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Abstract—TIterative solvers for large, sparse linear systems are
widely used on HPC machines. When solving very large prob-
lems, communication poses a significant bottleneck, which has
prompted the development of communication-avoiding iterative
s-step methods. At the same time, randomization has had a
profound impact on numerical linear algebra, leading to orders-
of-magnitude performance improvements for many existing al-
gorithms. In this work, we focus on the application of ideas from
randomized numerical linear algebra to communication-avoiding
s-step GMRES methods. We propose a novel randomized s-
step GMRES algorithm called RTBGS-GMRES that improves
performance in the construction of the basis for the solution
subspace for some matrices, while minimizing the number of
global synchronizations in parallel computing environments. We
compare our novel algorithm with the state-of-the-art random-
ized and deterministic s-step GMRES methods in terms of
numerical stability, convergence, performance, and scalability.
Numerical experiments on a large cluster show that with suitable
parameter settings the parallel randomized GMRES methods
in general outperform the parallel deterministic s-step method
BCGSI2-GMRES. Our novel RTBGS-GMRES outperforms the
other methods and achieves speedups of about 2x and about 4 x
over BCGSI2-GMRES for two different basis types.

Index Terms—s-step GMRES methods, randomized sketching,
parallel computing

I. INTRODUCTION

Solving large, sparse linear systems is a central compo-
nent of many scientific simulations running on HPC ma-
chines. Iterative Krylov subspace methods like GMRES are
commonly used to solve such systems effectively. At scale,
communication — the movement of data between different
levels of the memory hierarchy and between HPC nodes —
becomes a significant bottleneck of large-scale HPC applica-
tions. Communication-avoiding s-step GMRES methods [24]
improve efficiency by advancing s steps (instead of one) per
iteration, thus reducing communication overhead by a factor of
s compared to traditional algorithms. Although this reduction
lowers the cost per iteration, it introduces potential sources of
numerical instability that negatively impact convergence [24].
One potential source of instability arises from the generation
of s new Krylov basis vectors. A straightforward approach
is to generate these vectors in the monomial basis, which can
become ill-conditioned quickly, as the vectors converge toward
the largest eigenvector of the input matrix. Several basis types
have been proposed to address this issue [1, 31, 34]. If other
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basis types are ineffective, a further strategy involves varying
the step size [25, 34]. Another potential source of instability
arises from the block orthogonalization of the Krylov basis.
Some block orthogonalization methods are efficient, using
fast BLAS-3 operations and reducing global synchronizations
by a factor of O (s) in distributed systems. However, these
methods exhibit worse stability properties and impose stronger
assumptions on the vectors to be orthogonalized compared
to non-blocked methods [13]. Block orthogonalization should
provide sufficient stability for s-step GMRES methods while
reducing the number of global synchronizations. The current
state-of-the-art s-step GMRES method in [34] that achieves
good performance and stability in practice requires four
global synchronizations per s steps for basis orthogonalization.
[15] introduces s-step GMRES methods with provably stable
block orthogonalization requiring only one to two global
synchronizations every s steps.

Recently, randomized numerical linear algebra (RNLA) has
emerged as a very exciting area in scientific computing [29].
RNLA is known for its versatility in enhancing the perfor-
mance of various algorithms. Randomization techniques based
on subspace embeddings [22] have been applied to GMRES
methods, offering the potential to improve performance, sta-
bility, and scalability. Currently, two primary randomization
techniques are applicable to GMRES. The first strategy, intro-
duced in [6], integrates randomness in the orthogonalization
of the Krylov basis. In particular, the process orthogonalizes
low-dimensional sketches of high-dimensional basis vectors
and uses the resulting orthogonalization coefficients to approx-
imately orthogonalize the high-dimensional vectors, resulting
in a well-conditioned basis. In [5], this technique has been
extended to randomized block orthogonalization with a brief
explanation of how this strategy is applicable to randomized s-
step GMRES. Moreover, randomized orthogonalization can be
modified to require a single global synchronization while still
providing excellent stability [5, 6]. The second strategy, intro-
duced in [30], solves a sketched least-squares problem instead
of relying on the Arnoldi relation to solve the original least-
squares problem of GMRES. This approach removes the or-
thogonality constraint on the Krylov basis while imposing only
a mild constraint on its condition number, allowing greater
flexibility in constructing the solution space. Consequently,



the authors in [30] propose fast truncated orthogonalization
for basis construction, which has a computational cost that
grows linearly with the number of iterations, in contrast to the
quadratic cost of full orthogonalization.

A. Contributions of this paper

We investigate state-of-the-art s-step GMRES methods and
their combination with novel randomization strategies. Our
contributions are as follows:

e We extend the work in [5] by conducting parallel experi-
ments with their randomized s-step GMRES algorithm that
requires one global synchronization per s steps.

+ We introduce a novel randomized s-step GMRES method
called Randomized Truncated Block Gram-Schmidt GM-
RES (RTBGS-GMRES) combining randomization strategies
from [5] and [30] into a single algorithm. Our approach
further reduces the orthogonalization cost for some matrices,
at the expense of one global synchronization every s steps.

o We apply ideas from [34] originally developed for determin-
istic s-step GMRES to detect and correct numerical insta-
bilities in the randomized methods. Besides the monomial
basis, we also employ the scaled Newton basis [34] for
further stability improvements.

o We evaluate (existing as well as our novel) randomized s-
step GMRES methods for various suitable subspace em-
beddings and compare them to the deterministic s-step
GMRES method from [34] in terms of runtime, stability,
and scalability. The deterministic method uses an efficient
block classical Gram-Schmidt process with inner reorthog-
onalization (BCGSI2) and is particularly effective for large
step sizes [34], achieving speedups of up to 15x over
GMRES(m) in our numerical experiments.

The rest of this paper is structured as follows. We introduce
the notation used throughout this work in the following. We
review related work in Section II. Section III summarizes
the state-of-the-art in randomized s-step GMRES methods.
Section IV presents our novel randomized s-step GMRES
algorithm. Section V summarizes numerical experiments. We
conclude in Section VI.

B. Notation

We use Matlab-like notation. Consider a matrix X € R™*™,
1<i4,j<n,and 1 < k,l <m. Then X;.; 1., consists of the
elements that are both in rows ¢ to j and in columns % to [
of X. The columns k to [ are selected using the simplified
expression Xy.;. If j < i or [ < k, the range is empty and the
selection of the respective subset of X has dimension zero.
The k*" column of X is represented by the column vector
Xy, while the scalar x;;, denotes the element in the it row
and k" column of X. || X|| and || X||r denote the 2-norm and
the Frobenius norm of X respectively. x(X) represents the 2-
norm condition number of X. oin (X) and omax(X) indicate
the smallest and largest singular value of X, respectively.

II. RELATED WORK

The seminal work of Hoemmen et al. [24] presents s-step
GMRES methods with efficient communication-avoiding ker-
nels. Imberti et al. [25] introduce s-step GMRES methods
with variable step sizes, proposing to increase the step size
according to the Fibonacci sequence for improved stability.
Xu et al. [34] propose mechanisms to account for instabilities
that can arise from advancing s steps rather than just one.
One such mechanism adaptively reduces the step size to
maintain stability in the s-step GMRES algorithm. Yamazaki
et al. [38] present low-synchronization schemes for s-step GM-
RES methods, although without formal proofs of their stability
properties. In [36], parallel s-step GMRES methods with GPU
acceleration are investigated. The authors in [37] compare
the performance of pipelined and s-step GMRES methods,
with their combined use demonstrating the best performance
in numerical experiments. An s-step GMRES algorithm with
a “two-stage” orthogonalization process is proposed in [35].
This approach reduces communication cost in parallel exe-
cution compared to traditional block orthogonalization, but it
lacks a rigorous stability analysis [14]. The authors in [16]
provide some insight into the backward stability of s-step
GMRES methods. The work in [15] presents s-step GMRES
with stable block orthogonalization schemes that require at
most two global synchronizations every s steps.

Nakatsukasa et al. [30] suggest using randomization to ap-
proximately solve the high-dimensional least-squares problem
encountered in GMRES methods, which allows for replacing
expensive orthogonalization with more cost-effective strate-
gies. Balabanov et al. [6] introduce a randomized orthogonal-
ization process that enhances the stability and scalability of
GMRES methods. The work of [6] is extended in [5], intro-
ducing a randomized block orthogonalization process suitable
for s-step GMRES algorithms. The authors in [12] apply the
randomization strategy from [30] to GMRES methods with
deflated restarting. Giittel et al. [21] present a randomized
orthogonalization method similar to that in [6], but their
approach incorporates selective orthogonalization to improve
performance. The authors further introduce concepts related
to our novel randomized s-step method, though applied only
to non-blocked methods, without addressing parallelization.
Jang et al. [26] investigate randomized orthogonalization with
deterministic reorthogonalization, with application to GMRES.
Flexible GMRES (FGMRES) [33] is a generalization of GM-
RES that allows the preconditioner to change in every iteration.
A randomized FGMRES method was introduced in [27].

Although potential advantages of randomized GMRES al-
gorithms over deterministic approaches have been analyzed
theoretically, the existing literature does not contain thorough
experimental comparisons between randomized and deter-
ministic approaches. Moreover, the effectiveness of different
subspace embeddings for randomized methods in practice is
unclear, and the performance of randomized GMRES when
restarted multiple times has not been thoroughly examined.



III. RANDOMIZED s-STEP GMRES

This section outlines the randomized block Gram-Schmidt
(RBGS) GMRES method from [5], highlighting the matrix
powers kernel (MPK) and the RBGS process as key compo-
nents. We discuss suitable subspace embeddings for the RBGS
process and examine the s-step RBGS-Arnoldi method, which
builds on the MPK and the RBGS process, and forms the core
of the RBGS-GMRES algorithm.

A. Matrix Powers Kernel (MPK)

The MPK [24] generates s new vectors for the Krylov
basis along with a corresponding change-of-basis matrix. It
requires a sparse matrix A € R™*", a start vector v; € R",
and a sequence of polynomials {p;(A)};_,, defined by the
recurrence relation

pi+1(A) = (A = BiI)pi(A) /i, )]

fori=1,...,sand~; # 0, where pyo(A) = I and each p;(A)
has degree j. The new Krylov basis vectors are given by

Vost1=[va, ..., Ver1]=[p1(A)v1, p2(A)ve, ..., ps(A)v4],

and the corresponding change-of-basis matrix B € R(s+1)xs
satisfies
AVl:s - Vl:s+1B-

The monomial basis, one of the most fundamental basis
types, corresponds to setting v; = 1 and §; = 0 in (1) for
all ¢, resulting in

2 s
Vmonomial = [V17 AV1, A Vi,eony A Vl]-

The monomial basis can become ill-conditioned quickly,
which limits the step size to very small s. For example, s = 5
is a common choice in practice [24, 35].

A straightforward implementation of the MPK involves s
successive matrix-vector operations. Hoemmen et al. [24]
introduce a communication-avoiding MPK (CA-MPK) that
optimizes these operations by modifying the matrix-vector dis-
tribution and communication patterns. Their approach reduces
the number of messages sent by a factor of O (s) at the cost
of some redundant computation. However, CA-MPK faces two
main challenges: 1) limited use of preconditioners, which are
crucial for iterative solvers and often require communication
that may disrupt the method’s efficiency, and 2) difficulties
in achieving significant performance improvements, as the
algorithm’s sparse matrix-vector operations are often memory-
bound rather than compute-bound.

B. Randomized subspace embeddings

Randomized sketching maps a high-dimensional problem to
a low-dimensional subspace, maintaining its inherent struc-
ture. Solving the problem embedded in the low-dimensional
subspace yields a fast approximate solution to the original
problem with a certain probability. Subspace embeddings
approximate high-dimensional basis vectors and inner products
of high-dimensional basis vectors. The following definition
specifies the inner product approximation [6].

Definition IIL.1. Let the columns of V be a basis for an m-
dimensional subspace V. C R™ and let € € (0,1). The sketch
matrix ©® € RY" with sketch dimension d < n, is said to
be an e-subspace embedding for V, if

Vx,y €V:xly — (@x)TOy| <elx[lyll. @)
An oblivious subspace embedding (OSE) sketches unknown
m-dimensional subspaces in R”.

Definition IIL.2. © is said to be an (e,6,m) OSE, if
P(® is an e-embedding for V) > 1 — 6. 3)

That is, without having prior knowledge of the subspace V,
an OSE simultaneously approximates the norms of all vectors
in V' with some probability 1 — ¢ [18].

Corollary IIL3. If © is an ec-embedding for V, the singular
values of 'V are bounded by

Omin(V) > (14 €) S omin(OV),

. 4)

Umax(v) ; (1 - ) Umax(e)v)v

with & = 1/2 [6]. From (4) follows the condition number
bound

3 13
(155) m@v) < mwv) < (155) mEv). ©

OSEs are constructed using probability distributions over
©, such as Gaussian or Rademacher distributions [7]. More
advanced methods construct embeddings with structure, allow-
ing for faster application times, such as the Subsampled Ran-
domized Hadamard Transform (SRHT) or CountSketch matrix
(see [11] and [17] respectively). When randomized GM-
RES methods are executed on large-scale distributed systems,
highly parallelizable sketch matrices should be employed. Fur-
thermore, a large sketch dimension d increases the overall cost
of randomized GMRES methods, including storage, arithmetic
operations, and communication. These costs can be mitigated
by selecting sketches that require relatively small d. Taking
everything into account, sketch matrices should be fast to
apply, highly parallelizable, and should require only a small
sketch dimension d to fulfill (3) with high probability.

We discuss properties of suitable subspace embeddings that
require at most one global reduction operation in distributed
systems.

1) Gaussian embeddings: A rescaled Gaussian matrix has
independent Gaussian entries with zero mean and variance
d=! [7]. It is applied to V in O (nmd) time. The embedding
dimension must satisfy d > O (e~2(m + log %)) [7].

2) Block SRHT (BSRHT): SRHTs are applied to V in
O (nmlog d) time but lack effective parallelization due to high
communication overhead. The BSRHT from [4] combines
high parallelizability with the fast local application time of
SRHT matrices, although with a slightly worse bound on the
sketch dimension d > O (e72(m + log %) log ) [4].



3) CountSketch: A CountSketch matrix is a sparse embed-
ding, with one i.i.d. Rademacher entry per column, placed
uniformly at random, and zeros otherwise [17]. CountSketch
matrices are applied to V in O (mn) time. Their embedding
dimension bound is d > O (€2 ~1) [17, 28], indicating
higher sensitivity to lower failure probabilities § and larger m,
as d grows with 61 and m?.

In short, Gaussian embeddings offer the strongest theoretical
guarantees but the weakest performance, CountSketches have
the best performance but the weakest guarantees, and BSRHTSs
are in between.

C. Randomized Block Gram-Schmidt (RBGS) process

The RBGS process from [5] is a blocked version of the Ran-
domized Gram-Schmidt process from [6], which constructs an
approximately orthonormal and well-conditioned basis from a
set of high-dimensional basis vectors V. € R™ ™, This is
achieved through orthogonalization of the compressed matrix
OV rather than V itself. The resulting R factor is applied
to V, yielding a matrix Q € R"™™ ™ that we say is O-
orthonormal, meaning that its sketch S = ©Q is orthonormal.
Algorithm 1 outlines the RBGS algorithm.

Algorithm 1 RBGS process

Input: V € R™ "™ step size 5, @ € R d < n, m = sp
Output: @-orthonormal Q € R™ ™, upper triangular R €

Rmxm
1: for j=1:pdo
2: i=s(j—1)
3 b=i+1:i1+s
4 P, = @Vb
5: Rl:i,b = argminYHSuY — PbHF
6 Q, =V, —QuRuip
7 Apply randomized QR to Q; to obtain QyRy
8 Sy, = ®Qb
9: end for

1) Stability guarantees: The authors in [5] show that, under
the condition € < 1/2 and additional assumptions, the singular
values of Q satisfy the bounds

Jmin(Q) (1 + 6) 1/2( m — 01’&)
Omax(Q) < (1 — )" Y2(1+A,, +0.1a), and  (6)
A, < 20am2k(V),

where A, = |I — STS|g, @ = F(m,n)u, F(m,n) is
a low-degree polynomial and u denotes the unit roundoff.
We highlight key aspects of two randomized QR strategies
discussed in [5] for orthonormalizing Q) with respect to ® in
line 7 of Algorithm 1.

a) Randomized QR with explicit sketch: The explicit
strategy performs a randomized Cholesky QR factorization [3],
which involves an unconditionally stable QR factorization
of the sketch ®Q; with subsequent use of the R factor to
compute Q;, = Q}R;; by forward substitution. Randomized
Cholesky QR comes with great stability guarantees, requiring
only the mild condition x(Qj) < @1 [3].

b) Randomized QR with implicit sketch: The implicit
strategy avoids the sketching step, instead computing S; =
0Q; as S; = P, — S1;Rq.;p from the previously sketched
vectors Pj, and S;.;. The authors in [5] note that using the im-
plicit approach in the RBGS process is equivalent to using the
explicit strategy with two perturbations. These perturbations
increase k(OQy) by at most a factor of O (ax(V)F(m)),
where F'(m) is a small polynomial. Using (5), it follows that
the implicit strategy does not affect the stability guarantees of
RBGS up to small constants [5].

The stability of RBGS further depends on the quality of the
solution to the least-squares problem computed in line 5 of
Algorithm 1. If the sketch dimension d is sufficiently small,
using an unconditionally stable QR factorization method, such
as Householder QR, is recommended. If d is too large, direct
solvers become prohibitively expensive. In such cases, a few
rounds of Richardson iterations can be applied to the normal
equations (SL—SM)RLM = ST Py, as long as Sy.; is well-
conditioned (see [5] for details).

2) Performance analysis: The RBGS algorithm requires
roughly half the overall computational cost of block classical
Gram-Schmidt methods used in deterministic s-step meth-
ods, with half the number of passes over high-dimensional
objects [5]. Using the explicit randomized QR strategy in
Algorithm 1 requires three global synchronizations every s
steps, while the variant with the implicit strategy requires only
two. An additional global synchronization can be avoided by
postponing the sketching step in line 8 of Algorithm 1 to
the next iteration, where it is combined with the sketching
step in line 4 of Algorithm 1. When using this modification
in combination with the implicit randomized QR strategy,
Algorithm 1 requires a single global synchronization in total.

D. s-step RBGS-Arnoldi

The Arnoldi method approximates the eigenvalues and
eigenvectors of large, sparse matrices. It generates an orthonor-
mal basis Q € R™*"™ for the Krylov subspace associated with
a given matrix A and a start vector v; and produces an upper
Hessenberg matrix H that satisfies the Arnoldi relation

AQl:mfl = QH @)

The s-step RBGS-Arnoldi method generates a ®-orthonormal
Krylov basis in blocks. It employs the MPK to produce a small
block of the Krylov basis, followed by RBGS orthogonaliza-
tion. Algorithm 2 illustrates the s-step RBGS-Arnoldi method
using the implicit randomized QR strategy (cf. line 7 of
Algorithm 1). The algorithm preserves the stability guarantees
and computational advantages of the RBGS process [5].

1) Constructing the upper Hessenberg matrix: The com-
putation of the upper Hessenberg matrix in deterministic
s-step Arnoldi methods is rather intricate (see, e.g., [24]).
Randomization facilitates this process. The columns of H in
line 17 of Algorithm 2 are obtained by solving least-squares
problems that require the sketch @ AQ;, where b is defined
as in line 16 of Algorithm 2. We discuss two strategies for
computing this sketch, either explicitly or implicitly.



Algorithm 2 s-step RBGS-Arnoldi
Input: A € R™*", start vector vi € R", step size s, © €
R¥>" d<n, m=sp+1

Output: ®-orthonormal Q € R™*™ upper Hessenberg H €
Rmxmfl

p1 = 0Ov;
r,1 = [pall
q1 = V1/7“1,1
s; = 0Oq;
for j=1:pdo
i=s(—1)+1
b=i+1:i+s
[Vi, B] = mpk(A, q;, 5)
P, =0V,
Ri.p = argming||S1,Y — Pylp
Qf; =V, — Ql:iRI:i,b
S, =Py —S1.iRuip
13: [~, Rpp] = qr(S})
14 Qp=Q,R,, via triangular solve
15: Sy =0Q, ,
16: b=i:i+s—1
17: Hy, 5= argminy [|S1.i4+s Y — OAQ;||r
18: end for

R A A A

—_ = =
N 72

> Implicit sketch @Qj,

a) Explicit sketch of AQg: The explicit strategy is an
expensive, but reliable method for accurately sketching AQj.
For efficiency, the computation of AQj can be deferred to the
next iteration, where it is integrated into the MPK in line 8 of
Algorithm 2. The result is subsequently sketched along with
Vy, in line 9 of Algorithm 2 [5]. Despite these optimizations,
we found that the explicit approach is rather impractical, as
it requires additional operations on high-dimensional objects,
potentially doubling the cost of both the MPK and the sketch-
ing step involving V.

b) Implicit sketch of AQjz: The implicit approach com-
putes AQj recursively without additional communication or
operations on high-dimensional objects. Using the change-of-
basis relation AV = V., ;B we first compute

[BAq;, ®AV;] = [s;, P]B,

where b=i+1:i4+s—1,s; = Oq;, P, = OV}, and ©Aq;
is the first column of ® AQ;. Using ® AV; in the relation

OAQ; = (@AV,; - @AQMRM,B) R,
the rest of the s — 1 columns ® AQ; in @ AQy are obtained.
The cost of updating the Hessenberg matrix in line 17 of
Algorithm 2 using the implicit approach is O (di?), or O (dis)
reusing the QR factorizations of the respective columns of
S from previous iterations. For deterministic s-step GMRES
methods, the Hessenberg update takes O (i) time, or O (is?)
time using the optimized procedure described in [24]. In either
case, the computational cost for the randomized approach is
higher than that of the deterministic methods, since d > .

E. RBGS-GMRES

RBGS-GMRES is directly derived from the s-step RBGS-
Arnoldi method. When solving the linear system Ax = b
with RBGS-GMRES, assume for simplicity that the ini-
tial guess is zero. Using Algorithm 2 with start vector b,
we obtain r;; = ||@b]||, a @-orthonormal basis Q, and an
upper Hessenberg matrix H. The extra steps in RBGS-
GMRES involve solving the small least-squares problem y =
argmin, ||r1,1e1 — Hz|| and computing an approximate solu-
tion Q1..m—1y ~ x. RBGS-GMRES minimizes the sketched
residual norm. This becomes evident by expressing the least-
squares problem as follows:

argmin, |7 161 — Hz|| = argmin, ||©Q(r1,1e1 — Hz)| =
argmin, ||©(b — QHz)|| = argmin, | (b — AQ1.m—12)|.

If ® is an e-embedding for Q, and if (6) holds, then the
sketched residual norm of RBGS-GMRES differs from the
residual norm by a factor of \/(1+¢€)/(1—¢€) [5]. More
specifically, let x, be the approximate solution of standard
GMRES and let x be the approximate solution of RBGS-
GMRES. Using (2), the residual norm with respect to x is
bounded by

1+¢€
1—¢

13
Ib— Ax.| < |b— A%| < ( ) Ib—Ax.]. @®

with £ = 1/2.

F. Improving numerical stability

The MPK and block orthogonalization are potential sources
of numerical instability in s-step GMRES methods [34]. We
summarize techniques discussed in [34] that address instabil-
ities in their deterministic s-step GMRES algorithm (referred
to as BCGSI2-GMRES here), which are also applicable to the
randomized methods.

1) A different MPK basis: To improve numerical stability
in the MPK, bases other than the monomial basis can be
employed, with the Newton basis being a popular choice.
The Newton basis uses Ritz values, which approximate the
eigenvalues of A, as shifts to differ from the monomial basis
as much as possible [24]. The Ritz values are computed by
performing s iterations of the Arnoldi method or standard
GMRES. If many Ritz values are required, monomial-based s-
step RBGS-Arnoldi or s-step GMRES may potentially speed
up this process. The Newton basis corresponds to (1) with
Bi = 0; and ~; = 1 for all 4, resulting in
1A = 0:0)vy),

i=1

ViNewion = [V17 (A — 911)V1, .

where 61,0,,...,605 are the Ritz values of A. To improve
the conditioning of the Newton basis, the Ritz values are
arranged according to the Leja ordering [1]. The modified Leja
ordering [1] avoids complex arithmetic when the Ritz values
of a real matrix are complex [24].

The scaled Newton basis [34] further improves numerical
stability and is obtained with 3; = 6; and ~y; = |6 — 6;| for all



i in (1), where @ is the mean of the computed Ritz values. As
more Ritz values are computed, # will be closer to the mean
eigenvalue spectrum of A. This approach aims to keep the
basis vector length around ~ O (1), which potentially results
in significantly larger admissible step sizes for which the s-
step algorithm is stable [34].

2) Adaptive step size: Smaller step sizes improve the nu-
merical stability of block orthogonalization in s-step methods.
The incremental condition estimator (ICE) [9, 10] can be used
to detect numerical instabilities during the QR factorization of
an n X s matrix V. = QR. Once the k' column of R has
been computed, the ICE estimates x(Ry.x1:1) = £(V1:x) in
O (k) time. This estimate is usually at most ten times the
actual value [34]. For a detailed algorithm description of the
ICE, see [10]. If kx(Ry.x,1:%) (or the estimate) exceeds a user-
given threshold €2, the factorization process stops, resulting in
a partial QR factorization Vi1 = Qur.r_1 R1;k7171;}€,1.
The partial QR factorization discards the remaining vectors in
'V and, as part of the block orthogonalization process, reduces
the step size in adaptive s-step methods to k£ — 1 (see [34]
for details). The s-step RBGS-Arnoldi and RBGS-GMRES
algorithms can be made adaptive by incorporating the ICE
into the QR factorization of S; in line 13 of Algorithm 2.
In practice, @ = O (10~'u~'/2) works well for BCGSI2-
GMRES [34]. In general, we recommend this value for the
randomized methods as well, and Q = O (10_2u_1/ 2) for
challenging cases.

3) Step size estimation: The authors in [34] introduce a
step size estimator for the scaled Newton basis to estimate the
optimal step size, which is not easily determined a priori. The
optimal step size sy is defined as the largest admissible step
size that prevents the computation of discarded basis vectors,
given the condition number bound €2 of the ICE. Specifically,
sopt = argmax;{r(Vi;) < Q}, where V. € R"** is a
scaled Newton basis. The estimator efficiently monitors vector
growth in V based on the Ritz values, without requiring
additional communication. It detects an ill-conditioned basis
'V due to poor vector scaling, but it does not account for nearly
linearly dependent vectors. Consequently, the estimate may be
significantly larger than sy in practice.

IV. RTBGS-GMRES

We present a novel GMRES algorithm that integrates two
randomization strategies from [5] and [30]. Specifically, the
method employs a randomized truncated block Gram-Schmidt
(RTBGS) process for fast Krylov basis generation and solves
implicitly sketched least-squares problems, all at the cost of a
single global synchronization every s steps.

A. Randomized Truncated Block Gram-Schmidt (RTBGS)

The RTBGS process is similar to RBGS (Algorithm 1),
but performs partial orthogonalization by projecting new basis
vectors against the ¢ most recently orthonormalized vectors. In

particular, RTBGS replaces lines 5 and 6 of the RBGS process
in Algorithm 1 with the lines

5: Ry, p =argming||Sp, Y — Pyllp
6: Qy,=Vy,—QyRy, s,

where b; = max(1,7—t+1) : i. The orthogonalization cost is
reduced from quadratic O (mQ) time to linear O (nit) time at
iteration 4. The resulting basis Q may be poorly conditioned
due to truncated orthogonalization, but its conditioning can be
notably better than that of the input matrix V [30].

B. RTBGS-GMRES algorithm

Standard GMRES uses the Arnoldi relation in (7) to effi-
ciently solve the least-squares problem

argmin, ||b — AQq.;m—12|, ©)

The strategy proposed in [30] solves the sketched least-squares
problem
argmin, ||©(b — AQ1.;m—12)|| (10)

directly, without relying on the Arnoldi relation. As a result,
there are no orthogonality constraints on the Krylov basis Q,
and (10) imposes the mild condition xK(@AQy.,,—1) S u™t.
With this approach, the RTBGS-GMRES algorithm efficiently
constructs a Krylov basis using the RTBGS process and reli-
ably solves the corresponding sketched least-squares problem,
even when the problem is poorly conditioned. Furthermore,
RTBGS-GMRES allows for implicit sketching of the least-
squares problem (see the discussion in Section III-D1). With
additional optimizations similar to those discussed in Sec-
tion III-C2, the algorithm requires a single global synchro-
nization every s steps. RTBGS-GMRES is presented in Algo-
rithm 3. Components motivated by [30] (i.e., solving sketched
least-squares problems and truncated orthogonalization) are
highlighted in red, and ideas related to low-synchronization
from [5] (i.e., postponed and implicit sketching) are marked
in yellow.

1) Stability considerations: The following definition applies
to high-dimensional least-squares problems embedded in low-
dimensional subspaces [30].

Definition IV.1. Let the columns of V be a basis for an m-
dimensional subspace V- C R™ and let € € (0,1). The sketch
matrix ® € RYX", with sketch dimension d < n, is said to
be an e-subspace embedding for V, if

Vx €R™: (1—¢)| Vx| < [|[OVx] < (1+¢)|Vx|. (11)

The OSE property in (3) also applies to (11). Furthermore,
we have that (4) and (5) hold with & = 1. According
to (5), if ® is a subspace embedding for AQq.,,—1, then
K(AQim—1) < u™l, as long as kK(OAQ._1) S u™l.
K(©®AQj.,—1) can be inexpensively monitored using the
ICE with condition number bound Qc = O (u™!) dur-
ing the QR factorization in line 24 of Algorithm 3, which
should be unconditionally stable (e.g., Householder QR). Once
k(®AQ1.;) > Qc, we either restart the algorithm or “whiten”
the basis (refer to [30] for details).



Algorithm 3 RTBGS-GMRES

Input: A € R"*", b € R", initial guess x(® e R, step
size s, restart length m, embedding ® € R¥*", d <« n,
truncation parameter ¢

Output: approximate solution X € R"” to Ax =b

1: for kK =0,1,..., until convergence do

2 r® =b- Ax®

3: p1 = Or®)

4 ria=|p

5: q1 = F(k)/rm

6: b, =1 > Previous block indices
7: =1

8: while : < m do

9: ifi+s>m+1thens=m+1—1

10: be=1+1:i+s > Current block indices
11: [V, ,B] = mpk(A, q;, s)

12: [pr s Pbu] = @[pr ,Vbc} > Global sync.
13: by =max(1l,i—t+1):14

14: Ry, p, = argminy [|S;, Y — Py _||r

15: Q,, = Vi, — Qu, Ry, 4,

16: S,, = Po, — Sy, Ry, ;. > Implicit sketch ©Q},_
17: [~, Rb,;,bc] = qr(Sgc) > Thin QR
18: Qp, = QgCRb_jbc via triangular solve

19: bo=i+1:i+s—1
20: [ci, Gy ] = [86, Po |Brist1,1: OAQ;, .
2 Cg’c B CEC ~CuRa i, %Vijl-wsq
22: C;, = CécRg_lE via triangular solve |
23: ) = i+ s h o
24: [Q1:i-1,R1:i-11:4-1) = gr(Ci4-1) > Thin QR
25: 7= |(T— Q1.:-1QT,_,)p1]| > Residual estimate
26: by, = b
27: Use 7 to check convergence
28: end while
200 y® =Ryl ;1 (Qf,_1p1) via triangular solve
30: xk+D) = x(0) 1 Q1 y® > Current solution X
31: end for

2) Performance analysis: An iteration with the single-step
method sGMRES from [30] requires at least two global syn-
chronizations for orthogonalization and one for sketching the
least-squares problem in (10). A potential s-step version of the
method requires at least as many global synchronizations every
s steps. In contrast, RTBGS-GMRES requires only one global
synchronization. Moreover, truncated orthogonalization effec-
tively reduces the projection cost, making RTBGS-GMRES
particularly suitable for small step sizes, as the projection step
would otherwise be a dominant cost in this case.

3) Convergence guarantees: Convergence guarantees for
RTBGS-GMRES are derived similarly to those in [30] for
sGMRES. Let x be the approximate solution of RTBGS-
GMRES. Using (11), the residual norm with respect to X is
bounded as in (8) with £ = 1. Analogously to [30], the residual
estimate in line 25 of Algorithm 3 is checked for convergence.

V. NUMERICAL EXPERIMENTS

This section presents parallel numerical experiments for
BCGSI2-GMRES, RBGS-GMRES, and RTBGS-GMRES us-
ing both the monomial basis and the scaled Newton basis.

A. Experimental setup

The algorithms were implemented using the Trilinos C++
library [23] (version 14.0), a collection of open-source soft-
ware packages for solving complex scientific and engineering
problems through advanced parallel algorithms. Our code is
based on the Belos package [8], a framework for iterative
solvers of large, sparse linear systems. The experiments were
conducted on the Vienna Scientific Cluster (VSC-5), a system
with 564 nodes, each equipped with two 64-core CPUs. We
utilized up to 128 processes per node, assigning one process
per core as the mode of parallelization.

1) Problem and parameter setting: Our test cases include
application matrices from Table I and 3D Laplace problems.
The right-hand side of a linear system was generated following
the procedure described in Appendix B.2 of [24]. The initial
start vector was the zero vector.

Convergence was monitored using the implicit residual norm
relative to ||r(?)|| for BCGSI2-GMRES, or an estimate relative
to ||©r®|| for the randomized methods. After convergence
was detected, the solvers continued until the computed solution
x satisfied ||b — AX|| < ||b|lcTol, where cTol is the
convergence tolerance. In Table I, cTol is relatively large for
the matrices af_ 3 and ML_ r. Among all test cases, af_ 3 has
the longest runtime by far (see Tables II and III). Increasing
cTol for this matrix allowed the collection of experimental
data in reasonable time. For ML_r, all methods, including
GMRES(m), exhibit residual stagnation around 2.08 - 10-7
when using preconditioners from the Ifpack2 Trilinos pack-
age [32]. Identifying a better preconditioner for this matrix is
beyond the scope of this work.

Restart lengths m < 60 for GMRES(m) are commonly
found in the literature (see, e.g., [2, 19]). In our numerical ex-
periments with s-step methods, we observed that significantly
larger restart lengths (e.g., 200 < m < 400) led to improved
runtime performance due to faster convergence.

In all s-step methods, the ICE (see Section III-F2) estimated
the condition number of the basis which was generated by the
MPK through s conventional sparse matrix-vector multipli-
cations. If the estimate exceeded the bound (2, the step size
was reduced accordingly. Unless stated otherwise, the default
parameter was €2 = 10~ 'u~/2, with « in double precision.

Like RTBGS-GMRES, the RBGS-GMRES implementation
requires one global synchronization every s steps. For sketch
dimensions d < 1500, block least-squares problems involving
the matrix S (cf. lines 10 and 17 of Algorithm 2) were solved
using Householder QR, with reflectors from previous iterations
recycled for efficiency. For d = 5000, the corresponding
normal equations were solved using five rounds of Richardson
iterations. The initial truncation parameter of RTBGS-GMRES
was set to ¢t = 8 in all experiments. In line 24 of Algorithm 3,
the QR factorizations from previous iterations were reused,



and the condition number of Rl:i—l,l:i—l was estimated using
the ICE. If this estimate exceeded Qc = 104, the method was
restarted with the current solution as initial guess and a new
truncation parameter t,,c,, = max(2t, m).

2) Ifpack2 preconditioners: We briefly describe the parallel
preconditioners from the Ifpack2 Trilinos package listed in
Table I. All preconditioners were used as right preconditioners.

a) COLEQUI: Column equilibration, where each column
of A is divided by its column one-norm.

b) ILU(k): Incomplete LU Factorization performed on the
diagonal (local) blocks of the block-row distributed matrix A,
with £ > 0.

¢) ILUT(k): Incomplete LU Factorization with Threshold-
ing performed on the diagonal (local) blocks of the block-row
distributed matrix A. The number of additional elements per
row in the L and U factors is computed as %, with
k>1.

TABLE I
TEST MATRICES FROM THE SUITESPARSE MATRIX COLLECTION AND
MATRIX MARKET: n DENOTES THE DIMENSION AND NNz THE NUMBER
OF NONZEROS. NP DENOTES THE NUMBER OF PROCESSES, PREC THE
PRECONDITIONER, CTOL THE CONVERGENCE TOLERANCE, AND m THE
RESTART LENGTH USED IN THE EXPERIMENTS WITH THE
CORRESPONDING TEST MATRIX.

label matrix n nnz/n|np prec cTol | m
€200| e20r5000 4241 31.0| 1 |ILU(8) 1014 | 60
mat3|matrix-new_3| 125329 71| 4 |1LUT(1.) |10714 200
xen2 xenon?2 157464| 24.6| 4 [COLEQUI |10~ |300
radn| radiation 223104| 24.8| 8 |[COLEQUI [10~12 |200

504855| 34.8|16 |COLEQUI [10~7 {300
1489752 6.9 64 |COLEQUT |10~1% [300
1504002| 73.6|64 |coLEQUI |10~ |400

af_3 af_shell3
atml atmosmodl
ML_r ML_Geer

B. Experiments with the monomial basis

We present performance results for application matrices
from Table I and show strong and weak scaling experiments
involving 3D Laplace problems. All s-step methods were
evaluated with s = 5, a value commonly used with the
monomial basis [24, 34, 35].

1) Application matrices: Table Il compares the random-
ized methods with BCGSI2-GMRES in terms of number of
iterations, runtime, and speedup. Additionally, we compare
BCGSI2-GMRES with GMRES(m) based on the classical
Gram-Schmidt process with reorthogonalization, which is
known for its excellent stability and low communication
overhead among non-blocked orthogonalization methods [20].
For BCGSI2-GMRES, we present the mean speedup of 20 runs
over a single run of GMRES(m), while for the randomized
methods, the median speedup of 20 runs over BCGSI2-
GMRES is reported. In each run, the randomized methods
sampled a CountSketch embedding of size d = 600 when
m < 300, and d = 1500 when m = 400.

The step size did not change for all test cases in Table II,
except for mat 3, where poor conditioning in the initial MPK-
generated basis caused BCGSI2-GMRES to reduce the step
size to s = 3. Similarly, the randomized methods reduced the
step size to s = 4 for the same reason.

TABLE II
FOorR BCGSI2-GMRES, THE NUMBER OF ITERATIONS UNTIL
CONVERGENCE (#ITS), MEAN RUNTIME (IN SECONDS) OVER 20 RUNS,
AND SPEEDUP SGMRES OVER A SINGLE RUN OF GMRES(m) ARE SHOWN.
FOR THE RANDOMIZED ALGORITHMS RBGS-GMRES AND
RTBGS-GMRES, THE DIFFERENCE A;rs TO BCGSI2-GMRES IN TERMS
OF MEDIAN NUMBER OF ITERATIONS UNTIL CONVERGENCE AND THE
MEDIAN SPEEDUP OVER BCGSI2-GMRES ACROSS 20 RUNS ARE
REPORTED, WITH INTERQUARTILE RANGES (IQR) IN BRACKETS.

BCGSI2-GMRES RBGS-GMRES
#its [time [s] SGMRES Aits

RTBGS-GMRES

Spcasn Aits | Secesn

mat3 | 156] 0.97| 1.73 6.0 (44)|1.55(0.52)| 4.0 (12)|1.97(0.12)
xen?2 |2875| 17.07| 3.60 0.0 (40)|2.15(0.05)|220.0(193)|3.78(0.45)
radn | 285 2.02| 2.75 2.5 (5)[1.55(0.04)| 45.0 (10)|1.75(0.03)
af_3(2310f 42.95| 347 |—7.5(418)(1.83(0.40)|117.5(540)|2.46(0.77)
atml | 445 4.30( 4.07 0.0 (0)[2.29(0.01)| 0.0 (0)|4.81(0.06)
ML_r | 745 1595| 3.17 |25.0 (5)|1.43(0.02)| 35.0 (5)[1.93(0.02)

matrix

The test matrix €200 in Table I is much too small for
efficient parallelization and is therefore not included in Table II
(nor in Table III). Figure 1 illustrates the convergence histories
for e200. The RTBGS-GMRES algorithm required several
early restarts due to poor conditioning of the Krylov basis.
The truncation parameter ¢ was doubled at each restart until it
eventually reached ¢ = m. This resulted in slower convergence
and increased computational cost, making this strategy less
suitable for test matrix €200.

=
]
s
wn
e
3]
2
= - [— GMRES(m)
o % BCGSI2-GMRES
RBGS-GMRES
& RTBGS-GMRES
10715 ! ! . . . \
0 50 100 150 200 250 300

number of iterations

Fig. 1. Convergence histories for e200. The randomized methods show
residual means with 95% confidence intervals based on 20 runs. BCGSI2-
GMRES used the ICE with a condition number bound of = 10~ 1¢,~1/2
for Krylov basis orthogonalization, while the randomized methods used
Q = 10~24~1/2. With an initial step size of s = 5, the ICE restricted
all s-step methods to three steps per iteration.

Although RTBGS-GMRES does not initiate early restarts
due to ill-conditioning for the other test cases in Table I, it
generally requires more iterations to converge than RBGS-
GMRES and BCGSI2-GMRES. However, the strongly re-
duced cost per iteration results in the best overall performance,
achieving a speedup of up to 4.81x (for test matrix atml).
Note that larger IQR values in Table II indicate greater
variability in the performance of the randomized methods.

2) Strong and weak scaling experiments: We present strong
scaling experiments for a 3D Laplace problem of size 64M
(IM = 10%) and restart length m = 400. The randomized
methods used a CountSketch embedding of size d = 1500.
Figure 2 illustrates runtime performance with a breakdown of



the most important kernels including the MPK, the projection
and normalization steps of orthogonalization, the sketching of
high-dimensional vectors performed by the randomized meth-
ods, and local computation represented by the “Other” kernel.
In BCGSI2-GMRES and RBGS-GMRES, a major part of this
kernel consists of the computation of the Hessenberg matrix.
In RTBGS-GMRES, the “Other” kernel primarily consists of
computing and factorizing the implicitly sketched Krylov basis
Ci.i-1 = ®AQq.;_1 (see lines 19-24 of Algorithm 3). The
speedup of RTBGS-GMRES mainly results from the reduced
projection cost achieved through truncated orthogonalization.
The speedup values corresponding to Figure 2 are shown
in Figure 3. For 2'2 processes and beyond, all methods
deviate from linear speedup. The deviation is stronger in the
randomized methods, as local operations on sketched objects
become relatively more expensive when the number of rows
per process decreases and approaches the sketch dimension
d. Note that with 2!3 processes, the degree of parallelism is
very high, with an average of only 7812.5 rows per processor.
In contrast, the systems involving matrices from Table I
are distributed across 23277 to 39366 rows per processor,
corresponding to a parallelization degree of approximately 2!
processes in Figure 3.

Figure 4 presents weak scaling experiments for 3D Laplace
problems of sizes 1M to 128M. Although BCGSI2-GMRES
requires four times the number of global synchronizations
compared to the randomized methods, all the methods indicate
similar scaling behavior. A possible explanation for this could
be that the number of nodes is still relatively low (at most
64 nodes, with 128 processes per node). The relatively large
fraction of runtime for “Other” for RBGS-GMRES using
213 processes still remains to be analyzed. The computations
summarized in this category do not involve communication,
nor do they depend on the matrix size or increase locally.

600
_ I MPK
500 ¢ E== Ortho (Normalization)
] Ortho (Projection)
400 I Sketch Basis
. Other
< 300 F
E
200
100 -
0

6 7 8 9 10 11 12 13
log2(number of processes)

Fig. 2. Mean runtime performance over 20 runs (with negligible variance
in runtime) for strong scaling experiments with a 3D Laplace matrix of size
64M and convergence tolerance 10~7. Algorithms in a bar group: BCGSI2-
GMRES (left), RBGS-GMRES (middle), and RTBGS-GMRES (right).

C. Experiments with the scaled Newton basis

We present performance results for application matrices
comparable to those in Section V-Bl1, but for the scaled

256
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S 128t -4
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2 64r 1
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s 16| ]
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2 47 o — & BCGSI2-GMRES |

g e RBGS-GMRES

& 20 7 — A RTBGS-GMRES | |
6 7 8 9 10 11 12 13
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Fig. 3. Mean speedup over 20 runs for strong scaling experiments with a
3D Laplace matrix of size 64M, using BCGSI2-GMRES with 26 processes
as the baseline for all methods.

I MPK Norm. [[7] Proj.
5 - | I Sketch Other

7 8 9 10 11 12 13
log2(number of processes)

Fig. 4. Mean runtime over 20 runs for weak scaling experiments with
3D Laplace matrices ranging from IM to 128M (15,625 rows per process).
Algorithms and kernels are as in Figure 2. The s-step methods terminated
when the relative residual improvement exceeded that of GMRES(m) at the
396" iteration (which happens after approximately 400 iterations).

Newton basis. Additionally, we report the performance of
randomized s-step GMRES methods with different subspace
embeddings of varying sizes.

1) Application matrices: Table III presents results for the
scaled Newton basis. The randomized methods used the same
sketch type and dimensions as those in Section V-B1. For each
test case, 100 Ritz values were computed as a preprocessing
step using Arnoldi’s method. The initial step size s in Table III
was obtained using the step size estimator from [34]. We
determined the optimal step size as the smallest value that, if
reduced by the ICE, remained unchanged until convergence.
The results show that the gap between the estimated and
optimal step sizes can be significant. However, we made the in-
teresting observation that, in some cases, the truncated orthog-
onalization of RTBGS-GMRES leads to optimal step sizes that
are closer to the estimate, which benefits performance. In this
regard, the randomized methods outperform BCGSI2-GMRES
in all cases, with RTBGS-GMRES achieving a speedup of
2.35x over BCGSI2-GMRES for the matrix xen2.

2) Different subspace embeddings of varying sizes: Fig-
ures 5-7 illustrate the performance of randomized s-step GM-



TABLE III

S DENOTES THE ESTIMATE OF THE OPTIMAL STEP SIZE Sopr FOR BCGSI2-GMRES AND RBGS-GMRES, AND OF
THE OPTIMAL STEP SIZE Sopr FOR RTBGS-GMRES, RESPECTIVELY. THE OTHER PARAMETERS ARE AS IN TABLE II.

. R _ BCGSI2-GMRES RBGS-GMRES RTBGS-GMRES
matrix 3 Isopt /Sopt - -
#its | time [s] | Scmres Ajs SBcasn Ajs SBcasn2
mat3 100/ 37 3 156 1.23 1.37 3 (43) | 1.34(0.37) 3 (0) | 1.62(0.01)
xen2 100/ 15 /30 | 2910 9.28 6.64 | 870(773) | 1.23(0.22) | —30 (60) | 2.35(0.05)
radn 14/12/12 | 284 1.40 3.97 12 (0) | 1.25(0.02) 60 (12) | 1.25(0.06)
af 3 97/20/75 | 2320 21.90 6.80 | —10(420) | 1.34(0.26) | —70(251) | 1.57(0.30)
atml 100/100/100 | 500 1.16 15.20 0 (0) | 1.36(0.01) 0 (0) | 1.47(0.02)
ML_r 85/24/66 | 762 9.68 523 24 (0) | 1.09(0.01) 34 (0) | 1.31(0.01)
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Fig. 5. Performance of randomized s-step GMRES methods for test matrix xen2 using various embedding types and sketch dimensions d, based on 20 runs.
The legend in the left plot corresponds to both plots. For BCGSI2-GMRES, the mean runtime is shown as a dashed horizontal line. The variance in runtime
was negligible. Boxplots represent the randomized methods, alternating between RBGS-GMRES (yellow boxes) and RTBGS-GMRES (black boxes), starting
with RBGS-GMRES. Left: Number of iterations until convergence with respect to cTol, listed in Table I. Right: Runtime performance (log scale).
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Fig. 6. Performance of randomized s-step GMRES methods for test matrix af_3 (description as in Figure 5). The Gaussian embedding was not evaluated
due to the high computational cost for d = 5000.

RES methods with different subspace embeddings of varying
sizes. The results show no clear advantage in the number
of iterations until convergence among the different subspace
embeddings. The number of iterations is more influenced by

the sketch dimension d (see Figures 5 and 6). Therefore,
CountSketch embeddings are recommended, as their parallel
application time is significantly faster compared to BSRHT
and Gaussian sketches. In Figure 5, RTBGS-GMRES exhibits
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Fig. 7. Performance of randomized s-step GMRES methods for matrix atml (description as in Figure 5). The optimal step size is s = 100 for all methods,
leading to convergence within the same number of iterations. The Gaussian embedding was not evaluated due to the high computational cost for d = 5000.

less sensitivity to the sketch dimension size in terms of number
of iterations compared to RBGS-GMRES. This suggests that
RBGS-GMRES could benefit from solving the sketched least-
squares problem in (10) rather than relying on the Arnoldi
relation. Additionally, convergence of all methods within the
same step is more likely with very large step sizes (see
Figure 7), as the residual improvement is only checked every
s steps.

VI. CONCLUSION

We investigated parallel deterministic and randomized s-
step GMRES methods with a focus on stability, performance,
and scalability. The randomized methods, RBGS-GMRES and
the novel RTBGS-GMRES algorithm proposed in this paper,
require only one global synchronization to advance s steps
while maintaining sufficient numerical stability. In contrast,
the deterministic algorithm BCGSI2-GMRES requires four
global synchronizations. For matrices of sizes up to 128 - 10,
all methods demonstrate similar behavior in terms of weak
scalability. However, with appropriately sized CountSketch
embeddings, the randomized methods outperform the deter-
ministic BCGSI2-GMRES algorithm in all test cases, and
our novel RTBGS-GMRES algorithm outperforms the other
methods. In particular, RTBGS-GMRES achieves speedups
over BCGSI2-GMRES of up to 4.81x using the monomial
basis and up to 2.35x using the scaled Newton basis.
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