Tighter provable security for TreeKEM

Karen Azari'* and Andreas Ellison?

! University of Vienna, Faculty of Computer Science, Vienna, Austria
karen.azari@univie.ac.at
2 ETH Zurich, Switzerland

andreas.ellison@inf.ethz.ch

Abstract. The Messaging Layer Security (MLS) protocol, recently stan-
dardized in RFC 9420, aims to provide efficient asynchronous group key
establishment with strong security guarantees. The main component of
MLS, which is the source of its key efficiency and security properties,
is a protocol called TreeKEM. Given that a major vision for the MLS
protocol is for it to become the new standard for messaging applications
like WhatsApp, Facebook Messenger, Signal, etc., it has the potential to
be used by a huge number of users. Thus, it is important to better under-
stand the security of MLS and hence also of TreeKEM. In previous work,
TreeKEM was proven adaptively secure in the Random Oracle Model
(ROM) with a polynomial loss in security by proving a result about the
security of an arbitrary IND-CPA secure public-key encryption scheme
in a public-key version of a security game called GSD. Unfortunately, the
concrete security guarantees implied by this line of work are not sufficient
for parameters used in practice.

In this work, we prove a tighter bound for the security of TreeKEM when
DHIES is used for public-key encryption; DHIES is currently the only
standardized scheme in MLS. Our bound implies meaningful security
guarantees even for small practical parameters. We follow the above
approach and first introduce a modified version of the public-key GSD
game better suited for analyzing TreeKEM. We then provide a simple and
detailed proof of security for DHIES in this game in the ROM and achieve
a smaller security loss compared to the previous best result. Finally, we
state the result on the security of TreeKEM implied by this bound and
give an interpretation of the result with protocol parameters used in
practice.

Keywords: Messaging Layer Security - TreeKEM - Secure Messaging -
Group Key-Agreement - Adaptive Security - DHIES

1 Introduction
We all rely on messaging applications like WhatsApp, Facebook Messenger,
Signal, etc. in our daily lives and take it for granted that our messages will be

mwork was done while the author was affiliated with ETH Zurich, Switzer-
land.

transmitted securely, for some definition of “secure”. A common security feature
expected from the protocol employed in a messaging application is end-to-end
encryption, i.e. that only the end users of a messaging session can read the
messages being sent and the service provider or any party with access to the
communication channel learns nothing of their contents. The protocol should
work in an asynchronous setting: we would like to send messages even when
the recipient is offline, and we expect them to receive the message once they
come online. For this, we must rely on a delivery service to store and deliver
the messages. Of course, also this delivery service should learn nothing from the
messages.

There are two more advanced security features expected from messaging
protocols today, both related to security in case a user is compromised:

— forward secrecy (FS): the compromise should not reveal the contents of old
messages

— post-compromise security (PCS): after the user recovers from the compromise,
new messages are secure once again

As a user may well not know that they have been compromised, ensuring PCS
requires regularly updating the key material used for encryption (in a way that
the information leaked in a compromise before the update does not suffice to
compute encryption keys used after the update). The more often the key material
is updated, the stronger the level of PCS that is achieved. Thus, updating the
key material should be an efficient operation.

For messaging between two users, the Double Ratchet protocol [15], the main
component of the Signal Protocol, is a widely adopted solution used by major
messaging applications such as Signal, WhatsApp, Facebook Messenger and
more. It is well-studied and achieves all of the above security guarantees [8]. For
messaging in a group of more than two users, a straightforward solution is to
maintain 1:1 communication channels using the Double Ratchet protocol between
every pair of users and send messages to the group by sending them to every
member individually. This achieves very strong security guarantees but requires
a number of encryption operations linear in the group size to send a message.

Another common solution is to use sender keys [4]: every user creates a
symmetric key, their sender key, and distributes this sender key to every other user
using 1:1 channels as before. A user sending a message then derives a symmetric
encryption key for the message from their sender key, while continually updating
their sender key (with each sent message) to provide FS. However, achieving
PCS is costly: if a user is compromised, the sender keys of all users are leaked
and recovering from the compromise requires each user to send a new sender key
to every other user over the respective 1:1 channels, resulting in a number of
operations linear in the group size per user and a quadratic number of operations
in total. Moreover, dynamic group membership introduces additional complexity:

— adding a new member involves the new member sharing their sender key
with all other group members

— removing a member requires distributing new sender keys in the group, just
like recovering from a compromise

The Messaging Layer Security (MLS) protocol, recently standardized in [5],
proposes a solution for group messaging with better efficiency and the same
strong security guarantees as for the two-party case. Updating key material
and adding or removing members can be achieved with a logarithmic number
of operations (although the complexity may still degrade to linear in certain
scenarios). At the core of MLS is a fairly recent primitive called a continuous
group key agreement (CGKA) scheme [2] (this primitive was introduced only
after the first draft of the MLS protocol). In essence, a CGKA scheme enables
a group of users to agree on a group key, which they can then use to derive
symmetric message encryption keys. This key must be indistinguishable from a
random key for anyone outside the group eavesdropping on all communication.
However, a CGKA scheme must also achieve FS and PCS, and support dynamic
group membership. Hence, it must provide mechanisms for members to update
their key material, add new users to the group and remove members from the
group. Moreover, the scheme must work in the asynchronous setting with an
untrusted service to deliver protocol messages.

The CGKA scheme used in the MLS protocol is called TreeKEM (initially
proposed in [7]) and the majority of the literature on MLS is dedicated to
analyzing TreeKEM or proposing better CGKA schemes. We refer the reader
to [14, Section 1.3] for an in-depth overview of the literature. The TrecKEM
protocol has undergone multiple changes since its inception. In this work, we
refer to the version documented in RFC 9420. Given that the vision for the MLS
protocol is for it to become the new standard for messaging protocols and that
it has support from several large companies [9,10], it has the potential to be
used by a huge number of users. Thus, understanding the security of MLS and
hence also of TreeKEM is of great importance. This means having formal security
guarantees about the security provided by TreeKEM (based on appropriate
hardness assumptions).

1.1 The TreeKEM protocol

Propose and commit syntax As a CGKA scheme, TreeKEM must support opera-
tions for updating the key material of a group member, adding a new user and
removing a member. The syntax for these operations has changed over time. In
the current version of MLS, the protocol uses so-called proposals and commiits.
Whenever a user would like to have their key material updated, add a new user
or remove a group member, they create a corresponding update, add or remove
proposal, respectively, and share this proposal with the group. Any group member
can then create a commit to apply a set of proposals, create a new group key and
update their key material in the process. The commit object includes (encrypted)
information such that every group member can update their view of the group
and compute the new group key.

TreeKEM dynamics TreeKEM uses a full binary tree to model the group and
every user is associated with a leaf in the tree (the remaining leaves may be left
empty). Each user maintains a synchronized view of the tree, though different
users will know more about different parts of the tree. The group key is derived
from the root of the tree. Every node n in the tree has an associated key pair
(pkn, sky,) output by II.Gen where I is a public-key encryption scheme. All
public keys are known to all users. Let the direct path of a leaf be the path from
the leaf’s parent to the root. A leaf’s path to the root refers to the same path but
including the leaf as well. Every user at a leaf knows the secret key of their leaf
and, in the usual case, the secret keys of all nodes on their direct path, though
there can be exceptions to this rule. To illustrate the scheme and how commit
operations are performed, we will consider a group with users A4, B,...,G and
H, as depicted in Figure 1. In the following, we will use these labels for the users
both to refer to the users themselves and to their nodes in the tree.

O
@ @
o O O O
ONORORONORORONO

Fig. 1: Hlustration of a group with users 8 users in the TreeKEM protocol.

Simple commits The idea behind this tree structure is that it allows for a user
creating a commit with a new group key to share the new group key with the
group using only a few encryptions, while still updating all the secrets the user
knew in the tree in order to recover from a possible compromise (recall that
in a CGKA scheme a commit also updates the committer’s key material). To
illustrate how a commit is performed and how the new group key is computed,
say user A performs a commit. Let us consider commits without any proposals.
TreeKEM specifies two hash functions Hgen, Haep : {0, 132 — {0,1}7() where
p(n) gives the number of random bits used by I7.Gen(1"). The depth of user A
is d = 3. A will replace all the d + 1 nodes on their path to the root with new
nodes A, pi,...,pq. (In practice A would just replace the information stored in
the original nodes.) The key pairs for the new nodes are sampled as follows. For

the leaf node A, user A simply samples a key pair by running I7.Gen(17). For the
remaining nodes, they first sample s; + {0, 1}”(”) and compute the key pair of
the first parent p; as IT.Gen(1", Hgen(s1)). For i € {2,...,d} they then compute
s; = Hgep(si—1) and set the key pair of p; to be II.Gen(17, Hgen(s:)). The new
group key is k = Hqep(sq)-

User A only needs to share (encryptions of) the seeds s; for the other users
to update their view of the tree and compute the new group key:

— To share the group key with user B, A computes the ciphertext ¢; <
II.Encyyp(s1). B can then compute the seed sq, then use that to compute
the seeds so, ..., s4, the key pairs of all new nodes on their path to the root
and the group key k.

— To share the new group key with users C' and D, A computes the ciphertext
¢y < I1.Ency (s2), where X is the parent of the nodes C' and D. Both C
and D know the secret key sky of their parent and can decrypt cs.

— To share the new group key with users E, F,G and H, A computes the
ciphertext ¢ < II.Enc,, (s3), where Y is the right child of the root node.
Again, all users under Y know sky and can thus decrypt cs.

The commit ¢ that A shares with all users includes the ciphertexts ¢y, ¢y and c3
and the public keys of all new nodes. Figure 2 illustrates the commit performed

by A.

ORSRORORONOROGRONO,

Fig.2: The commit by user A described in the text. Dashed directed edges
illustrate the fact that the target is related to the source via the hash function
Hep. The solid directed edges illustrate the fact that the seed of the target node
is encrypted to the public key of the source node.

ot

The nodes B, X and Y form the copath of A: the copath of a node v consists
of the sibling of each node on v’s path to the root, excluding the root itself. In
the ideal case as above, a node performing a commit only has to compute one
encryption for each node on its copath, i.e. logarithmically many encryptions in
the total number of users.

The above concepts suffice to understand our main results. For a discussion of
how proposals are incorporated into a commit, we refer the reader to Section C.1
of the appendix.

1.2 The GSD game

The Generalized Selective Decryption (GSD) security game [13] was introduced
precisely to analyze adaptive security for protocols based on a graph-like structure,
as is the case with TreeKEM. It was initially defined for the private-key setting
and later adapted to the public-key setting in [12].

In the GSD security game, given an encryption scheme a graph, the GSD
graph, is constructed by the challenger where every node in the graph is associated
with a symmetric key in the private-key setting, or a public/private key pair in
the public-key setting. The adversary can then request encryptions of a node’s
(secret) key under the (public) key of another node. In the public-key setting,
such an encryption query also reveals the latter node’s public key. This creates
an encryption edge in the graph, directed from the node whose (public) key was
used for encryption to the node whose key was encrypted. The adversary can
also corrupt any node, which reveals its (secret) key and allows the adversary
to compute the (secret) key of any other node reachable from the corrupted
node in the graph by performing decryptions along the path to the other node.
At the end of the game the adversary chooses a node to be challenged on, the
challenge node. A coin is then tossed and the adversary is given either the (secret)
key of the challenge node or a uniformly random (secret) key and it must guess
which scenario it is in. The possible choices for the challenge node must of course
be restricted to nodes whose keys were not compromised through a corruption,
meaning that the challenge node should never be reachable from a corrupted
node in the graph. Further restrictions are also necessary which we do not go into
here and refer the reader to Section 4.1. Figure 3 illustrates what an example
GSD graph may look like.

The graph constructed in the public-key GSD game and the tree structure
behind the TreeKEM protocol clearly resemble each other. Let IT the public-
key encryption scheme in use, where I7.Gen(1") samples p(n) random bits. We
can make some small modifications to the public-key GSD game such that the
operations performed in TreeKEM match the ones performed in this modified
GSD game. Take the functions Hgey,, Hdep used in TreeKEM and first modify
the game as follows:

— the key pair of a node v is generated by sampling a seed s, € {0,1}*(™ and
computing (pky, sky) = I1.Gen(17, Hgen(50))

— encryption queries encrypt the seed of the target node instead of its secret
key

Fig.3: An illustration of the GSD graph for an instance of the GSD game. The
challenge node is v. The node ¢ was corrupted, resulting in all nodes reachable
from it being compromised, as marked with red color.

Now the generation of key pairs and the encryptions computed in TreeKEM
match what is done in this adapted GSD game. To model the fact that in
TreeKEM the seed of a node may depend on the seed of another node through
Hgep (as in the new direct path computed in a commit), we can introduce a new
type of edge which we call a seed dependency: a seed dependency (u,v) implies
that s, = Haep(Su)-

1.3 Existing security proofs

The work in [12] made use of the relationship between the (public-key) GSD
game and TreeKEM described in the previous section. They proved a polynomial
bound for the adaptive security of the public-key GSD game in the Random
Oracle Model (ROM) [6] for an arbitrary IND-CPA secure public-key encryption
scheme. The core idea behind their proof is simple. Intuitively, the only way
for an adversary to learn about the seed of an uncorrupted node for the first
time is through the encryption edges into the node. The authors show that in
the ROM, one can reduce security in the GSD game to the IND-CPA security
of the public-key encryption scheme with a moderate security loss. They apply
standard guessing arguments and a clever, albeit complicated, hybrid argument
to achieve a security loss in O(N?), where N is the number of nodes in the GSD
graph. The N? loss stems from the fact that two nodes in the GSD graph need
to be guessed correctly for the reduction to succeed.

This result implies a polynomial bound for the security of TreeKEM as a
CGKA scheme as outlined in [12, Theorem 4] and subsequently proven in more
detail in [3, Theorem 12], and was the first proof of adaptive security for TreeKEM.

As far as we know, this is the tightest result on the security of TreeKEM in the
literature.

1.4 Security model

We prove adaptive CGKA security of TreeKEM for a single group and a single
challenge query when the DHIES scheme is used. Additionally, our result easily
extends to adversaries performing multiple challenge queries with the same
security loss (irrespective of the number of challenges). Our security definition is
very close to the definition provided in [3, Section 4.1.2], but gives the adversary
less power. We provide a weaker definition in order to simplify the definition and
proof. However, we are confident that the exact same result can be proven for the
CGKA security definition in [3]. The additional power given to the adversary in [3]
should only affect the set of commits that the adversary can ask to be challenged
on in the CGKA security game (defined in Section C.2 of the appendix).

1.5 Contributions

Tighter GSD security for DHIES In this work, we formally prove the adaptive
security of a specific public-key encryption scheme, the DHIES scheme [1], in
the adapted public-key GSD game described above, in the ROM. Focusing on
the DHIES scheme allows us to achieve a tighter bound than the one in [12].
Each encryption of a seed s, with DHIES is a tuple of the form (¢*,c) with
¢ < II;.Ency(s,), where k = Hpu(g™), ¢ is a generator in the Diffie-Hellman
group, II, is the private-key encryption scheme used in DHIES, Hpy is a hash
function and y is the secret key of the source node of the encryption edge. By
modelling Hpy as a random oracle, we know that in order for an adversary to
learn anything from this encryption, intuitively, they must have either learned &
by querying Hpy and then decrypting the ciphertext ¢, or they must have gleaned
information from ¢ without knowing the key k. We can reduce the first case to the
hardness of the Diffie-Hellman problem with a security loss in O(N). To achieve
a linear loss, we first guess the node v for which the Diffie-Hellman problem was
solved on an outgoing encryption edge and exploit the self-reducibility property
of the Diffie-Hellman problem in order to embed a single Diffie-Hellman challenge
into all outgoing edges. The second case can be reduced to the security of the
private-key encryption scheme with a security loss in O(d - N) where ¢ is the
maximum in-degree in the GSD graph. This follows from guessing the target
node s, and then applying a standard hybrid argument to the up to ¢ encryption
edges ending in v.3 In Section B.4 of the appendix we show that the security loss
can be reduced to O(N) for a very specific set of schemes.

Besides providing a tighter bound, our proof has further significant advantages.
Arguably, it is more intuitive and less complex than the ones in [3,12]. Furthermore,
our approach can easily be adapted to prove the same security loss in a GSD

3 The same hybrid argument does not work for directly reducing to the security of the
public-key encryption scheme due to a technicality.

game with multiple challenge queries. Both of these advantages stem from how
we compute the challenge in our GSD definition. See Section 4.1 for details.

The security of TreeKEM Our final result for TreeKEM has a security loss in
O(u - (¢-log(u) + p)) reducing to EAV security? of the private-key encryption
scheme and a loss in O(c - log(u) + p) reducing to the hardness of the Diffie-
Hellman problem, where ¢ is the number of commits, p the number of add or
update proposals and u the number of users. As with GSD, our result holds
irrespective of the number of challenge queries. The result in [12] implies a
security loss of O((c - log(u) + p)?) for a single challenge query, reducing to IND-
CPA security of the public-key encryption scheme. This can be generalized to
multiple challenges by a hybrid argument, involving an additional multiplicative
loss in the number of challenges. When p is small such that p < ¢-log(u), the
losses simplify to O(c - u - log(u)) and O(c - log(u)), respectively, as opposed to
O((c-log(u))?) in [12]. In this setting, our result guarantees 90 bits of security
with 128-bit parameters and 210 bits with 256-bit parameters for large groups
(under standard assumptions). When p is large, e.g. when many updates are
applied in each commit, the losses simplify to O(c - u?) and O(c-u) as opposed
to O((c-u)?) in [12]. Our result guarantees 95 bits of security when a 128-bit
Diffie-Hellman group is combined with 256-bit AES, while the result in [12] only
guarantees 64 bits. Using 256-bit parameters gives a 209-bit security level.

1.6 Relation to MLS security

The work in [3] provides a comprehensive security definition for group messaging
protocols and reduces the security of MLS to the security of its underlying
primitives, including the CGKA scheme. Since our proof can be adapted to go
through with the CGKA definition used in this work, our result implies a tighter
result for the security of MLS as a whole. However, the security proof of MLS
in [3] has a very large (but polynomial) loss and even with our improved bound
for TreeKEM we don’t expect this to provide a meaningful level of security.
Therefore, finding a tighter reduction for the MLS protocol as a whole is a crucial
open problem on the path to proving meaningful security guarantees for the
protocol.

2 Preliminaries

Our definitions were adapted from [11]. A summary of our notation, some simple
lemmas, definitions for private-key and public-key encryption, IND-CPA security,
EAV security, group-generation algorithms and the Decisional Diffie-Hellman
(DDH) problem, and an explanation of the Random Oracle Model (ROM) can
be found in Section A of the appendix.

4 EAV security is implied by IND-CPA security. See Section A.3 of the appendix for
details.

2.1 DHIES

In the following definition we will refer to “key-derivation functions”. This is only
meant as a hint to the reader. We do not provide a definition here, as we will
always model such a function as a random oracle (see Section A.5).

Definition 1 (DHIES [11, Construction 12.19]). Let G a group-generation
algorithm (for Diffie-Hellman groups). Let Il a private-key encryption scheme
where IT;.Gen(17) samples a key w.a.r. from {0,1}". Let Hpu = {H]g"})I | n € N}
a family of key-derivation functions where Hgﬁ: {0,1}* — {0,1}". We write
Hpy = Hgﬁ when 1 is clear from the context. Define the algorithms Gen, Enc
and Dec as follows:

— Gen: on input 17 run G(1") to obtain (G,q,g). Sample x <+ [q] and set
hy == g¢*. Set pk = (G, q,g,h1) and sk = (G, q,g,x), and output (pk, sk).
The message space is the message space of 1.

— Enc: on input a public key (G, q,g,h1) and a message m, sample y < [q],
set hy = ¢¥,k == Hpu(hy),’ compute ¢ + I;Ency(m) and output the
ciphertext (ho,).

— Dec: on input a private key (G, q,g,x) and a ciphertext (ha,c), compute
k= H(h%) and outpul ITs.Deck(c’). If the ciphertext is not of the right form
or Il,.Dec outputs 1, output 1.

The public-key encryption scheme IIpp = (Gen, Enc, Dec) is called the Diffie-
Hellman Integrated Encryption Scheme (DHIES).

When using the DHIES scheme later on, we will set pk == h and sk = x in
Gen for simplicity. In practice G, q,g and Hpg will be known.

Under the DDH assumption (i.e. the assumption that the DDH problem is
hard relative to G), using DHIES with an EAV secure private-key scheme gives
an IND-CPA secure public-key encryption scheme in the ROM, as proven in [11,
Theorem 12.12].

3 Our concrete result for TreeKEM

The following theorem describing the security of TreeKEM, stated informally
here, is our main practical result. It bounds the advantage of any adversary
creating ¢ commits and p add or update proposals in a group with at most u
users in distinguishing the group key of any uncompromised commit from a
random bit string.

Theorem 1 (Informal). If the DHIES scheme is used in TreeKEM, the private-
key encryption scheme in DHIES is (t,egav)-FAV-secure and the DDH problem

® Where for h € G, Hpu(h) denotes the output of Hpy with the binary representation
of h given as input.

10

is (t,eppm)-hard in the Diffie-Hellman group, then for all c,p,u, TreeKEM is
(t,, ¢, p,u)-secure in the ROM with t =t and

E=2-u-(3-c-log(u)+p)-ecrav
+2-(3-c-log(u) +p) - cppn
+ negl

where

— ¢ is the number of commits created

p is the number of add or update proposals created

u s the maximum number of users

the term negl = negl(n) is negligible and much smaller than the other terms

In Section C of the appendix we restate the above theorem formally as
Theorem 4. To this end, we also provide formal definitions for the syntax and
security of propose and commit CGKA schemes and a high-level description of
how to instantiate (the essence of) the TreeKEM protocol with our definitions.

Security against multiple challenges As noted in the introduction, although
our security definitions only allow the adversary to make a single challenge query,
it is straightforward to adapt our proof to show the same security loss with
multiple challenge queries. See the note after Theorem 4 in the appendix for
details.

3.1 Interpreting the result

In the following, we will go through some concrete examples to see what level
of security our proof guarantees for TreeKEM with different parameter choices.
We will look at the MLS_128 DHKEMX25519_AES128GCM_SHA256_Ed25519 cipher
suite [5, Section 17.1] for 128-bit parameters, which uses Curve25519 as the
Diffie-Hellman group and AES with a 128-bit key size for private-key encryption.
We will assume that both Curve25519 and AES have a 128-bit security level and
we will set (t75EAV) = (taeDDH) = (248, 2_80).

For 256-bit parameters, we will look at the MLS_256_DHKEMP521_AES256GCM_SHA512 P521
cipher suite, which uses curve P-521 and 256-bit AES. We will assume that P-521
and 256-bit AES have a 256-bit security level and set (¢,egav) = (¢,eppu) =
(2128 9-128),

Large groups with hourly commits and frequent updates In this example
we consider a large group of about 10’000 users, existing for 5 years and making
one commit every hour. Then u < 2™ and ¢ < 2!6. We also assume that a
significant fraction of the users will want to update with every commit. Then,
assuming that add proposals are relatively rare, we can bound p < ¢ - u = 230,
This implies 3 - ¢ - log(u) + p < 23!, dominated by p.

11

Then with 128-bit parameters we get

£ <2 cpav +2% - eppp + negl < 2%3
with the egay term dominating the result. This only gives a security level of
/& > 281, Since private-key encryption is relatively cheap, using 256-bit AES
would have a small impact on the performance and would increase the security
level to 95 bits (with the epppy term now dominating).6 Finally, using full 256-bit
parameters yields 209 bits of security for TreeKEM.

The previous best result in [12, Theorem 3] proved the bound

£<2-(3-c-log(u) +p)? - € + negl

where ¢ is the IND-CPA security of the underlying public-key encryption scheme.
If we assume that DHIES has an z-bit security level as a public-key encryption
scheme with z-bit parameters, the result implies 64 bits of security with 128-bit
parameters (with no change when using 256-bit AES) and 192 bits with 256-bit
parameters.

Few updates In this example we use the same number of users and commits,
but assume that the number of proposals is small such that p < ¢ -log(u). In
this case, we have 3 - ¢ -log(u) + p < 222. Then our result guarantees 90 bits of
security with 128-bit parameters, 104 bits with 256-bit AES and 218 bits with
256-bit parameters.

In contrast, the bound in [12] implies 82 bits with 128-bit parameters and
210 bits with 256-bit parameters.

Very large groups with one commit every minute and frequent updates
In this example we consider more extreme values for ¢ and u to highlight the gap
between our result and the one in [12]. We assume a group of about 1 million users,
existing for 50 years and making one commit every minute. Furthermore, we will
again use p < ¢ - u. This means that u < 220, ¢ < 22° and 3 - ¢ - log(u) + p < 246,

These values imply 60 bits of security with 128-bit parameters, 80 bits with
256-bit AES and 188 bits with 256-bit parameters using our result. The result in
[12] implies 34 bits of security with 128-bit parameters and 162 bits with 256-bit
parameters.

4 Tighter GSD security

In this section, we present the main theoretical result behind Theorem 1 in
Theorem 2. To this end, we first define a modified version of the public-key GSD
game from [12] and then proceed to prove Theorem 2 in detail.

6 For this we set (t,epav) = (248, 2_208).

12

4.1 Seeded GSD with Dependencies

The GSD game defined here is inspired by the definition of the public-key GSD
game (Definition 7) and the proof of Theorem 3 in [12]. We have already motivated
the differences in Section 1.2. We will call our adapted game Seeded GSD with
Dependencies (SD-GSD). A very similar definition appears in [3], providing
essentially the same abstraction over TreeKEM and also allowing for an adversary
to provide the randomness used for encryption and key generation. However, our
definition has one key difference: when asking to be challenged on a node with
seed s, the adversary must distinguish Hyep(s) from random as opposed to s.
This stays true to how the group key is computed in TreeKEM and provides two
significant advantages:

— it allow us to significantly simplify our proof
— it enables one to easily prove the same bound when the adversary can make
multiple challenge queries

On the other hand, the security implied by our definition is weaker (at least in
the ROM), as it only guarantees that an adversary cannot compute the seed of
the challenge node, whereas the other definitions guarantee that this seed cannot
be distinguished from random.

Definition 2 (The SD-GSD game). Let II = (Gen, Enc, Dec) a public-key
encryption scheme, where Gen(1") uses p(n) random bits and {0,1}*) is q

subset of the message space. Let Hgen = {Hégr)l | n € N}, Haep = {Hgg | n € N}

families of functions with Hégr)],H(gZ;: {0,137 — {0,1}*M. We will write

Hyen = HéQ%,Hdep = HSZE) and p = p(n) if n is clear from the context. Define
SD-GSD

the game Game(3, " 3,). (A) for an adversary A:
1. The adversary A outputsn € N and a list of dependencies D = {(a;,b;)}7, C
[n]2. For each v € [n]:
(i) — Case v="0; for some i (v is the target of some dependency):
set Sy = Haep(Sa;)-
— Otherwise: sample s, < {0,1}".
We call s, the seed of the node v and a tuple (a,b) € D a seed dependency.
(ii) Compute (pk,, sk,) = Gen(1", Hgen(sy))-
Set C = E = @. We call the directed graph ([n], E) a GSD graph of size n.
2. A may adaptively make the following queries:

— reveal(v) for v € [n]: A is given pk,,.

— encrypt(u,v) for u,v € [n],u # v, (u,v) ¢ E: (u,v) is added to E and A
is given ¢ < Encpy, (sy).

— corrupt(v) for v € [n],v ¢ C: A is given s, and v is added to C. We call
such a node v € C corrupted. All nodes not reachable from any corrupted
node in the graph ([n], EU D) are safe (while all other nodes are unsafe)
and we call their seeds hidden (even if an unsafe node happens to have
the same seed).

13

3. A outputs a node v € [n]. We call v the challenge node. A bit b« {0,1} s
sampled and A is given

- Hdep(sv) b =0
s b=1"

where s < {0,1}*.7 A may continue to do queries as before.
4. A outputs a bit b'. The output of the game is defined to be 1 if b’ = b, and 0
otherwise.

We require an adversary playing the above game to adhere to the following:

— The challenge node is safe

The challenge node is not the source of a seed dependency®

Every node is the source and target of at most one seed dependency®
The graph ([n], E' U D) is acyclic and without self-loops

It is interesting to note that previous definitions of the GSD game also
included the following restrictions to the adversary:

— The challenge node always remains a sink in ([n], E)
— reveal is never queried on the challenge node

Our proof in the ROM does not require these restrictions. If Hyep is modelled as
a random oracle, then an encryption edge outgoing from the challenge node, or
knowing its public key gives no advantage to A, as by the assumption of Hqep
being a random oracle the only way to learn information about Hyep(s) is by
querying s.

Definition 3 (SD-GSD security). Let II, Hgen and Haep as in Definition 2
above and let t,e, N, 0 functions in 1. The triple (II, Hgen, Haep) 15 (t,€, N, 0)-
SD-GSD-secure if for all n, for any adversary A constructing a GSD graph of
size at most N(n) and indegree at most 6(n) and running in time t(n) we have

R } 1
Adv?ﬁﬁiﬁHdﬂ))m(A) =2 (Pr [Game"(sg’ggse?ﬂdepm(.A) = 1] — 2) <e(n).

Since in this work we are interested in SD-GSD security for the case where
Hgen and Hgep are modelled as random oracles and our focus is on the encryption
scheme being used, we introduce the following definition for convenience.

" Note that (in general) r is not a hidden seed, as (with overwhelming probability) it
is not the seed of any node.

& Otherwise the adversary could learn the value of Hgep on the seed of the challenge
node by creating a seed dependency with the challenge node as the source and
corrupting the target node.

9 If a node were the source node of multiple seed dependencies, then corrupting one
target node would reveal the seeds of all target nodes. Additionally, the computation
of seeds is not well-defined if a node is the target of multiple dependencies.

14

Definition 4 (SD-GSD security in the ROM). A public-key encryption
scheme II is (t,e, N, 0)-SD-GSD-secure in the ROM if the triple (II, Hgen, Haep)
is (t,e, N, 0)-SD-GSD-secure when Hgen and Hqep are modelled as random oracles.

For security parameter n and an adversary A, we write Game?—}?,;GSD(A) to denote
the game where Hgyey, and Hyep, are modelled as random oracles and Adv%?,;GSD(A)

for A’s advantage in this game.

4.2 Proving SD-GSD security for DHIES in the ROM

Theorem 2. Let IIpy denote the DHIES scheme instantiated with a group-
generation algorithm G and a private-key encryption scheme Is. If I is (t,epav)-
EAV-secure, the DDH problem is (t,eppu)-hard relative to G and the function
Hpy in Ilpy is modelled as a random oracle, then for any 6, N with 6 < N,
Ilpy is (t,&, N, 0)-SD-GSD-secure in the ROM with'’

2-mDH-N2 mS-N N2

€=2-0-N-epav+2- N eppn + . Tt T

where mg is an upper bound on the number of queries made to either Hgen or
Hgcp, mpu 15 an upper bound on the number of queries made to Hpu, q s a
lower bound on the size of the group output by G and p is the number of random
bits sampled by ITpy.Gen, and with t ~ ¢!

In contrast, the result in [12] achieves a security loss in O(N?) and reduces
to the IND-CPA security of the public-key encryption scheme.

For ease of exposition, we will assume that G(1") is deterministic, as is the
case in practice. We will therefore set pk :== hy, sk := x in IIpy.Gen, as G, q, g
are implied by 7. The results nevertheless hold also for the general case.

Intuition Consider an arbitrary SD-GSD adversary 4. For an execution of
Game%%f 7S,D(.A) we say “A wins” to denote the event Game%%ﬁ ED(.A) = 1. For
one argument, we will need to assume that all seeds sampled in the SD-GSD
game are distinct, which happens with overwhelming probability. To this end, let

C' denote the event that there are two nodes with the same seed.

As usual with random oracles we proceed by a case distinction on whether
they were queried on some interesting value. Accordingly, let @, denote the event

10 Note that in the following equality we have omitted writing the argument 7 to the
various functions and are implying that the equality holds for all 7.
1 We provide a more precise expression of the runtime in Section B.1 of the appendix.

15

that A queries H, on a hidden seed for = € {gen, dep}. Then we can write

Pr[A wins | 6] = Pr[.A wins A Qdep | 6] + Pr[.A wins A Qdep | 6]
< Pr|A wins A Qgep | C] +Pr[.A wins | C, Qdep]

2 (1)
1

C]+§

(W) 1
< Pr(Qs] + Pr[C] + >

[
Dp, [A wins A Qgep | C] + -
Pr(Q,

where Qs = Qgen U Qaep (s for seed). Step (1) intuitively holds because without
having queried Hgcp, for any hidden seed, in particular the seed s, of the challenge
node v, Hyep(sy) is a uniformly random value from A’s perspective. Thercfore,
it can do no better than guessing to distinguish Hgep(s,) from s < {0,1}*. Step
(M) follows from simple manipulations (see the proof for details).

The heart of the proof is to bound Pr[Qs]. When the adversary first triggers
Qs by querying the seed of some safe node w, it can only have learned the seed
through encryptions ¢; < IIpg.Encpk, (8w), -, ca Ipn.Ency,, (8w) where
(ur,w), ..., (uq,w) are edges in the GSD graph (obtained through corresponding
queries encrypt(uy,w),...,encrypt(uq, w)). The only other potential source of
information about s,, would be a seed dependency (p, w), but this tells .4 nothing:
Since w is safe, p would also be safe and Hgep(sp) cannot have been queried
due to the assumption that w was the first node to trigger Q5. Without having
queried Hgep(sp), by virtue of Hqep being a random oracle s,, has the same
distribution as a seed without a dependency from A’s perspective (uniformly
random). See Figure 4 for an illustration of node w in the GSD graph.

Fig. 4: Ilustration of the GSD graph when Qs is triggered at a node w. The
dashed edge represents a seed dependency (p, w) and the remaining edges represent
encryption queries ¢; <— encrypt(u;, w).

The proof in [12] simply argued that this is not too likely if these encryptions
were made with an IND-CPA secure scheme. In the context of the DHIES scheme
we can say more about these encryptions and achieve a better reduction loss. Let

16

(G,q,9) = G(1"). Let x; = log,(pk.,). Each encryption ¢; is a tuple of the form
(¥, II,.Ency, (s,)) where y; < [q] and k; = Hpy (¢%¢'¥"). Now we can again do
a case distinction on whether Hpy was queried for (the encoding of) some group
element ¢*i'% or not:

(i) If such a query was made, then A solved the Diffie-Hellman challenge (g%, g%).
(Remember that we assumed that w is the first node for which Qy is triggered
and as before if w is safe, then so are the nodes ;. Thus the adversary has
not learned the exponent x; through querying Hgen(sy,) for any i.)

(ii) If no such query was made, then from A4’s perspective all the k; are indepen-
dent, uniformly random keys and it still was able to learn s,, from the EAV
secure encryptions IT,.Encg, (sw), - - -, [s.Enc, (s.).

We can bound the probability of either of these events occurring using the
hardness of the DDH problem relative to G and EAV security of I, respectively.

To this end, we call a group element h € G a hidden Diffie-Hellman key if
h = pky"”, where (u,v) is an edge in the GSD graph, u is safe and y,, , is the
exponent chosen in the DHIES encryption of s, (i.e. A was given a ciphertext of
the form (g¥+v,...) when it queried encrypt(u,v)). Now analogously to above
let Qpu the event that A queries Hpy on a hidden Diffie-Hellman key, and let
Fpy the event that A triggers Qpn when Qg has not (yet) been triggered. Then
we can split the event Qs into two cases as motivated above:

Pr[Qs] = Pr[Qs A Fpu] + Pr[Qs A Fpu |.

We bound Pr[Qs A Fpy] and Pr [Qs A FDH] in Lemma 3 and Lemma 2, respec-
tively.'2 Overall this gives us a bound on the advantage of A using (1).

Proof (of Theorem 2). Let 6, N functions in 7 (mapping to N) with § < N. Let
n arbitrary and let A an arbitrary SD-GSD adversary constructing a GSD graph
of size at most N(n) and indegree at most §(7), making at most my(n) queries to
Hgen or Hyep and at most mpmu (1) queries to Hpw, each of length at most (1),
and running in time #(1). We will use the events defined above.

We have

Pr[A wins] = Pr[A wins A C] + Pr[A wins A C']

< Pr[C] + Pr[A wins | O . @

Let us first bound the probability of a seed collision. Let C; the event that
there is a collision among nodes that are not the source of a seed dependency.
The seeds of these up to N nodes are sampled independently of each other u.a.r.
from {0,1}”, so by the birthday bound we have

N(N -1)
Pr[C,] < o9

12 To be precise, the event Qs A Fpu is a superset of case (i) above. However, the
argument applied in Lemma 3 gives the same bound for either event and this more
general event has the advantage of being simpler.

17

Now consider Pr [C’ | 079] The source seed of every seed dependency is distinct
if 079- Therefore, given 079 every additional seed is sampled u.a.r. from {0, 1},
with up to N seeds already being taken. Similar to proving the birthday bound,
the probability that the i-th seed derived from a seed dependency collides with
one of the already sampled seeds is at most 1\;{1 Therefore,

_ N+0 N+ (N —-1)
Pr[C | Cy] < S E T i v a—
_Ni N(N —1)
Y 2.90

Then

Pr[C] = Pr[C A Cy] 4+ Pr[C A Cy]
< Pr[Cy] + Pr[C | Cy]

2
N N - 3)
- 2P 20
N2
= 2p71'

Next we justify step () in (1). Note that by the rules imposed on the adversary
in the SD-GSD game, the challenge node v is safe and its seed is thus indeed
hidden. If Q4ep does not hold, then A has not queried Hgep, for s,. Moreover,
since v is the only node with seed s, by C, the SD-GSD challenger only ever
queries Hgep, for s, when computing the challenge, so the challenger reveals no
information about Hgyep(sy,) through its responses to other queries.*® Thus, by
virtue of Hgep being a random oracle, Hyep(Sy) is a uniformly distributed value
in {0,1}” from A’s perspective. The value s follows the same distribution. Thus,
A behaves the same when given either r = s or 1 = Hgep(Sy) and

PI‘[l +— A | E7Qdep»b = 1] = Pt‘[l — A | 67C2d“3‘]37r = S]
= Pr[l +— A | 6, Qdep,T = Hdep(sv)] (4)
=Pr[l < A|C,Qaep,b=0].

13 If collisions were possible, then another node u in the GSD graph could by chance
have the same seed and the challenger could leak Hgep(Su) = Haep(S0), e.g. if u is
the source of a seed dependency and the target node of the dependency is corrupted.

18

Therefore

Pr[.A wins|€,Qdep] = Pr[l +— A|C,Qaep, b = 1] .

| =

+Pr[0«+ A|C,Quep,b=0] - =

N =

D pr1— A| T, Qaep,b=0] -

Do —

$Pr[0 e A| T Quoprb=0] -

Next, (#) is easy to show

Pr[Qs|C]-(1—Pr[C]) =Pr[Qs | C] -Pr[C] = Pr[Q] — Pr[Qs A C]
_
Pr[Qs | C] < Pr[QJ] + Pr[C].

By Lemma 3 we havel*
. N2
Pr(Qs A Fpu| < N -eppu + LIRSS AR

and by Lemma 2 we have

mg - N
20 7

Pr[QsAFpu] <0- N -egay +

so we know that

. N2 s+ N
Pr(Qs] < N -eppuy +90- N -epav + mDHq + m2p . (5)

Then

51

AdviP P (4) = 2. (Pr[.A wins| — ;)
(2),(1)
< 4-Pr[C]+2-Pr[Qy]

(3),5)
< E(n).

Security against multiple challenges As noted already in the introduction,
it is straightforward to prove the same result for an SD-GSD game with multiple
challenge queries. In this SD-GSD game, the adversary would have access to an

14 Note that we are again omitting the argument 7 from the functions on the right-hand
side (N, eppu and mpy in this case).

19

additional challenge oracle to perform a challenge on any node as in step 3. of
the original game, with the bit b sampled once at the beginning of the game, and
the seed s sampled fresh for every query. Of course, the adversary must ensure
that the restrictions that apply to the challenge node in the original game apply
to all challenge nodes in this new game.

To prove security in this multi-challenge SD-GSD game, the same case dis-
tinction can be performed as in (1) and, concerning step (1), it can be shown
through a sequence of statistically indistinguishable hybrids that the adversary
has no advantage if they did not trigger Qqep.

Reducing to EAV security Recall case (ii) in the high-level discussion of
Theorem 2: the adversary A was able to learn the seed s, given the EAV
secure encryptions IT;.Encg, (Sw), ..., s.Encg,(s,). We can see A as an ad-
versary in a security game where A is given d EAV secure encryptions c¢;
II,.Encg, (m), ..., cq < II;.Encg,(m) of a message m with k; < IT,.Gen(1") and
must compute m. If we can prove that beating such a game is hard, then we can
bound the probability of A actually learning s,, in this way.

This is exactly how we proceed in this section. Instead of asking the adversary
to compute an encrypted message m, we turn to a more familiar decisional
formulation as in the IND-CPA game (where the adversary may choose a pair
mg,m1 and must distinguish whether the d ciphertexts encrypt mg or my).
We call this security notion EAV security under multiple (M) independent (I)
encryptions of a single (S) pair of messages (MIS-EAV).

Definition 5 (The MIS-EAV game). Let k denote the security parameter
and let II a private-key encryption scheme. Define the game Game%}S'EAV(A)
for an adversary A:

1. The adversary A outputs ¢ € N and a pair of messages mg, my of the same
length. We refer to q as the number of queries made by A.

2. A bit b + {0,1} is sampled. For each i € [q], A is given an encryption
¢; < II.Encg, (my) where k; < I1.Gen(1%) is generated independently of the
other keys.

3. A outputs a bit b'. The output of the game is defined to be 1 if b/ = b, and 0
otherwise.

Definition 6 (MIS-EAV security). A private-key encryption scheme II is
(t,e,q)-MIS-EAV-secure if for all k, for any adversary A making at most q(k)
queries and running in time t(k) we have

| 1
Adv%f"EAv (A)=2- (Pr [Game%}S_EAV(.A) = 1] - 2> <e(k).

Similar to how IND-CPA security for a single encryption query implies IND-
CPA security for ¢ queries with a security loss of g by a standard hybrid argument,
one can show that EAV security implies MIS-EAV security with the same loss.
To see why, recall the hybrid argument for IND-CPA security (as discussed in e.g.

20

(11, Theorem 12.6]): We define the sequence of hybrid games Gy, ..., G, where
in the game G; the first i encryption queries encrypt the second message and
the remaining ¢ — i queries encrypt the first message. Then given an IND-CPA
adversary A for multiple encryptions, an IND-CPA adversary A’ is constructed
to bound

|Pr[A outputs 0 in game G;_1] — Pr[A outputs 0 in game G;]|

for arbitrary 7. The adversary A’ simulates G;_1 or G; to A depending on whether
the ciphertext received from the (single-query) IND-CPA challenger, which gets
passed on as the response to the i-th query, encrypts the first or the second
message from the i-th pair of messages. A’ then uses the encryption oracle to
pass on the right encryptions to A for all other queries. Now notice that if we
wanted to simulate to an MIS-EAV adversary we would not need access to an
encryption oracle since for the MIS-EAV security game all the other encryptions
can easily be generated by A’ sampling the new keys itself.

The argument would of course also work without restricting the adversary to
a single pair of messages. However, we will make use of this restriction to provide
a tighter reduction for a certain class of schemes in the appendix.

Lemma 1. Let Il a private-key encryption scheme with finite message space.
Let tqen, tene functions in k that upper bound the runtime of II.Gen and II.Enc,
respectively. If II is (t,€)-EAV-secure, then for any function q, IT is (I,q - €, q)-
MIS-EAV-secure with T =t — O(q - (tgen + tEnc))-

The details of the proof can be found in Section B.2 of the appendix.

Lemma 2. Recall the assumptions, variables and events from the statement and
proof of Theorem 2. In particular, assume that I, is (t,epav)-EAV-secure. Let
n arbitrary and let A an SD-GSD adversary constructing a GSD graph of size at
most N(n) and indegree at most 6(n), making at most mg(n) queries to Hye, or
Haep and at most mpu(n) queries to Hpu, and running in time t(n). Then

mg - N
20

Pr[Qs AFpu] <6-N-epav +

Intuition By Lemma 1 we know that 1 is MIS-EAV secure. Continuing the
high-level argument before the proof of Theorem 2, consider the first moment that
A triggers Qs A Fpu by querying the seed of some safe node w. As intended, it
follows from the definition of the event Fpy that from A’s perspective all DHIES
ciphertexts it got from queries encrypt(u,w) for any u contain encryptions of
$w under independent, uniformly random keys using IT,. Moreover, as already
argued once, A has learned nothing from a potential seed dependency (p, w), so
these encryptions are everything A had at its proposal to learn s,,.

We can use A’s ability to compute the seed s, of a safe node w from
encryptions of s,, to construct an MIS-EAV adversary: We first guess a node w
whose seed A may query first. Next, we give the MIS-EAV challenger s,, and
some other independent seed s. We simulate the SD-GSD game to A and embed

21

the encryptions from the MIS-EAV challenger when answering queries of the form
encrypt(u, w) for any u. Now consider the behavior of A depending on which
seed the challenger chooses to encrypt:

— If the challenger chooses to encrypt s,,, then A will trigger the event Qs A Fpn
with the same probability as before. We can detect whether Qs A Fpy gets
triggered since all seeds in the simulation are known. If Qs A Fpp occurs and
we guessed w correctly, the event will be triggered at w and A will query s,
telling us that the challenger encrypted s,,.

— If the challenger chooses to encrypt s, then A receives no information about
sw and has a negligible probability of querying it.

Thus, the advantage of the MIS-EAV adversary is about Pr[Qs A Fpu | /N, where
the factor 1/N arises from guessing w, and using that IT; is MIS-EAV secure
we can bound this probability. Since we are only interested in checking whether
the event was triggered for w, the adversary can abort when this is no longer
possible (w is corrupted, some other hidden seed is queried, etc.). The details of
the proof can be found in Section B.3 of the appendix.

For a certain class of schemes, we can improve on Lemma 1 and achieve a
tight reduction. This allows us to get rid of the factor § in Lemma 2. However, we
do not use this in our main result and refer the interested reader to Section B.4
of the appendix.

Reducing to the DDH problem

Lemma 3. Recall the assumptions, variables and events from the statement and
proof of Theorem 2. In particular, assume that the DDH problem is (t,eppu)-hard
relative to G. Let n arbitrary and let A an SD-GSD adversary constructing a
GSD graph of size at most N(n) and indegree at most d(n), making at most ms(n)
queries to Hgen 01 Haep and at most mpu(n) queries to Hpu, and running in
time t(n). Then

. N2
Pr[Qs A Fou) < N - eppu + UCEL A

Intuition We will bound the simpler event Fpy. This event tells us that there is
some safe node a in the GSD graph with encryption edges to nodes ug, ..., ug,
where the query encrypt(a, u;) returned the ciphertext (g¥:, IT;.Enc, (sy,)) with
ki = Hpg(g**e¥"), such that g**«'% was the first hidden Diffie-Hellman key
queried by A for some j. Moreover, at the time g**«'¥ was queried, no hidden
seed had yet been queried by A, implying that A had not queried Hgen(sq)
and thus had no information about sk, besides pk, (recall that (pk,,sk,) =
HDH.GeIl(ln,ngn(Sa))).

It is interesting to note that our approach does not require that .4 has not
queried Hgep for a hidden seed (i.e. that Qgep Was not triggered) as is implied
by the event Fpu, because knowing Hyen(Sq) is the only way to learn about sk,.
Regardless, we still want to have our definition of Fpy include this information,
as the bound on Pr[Qs A Fpp | in Lemma 2 relies on the fact that in the event of

22

Qs A Fpu happening, Qpy was not yet triggered when the event Qg was triggered,
i.e. when either the event Qgen or the event Qqep was triggered.

The intuition is clear that this means that A solved the Diffie-Hellman
challenge (g**<, g¥). What is not immediately clear is how to embed a given
Diffie-Hellman challenge (g%, g¥) from an instance of the DDH game and use
A to tell whether the key k chosen by the challenger is the real key g*¥ or a
uniformly random group element. An intuitive strategy would be to embed the
challenge by setting pk, = ¢g° and g% = g%, which involves guessing u;, and
simply checking whether for any of the queries ¢; to Hpy by A, such that g;
encodes a group element in G, it holds that ¢; = k. Now:

— If k= g"Y, A triggers Fpy and we guessed a and u; correctly, then indeed
as described above ¢; = g°F«¥i = ¢®¥ = k will hold for some 1.

— If k is a random group element, then A has negligible probability of querying
k, as no information about k is ever leaked to A.

If we make sure not to change A’s view of the game in the case k = ¢* ¥ in this
process, we can achieve an advantage of about Pr[Fpy]/N?, where one factor
1/N arises from guessing a and another from guessing u;. Unfortunately, this
would yield no improvement over the result from [12].

To avoid this issue, we can use the random self-reducibility of the DDH
problem and avoid guessing u;. Instead of embedding g¥ into a single encryption
edge, we embed it into all d encryption edges. To get a uniformly random
exponent from y we set y; =y +r; mod ¢ with r; < [g]. Given ¢"'¥/, we can
easily compute ¢g”¥:

giYi = gw~(y+m) = g"Y gt = ™Y = g™V ((¢7)) T
——

= R;
Now to determine whether k is the real Diffie-Hellman key, we check whether
g; - R; = k for some 1, j. This yields an advantage of about Pr[Fpu]/N (and a

slightly larger runtime). The details of the proof can be found in Section B.5 of
the appendix.

23

References

10.

11.

12.

13.

14.

. Abdalla, M., Bellare, M., Rogaway, P.: DHIES: An encryption scheme based on the

Diffie-Hellman Problem (1998), https://cseweb.ucsd.edu/~mihir/papers/dhies.
pdf

. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-

ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) Advances in Cryptology — CRYPTO 2020. pp. 248-277. Springer
International Publishing, Cham (2020)

. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular design of secure group

messaging protocols and the security of MLS. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. p. 1463-1483.
CCS 21, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3460120.3484820

. Balbds, D., Collins, D., Gajland, P.: WhatsUpp with sender keys? Analysis, improve-

ments and security proofs. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology
— ASTACRYPT 2023. pp. 307-341. Springer Nature Singapore, Singapore (2023)

. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon,

K.: The Messaging Layer Security (MLS) Protocol. RFC 9420 (Jul 2023). https:
//doi.org/10.17487/RFC9420, https://www.rfc-editor.org/info/rfc9420

. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing

efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security. p. 62-73. CCS 93, Association for Computing Machinery,
New York, NY, USA (1993). https://doi.org/10.1145/168588.168596

. Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: Asynchronous Decentralized

Key Management for Large Dynamic Groups A protocol proposal for Messaging
Layer Security (MLS). Research report, Inria Paris (May 2018), https://inria.
hal.science/hal-02425247

. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A for-

mal security analysis of the signal messaging protocol. In: 2017 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P). pp. 451-466 (2017).
https://doi.org/10.1109/EuroSP.2017.27

. Hogben, G.: An important step towards secure and interop-

erable messaging. https://security.googleblog.com/2023/07/
an-important-step-towards-secure-and.html (2023), accessed: 2023-11-01
IETF: Support for MLS. https://www.ietf.org/blog/support-for-mls-2023/
(2023), accessed: 2023-11-01

Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Third Edition. Chap-
man & Hall/CRC, 3rd edn. (2020)

Klein, K., Pascual-Perez, G., Walter, M., Kamath, C., Capretto, M., Cueto, M.,
Markov, 1., Yeo, M., Alwen, J., Pietrzak, K.: Keep the dirt: Tainted TreeKEM,
adaptively and actively secure continuous group key agreement. In: 2021 IEEE
Symposium on Security and Privacy (SP). pp. 268-284 (2021). https://doi.org/
10.1109/SP40001.2021.00035

Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Proceedings of the 4th Conference on Theory of Cryptography. p. 21-40. TCC’07,
Springer-Verlag, Berlin, Heidelberg (2007)

Pascual Perez, G.: On the efficiency and security of secure group messaging. Ph.D.
thesis, Institute of Science and Technology Austria (2024). https://doi.org/10.
15479/at:ista:18088

24

15. Perrin, T., Marlinspike, M.: The Double Ratchet algorithm. https://signal.org/
docs/specifications/doubleratchet/ (2016), accessed: 2024-03-05

25

Supplementary material

A Basic cryptographic definitions

A.1 Notation
We use the following notation throughout:

— We write z < S to say that z is sampled u.a.r. from the finite set S
— For n € N\ {0}, [n] = {1,...,n}, and for a,b € N s.t. a < b, [a,b] =
{a,a+1,...,b}
— If G is a cyclic group of order ¢ and g a generator, then
e We write the group operation in G multiplicatively
e h~! denotes the inverse of h € G
e log,(h) denotes the unique z € [q] such that g* = h
— We write b < A to denote the event that an adversary A outputs the bit b
when playing a game where it must output a bit in the end
For a,b € {0,1}™, a ® b denotes the XOR of ¢ and b
— We stick to using x as the security parameter of private-key encryption
schemes and 7 as the parameter of public-key encryption schemes
For a function f in the security parameter n (or k) we often omit writing n
as an argument and simply write f to refer to f(n)
— For an encryption scheme II that contains an algorithm X, we may refer to
IT’s implementation of X by II.X. (E.g. if IT is an encryption scheme we can
refer to its key-generation algorithm by II.Gen)

A.2 Encryption schemes
Private-key encryption

Definition 7 (Private-key encryption [11, Definition 3.7]). Let x denote
the security parameter. A private-key encryption scheme IT consists of three
probabilistic polynomial-time algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes as input 1% (in unary) and outputs
a key k. We write k < Gen(1%).

2. The encryption algorithm Enc takes as input a key k and a message m €
{0,1}*, or m € {0,1}=19) for some function | if the message space is finite,
and outputs a ciphertext c. We write this as ¢ + Encg(m).

3. The deterministic decryption algorithm Dec takes as input a key k and a
ciphertext ¢, and outputs a message m or L (denoting an error). We write
this as m = Decg/(c).

It is required that for every k, every key k output by Gen, and every message
m, it holds that Pr[Decy (Encg(m)) = m| = 1 (where the probabilily is over the
randomness of Ency,).

26

Public-key encryption In the following definition we will be more explicit
about the randomness used by the algorithm Gen, as we require a way to provide
the randomness as input.

Definition 8 (Public-key encryption [11, Definition 12.1]). Let n denote
the security parameter. A public-key encryption scheme II consists of three
probabilistic polynomial-time algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes as input 17 (in unary) and outpuls a

pair of keys (pk, sk) (a public and private key). We write (pk, sk) + Gen(1").
The public key defines a message space Mpy.
The algorithm samples p(n) uniformly random bits to make randomized
decisions for some function p polynomial in 1. The sequence of random
bits 7 € {0,1}* to be used by the algorithm may also be provided as
input. We write this as (pk, sk) = Gen(1",r) to emphasize the fact that the
output is deterministic. The distribution over key pairs output by sampling
7+ {0,1}*" and running Gen(1",r) is identical to the distribution over
key pairs outpul by running Gen(1").

2. The encryption algorithm Enc takes as input a public key pk and a message
m € My, and outpuls a ciphertext c. We write this as ¢ <— Encpi(m).

3. The deterministic decryption algorithm Dec takes as input a private key sk
and a ciphertext ¢, and outputs a message m or L (denoting an error). We
write this as m = Decgy(c).

It is required that for every n, every key (pk, sk) output by Gen, and every
message m, it holds that Pr[Decg,(Encyi(m)) = m| =1 (where the probability is
over the randomness of Encpy,).

A.3 Security definitions

Definition 9 (The IND-CPA game). Let k denote the security parameter
and let II a private-key encryption scheme. Define the game GameEE'CPA(A)

for an adversary A:

1. A key k < Gen(1") is generated.

2. The adversary A is given oracle access to Il.Ency, and outputs a pair of
messages mo, my of the same length.

3. A bit b+ {0,1} is sampled and A is given a ciphertext ¢ < Ency(mp). (A
continues to have oracle access to I1.Ency.)

4. A outputs a bit b'. The output of the game is defined to be 1 if b’ = b, and 0
otherwise.

Definition 10 (IND-CPA security [11, Definition 3.21]). For functions
t,e in the security parameter k, a private-key encryption scheme II is (t,e)-
IND-CPA-secure if for all K, for any adversary A running in time t(k) we
have

Adv%\{E'CPA(A) =2 (Pr [Game%\{]s‘CPA(A) =1] - ;) < e(k).

27

We make use of a weaker form of security called “indistinguishability in the
presence of an eavesdropper” [11] and refer to it as “EAV security”. It is identical
to IND-CPA security with the sole exception that the adversary does not have
access to an encryption oracle.

Definition 11 (The EAV game). Let k denote the security parameter and
let IT a private-key encryption scheme. Define the game Game%‘?X(A) for an
adversary A:

1. A key k < Gen(1") is generated.

2. The adversary A oulputs a pair of messages mg, my of the same length.

3. A bit b+ {0,1} is sampled and A is given a ciphertext ¢ < Ency(my).

4. A outputs a bit b'. The output of the game is defined to be 1 if b’ = b, and 0
otherwise.

Definition 12 (EAV security [11, Definition 3.8]). A private-key encryption
scheme II is (t,e)-EAV-secure if for all x, for any adversary A running in time
t(k) we have

AGVE () =2 (reGamefY (4)=1] - §) < (o).

Lemma 4. Let IT a private-key encryption scheme. If II is (t,e)-IND-CPA-
secure, then II is (t,e)-EAV-secure.

Proof. This follows immediately from the fact that any EAV adversary is also an
IND-CPA adversary.

When analyzing the advantage of an adversary we may make use of the
following well-known equality.

Lemma 5. Let X a Bernoulli random variable and b < {0,1} (where X and b
are not necessarily independent). Then for x € {0,1}

2-(Pr[X:b]—;):Pr[X:m|b:m]—Pr[X:m|b:1—x].

In particular, if A is an adversary with output in {0,1} playing a game where a
bit b« {0,1} is sampled, then for x € {0,1}

2-<Pr[b+A] 1>=Pr[m<—A|b=x]—Pr[x<—A|bzl—x]. (6)

2
Proof. Let z € {0,1}. We have

1 1

2-(Pr[X:b]—2>:2-(Pr[X:a;|b::z:]~;+Pr[X:1—ac|b:1—x]-_

2
=Pr[X=z|b=2]+Pr[X=1-2|b=1—-2]—-1
=PrX=z|b=2]-(1-Pr[X=1-2|b=1-2])
=Pr[X=z|b=2]-Pr[X=2|b=1-2].

28

1
2

)

A.4 The Decisional Diffie-Hellman problem

Definition 13 (Group-generation algorithm [11, Section 9.3.2]). A group-
generation algorithm G is a probabilistic polynomial-time algorithm that takes as
input 1" and outputs (G, q,g), where G is (a description of) a cyclic group with
order q and g € G is a generator. A group element is represented as a bit-string
of length at most y(n). We write (G, q, g) < G(1").

Definition 14 (The Decisional Diffie-Hellman (DDH) problem [11, Sec-
tion 9.3.2]). Let G a group-generation algorithm. Define the game GamegEH(A)
for an adversary A:

1. G(17) is run to obtain (G, q,g), and exponents x,y < [q] and a bit b+ {0,1}

are sampled.
2. The adversary A is given G, q, g, hy == ¢g®,ha = g¥ and

Ty —
I 9 b=0
k b=1

where k « G.
3. A outputs a bit b'. The output of the game is defined to be 1 if b/ =b, and 0

otherwise.

Definition 15 (Hardness of the DDH problem [11, Definition 9.64]).
The DDH problem is (t,e)-hard relative to G if for all n, for any adversary A
running in time t(n) we have

AdVgBH(,A) =2. <Pr [Gamegh"(A4) = 1] — ;) <e(n).

A.5 The Random Oracle Model

We work in the commonly used Random Oracle Model (ROM) to prove our
results. We refer the reader to [11, Chapter 6.5] for an informal overview of the
ROM and to [6] for the original work that introduced the model. The ROM
introduces the concept of a random oracle. If a function H : A — B is modelled
as a random oracle, then certain assumptions are made about what an adversary
A knows about H and how it interacts with it:

— From A’s perspective, H is a black-box function. The only way for A to
interact with H is for it to provide a value a € A and get back H(a), and
this is the only way for A to learn H(a). We say that A queries H(a) or
that A queries H for a. This well-defined interface of A to H implies that a
reduction can extract the queries that A4 makes to H.

— From A’s perspective, H is a random variable, sampled u.a.r. from the set of
all functions from A to B. Thus, if A queries H for some a € A that it has
not queried before, the value H(a) is a random variable uniformly distributed
in B from A’s perspective.

We do not rely on the property known as “programmability” in this work.

29

B Tighter GSD security

B.1 Runtime in Theorem 2

For completeness, we provide a more precise expression of the runtime # in
Theorem 2. For appropriately chosen constants we have

t= t_O(P “tsample * Ms + (Y + 7 - tsample) - MDH
+N - ((p + ”I)) tsample + mpmu - tOp + tHDH.Gen)
+N2 ‘ tHDH.Enc)»

where the various variables denote the following

— tsample: time to sample a uniform bit

— U Tpy.Enc: time to encrypt s € {0,1}? with IIpy

— tiTpy.Gen: Tuntime of ITpy.Gen(1") (which is strictly greater than the runtime
of IIpy.Gen(1",r) for input randomness)

— top: time to perform the group operation in a group output by G(17)

~: maximum length of any query to Hpu

B.2 Proof of Lemma 1

Proof (of Lemma 1). Note that since the message space is finite, the time to
encrypt a message is bounded. As outlined before Lemma 1, the lemma follows
from a simple hybrid argument. Let ¢ a function in «, let x arbitrary and let
A an arbitrary MIS-EAV adversary running in time #(x) and making at most
¢(x) queries. Define the sequence of hybrid games Gy, ..., G, where in the game
G; the first 7 encryptions given to the adversary encrypt m; and all remaining
encryptions encrypt mg. We will write

Pr0 « A |Gl

for the probability of A outputting 0 when playing the hybrid game G;.
Let i € [g]. Construct an EAV adversary A’ that behaves as follows:

1. A’ runs A and gets ¢, mg, my.
2. A’ outputs the messages mg, m; and gets a ciphertext ¢ from the challenger.
3. A’ gives the ciphertexts c1,...,cq to A where

I1.Ency, (m) i<y
Cj = C 7 Ij
I1.Ency, (mg) i>j

and k; < IT.Gen(1%) Vj.
4. A’ outputs whatever bit A4 outputs.

30

Now consider the value of the bit b sampled in Game%ﬁ/ (A"). If b = 0, then
the first ¢ — 1 ciphertexts that A received were encryptions of m; and the
remaining ciphertexts were encryptions of mg, where all encryptions were under
keys sampled independently with I7.Gen. Thus, from the view of A everything
followed the same distribution as in the game G,;_; and

Pri0+ A |b=0]=Pr[0 + A| G;_1]-

Analogously, in the case b = 1 the first 7 ciphertexts received by .4 were encryptions
of my and the rest encryptions of my, so

Pri0+ A" |b=1]=Pr[0+ A | G].
Then
PI‘[O ~— A | Gi_l]—PI‘[O ~— A | Gl]
=Prj0+ A |b=0] —Pr[0+ A" | b=1]
7
© AdvEAY () g
<e

by (t,€)-EAV security of IT since A’ runs in time £ + O(q - (tgen + tEnc)) = t.
Now let b be the bit sampled in the MIS-EAV game. Notice that

Pr[0 < A|b=0] = Pr[0 + A| Gy
and
Pri0«+ A|b=1]=Pr[0 + A| Gl
Then
AdVPSEAY () @ prig o A b =0]—Prl0 « A]b=1]
= Pr[0 + A | Go] — Pr[0 + A | G,]
q
= Pr[0+ A[Gi] - Pr[0+ A| Gy

i=1

B.3 Proof of Lemma 2

Proof (of Lemma 2). As already motivated after Lemma 2, we construct an
MIS-EAV adversary A’ to derive the bound. A’ behaves as follows:

1. A’ runs A to get n and D and initializes the GSD graph, seeds and the set
of edges and corrupted nodes as in step 1. of the SD-GSD game.

2. A’ samples w < [n], s < {0,1}” and gives ¢ and the messages s,,, s to the
challenger. Let c¢q,...,cs the encryptions it gets back.

31

3. A’ faithfully simulates the SD-GSD game to A with the following exception:
Whenever A4 makes a query of the form encrypt(u,w) for any u, A’ replies
with (g%, ¢;) where x < [g] and ¢ is the index of the next ciphertext (from
step 2. of the MIS-EAV game) not yet used.

All random oracle queries are simulated by sampling the output of the oracle
uw.a.r. for new queries and using the value first sampled for repeated queries.
During the simulation A’ also pays attention to the following:
— If any of the following events occur, A’ aborts the simulation and outputs
1:
o A queries Hpy for a hidden Diffie-Hellman key
o A queries Hgep or Hyep for a hidden seed that is not s,
e A queries corrupt(u) for some node u such that w is no longer safe
— If A queries Hgen(Sw) O Hyep(Sw), A’ aborts the simulation and outputs
0. This is the only point at which A" outputs 0.
If the simulation arrives at the point where A outputs its guess (step 4. of
the SD-GSD game), then A’ outputs 1.

The advantage of A’ is given by

AdVIISEAY (47 @ pofo e A/ [b= 0] = Pr[0 « A’ [b= 1], (8)

where b is the bit sampled by the MIS-EAV challenger.
First, we will show that

Pr[Qs A Fpu |

!
= >
Pr0« A |b=0] > ¥

(9)

Let E = Qg A Fpg. In the following, while showing (9) we will implicitly assume
that b = 0 when referring to an execution of Game%i?,;EAv(A’). On a high level
(9) holds because as long as the game has not been aborted the encryptions A
receives from A’ are indistinguishable from what it would get in the real SD-GSD
game and we get a factor % from guessing the node that triggered E. However,
showing this requires a few steps.

Consider a modification of the SD-GSD game G; where the game is aborted
whenever one of the following events occurs, where for all these events A’ would
also abort the simulation:

— A queries Hpy for a hidden Diffie-Hellman key
— A queries Hgen 0r Hgep for a hidden seed

(Since we are not interested in the output of the game we can define aborting the
game as the game ending with output 0.) The game G; is something between the
real SD-GSD game and what A’ simulates to A. The only difference in when Gy
aborts compared to the game simulated by A’ is that we are not paying attention
to some specific node w remaining safe. Aborting the game in this way does not
alter the probability of A triggering the event E in G1, since in either case when
the game is aborted either E or E is already known to hold:

32

— If A queries Hpy for a hidden Diffie-Hellman key, then it triggers Qpy and
Qs has not been triggered before since this would have caused the game to be
aborted. Thus, A triggered Fpg and Qs A Fpy cannot hold in this execution
of the game.

— If A queries Hgep or Hgep for a hidden seed, then this triggers Q5. Moreover,
Fpy also holds at this moment since the game would have aborted carlier if
Qpu had already been triggered. Thus, Qs A Fpy holds.

Let E7 the same event as F in the game G1. As argued above we have
Pr[E,] = Pr[E]. (10)

Now consider a game G5 which is a modification of the game G; where at the
beginning of the game wsy < [n] is sampled and the game also aborts if A queries
corrupt(u) for some node u such that ws is no longer safe, just as in the game
simulated by A’. The game (5 is again something between the game G, and
what A" simulates to A. We also modify Gy such that it also samples wy < [n]
at the beginning of the game. This does not change the fact that (10) holds as
the sampling of w; has no effect on the execution of the game.

Let Es and E’ the events corresponding to E in the game G5 and the game
simulated by A’, respectively. We further introduce a new random variable W to
analyze each game where

fo E
" |z E was triggered at node x

(if z is not unique we choose the node with the lowest identifier). Let W5, W5 and
W' be the corresponding random variables in game G1, game G2 and the game
simulated by A’. Consider the probability Pr[W; = w; | Eq]. The node wy is
sampled independently and does not affect the execution of the game. Therefore,
in an execution where E; occurs and the GSD graph has size n (so W; € [n]),
we correctly guess W7 = wy with probability exactly % > % Thus

1
PI‘[Wl = W1 | El] Z N
and combining this with (10) we get

PI‘[Wl = wl] = PI‘[Wl =wi A El]
= Pr[W; = wy | E1] - Pr[E)] (11)

1
Analogously to the argument used to justify (10), we can argue that
PI”[Wl = wl] = PI”[WQ = ’LUQ]. (12)

The only difference from Gy to G2 is that G5 aborts when ws is no longer safe.
But if ws is no longer safe then we know that Wy # wy (if Wy = wo the game

33

would have already aborted when ws’s seed was queried while it was safe). Thus,
(12) indeed holds.
We now show an analogous result comparing the game Gy to the game
simulated by A’:
Pr[Ws = we] = Pr[W' = w]. (13)

Consider how G5 differs from the game simulated by A’. Both games abort at
exactly the same events (this is easy to see). They only differ in how A’ answers
queries encrypt(u, w) for any u. In G5 such a query is answered with a ciphertext
(g%, c) where z + [q],c « IIs.Encg(sy) and k = Hpu(pk®). A’ answers such a
query with (g, ¢/) where 2’ + [g],¢ « II,.Ency (s,) and k' < {0,1}". Now
notice that as long as the game G4 is ongoing, pky is a hidden Diffie-Hellman key
and A has not queried pk{’ to Hpg. If it had, then the game would have already
aborted. Therefore, from A’s view k follows the same distribution as k’. Thus,
overall the game G5 and the game simulated by A’ are indistinguishable to A
and (13) holds.

Finally, notice that if the event W’ = w occurred, then A’ outputs 0. Then
we have

Pr[0+ A" | b= 0] > Pr[W' = w]
(1:3) PI‘[WQ = 'UJQ]

<£) PI‘[Wl = wl]
(1) Pr[E]

D Sttt i |

= TN -
_ Pr[Qs A Fpu |
=N

as promised.

Second, returning to (8), we can more easily show that Pr[0 < A" | b=1]
is negligible. In the SD-GSD game simulated to A during an execution of
Game%f%EAv(A’) with b =1, the seed s,, is a random variable independent of
any information given to A:

— the game aborts when w becomes unsafe, so s,, cannot be learned by querying
corrupt(w) or by querying Hgep(sp) for an unsafe node p where (p,w) is a
seed dependency

— querying Hgep(sp) for a safe node p where (p, w) is a seed dependency results
in the game being aborted and by virtue of Hqcp being a random oracle, from
A’s perspective s,, follows the same distribution regardless of whether there
is a seed dependency (p,w) or not

— with b = 1 queries encrypt(u, w) yield encryptions of s instead of s,

Therefore, for any seed s’ that A queries to Hgen 0r Hyep we have

1

Pr[s, = §'] = %

34

Thus, by a union bound we have

Pr[0<—A’|b=1]§72’—L;. (14)

Combining (8), (9) and (14) we get
AdvSFAY () = Pr[0 « A" | b=0] — Pr[0 « A" | b=1]
< Pr[Qs AFpu] my (15)

- N 20
Furthermore, going through the details yiclds that A’ runs in time

ta = £+ O(P : tsample ‘mg + (’Y +n- tsample) - MDH
+N- (P : tsample + tHDH.Gen)
+ N2 ° tHDH‘Enc)

(note that £ 4/ is a constant). Using that ¢ < N, ¢, gen < O(1-tsample)s T, . Enc <
7oy Enc (as encrypting with ITpy involves an encryption with I1,), the definition
of ¢, with appropriately chosen constants we have

t.A’ <t-— 0(5 : (tHs.Gen + tHS.Enn))-
By Lemma 1 [T is (t — O(6 - (t11,.Gen + t11, Enc)), 0 - €AV, 0)-MIS-EAV-secure, so
AV EAY (L) = § - epay. (16)
Finally, if we now combine (15) and (16) we get

Pr[Qu A Ton] m,
N 2°

<0 - erpav
—

ms - N
20

Pr[Qs A Fpu| <0+ N-epav +

as was to prove.

B.4 Tighter MIS-EAYV security for certain schemes

In our reduction from MIS-EAV security to EAV security (Lemma 1) we applied
a general hybrid argument. It is also tempting to try a more direct approach.
The EAV and MIS-EAV games seem less far apart than IND-CPA for single and
multiple encryptions: All additional encryptions in the MIS-EAV game encrypt
the same message, with the only difference being that each encryption is performed
using a fresh key. If only we could take a single encryption ¢ < Encg(m) and
from it produce several encryptions ¢; < Ency, (m) for k; < Gen(1*) (without
knowing & or m), then the additional encryptions would leak no new information
to the adversary, and we would have a tight bound on MIS-EAV security from

35

EAV security. There is a simple EAV secure scheme that achieves the above
property: the one-time pad. Given an encryption ¢ = k @ m, we can just sample
k" <+ {0,1}"* and compute the ciphertext ¢ = c®k’ = (k@ k') ®m, an encryption
of m under the uniformly random key k @ k’. In the following, we formalize this
property of a private-key encryption scheme and use it to prove the desired bound
on MIS-EAV security.

Definition 16 (Key-rerandomizability). Let k denote the security param-
eter and let I = (Gen, Enc,Dec) a private-key encryption scheme. II is key-
rerandomizable if there exists a probabilistic polynomial-time algorithm ReRan
achieving the following: Let r,k < Gen(1l®), m in the message space and
¢ + Encg(m) be arbitrary but fived.'> Then the distribution over ciphertexts
as defined by computing ¢’ + ReRan(1%,¢) is identical to the distribution over
ciphertexts resulting from the process of first sampling k' < Gen(1%) and then
computing a ciphertext ¢’ + Ency (m).

Example As outlined above, the one-time pad is an example of a key-rerandomizable
encryption scheme.

The key idea underlying the proof of the following Lemma was already
provided at the beginning of this section.

Lemma 6. Let II a key-rerandomizable private-key encryption scheme with finite
message space. Let ReRan the corresponding algorithm to rerandomize ciphertexts
and treran an upper bound for the runtime of ReRan. If IT is (t,¢)-EAV-secure,
then for all ¢ € N, II is (,¢,q)-MIS-EAV-secure with t =t — O(q - tReRan) -

Proof. Note that since the message space and thus the ciphertext space is finite,
the runtime of ReRan is indeed bounded. Let x arbitrary. Let A an MIS-EAV
adversary running in time #(x) and making at most q(x) queries. We construct
an EAV adversary A’ that behaves as follows:

1. A’ runs A to get the number of queries ¢ and messages mg, m;.

2. A’ gives mg, m1 to the challenger and receives the ciphertext c;.

3. A’ computes ciphertexts ¢a < ReRan(1”,¢1),...,¢q < ReRan(1%,¢1) (with
independent runs of ReRan).

4. A’ gives the ciphertexts c1,...,¢q to A.

5. A’ outputs whatever bit A outputs.

We apply the properties of ReRan given in Definition 16 to show that the game
simulated to A is distributed identically to the MIS-EAV game. For this we
need only show that the ciphertexts ci,...,cq given to A in the simulation are
distributed identically to the ciphertexts ¢y, ..., c, that A would get in the real
MIS-EAV game. It is immediate that ¢; is distributed identically to ¢}. Now let
i € {2,...,¢}. By Definition 16 ReRan(c) outputs a ciphertext encrypting my
(where b is the bit chosen by the EAV challenger) distributed identically to a

15 Here we are quantifying over all possible keys k and ciphertexts ¢ that can be output
by Gen(1%) and Ency(m).

36

ciphertext encrypting my output by the MIS-EAV challenger. Thus, indeed for
any i, ¢; is distributed identically to ¢} and the claim holds. Therefore

AdViTT PV (A) = AdVERY (A). (17)

Because A’ is an EAV adversary running in time ¢ + O(q - tReran) = © we
know that
AV (L) < e(k),

which together with (17) concludes the proof.

By assuming a key-rerandomizable encryption scheme and applying Lemma 6
instead of the hybrid argument (Lemma 1) in the proof of Lemma 2, we can drop
the ¢ factor in the bound. This also allows us to drop the § factor in Theorem 2.

Corollary 1. Recall the setting of Theorem 2. If the private-key encryption
scheme Il is additionally key-rerandomizable, then the bound in Lemma 2 can
be improved to
mg - N

20
and the bound € on the success probability of an SD-GSD adversary thus improved
to

Pr[Qs A Fpu] < N - epav +

2-7}’LDH-JV2 mS~N N2
q 2p—1 +29—3

€=2-N-(egav +¢eppH) +

(with appropriate changes to the runtime t).

B.5 Proof of Lemma 3

Proof (of Lemma 3). As outlined after Lemma 3 we use A to construct a DDH
adversary A’:

1. A’ gets hq, ho and k from the DDH challenger.

2. A’ runs A to get n and D, samples a < [n] and initializes the GSD graph,
seeds and the set of edges and corrupted nodes as in step 1. of the SD-GSD
game, with the sole exception that pk, = h; (as opposed to setting it to the
public key output by ITpy.Gen(1", Hgen(sa)))-

3. A’ faithfully simulates the SD-GSD game to A with the following ex-
ception: For the j-th query encrypt(a,u;) made by A, A’ replies with
(hg - g", II,.Ency, (su,)) where 7; « [q], k; + {0,1}". A" also computes
and stores R; = (ka/')_1.

All random oracle queries are simulated by sampling the output of the oracle
u.a.r. for new queries and using the value first sampled for repeated queries.
During the simulation A" also pays attention to the following:
— If any of the following events occur, A’ aborts the simulation and outputs
1:
e A queries Hpy for a hidden Diffie-Hellman key on an encryption
edge (u,v) € E with u # a

37

o A queries Hge, or Hyep for a hidden seed
e A queries corrupt(u) for some node u such that a is no longer safe
— If A queries ¢; to Hpn such that ¢; - R; = k for some j, A" aborts the
simulation and outputs 0. This is the only point at which A’ outputs 0.
If the simulation arrives to the point where A outputs its guess (step 4. of
the SD-GSD game), then A’ outputs 1.

The advantage of A’ is given by

Advgh(A) L Prjo A [b=0] - Prl0 A [b=1], (18)

where b is the bit sampled by the DDH challenger.
First, we will show that

PI‘[FDH])

P "1b=0]>
[0« A" | 0] > N

(19)
This part of the proof proceeds very similarly to the proof of Lemma 2 and we will
be a bit more concise. We focus on executions of GamegDEH (A") with b= 0. Let
the games G1, Gy be defined as in Lemma 2, where we denote the node sampled
at the beginning of each game by a1, as, respectively (as opposed to wy, ws). Let
E = Fpy and let Eq, F> and E’ be the analogous events in G1, G2 and the game
simulated by A’ (note that in this latter game, the group elements pk}fgg(h?HT"
are also hidden Diffie-Hellman keys). Finally, we introduce the random variable

e 0 Fpu
|z Fpbn holds and Qpu was triggered on an encryption edge with source

(if = is not unique we choose the node with the lowest identifier) and let A;, Ay
and A’ denote the corresponding random variables in game G, game G5 and
the game simulated by A’.

Just as argued in Lemma 2,

Pr[E,] = Pr[E] (20)
holds, since whenever GG aborts, it is already decided whether Fpy holds:

— If the game was aborted when A queried a hidden Diffie-Hellman key, then
FDH holds.

— If the game was aborted when A queried Hgen or Hgep for a hidden seed,
Fpy does not hold.

Next, the inequality

1
PI‘[Al = al | El] Z N
and therefore also 1
Pr[A; = a1] > N - Pr[E] (21)

38

x

hold for the same reason that

1
PI’[Wl = W1 | El] Z N
and (11) held in Lemma 2.

Then, the equality

PI‘[Al = al] = PI‘[AQ = QQ] (22)

holds again due to the fact that when G5 aborts because as is no longer safe, we
know that As # as.

Finally, we need to argue that
Pr[Ay = ag] = Pr[A’ = q]. (23)

Consider how G4 differs from the game simulated by A’. As in Lemma 2, both
games abort at exactly the same events (note that if ¢; - R; = k holds and A’
outputs 0, then ¢; = k - R]—l _ kkaJ _ hllogg(hz) p 'Zj _ pkiogg(hz)-i-rj’ a hidden
Diffie-Helliman key). The game simulated by A’ differs in two aspects:

(i) A’ sets pkq to hy and not to the public key output by ITpy.Gen(17, Hgen(Sq))

(ii) A’ answers queries encrypt(a,u) differently

Note that as long as the game G is ongoing, A has not queried Hyey, for s, or Hpy
for a hidden Diffie-Hellman key. Both differences are therefore indistinguishable:

(i) By Definition 8, the output of IIpy.Gen(17,r) with r < {0,1}” follows
the same distribution as the output of ITpy.Gen(17). The former process is
behind the distribution of pk, as viewed from A in G2, as A has not queried
Hgen(sq), and the latter process is behind the distribution of pk, in the game
simulated by A’, as the DDH challenger generates a public key with the
same distribution as ITpg.Gen(17). Since both processes follow the same
distribution, pk, follows the same in G5 and the game simulated by A’ from
A’s perspecive.

(ii) In Gy a query encrypt(a,u) is answered with (g%, c¢) where z < [q],c +
II,.Ency(s,) and k = Hpg (pk?). A’ answers such a query with ('8 (h)+7 ¢/
where 7 < [q], ¢’ < IT;.Encys(s,) and k' < {0, 1}". First, log, (h1) +r follows
the same distribution as z. Second, pkZ is a hidden Diffie-Hellman key and
from A’s view k follows the same distribution as k’.

Thus (23) indeed holds.

39

Now, again analogous to Lemma 2 if the event A’ = a occurred, then A’
outputs 0 and

Pr[0« A" | b= 0] > Pr[A" = d
(2:3) PI‘[AQ = (ZQ]

(2:2) PI’[Al = (Ll]

(21 Pr[F]

> e

- N

PI"[FDH]

7]\7 .

Second, we will show that Pr[0 < A" | b = 1] is negligible. When b = 1 in
GamegPIH(.A/), k is a uniformly random group element independent of any
information given to A, in particular of ¢; - R; for any 4, j. Thus for any i, j,

1
Pr[qi . Rj = /{7] = —.
q
Thus, by a union bound and using that i € [mpn),1 <j < N—-1< N (jis
bounded by the maximum outdegree) we have

Prio« A |b=1] < W. (24)

Combining (18), (19) and (24) we get

I’[FDH] . MpH * N

P
AdvggH (A" > ~ .

(25)

Furthermore, going through the details yields that A’ runs in time

ta = £+ O(p * tsample " Ms + (’Y +n- tsample) *MDH
+N- ((p + 77) : tsample + mpy - top + tHDH.Gen)
+ N2 : tHDH.Enc)-

Then using the definition of ¢, with appropriately chosen constants we have
ta < t. So by virtue of the DDH problem being (¢, eppm)-hard relative to G

AdVBEH(A/) < epDH
and if we combine this with (25) we get

PI‘[FDH] . MpDH 'N
N q

< €DpDH
<~

mpu - N?
Pr[Fpu] < N - eppu + %»

concluding the proof.

40

C TreeKEM security

C.1 Commits with proposals in TreeKEM

In order to motivate our definitions for the syntax and security of CGKA schemes,
we will first finish our discussion of the TreeKEM protocol from Section 1.1.

Remove and update proposals Recall the example of a commit without proposals
in Section 1.1. Things look a bit different if the commit contains a remove
proposal. Say user A creates a commit that contains a remove proposal for user
E. We could just let A replace the nodes on E’s direct path E and not encrypt
anything for E. However, if A were compromised while replacing E’s direct path
and performed another commit to update their key material after the compromise,
the information leaked in the compromise could still be used to compute the
new group key, as it includes the secret keys of the nodes on E’s direct path.
Instead, E’s leaf and all nodes on E’s direct path are replaced by blank nodes:
nodes with no associated key pair. Now A has to encrypt the secret sz directly
to F and to the parent node of G and H in the commit removing user E. See
Figure 5. A blank leaf node can be populated with a new user. A blank node
that is not a leaf will be replaced by a non-blank node once some user in the
node’s subtree performs a commit. Blank nodes are also useful to represent the
nodes of a subtree with no users.

ORDRORORORSRORONO,

Fig.5: The commit by user A removing user E described in the text. Nodes with
a dashed border represent the (new) blank nodes.

Creating a commit with an update proposal for user a U is analogous. The
update proposal simply contains the public key of user U’s new leaf, while U

41

stored the corresponding secret key locally when creating the proposal. Because
we do not want the committer to know the secret keys along U’s direct path, we
must again replace these nodes with blank ones and encrypt to the non-blank
nodes below directly.

Add proposals Adding a user introduces one new but similar complication.
Counsider the same group as in Figure 1, but with the leaf of user H blank. Now
say user A would like to add user H to the group. Although we would want H
to know all secret keys on their direct path, A can only provide the secrets of
their lowest common ancestor, which is the root node in this case. In such a
situation where a non-blank node n has a leaf [below it where [does not know
n’s secret key, we say that [is unmerged relative to n. Every non-blank, non-leaf
node stores its list of unmerged leaves and whenever one encrypts to a node, one
should also encrypt to all its unmerged leaves. A user’s leaf becomes “merged”
as the nodes on their direct path are replaced and they are provided the seeds to
compute the secret keys of the new nodes. Note that for any non-leaf node n,
any one of its descendants d and any unmerged leaf of n that is a descendant of
d, this leaf must also be an unmerged leaf of d: every commit that replaces d also
replaces the node n and if a user at a leaf learns the secret key of the new node
for d through its seed, they also learn the seed of and therefore the secret key of
the new node for n. Figure 6 shows a commit by user A adding H, followed by
another commit by user E.

Resolution We have now seen that when performing a commit, one must pay
attention to blank nodes and unmerged leaves when providing encryptions. Instead
of only providing encryptions for each node on the copath as in the ideal case, in
the general case for each node n on the copath one must provide an encryption
for every node in the resolution of n. The resolution of a non-blank node is the
node itself and the set of all its unmerged leaves. The resolution of a blank leaf
is the empty set and the resolution of a blank, non-leaf node is the union of the
resolutions of its two children.

Key packages and welcome messages To encrypt to an existing group member it
is clear that we can just use the public key in their leaf. But how do we encrypt
to a new user? Before a user joins any group, they publish a key package: this
contains (among other things) the public key, their so-called init key, to be used
to encrypt information to the user when they join the group and the public key
that should be associated with the user’s leaf. The key package is included (or
referenced) in the add proposal for the new user. Along with the seed of the
committer’s and the new user’s lowest common ancestor in the tree, the new user
must also be given the (public) state of the tree. This information is provided
to the new user, encrypted with their init key, by the committer in a welcome
message.

42

ORORORORONOROGNO

(a) User A adds user H. As a small detail: the encryption for user H is computed using
H’s init key instead of the public key of their leaf.

k
)

~
~

~
~
~

O ® q&@
ONOROROIO; ©

(b) Commit by user E. H is now “merged” relative to node Y.

Fig.6: A commit adding user H and another commit by a user E as described in
the text. Orange edges illustrate the fact that the target leaf is unmerged relative
to the source node. In (a), H is also unmerged relative to Y’s right child, but
this information is redundant as it follows from H being unmerged relative to Y.

43

C.2 Continuous Group Key Agreement

The model As already described briefly in the introduction, a CGKA scheme
allows a group of users to agree on a group key, indistinguishable from random
for any eavesdropper, while providing mechanisms to add or remove users from
the group and update the group key and users’ key material, such that FS and
PCS can be achieved.

Fully modelling a group of users running a CGKA scheme is complex. Since
the protocol must work in the asynchronous setting, there must be a delivery
service that takes protocol messages and forwards them to the recipients. Users
also need to be able to publish some kind of public key, the key packages used in
TreeKEM, such that they can be invited to the group with a welcome message.
This functionality is also left to the delivery service. Moreover, there must be
mechanisms in place to authenticate protocol messages and the published public
keys.

In our model, users are honest nodes running the protocol algorithms and
maintaining local state. They send out new messages and process received
messages immediately. They have a reliable communication channel to the delivery
service, and all public keys and protocol messages are assumed to be authenticated,
meaning that an attacker cannot forge them. The delivery service, and thus an
attacker, can of course see all protocol messages. We assume little about what
messages get delivered by the delivery service: the service may deliver a message
to some users but not others and it may not deliver certain messages at all.

For a more complete model we refer the reader to [3]. The authors consider
not just CGKA but the more difficult problem of secure group messaging as
tackled by the MLS protocol. The model they consider allows an attacker to
inject protocol messages and gives them some control over the public keys stored
by the delivery service.

PC-CGKA schemes Multiple definitions of the syntax and security of CGKA
schemes already exist [2,12,3], all meant to capture the syntax of how update, add
and remove operations were performed with the latest verion of TreeKEM at the
time, and all with the same name. As already described in the introduction, the
current version of TreeKEM uses propose and commit operations to advance the
group state, which is also the syntax formalized in [3] and in this work. The syntax
defined in [2,12] came before the propose and commit syntax was introduced.
In this syntax, there are no proposals and every operation is a commit, either
adding a single user, removing a single group member, or just updating the key
material of the committer. To differentiate our definitions from existing ones that
describe something different as in [2,12], we will talk about propose and commit
continuous group key agreement (PC-CGKA) schemes.

Syntax Our definition of the syntax of PC-CGKA schemes is inspired by the
definition in [12] and is essentially the same as what is described in [3, Section
4.1.1]. We assume that every user u is identified by some value id,.

44

Definition 17 (PC-CGKA). Let n denote the security parameter. A PC-
CGKA scheme X with key space IC consists of the following algorithms:

INITIALIZATION:

— An algorithm Gen. Before joining any group, a user generates a pair of
keys (pk, sk) < Gen(1"), a public and private key.

— An algorithm CreateGroup. A user runs o <— CreateGroup(17) to locally
initialize a group with themselves as the only member and the state of
the group stored in o. We call o their group state.

COMPUTE THE GROUP KEY:

— An algorithm Key. At any point in time, a member of a group with state

o can compute the current group key k < Key(o) with k € K(n).
PROPOSAL:

— An algorithm ProposeUpdate. If a member u of a group with state o
wishes to update their key material, they may run (o, p) < ProposeUpdate(o)
to create an update proposal p to be shared with other members of the
group and update their state such that they have processed p.

— An algorithm ProposeAdd. If a member of a group with state o wishes
to add a new user u with public key pk, to the group, they may run
(0,p) < ProposeAdd(c, idy, pky,) to create an add proposal p to be shared
with other members of the group and update their state such that they
have processed p.

— An algorithm ProposeRemove. If a member of a group with state o wishes
to remove another member u from the group, they may run (o,p) <+
ProposeAdd(o, id,) to create a remove proposal p to be shared with other
members of the group and update their state such that they have processed

p.
COMMIT:
— An algorithm CreateCommit. To apply a list of proposals w to the group
state, a member with state o may run (o', c,w,,...,w,) < CreateCommit(o,),

where ¢ is a commit to be shared with other members, o' would be the
new state of the member after applying the commit'® and each w; is a
welcome message for a newly added user.

PROCESS:

— An algorithm ProcessCommit. Upon receiving another member’s commit
¢, a member u with state o can set o < ProcessCommit(o, ¢) to process
c. We say that u has processed c.

— An algorithm ProcessWelcome. Upon receiving a welcome message w
for a user with public key pk, the user with this public key can set
o < ProcessWelcome(pk, sk, w), where sk is the corresponding secret key
output by Gen.

For any object X above (including KC) we will refer to it as X.X.
The scheme must also specify an algorithm for determining the set of members
of the group from a group state o.

16 Note that the user’s state is not immediately replaced with the new state output by
the algorithm. We will see why in the explanation of the semantics below.

45

Semantics In the following we provide some further details regarding the semantics
of the PC-CGKA algorithms:

— Gen: The public key is used to invite the user to the group and should
therefore be made public. This public key corresponds to a key package in
TreeKEM (see Section 1.1). The same key pair must not be reused to join
multiple groups and must be discarded after it was used to join a group. A
new key pair must be generated to join a new group.

— ProposeUpdate: An update proposal created by a user u contains (possibly
public) information for the other group members about u’s new key material.
This information is used by other members to provide encrypted information
in a commit (see below) that includes the update proposal such that u is
able to compute the new group key.

— CreateCommit: Let ¢ a commit and wq, ..., w; the corresponding welcome
messages output by the algorithm, run by user u with group state ¢ and with
the proposals m provided as input. There should be one welcome message
for each new user added to the group in the commit with a corresponding
add proposal in 7. Welcome message w; contains the identifier id; of a user
and the message should be shared with that user such that they can join
the group. Besides updating the key material for all other members with
an update proposal in 7, the commit also updates user u’s key material.
Accordingly, 7 should not contain an update proposal for user u. Nor should
it contain a remove proposal for user u as they will know the group key
resulting from the commit. User u may keep both group states o and ¢’ until
the group agrees on whether to apply the commit ¢ or not. If the commit is
to be applied, user u sets their state to ¢’ and discards o. Otherwise, they
discard ¢’. Applying a commit results in a new group key.

Our syntax does not specify how a user learns of proposals in 7 created by
other users. Also how users agree on whether to apply a commit is left up to
the application. The decision could be made by the delivery service or using
some consensus algorithm run by all group members.

We see a call to CreateGroup as a special type of commit that is applied by
the group creator.

— ProcessCommit: If the commit removed the member from the group, they
should not be able to compute the group key from ¢ and should delete o.

— ProcessWelcome: The user must discard their secret key sk after processing a
welcome message so that the contents of the welcome message remain secret
in case the user gets compromised (recall FS). As we cannot express this
conveniently with our syntax, our security definition does not check for this
(and does not give the adversary the secret key if a user is compromised after
having processed their welcome message).

Correctness The above description of semantics already provides some explicit
correctness properties or implicitly implies other ones. We will explicitly define
one important correctness property that a PC-CGKA scheme should satisfy in
Definition 21.

46

The correctness property concerns the handling of “bad” (malformed or
inconsistent) inputs. The algorithms of a PC-CGKA scheme should have several
checks built in to deal with such inputs. For example

— a commit including an update or add proposal for the commit creator is
invalid

a user should never process the same commit twice

— a user should never process a commit that they created

— etc.

Many of these checks are straightforward and we do not provide an extensive
list of what is needed. However, we will discuss one type of check that is less
straightforward and plays a role in the security of the scheme. Our correctness
property forces all members of a group to agree on the history of commits they
have applied (up to joining the group). It avoids scenarios where a group member
may skip a commit processed by other members that, for example, removed a
user from the group. We ignore errors that would result from processing bad
input in our syntax and restrict our security model to dealing with only valid
inputs, as it is not our goal to analyze this type of attack on the scheme.

Before we can formally define our correctness property, we must first introduce
some definitions.

Definition 18 (Applying a commit). When a user

— processes commit ¢ with ProcessCommit

— creates commit ¢ and subsequently updates their group state to the new state
output by the corresponding call to CreateCommit

— joins the group by processing welcome message w, where ¢ is the commit that
was output along with w by CreateCommit

— creates a group, where we let ¢ denote the call to CreateGroup

we say that the user applied commit c.

In the following, when talking about time for a user that was a part of some
group, we are referring to the sequence of group states they went through as
members of the group.t”

Definition 19 (Last commit). Let u a user that at some point in time was a
member of a group and had group state o. We define the last commit in o to be
the most recent commit ¢ that u applied up to arriving in state o.

In the above definition, the user’s last commit will always exist since they either
joined the group through a welcome message or created the group themselves.

7 We are only interested in state transitions from applying a commit, but for com-

pleteness we will also consider transitions due to creating proposals as a part of this
sequence.

47

Definition 20 (Consistent group states). Let ug, u1 two users where each
user was a member of a group at some point in time. Let og, 01 the group states
they were in, respectively and co,c1 the last commits in og, 01, respectively. The
group states og and o1 are said to be consistent if co = c1.18

We can now define the correctness property motivated above.

Definition 21 (Consistent history). A PC-CGKA scheme X maintains a
consistent history if a user with group state o only successfully™® processes a
commit ¢ < CreateCommit(c’,-) for some o’ (with ProcessCommit) if o and o’
are consistent.?"

Definition 20 also allows us to express the following important correctness
property: any set of members with consistent group states must compute the
same group key with Y. Key and must agree on the set of members of the group.

In the following we introduce a few more definitions that will become useful
later.

Definition 22 (Parent commit). Let ¢ a commit output by CreateCommit (o, -)
for some og. The parent commit of ¢ is the last commit in og.

Note that if the PC-CGKA scheme maintains a consistent history, for a
commit ¢ that was processed by a user while they were still in group state o, the
last commit in o will be the parent commit of c.

Definition 23 (Commit history). Let ¢ a commit.?*

tory of ¢ as follows:

Define the commit his-

— Case c refers to a call to CreateGroup: the sequence (¢) of length 1
— Otherwise: the sequence (ci,...,c,c), where (c1,...,c) is the commit
history of ¢’s parent commit cy.

One could also consider the local commit history of a group member u in
group state o, consisting of the sequence of commits applied by u since joining
the group and until arriving in o. If the PC-CGKA scheme maintains a consistent
history, this local commit history is a suffix of the commit history of the last
commit in o. (To see this, first note that by definition the last commit in o is

18 If a commit is a call to CreateGroup, it is equal to another commit iff. both refer to
the same call to CreateGroup. This implies that after a user just created a group,
their group state is consistent with itself only.

19 As noted, we ignore checks for bad input in our syntax. To describe schemes satisfying
correctness related to bad inputs, one would need to extend the syntax such that e.g.
an algorithm can also output an error, and the user’s state remains unchanged if this
is the case.

20 Here we only consider states ¢’ that an honest user would get as output from one of
the PC-CGKA algorithms.

2! Here we only consider commits referring to a call to CreateGroup or output by
CreateCommit, run by an honest user.

48

the last commit the local commit history. Then repeatedly apply the argument
before Definition 23.) Thus, for a set of users in consistent group states, the users
all agree on the commits they have processed and their order (up to the earliest
commit present in the local commit history of all users).

PC-CGKA security Our security definition is again inspired by [12]. We con-
sider fully adaptive adversaries. The adversary controls all PC-CGKA operations
performed by the users, can decide who receives what messages (i.e. the adversary
has control over the delivery service), can decide what commits get applied or
discarded, and when they are discarded, by querying “confirm” and can corrupt
the state of any user. We will refer to commits created by a user that they have
not yet been told to apply or discard as unconfirmed commits. Corrupting a user
leaks the group states corresponding to all their unconfirmed commits. Because
the adversary can schedule the delivery of messages as it likes, it is possible for
the adversary to create “forks” in the group where some users in the group are
told to process one commit, while other users are told to process another. Such
forks could also happen in practice and should not break security.

The adversary eventually chooses a commit to be challenged on, for which
they must differentiate the group key from a uniformly random key. We must
restrict the set of commits the adversary can ask to be challenged on to those
that are expected to be safe even in the face of previous or later corruptions.
The level of FS and PCS expected from a PC-CGKA scheme is captured by the
size of this set of safe commits. Exactly which commits are considered safe will
be explained later.

We also impose some notable restrictions on the adversary. The adversary
cannot inject protocol messages or public keys and it may only deliver a message
to users that are supposed to process that message, in order to avoid giving
users messages with bad inputs. The latter restriction is justified, as in a correct
PC-CGKA protocol such messages would simply be discarded and correctness
can be verified independently. Imposing the restriction on the adversary allows
us to ignore the details of handling bad inputs when specifying a PC-CGKA
scheme and to analyze the core aspects of its security.

The definition in [3, Section B.1] is very similar in essence. The same restric-
tions on the adversary are imposed. However, the security game provided there
gives more power to the adversary: the adversary may additionally choose the
randomness used in operations, choose its own public keys to be associated with
users and tell certain users not to delete old keys. In the end, this restricts the
set of safe commits. We provide our own definition with the hope of having a
formulation that is easier to digest, keeps the security game simpler and is more
explicit about what commits are considered safe.

Definition 24 (The PC-CGKA game). Let ¥ a PC-CGKA scheme. Define

the game Game;?,f CGRA(A) for an adversary A:

1. A outputs n € N. For each i € [n], initialize a user i by creating a (unique)
identifier id;, generating (pk;, sk;) < X.Gen(1"), preparing U; = &, the set

49

of unconfirmed commits at user i, and setling o; == &, where & denotes the
empty value. The state output by an algorithm of X is never the empty value.
A is given (pky,idy), ..., (pkn,idy).
Set P =C =W =0, where P denotes the number of proposals, C the number
of commits and W the number of welcome messages created.

2. A may adaptively make the following queries:

create-group(i) for i € [n]: set o; < CreateGroup(17).

propose-update(i) fori € [n],0; # @: run (05, pp41) < ProposeUpdate(o;)

to update user i’s state and get a proposal ppyi. A is given ppyy. Set
P=P+1.

propose-add(i, j) fori,j € [n],0; # @: run (0;,ppy1) < ProposeAdd(o;. id;, pk;)
to update user i’s state and get a proposal ppyi. A is given ppyy. Set
P=P+1.

propose-remove(i, j) fori,j € [n],0; # @: run (0;,ppy1) < ProposeRemove(o;, id;)
to update user i’s state and get a proposal pp+i1. A is given ppiq. Set
P=P+1.

create-commit (¢, (j1,. .., ja)) fori € [n],0; # @,V j; € [P]: run (0, o1, W1, - - -, Wy 4+k) <
CreateCommit(a;, (pj,,...,pj,)) to create the new state o, commit co+q
and corresponding welcome messages. A is given coy1 and Wy 41, - . ., Wy k-

SetU; =U; U{(C+1,0)},C:=C+1and W =W + k.

confirm(j,b) for j s.t. (j,o0) € U; for some user i and state o, b € {0,1}:

Ifb=0, set U; .= U; \ {(j,0)}. If b= 1, set 0y := 0 and U; .= 3.2
deliver-commit (s, j) fori € [n],0; # @, j € [C]: run 0 < ProcessCommit(c;, ¢;).

Set U; == @. If ¢; contains a remove proposal for user i, then set o; == @,

generate a new pair (pk;, sk;) < X.Gen(1") and give (i,pk;) to A. Oth-

erwise, set o; ‘= 0.

deliver-welcome(i, j) fori € [n],0; = @,j € [W]: set o; < ProcessWelcome(pk;, sk;, w;).
corrupt(i) for i € [n]: If 0; = @, A is given sk;. Otherwise, A is given

ag; and Ul

23

3. A picks i € [0,C]. We call the commit ¢; the challenge commit, where ¢

refers to the initial CreateGroup operation. Let o the group state output by
the operation that created c; (the state output by CreateCommit if i > 0 or
the state output by CreateGroup if i = 0). A bit b + {0,1} is sampled and

A is given

f— Y. Key(o) b=0
-k b=1'

where k Y.K(n). A may continue to do queries as before.
4. A outputs a bit b'. The output of the game is defined to be 1 if b’ = b, and 0
otherwise.

22 All other unconfirmed commits in U; are cleared if b = 1 as they should not be
applied anymore.

23 Note that in a real execution of the protocol the user must delete sk; from their local
state after processing the welcome message w;. Accordingly, sk; is no longer leaked
to the adversary in a later query corrupt(j).

50

We require an adversary playing the above game to adhere to the following:

create-group is queried exactly once

The challenge commit is safe (see Definition 28)

— For any query deliver-commit(i, j) where the commit ¢; was created by user
k while they where in state o},, 0; and o}, must be consistent

— For any query create-commit (s, (j1,...,7a)), for every proposal p;, created by
a user while in state o], o; and o} must be consistent

— A user never processes a commit that they created

— Every commit is processed at most once by any user

— A welcome message for user i is processed by i at most once and is never
processed by a user j with i # j

— A user creating a commit never includes an update or remove proposal for
themselves, or multiple update/add/remove proposals for to the same user

— A user is never asked to create an add proposal for a user they consider to be

in the group, or create a remove proposal for a user they do not consider to

be in the group

The concept of a safe user and safe commit is adapted from the so-called
“safe predicate” in [12], which again took inspiration from [2]. As elaborated in
the cited papers and also analogous to how we needed to define “safe” nodes in
the SD-GSD game, we want to forbid the adversary from asking to be challenged
on a commit for which it can trivially compute the group key through some
corruption it performed.

To see what is needed for a commit to be safe, consider some commit ¢ with
group key k created by a user ¢ and let j # i any user that ¢ would consider to
be in the group after applying ¢ (Definition 25 clarifies exactly which users are
considered to be in the group). The commit ¢ or an associated welcome message
provides encrypted information for user j to compute the new group key using its
current key material. Clearly, if this key material has been compromised by the
adversary corrupting user j, the commit should not be safe. If the adversary has
not corrupted user j since they last updated their key material, then we would
not expect the adversary to be able to learn the group key k& through user j, even
if user j was corrupted before (recall PCS). Moreover, corrupting user j after
they have again updated their key material should not allow the adversary to
compute the group key of ¢ either (recall FS). We will later say that the commit
c is safe with respect to user j if j was not corrupted in this window between
their last and next update. Now, it is important to notice that the encrypted
information in commit ¢ is for the key material that user j had from user i’s
view when user i created c. It is possible that when user i created ¢, user j had
already processed a commit updating their key material that user ¢ has not yet
processed. Thus, we must be careful to require exactly the right key material of
user j to be unknown to the adversary. Definition 27 formalizes this.

Definition 25. Let ¢ a commit and let o' the new group state output by

— the call to CreateCommit that created ¢

51

— or the call to CreateGroup that c refers to

The (set of) users in the group after applying c is the set of users in the group
according to state o’.

Definition 26. Let ¢ a commit and let u a user in the group after applying c.
Let h = (c1,...,c) the commit history of c¢. Define u’s last update up to ¢ as
the last commit c; to satisfy one of the following:

(i) ¢; was created by u
(i) ¢; included an update proposal for u
(i41) ¢; was output along with a welcome message for u
(iv) ¢; refers to a call to CreateGroup run by u (implying i =1)
Definition 27 (Safe user). Let ¥ a PC-CGKA scheme and let n arbitrary.
Consider an execution of Gameg,}; CGKA(.A) for some adversary A. Let Q the
total number of queries made by A. We will refer to queries by their index
among all queries. Let ¢* € [Q] a create-group(i) or create-commit(z,-) query
with i € [n] as the target user. Let j € [n] any user (including i) in the group
after applying the commit c* created by q*. Let the commit ¢’ be user j’s last
update up to c*.

Set the query q— € [Q] depending on which case in Definition 26 commit ¢/
falls into:

(i) q~ is the create-commit(j, -) query that created ¢

(i) ¢~ is the propose-update(j) query that created the update proposal for j
mncluded in ¢

(iii) Let gaaa be the query to propose-add that created the add proposal for user j
that was included in ¢'. ¢~ is the last deliver-commit query before g.qq that
reset j’s public and private key pair, or set ¢~ = 0 if no such query was
made.

(iv) q~ is the corresponding query create-group(j) that ran CreateGroup

Analogously, set the query q* € [Q] depending on which case in Definition 26
commit ¢ falls into:

(i) — Case user j applied ¢': Then a query confirm(k, 1) with index geonfirm
was made where ¢, = c’. Set ¢ the same as in (iv), but with ¢* > Geonfirm -
— Otherwise: q© is the next query that removed the new state associated
with ¢ from U;. This is either o query confirm(k, 0) with ¢, = ¢, a query
confirm(k, 1) with ¢, # ¢ or a query deliver-commit(j, k) with cx # ¢'.
Set g7 = Q if there is no such query.
(ii) Let p be the update proposal for j included in ¢'.
— Case j applied a commit ¢, that included p: same as (iv), but
use the next query after qacliver, Where qaeliver 8 the deliver-commit (7, k)
query that let j process ci
— Otherwise: q© is the first query such that q* > q~ that led to user j
applying a commit, or set ¢T = Q otherwise**

2% Once user j has applied any commit after creating the update proposal p that does
not include p, it is clear that p is outdated and its associated data should be deleted.

52

(iii) same as (iv)

(iv) q7 is the first query such that q* > q~ that led to user j applying a commit ¢
that they created (so ¢ is a confirm(k, 1) query with ¢, = ¢) or that included
an update or remove proposal for j (so qt is a deliver-commit(j, k) query
with ¢ = ¢), or set ¢* = Q if no such commit exists®®

The commit ¢* is safe with respect to user j if there was no corrupt(j) query
in the interval [q~, q™].

Continuing the discussion above, so far we have considered a necessary
condition to keep the commit ¢ safe by restricting the corruptions made to a
specific user j. If ¢ is safe with respect to every user that ¢ considered to be in
the group after applying ¢ (including user i), we would expect that the adversary
is not able to compute the corresponding group key. Indeed, this is how we define
a safe commit.

Definition 28 (Safe commit). Recall the selting of Definition 27. As in Defi-
nition 27, let ¢* € [Q] a create-group(i) or create-commit(i,) query with i € [n]
as the target user and let ¢* the commit created by q*. The commit c* is safe if
for every user j (including i) in the group after applying commit c*, the commit
c* is safe with respect to user j.

Definition 29 (PC-CGKA security). A PC-CGKA scheme is (t,e,c,p,u)-
PC-CGKA-secure if for all n, for any adversary A making at most c(n) queries
to create-commit, creating at most p(n) update or add proposals in the created
commits and asking for at most u(n) users in step 1. of the PC-CGKA game we
have

_ _ 1
Adv;(?,] CORA(4) =2. (Pr [Gameg’cn CORA(4) = 1} - 2) <e(n).

C.3 The TreeKEM Protocol

The TreeKEM protocol discussed in the literature is not described as a self-
contained subprotocol in the MLS specification [5] and is therefore only defined
implicitly. The following description of the protocol was extracted from [5]. Fully
describing TreeKEM is complex and some parts of the protocol were either
simplified (e.g. the content of protocol messages) or omitted as they are not
relevant for proving security with respect to our definition (e.g. handling of bad
inputs, signatures, hashes of the tree and additional functionality provided by
the protocol).

Definition 30 (TreeKEM ([5]). Let IT a public-key encryption scheme, where
I1.Gen(17) uses p(n) random bits. Let Hgen = {Hgg,)1 17 € N}, Haep = {HSZI)) |

n € N} families of functions with Hg(Zﬂ, H(SZE’: {0,1}r() — {0, 1}, We write

25 This is simply describing the next query that made user j update their key material,
and therefore delete their old key material.

93

Hyen = =D, Hgep = H((lzl)3 and p == p(n) if n is clear from the context. Define the
CGKA scheme St with key space K(n) = {0,1}") and its algorithms defined

as follows, where id refers to the identifier of the user running the algorithm:

— Gen:
o generate (pkinit, Skinit) < 11.Gen(1"), where pkinit is the init key
e generate the key pair of the user’s leaf (pkieat, Skieat) < II.Gen(17)
o set pk = (Dkinit, Pkieat), this is the user’s key package, and sk = (skinit, Skieat),
this will be stored by the user, and output the key pair (pk, sk)
— CreateGroup(17):
o generate (pkicat, Skicat) < IT.Gen(17)
e create a tree with a single node v and set (pky, sky) = (Pkicat, Skicat)
o set the group key to k + {0,1}”
e output a state o containing the tree, the group key k and the security
parameter mn
— Key(o): output the group key stored in o
ProposeUpdate(o):
o generate (pkicat, Skiear) < II.Gen(17)
e create the add proposal p = (update, id, pkieat) and store skiear in o
e output (o,p)
— ProposeAdd(o,id’, pk’):
e create the add proposal p = (add,id’, pk’)
e output (o,p)
ProposeRemove(o, id'):
e create the remove proposal p = (remove, id’)
e output (o,p)
CreateCommit(o, (p1,...,pk)):
e create a commit object c storing all proposals and the author id of the
commit
e for every update proposal p; = (update,id’, pk'):
x replace the leaf of user id' with a new leaf with public key pk’'
* replace all nodes on the direct path of the new leaf with blank ones
o for every remove proposal p; = (remove, id’):

x replace the leaf of user id' and all nodes on their direct path with
blank nodes

x as long as the right child of the root has an empty resolution (and
the root actually has a right child), truncate the tree by deleting the
subtree of the root’s right child and the root itself, and setting the
root’s left child as the new root

o for every add proposal p; = (add,id’, (pkl ;, Pkieas)) (in order):

x if there are no blank leaves in the tree, extend the tree to the right by
setting the root to be a new blank node, the left child of the root to
the old root and the right child of the root to a full subtree of blank
nodes (of the same height as the old root’s subtree)

* replace the leftmost blank leaf in the tree with a new leaf with public

key phigas

54

* for every non-blank node on the new leaf’s direct path, add the new
leaf to the mode’s set of unmerged leaves

o generate (Phicat, Skicar) < I1.Gen(1") and sample sy + {0,1}°

o replace id’s leaf with a new leaf with key pair (pkicat, Skicat)

o [f the tree consists of a single leaf, set the group key to s1. Otherwise, for
the i-th node v; on id’s direct path where its child w; on the copath of id
has a non-empty resolution:

% ifi > 1, compute $; = Hacp(si—1) and (pk, sk) = II1.Gen(1", Hgen(s;))

* replace v; with a new node v, with key pair (pk, sk) (and no unmerged
leaves)

x for every node u in the resolution of w;: If u is the leaf of a user
id" and the commit contains an add proposal (add, id’, (pkii, PKleas))
compute a ciphertext ¢, < IL.Encp (s;). 26 Otherwise, compute a
ciphertext ¢, < II.Encyy, (s;) and store it in the commit c.

Set the group key to Haep(sa) where vq is the last node on id’s direct path,
i.e. the root. Store the list of pubic keys (pkicat, Pkv;, . .., pkyy) in c.

o for every add proposal p; = (add, id’, (pkl,¢, PKleas)):

x let 1 be the leaf of user id' in the tree

x create a welcome message w;qy containing the identifier id', the ci-
phertext ¢; computed above and a copy of the public part of the tree
(i.e. the tree without any secret keys)

o output (¢’ c,w), where o’ is the new group state of id" after applying the
above changes to the tree and setting the new group key, and w is the list
of welcome messages computed (in any order)

— ProcessCommit(c, ¢):

e apply all proposals in ¢ to the tree as in CreateCommit

o replace the committer’s leaf and the nodes on the committer’s (non-blank)
direct path with the new nodes created in the commit®T

e find the right ciphertext c,, encrypting the seed of the new node u on id’s
direct path, decrypt it (using the appropriate secret key known to id) and
compute (and store) the secret key of u, the non-blank nodes above u and
the new group key (using the same computations involving Haep and Hgen
as in CreateCommit)

e output the updated group state o’ of id containing the new tree and group
key

— ProcessWelcome((pkinit, pkieat), (Skinit, SKieat), W):

o compute the seed s = I1.Decgy,, .. (¢) of node u in the tree provided in w,
where ¢ is the ciphertext provided in w

e compute the secret key of u and the non-blank nodes above u, and store
them in the tree, and compute the group key

26 As defined here, there is no use for the init key in the protocol and we could simply
encrypt the seed under the leaf’s public key (in other words set (pkini, skiniy) =
(Pkloars SKlear))- In the real TreeKEM protocol the message encrypted using the init key
includes additional information and is different from the type of message encrypted
under a leaf’s public key.

27 Recall that ¢ contains the public key of each new node.

95

e output a group state o containing the tree, the group key and the security
parameter n (derived from pkinit)

The scheme X1k is called the TreeKEM protocol.

The full TreeKEM protocol as described in the RFC achieves the correctness
property in Definition 21 using a hash of the tree.

C.4 TreeKEM security from SD-GSD security

We have already described the relationship between the TreeKEM protocol and
the SD-GSD security game at the beginning of Section 4. The following theorem
formalizes this.

Theorem 3. Let Y1k the TreeKEM protocol instantiated with a public-key
encryption scheme II. Let ¢,p,u functions in 7. Set N == c¢- ([log(u)]+1)+u+p
and § = u. If IT is (t,&, N,0)-SD-GSD-secure in the ROM and the functions
Hgen, Hyep in Xrk are modelled as random oracles, then Xtk is (t~,5, ¢, p,u)-PC-
CGKA-secure with t ~ t.

Intuition The approach for the proof is straightforward. Given an adversary A
against TreeKEM, we want to construct an SD-GSD adversary A’ that simulates
Gamegg;%GKA to A and uses A’s ability to distinguish the group key of a safe
commit from a random key to win the SD-GSD game. Every non-blank node in
TreeKEM can be simulated with a corresponding node in the GSD graph. Note
that the group key of a commit in TreeKEM is given by Hgep(s) where s is the
seed of the root node. Thus, if A can distinguish the group key of a safe commit
from a uniformly random key k < {0,1}” in the simulation and s is the seed of
the node in the GSD graph corresponding to the root of the tree in the commit,
then A is able to distinguish Hgep(s) from r < {0,1}”. For A’ to make use of
this, we need to make sure that this node remains safe in the GSD graph.

More concretely, let us go over how the various queries in the PC-CGKA
game can be simulated. We will refer to nodes in the GSD graph as GSD nodes
and nodes in the TreeKEM tree as tree nodes. We can also model the init keys
with GSD nodes, as only seeds of nodes are ever encrypted with them. A’ can
always keep track of the public state of the tree (as viewed by any user) using
the reveal oracle in the SD-GSD game. For the initial create-group query or any
create-commit query with a single node in the group, it suffices to create a GSD
node for the leaf tree node and sample the group key of the commit u.a.r. If A
asks to be challenged on such a commit, then we cannot make use of A’s output
in the GSD game. However, note that if such a commit is safe, then A is never
leaked any information about the group key and has zero advantage in this case.
Proposals can also be simulated easily as creating them only requires knowing
public values. The leaf key pair sampled in an add proposal is of course modelled
with a GSD node. To simulate the creation of a commit and corresponding
welcome messages:

56

— A’ can apply the proposals as in Y7k.CreateCommmit, since this only
requires knowing public values

— use seed dependencies in the SD-GSD game to model the new nodes on the
direct path

— compute the ciphertexts for the commit and welcome messages using encryp-
tion queries in the SD-GSD game

To simulate deliver-commit and deliver-welcome, A’ updates the public state of
the target user’s tree accordingly. Queries to corrupt are a bit more involved.
Since A’ can only keep track of the public state of each user, it must be prepared
to compute the real group state of a user upon receiving such a query. Note
however that the secret keys known by a group member can always be computed
as a function of their current secret key, which can be learned using a corrupt
query in the SD-GSD game, and the transcript of commits applied by the member
with this secret key.

Finally, it follows from Definition 28 that when A challenges a safe commit
(in a group with more than one user), the corresponding GSD node that A4’
challenges is also safe. For a detailed proof we refer the reader to [3, Theorem
12].

Theorems 2 and 3 together imply the following final result on the security of
TreeKEM when DHIES is used as the public-key encryption scheme. This result
was already stated informally in Theorem 1.

Theorem 4. Let X2H denote TreeKEM protocol instantiated with IIpy (DHIES)
as the public-key encryption scheme. Let Il the private-key encryption scheme, G
the group-generation algorithm and Hpy the key-derivation function used in Ilpy.
If 11 is (t,epav)-EAV-secure and the DDH problem is (t,eppmu)-hard relative to
G and the functions Hpu, Hgen and Hyep are modelled as random oracles, then
for all ¢,p,uw with u >3, X2 is (,&,¢,p,u)-PC-CGKA-secure with t ~ t and
2-mDH-N2 ms~N .Z\/v2

€=2-0-N-egav+2-N-eppu + p + 9p—1 +2p—3

0 =u
N:=2-c-log(u) +u-+p

where mg is an upper bound on the number of queries made to either Hgye, or
Hgep, mpu 15 an upper bound on the number of queries made to Hpu, q is a
lower bound on the size of the group output by G and p is the number of random
bits sampled by IIpy.Gen.

Proof. Combine Theorem 2 and Theorem 3, and note that [log(z)]+1 < 2-log(x)
for x > 3.

Security against multiple challenges As noted already in the introduction,
the result also holds for a PC-CGKA security definition with multiple challenge
queries. Analogous to what was outlined for the SD-GSD game, in a multi-
challenge PC-CGKA game the adversary has access to a new challenge oracle to

57

perform a challenge on any commmit as in step 3. of the PC-CGKA game, and
must ensure that all challenge commits remain safe throughout the game.

Recall that the result in Theorem 2 also holds for the multi-challenge SD-
GSD game as argued in Section 4.2. It remains to show that the multi-challenge
PC-CGKA game can be reduced tightly to the multi-challenge SD-GSD game.
The reduction is almost identical to the one used for proving Theorem 3, with
the minor difference that now multiple queries to the challenge oracle in the
PC-CGKA game get translated into challenge queries in the SD-GSD game (as
opposed to just one).

o8

