore)), where E(Hcore) := E(Hinit) N E. Note that Heore
is a decremental graph within a phase, i.e., the only updates that
can occur to Heore are edge deletions.

Organization of the Overview. In Section 4.1, we present a classi-
fication of nodes based on their degrees in the EDCS H at the start
of a phase, under one simplifying assumption (see Assumption 4.1).
To highlight the main ideas, we first describe and analyze our algo-
rithm under this assumption. Section 4.2 shows how to maintain a
base matching Mpase, which matches all the nodes of a certain type
(that have large EDCS degrees). Next, Section 4.3 shows how to
maintain a maximal matching in the subgraph of G induced by the
nodes that are free under Mpse. In Section 4.4, we put together the
algorithms from Sections 4.2 and 4.3, and derive Theorem 1.1. Next,
in Section 4.5, we explain how to deal with the scenario when the
simplifying assumption we made earlier (see Assumption 4.1) does
not hold. Section 4.6 sketches the proof outline of a key lemma,
which allows us to maintain the matching Mp,se efficiently in Sec-
tion 4.2. Finally, Section 4.8 shows how to extend our algorithm so
that it can deal with fully dynamic updates.

4.1 Classification of Nodes and a Simplifying
Assumption

We will outline how to maintain a maximal matching Mripa1 in G
during a phase. We start by making one simplifying assumption
stated below. Towards the end of this section, we explain how
to adapt our algorithm when this assumption does not hold (see
Assumption 4.5).

ASSUMPTION 4.1.
Foreverynodev € V, eitherdegHinit(v) > (% + 5) B ordegHinit(v) <

1
(4-9)B.
In other words, this establishes a small “degree-gap” within the
EDCS H at the start of the phase, by asserting that there does not

exist any node v € V with (% - 5) B < degp, ., (v) < (% + 5) B.We
say that a node v € V is very high if degy, (v) > (% + 5) B, and

low if degy, . (v) < (% - 5) B. We let V,-p; and V3, respectively
denote the sets of very high and low nodes. By Assumption 4.1, the

135

Aaron Bernstein, Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak

node-set V is partitioned into V;-h; € V and V15 =V \ Vi-p;. Our
algorithm will crucially use two properties that arise out of this
classification of nodes, as described below.

PROPOSITION 4.2. The following properties hold.

(1) Consider any edge (u,v) € E(Hinit) where u is very-high.
Then v must be low.

(2) Consider any edge e € Einit whose both endpoints are low.
Then e must appear in Hipit.

Proor. First, we prove Item 1. Note that since (u,v) € E(Hinit),
we have degpy, . (u) +degy, . (v) < B (see Definition 2.1). Further-

more, since u is very-high, we have degHinit (u) > (% + 5) B. Thus,

it follows that degyy, . (v) < B—degy, . (u) < (% - 5) B, and so
v must be a low node.

Next, we prove Item 2. Let e = (u,v), where both u, v are low
nodes. Then degyy, . (u) < (% - 5) Banddegy, . (0) < (% - 5) B,
and hence degy, . (u) +degy, (v) < (1-256)B < (1—-¢€)B. As
Hinit is a (B, (1 — €)B)-EDCS of Gijpit, it follows that (u,0) €
E (Hinit) (see Definition 2.1). O

We next introduce one last category of nodes, as defined below.

DEFINITION 4.3. Consider a very high node v € V,_pi. At any
point in time within the current phase, we say that v is damaged

ifdegy . (0) < (% +6— 26) B, and safe otherwise. We let Vypg C

Vy-hi and Vse := Vy-ni \ Vamg respectively denote the sets of damaged
and safe nodes.

Recall that degyy, . (v) > (% + 5) Bfor all nodes v € V,_p;. Thus,

for such a node to get damaged at least 2¢B many of its incident
edges must be deleted since the start of the phase. Since each phase
lasts for 5n updates in G and § = 100¢ (see (1)), we get the following
important corollary.

COROLLARY 4.4. We always have |Vdmg| < % = O (%) Further-
more, at the start of a phase we have Vyng = 0. During the phase, the

subset Vymg grows monotonically over time.

4.2 Maintaining a Matching of All the Safe
Nodes

One of our key technical insights is that the degree gap in Heore

allows us to efficiently maintain a matching Mpase € E(Hcore) that

matches all safe nodes, as per Lemma 4.5 below. With appropriate

setting of parameters, the update time of both of the algorithms

(deterministic and randomized) in Lemma 4.5 are sublinear in n.

LEMMA 4.5. We can maintain a matching Mpase € E(Hcore) that
satisfy the following properties.

(1) Every safe node is matched under Mpase., i.e., Vst € V(Mpase)-

(2) Every update in G that is internal to a phase (i.e., excluding
those updates where one phase ends and the next phase begins)
leads to at most O(1) node insertions/deletions in V(Mpase).

The matching Myase can be maintained either by
e a deterministic algorithm with O (B -nl/2. 5'3/2) amortized

update time; or

Deterministic Dynamic Maximal Matching in Sublinear Update Time

e a randomized algorithm with O (B- 5" +673) amortized
update time. The algorithm is correct with high probability
against an adaptive adversary.

Intuition Aside: The only property of Heore that we need for
Lemma Lemma 4.5 is the degree gap between V¢ and V1,; in fact,
the whole reason we use an EDCS in the first place is to ensure this
degree gap.

We defer the proof sketch of Lemma 4.5 to Section 4.6, but to
provide an intuition for why the degree gap helps match vertices in
Vs, we show here that it is easy to deterministically maintain a frac-
tional matching satisfying the concerned properties of Lemma 4.5,
in O(B/§) update time. We do not this result in the main body of
our paper and include it only for intuition. We denote the fractional
matching by xpase : E(Heore) — [0, 1], which is constructed as
follows.

ol (% +5—26)Bandxbase(e) «— Oforalle e E
e For every safe node v € Vg
— Let E} C E(Hcore) be a set of T distinct edges inci-
dent to v. (EJ exists as v € Vgf).
— Xpase(€) < 1/T forall e € EX
e Return xpsse : E(Hcore) — [0,1].

Consider any two distinct nodes v,0” € Vg¢ C Vy-pi. By Item 1
of Proposition 4.2, there cannot be an edge (v,0") € E(Hcore) C
E(Hipit), and hence E} N E:, = (. Using this observation, it is easy
to verify that the function x5 is a valid fractional matching in
Heore, and that every node v € V¢ receives a weight xpa¢e (v) = 1
under this fractional matching. Furthermore, since the EDCS Hinit
has maximum degree at most B (this follows from Definition 2.1)
and each phase lasts for 5n updates, we can deterministically main-

tain the fractional matching xpzse in O (g—g) = O(B/6) amortized
update time. One can also verify that each update in G that is in-
ternal to a phase leads to at most O(1) nodes v € V changing their
weights Xpase (v) under xpase-

4.3 Maintaining a Maximal Matching in the
Adjunct Subgraph

Let Gadj = (Vadj, Eadj) denote the subgraph of G induced by
the set of nodes that are unmatched under Mp;se, that is, Vaqj :=
VAV (Mpase) and Eaqj = {(1,0) € E : u,0 € Vaq5}. We will refer to
Gadj as the adjunct subgraph of G w.r.t. Mypase. By the following
observation, all that remains is to maintain a maximal matching in
Gadj

OBSERVATION 4.6. If Maqj is a maximal matching of Gaq4, then
Msinal = Mpase U Madj is @ maximal matching in G = (V, E)

We now show how to efficiently maintain a maximal matching
Maqj of Gagj (we refer to it as the adjunct matching).

4The weight xpase (0) is the sum of the values xpase (&), over all the edges in Heore
that are incident on .

136

STOC 25, June 23-27, 2025, Prague, Czechia

LEMMA 4.7. Suppose that we maintain the matching Mpase as
per Lemma 4.5. Then with an additive overhead of O (g + %) amor-

tized update time, we can deterministically and explicitly maintain a
maximal matching Maqj € Eadj in Gadj.

At this point, the reader might get alarmed because G4 under-
goes node-updates every time an edge gets added to/removed from
Mpase, which might indicate that it is impossible to efficiently main-
tain a maximal matching in Gaq4j. To assuage this concern, we em-
phasize that: (i) the arboricity of Gaq is sublinear in n (see Claim 4.8),
and (ii) an edge update in G that is internal to a phase leads to at
most O(1) node-updates in Gaq; (see Claim 4.9). These two proper-
ties ensure that we can maintain the matching Maq; in sublinear in
n update time.

Cram 4.8. The subgraph Gaqj = (V, Eaqj) satisfies the following
properties.
(1) VsgNVagj =0 anledmg N Vadjl = O (%) Furthermore, VgngN
Vadj = 0 at the start of a phase.
(2) degGadj (v) <B+ |Vdmg n Vadjl for all nodes v € Vi,.

ProoF. Since Vagj := V' \ V(Mpase), Item 1 follows from Item 1
of Lemma 4.5, and Corollary 4.4.

To prove Item 2, consider any node v € Vjo. Let u € Vi, be
any low neighbor of v in Ea4j € E C Ejnit. Then, by Item 2
of Proposition 4.2, we have (#,v) € Hipit. Accordingly, the number
of low neighbors of v in Gaqj is at most degy;, .. (v) < B, where the
last inequality holds because Hinit isa (B, (1—€)B)-EDCS of Ginit
(see Definition 2.1). As the node-set V is partitioned into V14, Vy-hi
(see Assumption 4.1) and Vi is further partitioned into Vs, Ving,
we get:

degGadj (v) <B+|Vse N Vadjl + |Vdmg N Vadj| =B+ |Vdmg n VadjL

where the last equality follows from Item 1. O

CrAmm 4.9. An edge-update in G internal to a phase leads to at
most O(1) node-updates in Gaqj.

PRrOOF. Since Vaqj := VAV (Mpase). the claim follows from Item 2
of Lemma 4.5.]

CoROLLARY 4.10. At the start of a phase, we have |Eaq;| = O(Bn).

Proor. By Proposition 4.2(2) we have that Eagj € Hinit. As
Hinit is a (B, B(1 — €))-EDCS and the maximum vertex degree of
a (B,B(1 — €))-EDCS is B we must have that |Eyq;| < [Hinit| =
O(nB).

[m}

Proof of Lemma 4.7. At the start of a phase, we initialize Maqj to
be any arbitrary maximal matching in G,qj. By Corollary 4.10, this
takes O(Bn) time. Since the phase lasts for dn updates in G, this
step incurs an amortized update time of:

ofE)-ofy)

Subsequently, to handle the updates during a phase, we use the
following auxiliary data structures: Each node v € Vyng maintains
the set Fa45(v) = {u € Vadj \ V(Mag3) : (u,0) € Eadj} of its free

@

STOC °25, June 23-27, 2025, Prague, Czechia

neighbors (in G,¢;) under the matching M,qj.> Whenever a node
0 moves from V¢ to Vg, we spend O(n) time to initialize the set
Fadj(v) as a balanced search tree. Within a phase, a node can move
from Vs¢ to Vg at most once (see Definition 4.3 and Corollary 4.4).
Thus, by Item 1 of Claim 4.8, these initializations take 6) (% . n) =

0] (%f) total time during a phase. As each phase lasts for dn updates

2 ~

#57) =0 ()
Claim 4.9 guarantees that each edge update in G leads to O(1)

node-updates in G5qj. We now show that to maintain the maximal

in G, this incurs an amortized update time of 0 (

matching M,qj, a node-update to Gaqj can be handled in O (B + %)
worst-case time. If a new vertex v enters Gaqj (because v became
unmatched in Mpase), then to maintain the maximality of Maq4, the
algorithm needs to find a free neighbor of v (if one exists). The same
needs to be done if x leaves G5q4;, and x was previously matched to
0 in Maq4. So to handle a node-update in G5gj we need a subroutine
that takes in a vertex v and either finds a M,q;-free neighbor of v
in Gaqj or certifies that none exists.

The above subroutine can be performed in O(1) time if v €
Vimg (using the set Faqj(v)); if 0 € Vagj \ Vimg then by Item 1 of
Claim 4.8 v € V14, so by Item 2 of the same claim we can perform
the subroutine in time degg,_; (v) = O (B + §). Further, once we
decide to match a node u € Vg5 to one of its free neighbors, we
can update all the relevant sets Faq5(v) in O ([Vang|) = O (%) time
(see Claim 4.8).

To summarize, the amortized update of maintaining the matching
Maq; under adversarial updates in G is at most:

~(n n ~ n
O(5B+B+B)_O(B+5B)' ®

Lemma 4.7 follows from (2) and (3).

4.4 Putting Everything Together: How to
Derive Theorem 1.1

Since E(Hcore) C E, it follows that Myase € E(Hcore) is a valid
matching in G (see Lemma 4.5). Furthermore, Lemma 4.7 guarantees
that Maq; is a maximal matching in G545 Thus, by Observation 4.6,
the matching Mfina1 := Mpase U Madj is a maximal matching in G.
It now remains to analyze the overall amortized update time of our
algorithm.

Recall that maintaining the EDCS H incurs an update time
of O (%) =0 (%) according to (1). Now, for the determin-
istic algorithm, Lemma 4.5 incurs an amortized update time of
0 (B -nl/2. 5'3/2). Thus, by Lemma 4.7, the overall amortized up-
date time becomes

0(g)+0 (52 57) 40 (5 + 2] <o)

_ 1 _2/9
f0r5—mandB—n .
For the randomized algorithm against an adaptive adversary,
Lemma 4.5 incurs an amortized update time of O(B§~!+873). Thus,

’Maximality of Maqj implies that F545 (0) = 0 for all v € Vgng \ V(Magj)-

137

Aaron Bernstein, Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak

by Lemma 4.7, the overall amortized update time becomes
n ~(B 1 (B n_ =3
O(E)+O(3+§)+O(E+E)—O(n)

_ 1! _ 12
forﬁ—mandB—n .

This leads us to Theorem 1.1 in the decremental setting.

4.5 Dealing with Medium Nodes: Getting Rid
of Assumption 4.1

We now provide a high-level outline of our algorithm in the general
case, when Assumption 4.1 does not hold. Recall that under Assump-

tion 4.1 there cannot be any node v with (% - 5) B < degyy, ., (v) <

(% + 5) B. Conceptually, the most significant challenge here is to
deal with the set of medium nodes, given by:

Vied == {v eV: (%—5)B < degy, .. (v) < (%+5—6)B}.

For the rest of this overview, we replace Assumption 4.1 with
the following weaker assumption

ASSUMPTION 4.11 (REPLACES ASSUMPTION 4.1). All vertices are
in V1o, Vined, or Vy-hi

In the main body of the paper we also have to handle the nodes
that are ruled out by the above assumption, namely the ones whose

degrees in Hipjt lie in the range [(% +5— e) B, (% + 5) B]. These
remaining nodes lie in an extremely narrow range, so while they
require some technical massaging, they do not pose any additional
conceptual difficulties.

We now show how to adapt our algorithm to also handle the
medium nodes. Lemma 4.12, stated below, generalizes Lemma 4.5,
and serves as a key building block of our algorithm. The only
difference between these two lemmas is that in Item 1 of Lemma 4.12,
we allow for O(dn) medium nodes that are free under My ;5. Note
that sets Vs and Vyng are defined the same as before (Definition 4.3),
and are in particular both subsets of V,,_p;j.

LEMMA 4.12. We can maintain a matching Mpase € E(Hcore)
that satisfy the following properties.

(1) Every safe node is matched under Myzse, i.e., Vsf € V(Mpase)-
Furthermore, at most O(6n) medium nodes are free under
Mpases i€ [Vied \ V(Mpase)| = O(6n).

(2) Every update in G that is internal to a phase (i.e., excluding
those updates where one phase ends and the next phase begins)
leads to at most O(1) node insertions/deletions in V(Mpase).

The matching Mpase can be maintained
o either by a deterministic algorithm with O (B cnl/2. 5_3/2)
amortized update time; or
e by a randomized algorithm with O (B - 5~1 + §3) amortized

update time. The algorithm is correct with high probability
against an adaptive adversary.

Before outlining the proof sketch of Lemma 4.12, we explain
how to adapt the algorithm for maintaining a maximal matching
Madj € Eaqdj in the adjunct graph Gadj := (Vadj, Eadj), which is

Deterministic Dynamic Maximal Matching in Sublinear Update Time

the subgraph of G induced by the node-set Vagj := V' \ V(Mpase)
(see Section 4.3). Lemma 4.13, stated below, generalizes Lemma 4.7
in the presence of medium nodes.

LEmMA 4.13. Suppose that we maintain the matching Mpase as
per Lemma 4.12. Then with an additive overhead of O (5n + % + 5—'%)

amortized update time, we can deterministically and explicitly main-
tain a maximal matching Maqj C Eadj in Gadj.

Proor SKETCH. The only difference with the proof of Lemma 4.7
is that now the set Vg5 can contain some medium nodes, although
[Vadj N Vied| = O(Jn) as per Item 1 of Lemma 4.12.

We explicitly maintain the set Vagj N Vied as a doubly linked list.
Whenever a node v € V1o U Vg is searching for a free neighbor (in
the proof of Lemma 4.7), we ensure that it additionally scans the set
Vadj N Vied- This leads to an additive overhead of |Vyed N Vagj| =
O(6n) in the update time.

Next, recall that Hinit is a (B, (1 — €)B)-EDCS of Gjpjt. Con-
sider any edge (u,0) € Eagj € E C Ejpit With v € Vpeq and

u € Vio. Then, we have degyy, . () +degy, . (0) < (% - 5) B+

(% +6 - e) B = (1 — €)B, and hence Definition 2.1 implies that
(u,0) € E(Hjpit). In other words, all the edges in G445 that con-
nect a low node with a medium node belong to the EDCS Hjnit,
which in turn has maximum degree at most B (see Definition 2.1).
Thus, every medium node has at most B low neighbors in Gaqj.
Now, suppose that we are searching for a free neighbor of a
node v € Vyed in Gaqj. This step involves scanning through: (i)
all the low neighbors of v in G545 (and by the previous discussion
there are at most B such neighbors), (ii) the set Vyeq N Vaqj of size
O(én), and (iii) and at most O (%) damaged nodes Vgng N Vagj
(see Section 4.3). Overall, this scan takes O (5n +B+ %) time, and
just as before, contributes an additive overhead of O(dn) to the
update time in Lemma 4.7.
Everything else remains the same as in the proof of Lemma 4.7.
O

Comparing Lemmas 4.12 and 4.13 against Lemmas 4.5 and 4.7,
we conclude that there is an additive overhead of O(dn) update time
while dealing with the medium nodes. Finally, from the analysis
from Section 4.4, it is easy to verify that this overhead of O(én)
does not degrade our overall asymptotic update time (the values of
8, B remain the same as in Section 4.4).

Proof Sketch of Lemma 4.12. Consider the scenario at the start of
a new phase (just before the first update within that phase). At

this point, we first compute a subgraph H{ ., := (V,E(H];,)) of
Hjnit, as follows. We initialize Hgnit < Hjnit. Subsequently, for

every node v € V,_pi, we keep deleting edges (u,v) € E(Hi’

1 : 4
incident on v from H{ i

it)
nit
until deggy _t(v) becomes equal to A :=
(% + 5) B. By Item 1 of Proposition 4.2, every edge (u,v) that gets

deleted from H . has its other endpoint u € V1,. Accordingly,
this process does not reduce the degree of any medium node. When

this for loop terminates, we have (% - 5) B < degyy . (v) < A

for all v € Vieq U Vy-hi, and degpy _t(v) < (% - 5) Bforallo €
V1o- In other words, the degree of every node v € Vjeq U V4-pi in

138

STOC 25, June 23-27, 2025, Prague, Czechia
H;nit is at least (1 — ©(J)) times the maximum degree A. Now,
we apply Lemma 3.1, with k = ©(5), to compute a matching M C
E(Hgnit) C E(Hjpit) that matches all but O(dn) nodes in Vyeq U
Vi-hi- Note that A = ©(B), and that a phase lasts for dn updates in
G. Thus, at the start of a phase, computing the subgraph H ., and
the invocation of Lemma 3.1 incurs an amortized update time of

~ (nB+nAJd ~ (B
o5 -0z

on
if we use the deterministic algorithm, and an amortized update time
B +nAd ~ (B
=)=l

of
© (oén 5

if we use the randomized algorithm. It is easy to verify that both
these terms get subsumed within the respective (deterministic or
randomized) guarantees of Lemma 4.12.

We have thus shown to initialize the desired matching Mp,se =
M at the beginning of the phase. We now give a sketch of how we
maintain Mpsse dynamically throughout the phase. Define Hpi1o
to be the induced graph Heore [Vy-hi U V1o]. Recall that all edges
in Egy_,, (Vy-hi) have their other endpoint in V1, (Item 1 of Propo-
sition 4.2), so the set of edges incident to Vy-p; is exactly the same
in Ep,;,, and Epy_, ... We are thus able to apply Lemma 4.5 exactly
as before to maintain a matching Mhi1, in Hpi1o that matches all
of Vg¢. We will maintain the invariant that Myi1o € Mpase, thus
guaranteeing that all nodes in Vg¢ remain matched throughout the
phase. The only remaining concern is that the algorithm for main-
taining Mp;1, might end up unmatching medium vertices in Mpase:
if vertex u € V,,; becomes unmatched, then to maintain Myi1, the
algorithm from Lemma 4.5 finds an augmenting path from u to
some v € Vi, that was free in Mpi1,; but although v was free in
Mhi1o, it might have been matched to some medium node x in
Mpase, in which case node x now becomes unmatched. Fortunately,
it is not hard to show that every adversarial update creates only
O(1) free vertices, so since Mpase has O(Sn) free medium vertices
at the beginning of the phase, and since each phase lasts for O(dn)
updates, we maintain the desired property that there are always
O(6n) free medium vertices.

4.6 Matching All the Safe Nodes: Proof Outline
for Lemma 4.5

The key to our proof is an algorithm for maintaining a left-perfect
matching in a bipartite graph with a degree gap.

LEMMA 4.14 (SIMPLIFIED VERSION OF LEMMA 5.1). Let G = (LU
R,E) be a bipartite graph where, for some X > 0 and0 < y < 1,
every vertexv € L has 2X > deg(v) > X and every vertex in R has
degree < X (1 —y). Suppose that the above degree constraints always
hold as G is subject to O(5n) decremental updates. Then, there exists
an algorithm that maintains a left-perfect matching in G - i.e. a
matching in which every vertex in L is matched — with the following
update times:

o A randomized algorithm with worst-case update time
0 (x+1/ ;/3)‘
o A deterministic algorithm with total update time

~ X l.Sx5
o (HT + nyl,s)

STOC °25, June 23-27, 2025, Prague, Czechia

Before proving the above Lemma, let us see why it implies
Lemma 4.5

PROOF SKETCH OF LEMMA 4.5. For this proof sketch, we assume
that we always have V{_; = Vs¢; in the full version, we are able to
effectively ignore damaged nodes because Lemma 4.5 only requires
us to match all the nodes of V. Let Hpi1, be the subgraph of Heore
that contains only the edges incident to Vi-p;. Observe that under
our assumption of V,,_hi = Vs, Hhilo satisfies the properties of
Lemma 4.14 with X = B/2 and y ~ §: note in particular that the
first property of an EDCS (Definition 2.1) ensures that every vertex
has degree < B = 2X, and that Hpj1, is bipartite because by Propo-
sition 4.2, Hinit contains no edges between vertices in Vi_pj. We
can thus apply Lemma 4.14 to maintain a matching that matches all
of Vs, as desired. The update-time bounds of Lemma 4.14 precisely
imply those of Lemma 4.5

]

4.7 Maintaining Left-Perfect Matching: Proof of
Lemma 4.14

Randomized Algorithm. The randomized algorithm is extremely
simple. Say that we have a matching M under which some v € L
is still unmatched. We then find an augmenting path from o to an
M-free node in R by taking a random matching-walk from v. That
is, we follow a random edge (v, x) to R; if x is unmatched then we
have successfully found an augmenting path, while if x is matched
to some y € L then we repeat the process from y.

We are able to show that because of the assumed degree gap of G,
this random matching-walk terminates within o(1/ v?) steps with
high probability. The intuitive reason is as follows: because of the
degree gap, every set S C L as at least S(1 + y) neighbors in R. The
graph is thus effectively a y-expander, and in particular we are able
to show a correspondence between random matching-walks in G
and ordinary random walks in some Eulerian directed y-expander
G’; the bound of O(1/y®) then follows from known facts about
Eulerian expanders.

To initialize the a left perfect matching before the first decremen-
tal update occurs we apply the randomized algorithm of Lemma 3.1
with A = X, x = y. This returns a matching covering all but O(ny)
vertices of L in time O(nXy) adding an amortized update time com-
ponent of O(X) over the deletions. We may match each of the O (ny)
unmatched vertices using the same random walk based technique
as we use to handle deletions in time O(ny~—2) adding an amortized
update time component of O(y~3) over the O(ny) deletions.

Deterministic Algorithm. The deterministic algorithm is more
involved than the randomized one, so we only give a high-level
sketch. We start by maintaining a standard directed residual graph
Gres corresponding to the matching M that we maintain (edges in
E \ M point from L to R in Gres, while edges in M point from R
to L). We also create a dummy sink ¢ in Greg, with an edge from
all M-free vertices in R to ¢. It is not hard to check that there is a
correspondence between paths from L to ¢ in Gres and augmenting
paths in G. Our algorithm maintains a shortest path tree Tres to
sink ¢ in Gyes. Given any M-free free vertex v € L, we can find an
augmenting path from v by simply following the v — t path in Tres.

139

Aaron Bernstein, Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak

The primary challenge is to maintain Tyes. It is not hard to prove
that for any M-free v € L, there always exists an augmenting path of
length O(1/y) from o to an M-free vertex in R; this follows from the
same expander-based arguments as above, and can also be proved
using more elementary techniques. This means that the depth of
Tres is bounded by O(1/y), which makes it easier to maintain.

There exists a classic data structure known as an Even and
Shiloach tree (denoted ES-tree) that can maintain a low-depth short-
est path tree to a sink ¢ in a decremental graph [101]. The ES-tree
can also handle a special kind of edge insertion into G — namely, an
edge insertion is a valid update if it does not decrease any distances
to t. If Gres were a decremental graph, then we could us an ES-tree
to maintain Tres, and we would be done. Unfortunately, even though
the input graph G to Lemma 4.14 only undergoes edge deletions,
the graph Gres can undergo edge insertions for two reasons.

Firstly, whenever we augment down a path P, every edge in P
flips whether or not it is in M, which means we need to flip the
directions of all these edges in Gres. We can model this flipping

as an inserting of all edges on the reverse path (}7 followed by a
deletion of all edges on the original path P. Fortunately, it is not

hard to show that because Tres is a shortest-path tree, inserting P
does not decrease any distances (as long as we so before deleting
P), and hence is a valid update to the ES-tree.

It is the second kind of edge insertion to Gres that poses a sig-
nificant problem. Say that the adversary deletes some matching
edge (u,0) in G. Then v becomes free, so the graph Gyes should
now contain an edge (v, t); but simply inserting this edge into Gres
would not be a valid update to the ES-tree, as it would decrease
dist(v, t). To overcome this issue, we observe that before the dele-
tion of edge (u, v) we had distg,, (v,) = O(1/y), because we could
follow the matching edge from v to u, and as discussed above we
know that there exists an augmenting path from u to a free vertex
of length O(1/y). So inserting an edge (v, t) of weight O(1/y) does
not decrease any distances to t and is hence a valid operation for
the ES-tree. Unfortunately, once we start adding weights to edges to
of Gres, the distances in Gyes will get longer and longer, so the next
time we add an edge (v’, t) it might need to have even larger weight
for this to be a valid insertion into the ES-tree. (In particular, the
presence of edge weights means that we can no longer guarantee
that before the insertion of (¢/,t) we had dist(¢’, t) = O(1/y).) The
distances in Gres can thus blow up, which increases the (weighted)
depth of Tres and hence causes the ES-tree to become inefficient.

To overcome the above issue, we define parameter q = /1y and
use structural properties of degree-gap graphs to show that as long
as < q insertions have occurred, the edge weights have not had
a chance to get too large, and the average dist(v, t) remains small,
so the ES-tree remains efficient. Then, after g updates, we simply
rebuild the entire ES tree from scratch. Since the total number of
resets is only O(nd/q), the total update time ends up being not too
large.

To initialize a left perfect matching we will use the deterministic
algorithm of Lemma 3.1 which returns a matching covering all but
O(ny) vertices of L in time O(nX/y). We augment this imperfect
matching at initialization to be a perfect matching using the same
datastructure as we use to handle edge deletions. This results in a

Deterministic Dynamic Maximal Matching in Sublinear Update Time

running time proportional to handling O(ny) deletions matching
the cost of handling the decremental updates.

4.8 Extension to the Fully Dynamic Setting

It is relatively straightforward to extend the algorithm from Sec-
tion 4 to a setting where the input graph G = (V, E) undergoes
both edge insertions and edge deletions. As in Section 4, our fully
dynamic algorithm works in phases, where each phase lasts for én
updates in G.

We maintain two subgraphs Gpey = (V, Enew) and Geore :=
(V,Ecore) of G = (V,E), such that the edge-set E is partitioned
into Enew and Ecore. To be more specific, at the start of a phase,
we set Eney := 0 and Ecore := E. Subsequently, during the phase,
whenever an edge e gets deleted from G, we set Ecore < Ecore \ {€}
and Enew < Enew\{e}. In contrast, whenever an edge e gets inserted
into G, we leave the set Ecore unchanged, and set Eney < EnewU{e}.

It is easy to verify that within any given phase Geore is a decre-
mental subgraph of G. Furthermore, since Eney = 0 at the start of a
phase, each update adds at most one edge to Eney and a phase lasts
for 8n updates, it follows that |Enew| < n at all times.

We maintain a maximal matching Mcore € Ecore in Geore, Using
the decremental algorithm from Section 4. In a bit more detail, we
handle an update in G as follows. We first let the decremental
algorithm from Section 4 handle the resulting update in Geore and
accordingly modify the matching Mcore. Next, we scan through
all the edges in Gpey and greedily add as many of these edges as
we can on top of Mcore, subject to the condition that the resulting
edge-set Mfina1 2 Mcore remains a valid matching in G. This scan
takes O(|Enew|) = O(Sn) time. It is easy to verify that the matching
MFina1 We obtain at the end of our scan is a maximal matching in
G.

To summarize, with an additive overhead of O(n) update time,

we can convert the decremental maximal matching algorithm from Sec-

tion 4 into a fully dynamic algorithm. Finally, looking back at the
analysis from Section 4.4, it is easy to verify that this additive over-
head of O(dn) does not degrade our overall asymptotic update time
(the values of 3, B remain the same as in Section 4.4).

5 Decremental Perfect Matching in Graphs with
Degree Gap

We say that a bipartite graph G = (L, R, E) has a y-degree-gap at X

if degg(v) > X forallv € L and degg(v) < X(1—y) forallv € R.

Note that if y > 0, then, by Hall’s theorem, there exists a matching

M that is left-perfect, i.e., M matches every vertex in L.

LEMMA 5.1. Let G = (L,R,E) be a bipartite graph with initial
y-degree-gap at X. We can build a data structure LPM (stands for Left
Perfect Matching) on G that maintains a matching M and supports
the following operations:

o Init(My) where My is a matching in G before any update:
M — M,.

e Delete(u,v) where (u,0) € E(L,R): set G «— G — (u,v) and
M «— M- (u,0). Ifdegg(u) < X and (u,0’) € M, M «
M- (u,0").

o Augment(u) whereu € L is M-free and degs (u) > X: aug-
ment M by an augmenting path so that u is M-matched.

140

STOC 25, June 23-27, 2025, Prague, Czechia

The data structure can be implemented by either:

(1) a deterministic algorithm with O(nA@) S(1+ ﬁ) total

update time where A is the maximum degree of G and u is
the number of calls to Delete(-). In particular, the total update
time is independent of the number of calls to Augment(-).
a randomized algorithm that takes O(|My|) time to Init(-),
O(X log n) worst-case time to Delete(-), and O(log3(n)/y3)
time to Augment(-). The algorithm is correct with high prob-
ability against an adaptive adversary. The algorithm assumes
that each vertex in G has access to a binary search tree of edges
incident to it.

Note that the LPM data structure allows one to maintain a match-
ing that matches all nodes with L with deg;(u) > X: whenever
such a node u becomes unmatched, call Augment(u).

Due to page limitations, we defer the proof of Lemma 5.1 and
the precise description of our dynamic algorithm to the full version
of the paper.

6 Open Problems

Our novel approach for maintaining a maximal matching suggests
several interesting questions.

The Right Answer. Fundamentally, how fast can we maintain a
maximal matching against an adaptive adversary? Our approach
inherently takes Q(min{+/n, A}) update time where A is the maxi-
mum degree. Is there an algorithm against an adaptive adversary
with o(min{+/n, A}) update time? Otherwise, is there a conditional
lower bound refuting this hope, or even refuting polylogarithmic
update time? The answer in either direction would be very exciting.

Better Decremental Perfect Matching. The algorithm from
Lemma 5.1 is the main bottleneck in our dynamic maximal match-
ing algorithm. In the static setting, we can deterministically find
a perfect matching in an m-edge graph with y-degree-gap with
O(m/y) time, for example, using Dinic’s flow algorithm. Can we
deterministically match this running time in the decremental set-
ting? Such an algorithm would immediately imply a deterministic
dynamic maximal matching algorithm with O(n*/?) update time
via our framework.

We can also hope to improve our randomized update time further
to O(n?/3). Currently, our amortized time for initializing each phase
is é(% +6n + %). But we can actually improve this to é(% +
én + B) via warm-starting. We omit this because it alone does
not lead to any improvement and will complicate the algorithm
further. But, suppose that, in our randomized algorithm, the time
spent on Augment(-) can be improved from O(1/y3) to O(1/y?).
Combining this with warm-starting would immediately improve
the final update time from

L and B = n'/?

é(n3/4) by setting § = T

~.n B 1
O(%+5n+5+§ =

to

52
where the improvement from % to
Augment(-).

1
—— and B = n2/3,

= é(n2/3) by setting 6 = Ve

~ . n
O(% +én+B+
1

5z is from the assumption on

STOC °25, June 23-27, 2025, Prague, Czechia

Worst-case Update Time. Interestingly, it is open if there exists
a dynamic maximal matching algorithm with o(n) worst-case up-
date time, even against an oblivious adversary. Previous algorithms
against an oblivious adversary inherently guarantee only amor-
tized update time because they must spend a lot of time once the
adversary “deletes the sampled edge”.

Our algorithm might be a starting point to resolve this open
problem. Indeed, our approach exploits amortization in a much
more superficial manner. Within each phase, our update time can
be made worst-case.Thus, it remains to spread the work for pre-
processing at the beginning of each phase; the task has been easily
handled in many other dynamic problems. The complication we ob-
served is as follows. However, we do not see this as a fundamental
barrier.

References

(1]

[2

)

6

[7

=

=

[10

[11

[12

[13]

[14]

Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol
Saranurak, and Ohad Trabelsi. 2022. Breaking the cubic barrier for all-pairs
max-flow: Gomory-hu tree in nearly quadratic time. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 884-895.

Amir Abboud, Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. 2023.
All-pairs max-flow is no harder than single-pair max-flow: Gomory-hu trees
in almost-linear time. In 2023 IEEE 64th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 2204-2212.

Noga Alon, L4szl6 Babai, and Alon Itai. 1986. A fast and simple randomized par-
allel algorithm for the maximal independent set problem. Journal of algorithms
7,4 (1986), 567-583.

Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. 2018. Dy-
namic Matching: Reducing Integral Algorithms to Approximately-Maximal
Fractional Algorithms. In 45th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic
(LIPIcs, Vol. 107), Toannis Chatzigiannakis, Christos Kaklamanis, Daniel Marx,
and Donald Sannella (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
7:1-7:16. doi:10.4230/LIPICS.ICALP.2018.7

Sepehr Assadi. 2024. Faster Vizing and Near-Vizing Edge Coloring Algorithms.
arXiv preprint arXiv:2405.13371 (2024).

Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni,
and CIiff Stein. 2019. Coresets meet EDCS: algorithms for matching and ver-
tex cover on massive graphs. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 1616-1635.

Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni,
and Cliff Stein. 2019. Coresets Meet EDCS: Algorithms for Matching and Vertex
Cover on Massive Graphs. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, Timothy M. Chan (Ed.). SIAM, 1616-1635. doi:10.1137/1.
9781611975482.98

Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. 2023. On
Regularity Lemma and Barriers in Streaming and Dynamic Matching. In Pro-
ceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC
2023, Orlando, FL, USA, June 20-23, 2023, Barna Saha and Rocco A. Servedio
(Eds.). ACM, 131-144. doi:10.1145/3564246.3585110

Sepehr Assadi and Aaron Bernstein. 2019. Towards a Unified Theory of Sparsifi-
cation for Matching Problems. In Proceedings of the 2nd Symposium on Simplicity
in Algorithms (SOSA). 11:1-11:20.

Sepehr Assadi, Aaron Bernstein, and Aditi Dudeja. 2022. Decremental Matching
in General Graphs. In 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris, France (LIPIcs, Vol. 229), Mikolaj
Bojanczyk, Emanuela Merelli, and David P. Woodruff (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 11:1-11:19. doi:10.4230/LIPICS.ICALP.2022.11
Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2019. The Stochastic Matching
Problem with (Very) Few Queries. ACM Trans. Economics and Comput. 7, 3
(2019), 16:1-16:19.

Baruch Awerbuch, Andrew V Goldberg, Michael Luby, and Serge A Plotkin.
1989. Network decomposition and locality in distributed computation. In FOCS,
Vol. 30. Citeseer, 364-369.

Amir Azarmehr and Soheil Behnezhad. 2023. Robust Communication Com-
plexity of Matching: EDCS Achieves 5/6 Approximation. In 50th International
Colloquium on Automata, Languages, and Programming (ICALP 2023). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik.

Amir Azarmehr, Soheil Behnezhad, and Mohammad Roghani. 2024. Fully Dy-
namic Matching: (2 — V2)-Approximation in Polylog Update Time. In Pro-
ceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024,

141

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Aaron Bernstein, Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak

Alexandria, VA, USA, January 7-10, 2024, David P. Woodruff (Ed.). SIAM. 3040~
3061. doi:10.1137/1.9781611977912.109

Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaél Rabie,
and Jukka Suomela. 2021. Lower bounds for maximal matchings and maximal
independent sets. Journal of the ACM (JACM) 68, 5 (2021), 1-30.

Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2016.
The locality of distributed symmetry breaking. Journal of the ACM (JACM) 63,
3 (2016), 1-45.

Surender Baswana, Manoj Gupta, and Sandeep Sen. 2011. Fully dynamic maximal
matching in O(logn) update time. In Proceedings of the 52nd Symposium on
Foundations of Computer Science (FOCS). 383-392.

Surender Baswana, Manoj Gupta, and Sandeep Sen. 2015. Fully Dynamic Maxi-
mal Matching in O (log(n)) Update Time. SIAM J. Comput. 44, 1 (2015), 88-113.
doi:10.1137/130914140 Announced at FOCS’11..

Surender Baswana, Manoj Gupta, and Sandeep Sen. 2018. Fully dynamic maximal
matching in O(log n) update time (corrected version). SIAM J. Comput. 47,3
(2018), 617-650.

Soheil Behnezhad. 2023. Dynamic Algorithms for Maximum Matching Size. In
Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). To appear in.

Soheil Behnezhad. 2023. Dynamic Algorithms for Maximum Matching Size. In
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, Florence, Italy, January 22-25, 2023, Nikhil Bansal and Viswanath Nagarajan
(Eds.). SIAM, 129-162. d0i:10.1137/1.9781611977554.CH6

Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein,
and Madhu Sudan. 2019. Fully dynamic maximal independent set with polylog-
arithmic update time. In Proceedings of the 60th Symposium on Foundations of
Computer Science (FOCS). 382-405.

Soheil Behnezhad, Mohammad Taghi Hajiaghayi, and David G Harris. 2019.
Exponentially faster massively parallel maximal matching. In 2019 IEEE 60th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 1637-1649.
Soheil Behnezhad, Jakub Eacki, and Vahab Mirrokni. 2020. Fully Dynamic
Matching: Beating 2-Approximation in A€ Update Time. In Proceedings of the
31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2492-2508.
Soheil Behnezhad, Rajmohan Rajaraman, and Omer Wasim. 2025. Fully Dynamic
(A +1) Coloring Against Adaptive Adversaries. In Proceedings of the 2025 ACM-
SIAM Symposium on Discrete Algorithms (SODA).

Aaron Bernstein. 2017. Deterministic partially dynamic single source shortest
paths in weighted graphs. arXiv preprint arXiv:1705.10097 (2017).

Aaron Bernstein. 2024. Improved Bounds for Matching in Random-Order
Streams. Theory Comput. Syst. 68, 4 (2024), 758-772. doi:10.1007/500224-023-
10155-7

Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon
Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. 2020. Fully-
dynamic graph sparsifiers against an adaptive adversary. arXiv preprint
arXiv:2004.08432 (2020).

Aaron Bernstein and Shiri Chechik. 2016. Deterministic decremental single
source shortest paths: beyond the o (mn) bound. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing. 389-397.

Aaron Bernstein and Shiri Chechik. 2017. Deterministic partially dynamic single
source shortest paths for sparse graphs. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 453-469.

Aaron Bernstein, Jiale Chen, Aditi Dudeja, Zachary Langley, Aaron Sidford,
and Ta-Wei Tu. 2024. Matching Composition and Efficient Weight Reduction
in Dynamic Matching. arXiv preprint arXiv:2410.18936 (2024). To appear at
SODA'25.

Aaron Bernstein, Aditi Dudeja, and Zachary Langley. 2021. A framework
for dynamic matching in weighted graphs. In STOC °21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, Samir Khuller and Virginia Vassilevska Williams (Eds.). ACM, 668-681.
doi:10.1145/3406325.3451113

Aaron Bernstein, Sebastian Forster, and Monika Henzinger. 2021. A Deamorti-
zation Approach for Dynamic Spanner and Dynamic Maximal Matching. ACM
Trans. Algorithms 17, 4 (2021), 29:1-29:51. doi:10.1145/3469833

Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak.
2020. Deterministic Decremental Reachability, SCC, and Shortest Paths via
Directed Expanders and Congestion Balancing. In 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-
19, 2020, Sandy Irani (Ed.). IEEE, 1123-1134. do0i:10.1109/FOCS46700.2020.00108
Aaron Bernstein and Cliff Stein. 2015. Fully Dynamic Matching in Bipartite
Graphs. In Automata, Languages, and Programming - 42nd International Col-
loquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I (Lec-
ture Notes in Computer Science, Vol. 9134), Magnus M. Halldorsson, Kazuo
Iwama, Naoki Kobayashi, and Bettina Speckmann (Eds.). Springer, 167-179.
doi:10.1007/978-3-662-47672-7_14

Aaron Bernstein and Cliff Stein. 2015. Fully dynamic matching in bipartite
graphs. In International Colloquium on Automata, Languages, and Programming.
Springer, 167-179.

Deterministic Dynamic Maximal Matching in Sublinear Update Time

[37]

[38]

[39

[40

[41]

[42

[43]

[44

[45

[46]

[47]

[48

[49

[50]

[51

[52

[53]

[54]

Aaron Bernstein and Cliff Stein. 2016. Faster Fully Dynamic Matchings
with Small Approximation Ratios. In Proceedings of the Twenty-Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016, Robert Krauthgamer (Ed.). SIAM, 692-711.
doi:10.1137/1.9781611974331.CH50

Aaron Bernstein and Ciff Stein. 2016. Faster fully dynamic matchings with small
approximation ratios. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms. SIAM, 692-711.

Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. 2017.
Deterministic Fully Dynamic Approximate Vertex Cover and Fractional Match-
ing in O(1) Amortized Update Time. In Integer Programming and Combi-
natorial Optimization - 19th International Conference, IPCO 2017, Waterloo,
ON, Canada, June 26-28, 2017, Proceedings (Lecture Notes in Computer Science,
Vol. 10328), Friedrich Eisenbrand and Jochen Kénemann (Eds.). Springer, 86-98.
doi:10.1007/978-3-319-59250-3_8

Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon
Nanongkai. 2018. Dynamic Algorithms for Graph Coloring. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018, Artur Czumaj (Ed.). SIAM, 1-20.
doi:10.1137/1.9781611975031.1

Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. Deter-
ministic Fully Dynamic Data Structures for Vertex Cover and Matching. SIAM
F. Comput. 47, 3 (2018), 859-887. doi:10.1137/140998925

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New
deterministic approximation algorithms for fully dynamic matching. In Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, Daniel Wichs and Yishay Mansour
(Eds.). ACM, 398-411. doi:10.1145/2897518.2897568

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2017. Fully
Dynamic Approximate Maximum Matching and Minimum Vertex Cover in
O(log3 n) Worst Case Update Time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, Philip N. Klein (Ed.). SIAM, 470-489. doi:10.
1137/1.9781611974782.30

Sayan Bhattacharya and Peter Kiss. 2021. Deterministic Rounding of Dy-
namic Fractional Matchings. In 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference) (LIPIcs, Vol. 198), Nikhil Bansal, Emanuela Merelli, and James
Worrell (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 27:1-27:14.
doi:10.4230/LIPICS.ICALP.2021.27

Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. 2023. Dynamic
Algorithms for Packing-Covering LPs via Multiplicative Weight Updates. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 1-47.

Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. 2023. Sublinear
Algorithms for (1.5 + €)-Approximate Matching. In STOC.

Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. 2023.
Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Up-
date Time. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2023, Florence, Italy, January 22-25, 2023, Nikhil Bansal and
Viswanath Nagarajan (Eds.). SIAM, 100-128. doi:10.1137/1.9781611977554.CH5
Sayan Bhattacharya, Peter Kiss, Aaron Sidford, and David Wajc. 2024. Near-
Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs. In
Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC
2024, Vancouver, BC, Canada, June 24-28, 2024, Bojan Mohar, Igor Shinkar, and
Ryan O’Donnell (Eds.). ACM, 59-70. doi:10.1145/3618260.3649648

Sayan Bhattacharya and Janardhan Kulkarni. 2019. Deterministically Main-
taining a (2 + €)-Approximate Minimum Vertex Cover in O(1/€e) Amortized
Update Time. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019,
Timothy M. Chan (Ed.). SIAM, 1872-1885. doi:10.1137/1.9781611975482.113
Sayan Bhattacharya, Thatchaphol Saranurak, and Pattara Sukprasert. 2022. Sim-
ple dynamic spanners with near-optimal recourse against an adaptive adversary.
arXiv preprint arXiv:2207.04954 (2022).

Joakim Blikstad and Peter Kiss. 2023. Incremental (1 — €)-approximate dynamic
matching in O(poly(1/€)) update time. arXiv preprint arXiv:2302.08432 (2023).
Jan van den Brand, Li Chen, Rasmus Kyng, Yang P Liu, Simon Meierhans,
Maximilian Probst Gutenberg, and Sushant Sachdeva. 2024. Almost-Linear
Time Algorithms for Decremental Graphs: Min-Cost Flow and More via Duality.
arXiv preprint arXiv:2407.10830 (2024).

Moses Charikar and Shay Solomon. 2018. Fully Dynamic Almost-Maximal
Matching: Breaking the Polynomial Worst-Case Time Barrier. In 45th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic (LIPIcs, Vol. 107), Ioannis Chatzigiannakis,
Christos Kaklamanis, Daniel Marx, and Donald Sannella (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 33:1-33:14. doi:10.4230/LIPICS.ICALP.2018.33
Jiale Chen, Aaron Sidford, and Ta-Wei Tu. 2023. Entropy Regularization and
Faster Decremental Matching in General Graphs. arXiv preprint arXiv:2312.09077

142

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]
[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

STOC 25, June 23-27, 2025, Prague, Czechia

(2023).

Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol
Saranurak. 2020. Fast dynamic cuts, distances and effective resistances via vertex
sparsifiers. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 1135-1146.

Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. 2022. Maximum flow and minimum-cost flow in almost-
linear time. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 612-623.

Aleksander BG Christiansen, Jacob Holm, Ivor van der Hoog, Eva Rotenberg,
and Chris Schwiegelshohn. 2022. Adaptive out-orientations with applications.
arXiv preprint arXiv:2209.14087 (2022).

Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. 2020. A deterministic algorithm for balanced cut with
applications to dynamic connectivity, flows, and beyond. In 2020 IEEE 61st An-
nual Symposium on Foundations of Computer Science (FOCS). IEEE, 1158-1167.
Julia Chuzhoy and Sanjeev Khanna. 2019. A new algorithm for decremental
single-source shortest paths with applications to vertex-capacitated flow and
cut problems. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing. 389-400.

Julia Chuzhoy and Thatchaphol Saranurak. 2021. Deterministic algorithms for
decremental shortest paths via layered core decomposition. In Proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2478-2496.
Julia Chuzhoy and Ruimin Zhang. 2023. A new deterministic algorithm for
fully dynamic all-pairs shortest paths. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing. 1159-1172.

Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovi¢, Krzysztof
Onak, and Piotr Sankowski. 2018. Round compression for parallel matching
algorithms. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing. 471-484.

Seren Dahlgaard. 2016. On the Hardness of Partially Dynamic Graph Problems
and Connections to Diameter. In Proceedings of the 43rd International Colloquium
on Automata, Languages and Programming (ICALP). 48:1-48:14.

Aditi Dudeja. 2024. A Note on Rounding Matchings in General Graphs. arXiv
preprint arXiv:2402.03068 (2024).

Michael Elkin and Ariel Khuzman. 2024. Deterministic Simple (1 + €)A-Edge-
Coloring in Near-Linear Time. arXiv preprint arXiv:2401.10538 (2024).
Manuela Fischer. 2020. Improved deterministic distributed matching via round-
ing. Distributed Computing 33, 3 (2020), 279-291.

Harold N. Gabow, Takao Nishizeki, Oded Kariv, Daniel Leven, and Osamu Terada.
1985. Algorithms for edge-coloring. Technical Report 41/85. Tel Aviv University.
Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovi¢, and
Ronitt Rubinfeld. 2018. Improved massively parallel computation algorithms
for mis, matching, and vertex cover. In Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing. 129-138.

Mohsen Ghaffari and Bernhard Haeupler. 2021. A time-optimal randomized
parallel algorithm for mis. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM, 2892-2903.

Mohsen Ghaffari and Anton Trygub. 2024. Parallel Dynamic Maximal Matching,
In Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and
Architectures. 427-437.

Mohsen Ghaffari and Jara Uitto. 2019. Sparsifying distributed algorithms with
ramifications in massively parallel computation and centralized local computa-
tion. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 1636-1653.

Gramoz Goranci, Harald Racke, Thatchaphol Saranurak, and Zihan Tan. 2021.
The expander hierarchy and its applications to dynamic graph algorithms. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 2212-2228.

Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn,
and Shay Solomon. 2019. (1+€)-Approximate Incremental Matching in Constant
Deterministic Amortized Time. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 1886-1898.

Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad.
2022. Maintaining an EDCS in General Graphs: Simpler, Density-Sensitive and
with Worst-Case Time Bounds. In 5th Symposium on Simplicity in Algorithms,
SOSA@SODA 2022, Virtual Conference, January 10-11, 2022, Karl Bringmann and
Timothy M. Chan (Eds.). SIAM, 12-23. doi:10.1137/1.9781611977066.2

Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad.
2022. Maintaining an EDCS in General Graphs: Simpler, Density-Sensitive and
with Worst-Case Time Bounds. Proceedings of the 5th Symposium on Simplicity
in Algorithms (SOSA) (2022), 12-23.

Manoj Gupta and Richard Peng. 2013. Fully Dynamic (1 + €)-Approximate
Matchings. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. IEEE Computer Society,
548-557. doi:10.1109/FOCS.2013.65

Manoj Gupta, Venkatesh Raman, and SP Suresh. 2014. Maintaining Approximate
Maximum Matching in an Incremental Bipartite Graph in Polylogarithmic

STOC °25, June 23-27, 2025, Prague, Czechia

178

[79

[80

[81

[82

[83

[84]

[85

[86

(87

(88

[89

[90

[91

[92]

[93

Update Time. In Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS), Vol. 29. 227-239.

Maximilian Probst Gutenberg and Christian Wulff-Nilsen. 2020. Decremental
SSSP in weighted digraphs: Faster and against an adaptive adversary. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2542-2561.

Maximilian Probst Gutenberg and Christian Wulff-Nilsen. 2020. Deterministic
algorithms for decremental approximate shortest paths: Faster and simpler.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 2522-2541.

Bernhard Haeupler, Yaowei Long, and Thatchaphol Saranurak. 2024. Dynamic
Deterministic Constant-Approximate Distance Oracles with n€ Worst-Case
Update Time. arXiv preprint arXiv:2402.18541 (2024).

Michat Hanékowiak, Michat Karoniski, and Alessandro Panconesi. 1999. A faster
distributed algorithm for computing maximal matchings deterministically. In
Proceedings of the eighteenth annual ACM symposium on Principles of distributed
computing. 219-228.

Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. 2001. On
the distributed complexity of computing maximal matchings. SIAM Journal on
Discrete Mathematics 15, 1 (2001), 41-57.

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. Dy-
namic approximate all-pairs shortest paths: Breaking the o(mn) barrier and
derandomization. SIAM J. Comput. 45, 3 (2016), 947-1006.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and
Thatchaphol Saranurak. 2015. Unifying and Strengthening Hardness for
Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture.
In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, Rocco A. Servedio
and Ronitt Rubinfeld (Eds.). ACM, 21-30. doi:10.1145/2746539.2746609

Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, minimum spanning
tree, 2-edge, and biconnectivity. Journal of the ACM (JACM) 48, 4 (2001), 723~
760.

Amos Israeli and AlonItai. 1986. A fast and simple randomized parallel algorithm
for maximal matching. Inform. Process. Lett. 22, 2 (1986), 77-80.

Amos Israeli and Yossi Shiloach. 1986. An improved parallel algorithm for
maximal matching. Inform. Process. Lett. 22, 2 (1986), 57-60.

Zoran Ivkovic and Errol L Lloyd. 1993. Fully Dynamic Maintenance of Vertex
Cover. In Proceedings of the 19th International Workshop on Graph-Theoretic
Concepts in Computer Science. 99-111.

Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. 2022. Regular-
ized Box-Simplex Games and Dynamic Decremental Bipartite Matching. In
International Colloquium on Automata, Languages, and Programming (ICALP).
Richard M Karp and Avi Wigderson. 1985. A fast parallel algorithm for the
maximal independent set problem. Journal of the ACM (JACM) 32, 4 (1985),
762-1773.

V. King. 1999. Fully dynamic algorithms for maintaining all-pairs shortest paths
and transitive closure in digraphs. In 40th Annual Symposium on Foundations of
Computer Science (Cat. No.99CB37039). 81-89.

Peter Kiss. 2022. Deterministic Dynamic Matching in Worst-Case Update
Time. In 13th Innovations in Theoretical Computer Science Conference, ITCS
2022, January 31 - February 3, 2022, Berkeley, CA, USA (LIPIcs, Vol. 215), Mark
Braverman (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 94:1-94:21.
doi:10.4230/LIPICS.ITCS.2022.94

Rasmus Kyng, Simon Meierhans, and Maximilian Probst Gutenberg. 2024. A
dynamic shortest paths toolbox: Low-congestion vertex sparsifiers and their

143

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Aaron Bernstein, Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak

applications. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing. 1174-1183.

Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. 2011.
Filtering: a method for solving graph problems in mapreduce. In Proceedings
of the twenty-third annual ACM symposium on Parallelism in algorithms and
architectures. 85-94.

Yang P. Liu. 2024. On Approximate Fully-Dynamic Matching and Online Matrix-
Vector Multiplication. CoRR abs/2403.02582 (2024). doi:10.48550/ ARXIV.2403.
02582 arXiv:2403.02582

Michael Luby. 1985. A simple parallel algorithm for the maximal independent
set problem. In Proceedings of the seventeenth annual ACM symposium on Theory
of computing. 1-10.

Danupon Nanongkai and Thatchaphol Saranurak. 2017. Dynamic spanning
forest with worst-case update time: adaptive, Las Vegas, and O(n'/2~¢)-time.
In Proceedings of the 49th Annual ACM Symposium on Theory of Computing
(STOC). 1122-1129.

Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. 2017.
Dynamic minimum spanning forest with subpolynomial worst-case update time.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 950-961.

Ofer Neiman and Shay Solomon. 2016. Simple deterministic algorithms for
fully dynamic maximal matching. ACM Transactions on Algorithms (TALG) 12,
1(2016), 7.

Mohammad Roghani, Amin Saberi, and David Wajc. 2022. Beating the Folklore
Algorithm for Dynamic Matching. In Proceedings of the 13th Innovations in
Theoretical Computer Science Conference (ITCS). 111:1-111:23.

Yossi Shiloach and Shimon Even. 1981. An On-Line Edge-Deletion Problem. 7.
ACM 28, 1 (jan 1981), 1-4.

Shay Solomon. 2016. Fully Dynamic Maximal Matching in Constant Update
Time. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, Irit
Dinur (Ed.). IEEE Computer Society, 325-334. doi:10.1109/FOCS.2016.43

Shay Solomon. 2016. Fully dynamic maximal matching in constant update time.
In Proceedings of the 57th Symposium on Foundations of Computer Science (FOCS).
325-334.

Shay Solomon. 2022. Open Problem. Report from Dagstuhl Seminar 22461
Dynamic Graph Algorithms (2022), 62. doi:10.4230/DagRep.12.11.45

Daniel Stubbs and Virginia Vassilevska Williams. 2017. Metatheorems for Dy-
namic Weighted Matching. In 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA (LIPIcs, Vol. 67),
Christos H. Papadimitriou (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fir Infor-
matik, 58:1-58:14. doi:10.4230/LIPICS.ITCS.2017.58

Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P Liu, Richard
Peng, and Aaron Sidford. 2022. Faster maxflow via improved dynamic spectral
vertex sparsifiers. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing. 543-556.

David Wajc. 2020. Rounding dynamic matchings against an adaptive adversary.
In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2020, Chicago, IL, USA, June 22-26, 2020, Konstantin Makarychev,
Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy (Eds.).
ACM, 194-207. doi:10.1145/3357713.3384258

Christian Wulff-Nilsen. 2017. Fully-dynamic minimum spanning forest with
improved worst-case update time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing. 1130-1143.

Received 2024-11-03; accepted 2025-02-01

