- Nested Dissection Meets IPMs: Planar Min-Cost Flow in
Nearly-Linear Time

SALLY DONG, Paul G Allen School of Computer Science and Engineering, University of Washington,
Seattle, United States

YU GAO, School of Computer Science, Georgia Institute of Technology, Atlanta, United States
GRAMOZ GORANCI, Faculty of Computer Science, University of Vienna, Vienna, Austria

YIN TAT LEE, Paul G Allen School of Computer Science and Engineering, University of Washington, Seattle,
United States

SUSHANT SACHDEVA, Department of Computer Science, University of Toronto, Toronto, Canada
RICHARD PENG, Computer Science Department, Carnegie Mellon University, Pittsburgh, United States
GUANGHAO YE, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, United States

We present a nearly-linear time algorithm for finding a minimum-cost flow in planar graphs with
polynomially-bounded integer costs and capacities. The previous fastest algorithm for this problem is based
on interior point methods (IPMs) and works for general sparse graphs in O(n!-> - poly(log n)) time [Daitch-
Spielman, STOC’08].

Intuitively, Q(n'-®) is a natural runtime barrier for IPM-based methods, since they require /n iterations,
each routing a possibly-dense electrical flow. To break this barrier, we develop a new implicit representation
for flows based on generalized nested dissection [Lipton-Rose-Tarjan, SINUM’79] and approximate Schur
complements [Kyng-Sachdeva, FOCS’16]. This implicit representation permits us to design a data structure

Sally Dong supported by a PGS-D postdoctoral fellowship from Natural Sciences and Engineering Research Council of
Canada (NSERC).

Yu Gao supported by National Science Foundation (NSF) award CCF-1846218.

Part of this work was done while the Gramoz Goranci was a postdoc at University of Toronto.

Yin Tat Lee supported by NSF awards CCF-1749609, DMS-1839116, DMS-2023166, CCF-2105772, a Microsoft Research
Faculty Fellowship, a Sloan Research Fellowship, and a Packard Fellowship.

Sushant Sachdeva supported by an NSERC Discovery Grant.

Richard Peng supported by NSF awards CCF-1846218 and CCF-2106444.

Guanghao Ye part of this work was done while the author was a student at University of Washington.

Authors’ Contact Information: Sally Dong, Paul G Allen School of Computer Science and Engineering, University of
Washington, Seattle, Washington, United States; e-mail: sallyqd@uw.edu; Yu Gao, School of Computer Science, Geor-
gia Institute of Technology, Atlanta, Georgia, United States; e-mail: ygao380@gatech.edu; Gramoz Goranci, Faculty of
Computer Science, University of Vienna, Vienna, Austria; e-mail: gramoz.goranci@gmail.com; Yin Tat Lee, Paul G Allen
School of Computer Science and Engineering, University of Washington, Seattle,Washington, United States; e-mail: yin-
tat@uw.edu; Sushant Sachdeva, Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; e-mail:
sachdeva@cs.toronto.edu; Richard Peng, Computer Science Department, Carnegie Mellon University, Pittsburgh, Penn-
sylvania, United States; e-mail: yangp@cs.cmu.edu; Guanghao Ye, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States; e-mail: ghye@mit.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).
ACM 0004-5411/2025/07-ART27
https://doi.org/10.1145/3744639

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:2 S. Dong et al.

to route an electrical flow with sparse demands in roughly /i update time, resulting in a total runtime of
O(n - poly(log n)).
Our results immediately extend to all families of separable graphs.

CCS Concepts: « Theory of computation — Data structures design and analysis; Streaming, sublinear
and near linear time algorithms; Discrete optimization; Network flows; - Mathematics of comput-
ing — Network flows

Additional Key Words and Phrases: Network flow, planar graph

ACM Reference Format:

Sally Dong, Yu Gao, Gramoz Goranci, Yin Tat Lee, Sushant Sachdeva, Richard Peng, and Guanghao Ye.
2025. Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time. J. ACM 72, 4, Article 27
(July 2025), 75 pages. https://doi.org/10.1145/3744639

1 Introduction

The minimum-cost flow problem on planar graphs is a foundational problem in combinatorial
optimization studied since the 1950s. It has diverse applications including network design, VLSI
layout, and computer vision. The seminal article of Ford and Fulkerson in the 1950s [24] presented
an O(n?) time algorithm for the special case of max-flow on s, t-planar graphs, i.e., planar graphs
with both the source and sink lying on the same face. Over the decades since, a number of
nearly-linear time max-flow algorithms have been developed for special graph classes, including
undirected planar graphs by Reif and Hassin-Johnson [31, 57], planar graphs by Borradaile-Klein
[9], and bounded-genus graphs by Chambers-Erickson-Nayyeri [11]. However, for the more
general min-cost flow problem, there is no known result specializing on planar graphs with
better guarantees than on general graphs. In this article, we present the first nearly-linear time
algorithm for min-cost flow on planar graphs:

THEOREM 1 (MaIN Resurt). Let G = (V,E) be a directed planar graph with n vertices and m
edges. Assume that the demands d, edge capacities u and costs ¢ are all integers and bounded by M
in absolute value. Then there is an algorithm that computes a minimum-cost flow satisfying demand
d in O(nlog? M) expected time.

Our algorithm is fairly general and uses the planarity assumption minimally. It builds on a com-
bination of interior point methods (IPMs), approximate Schur complements, and nested dissection,
with the latter being the only component that exploits planarity. Specifically, we require that for
any subgraph of the input graph with k vertices, we can find an O(Vk)-sized balanced vertex-
separator in nearly-linear time. As a result, the algorithm naturally generalizes to all graphs with
small separators. We say a subset-closed family of graphs G is a-separable if there are universal
constants 0 < b < 1 and ¢ > 0 such that for any G € G with n vertices and m edges, G has a
balanced vertex-separator S with at most cn® vertices, and the components of G \ S each have at
most bm edges. Our algorithm generalizes as follows:

COROLLARY 2 (SEPARABLE MIN-cosT FLow). Let G be an a-separable graph class, and suppose
there is convex function s such that we can compute a balanced vertex-separator for any G € G
with m edges in s(m) time. Then given connected G € G with m edges, and integral demands d,
edge capacities u, costs ¢, all bounded by M in absolute value, there is an algorithm that computes a
minimum-cost flow on G satisfying demand d in O((m + m/2+@) log? M + s(m)) expected time.

IThroughout the article, we use 5(f(n)) to denote O(f(n)logomf(n)).

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:3

Table 1. Fastest Known Exact Algorithms for the Min-cost Flow Problem,
Ordered by the Generality of the Result

Min-cost flow | Time bound | Reference |
Strongly polytime O(m?log n + mnlog® n) [56]
Weakly polytime O(m*°M Jog® M) [12]
Unit-capacity m3+°W Jog M (6]

Planar graph O(nlog® M) this article

Unit-capacity planar graph 0(n*?log M) [39]
Graph with treewidth ¢ O(nt?log M) [20]
Outerplanar graph O(nlog” n) [38]
Unidirectional, bidirectional cycle O(n), O(nlogn) [63]

Here, n is the number of vertices, m is the number of edges, and M is the maximum of edge
capacity and cost value.

Beyond the study of structured graphs, we believe our article is of broader interest. The study of
efficient optimization algorithms on geometrically structured graphs is a topic at the intersection of
computational geometry, graph theory, combinatorial optimization, and scientific computing, that
has had a profound impact on each of these areas. Connections between planarity testing and 3-
vertex connectivity motivated the study of depth-first search algorithms [62], and using geometric
structures to find faster solvers for structured linear systems provided foundations of Laplacian
algorithms as well as combinatorial scientific computing [29, 51]. Several surprising insights from
our nearly-linear time algorithm are:

(1) We are able to design a data structure for maintaining feasible primal-dual solutions that
allows sublinear time updates—updating the flow value of K edges at once requires only
O(VnK) time. The IPM takes roughly v/n iterations and makes K-sparse updates roughly
\n/K times, elegantly combining to give a total runtime of O(n).

(2) We show that the subspace constraints on the feasible primal-dual solutions can be main-
tained implicitly under dynamic updates to the solutions. This circumvents the need to track
the infeasibility of primal solutions (flows), which was required in previous works.

We hope our result provides both a host of new tools for designing algorithms for separable
graphs, as well as insights on how to further improve such algorithms for general graphs.

1.1 Previous Work

The min-cost flow problem is well studied in both structured graphs and general graphs. Table 1
summarizes the best algorithms for different settings prior to this work.

Min-cost flow/max-flow on general graphs. Here, we focus on recent exact max-flow and min-
cost flow algorithms. For an earlier history, we refer the reader to the monographs [4, 44]. For the
approximate max-flow problem, we refer the reader to the recent articles [7, 13, 41, 58-60].

To understand recent progress, we view the max-flow problem as finding a unit s, t-flow with
minimum {e-norm, and the shortest path problem as finding a unit s, -flow with minimum ¢;-
norm. Prior to 2008, almost all max-flow algorithms reduced this £, problem to a sequence of ¢,
problems, since the latter can be solved efficiently. This changed with the celebrated work of Spiel-
man and Teng, which showed how to find electrical flows ({,-minimizing unit s, t-flow) in nearly-
linear time [61]. Since the £;-norm is closer to £ than ¢1, this gives a more powerful primitive for
the max-flow problem. In 2008, Daitch and Spielman demonstrated that one could apply IPMs to

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:4 S. Dong et al.

reduce min-cost flow to roughly y/m electrical flow computations. This follows from the fact that
IPMs take O(+y/m) iterations and each iteration requires solving an electrical flow problem, which
can now be solved in O(m) time due to the work of Spielman and Teng. Consequently, they obtained
an algorithm with a O(m3/2 log® M) runtime [17]. Since then, several algorithms have utilized elec-
trical flows and other stronger primitives for solving max-flow and min-cost flow problems.

For graphs with unit capacities, Madry gave a O(m'/7)-time max-flow algorithm, the first that
broke the 3/2-exponent barrier [52]. It was later improved and generalized to O(m*/>+°") log M)
[6] for the min-cost flow problem. Kathuria et al. [40] gave a similar runtime of O(m*/3+°(Dy1/3)
where U is the max capacity. The runtime improvement comes from decreasing the number of
iterations of IPM to 5(m1/ %) via a more powerful primitive of £, + ¢, minimizing flows [47].

For graphs with general capacities, the runtime has recently been improved to O((m +
n3/2)log* M) for min-cost flow on dense graphs [67], and 5(m%'3‘_§8 log M) for max-flow on sparse
graphs [25]. These algorithms focus on decreasing the per-iteration cost of IPMs by dynamically
maintaining electrical flows. After the preliminary version of this work was accepted to SODA
2022, [66] gave a runtime of 5(m%'5_18 log? M) for min-cost flow following the dynamic electrical
flow framework. Most recently, [12] improved the runtime for min-cost flow to O(m'+°®") log? M)
by solving a sequence of approximate undirected minimum-ratio cycles, capping off the line of
work.

Max-flow on planar graphs. The planar max-flow problem has an equally long history. We refer
the reader to the thesis by Borradaile [8] for a detailed exposition. In the seminal work of Ford
and Fulkerson that introduced the max-flow min-cut theorem [24], they also gave a max-flow
algorithm for s, t-planar graphs (planar graphs where the source and sink lie on the same face). This
algorithm iteratively sends flow along the top-most augmenting path. Itai and Shiloach showed
how to implement each step in O(logn) time, thus giving an O(nlogn) time algorithm for s, ¢-
planar graphs [35]. In this setting, Hassin also showed that the max-flow can be computed using
shortest-path distances in the planar dual in O(nlog n) time [30]. Building on Hassin’s work, the
current best runtime is O(n) by Henzinger, Klein, Rao, and Subramanian [32]. For undirected planar
graphs, Reif first gave an O(nlog? n) time algorithm for finding the max-flow value [57]. Hassin
and Johnson then showed how to compute the flow in the same runtime [31]. The current best
runtime is O(nloglog n) by Italiano, Nussbaum, Sankowski, and Wulff-Nilsen [36].

For general planar graphs, Weihe gave the first O(nlog n) time algorithm, assuming the graph
satisfies certain connectivity conditions [70]. Later, Borradaile and Klein gave an O(nlogn) time
algorithm for any planar graph [9].

The multiple-source multiple-sink version of max-flow is considered much harder on planar
graphs. The first result of O(n!-%) time was by Miller and Naor when sources and sinks are all on
same face [54]. This was then improved to O(nlog® n) in [10].

For generalizations of planar graphs, Chambers, Erickson and Nayyeri gave the first nearly-
linear time algorithm for max-flow on graphs embedded on bounded-genus surfaces [11]. Miller
and Peng gave an O(n®*)-time algorithm for approximating undirected max-flow for the class of
O(+/n)-separable graphs [55], although this is superseded by the previously mentioned works for
general graphs [41, 58].

Min-cost flow on planar graphs. Imai and Iwano gave a O(n!-***log M) time algorithm for min-
cost flow for the more general class of O(+/n)-separable graphs [34]. To the best of our knowledge,
there is little else known about min-cost flow on general planar graphs. In the special case of unit
capacities, [5, 49] gives an O(nS/° log M) time algorithm for min-cost perfect matching in bipartite
planar graphs, and Karczmarz and Sankowski gives a O(n*/* log M) time algorithm for min-cost

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:5

flow [39]. Currently, bounded treewidth graphs is the only graph family we know that admits
min-cost flow algorithms that run in nearly-linear time [20].

1.2 Challenges

Here, we discuss some of the challenges in developing faster algorithms for the planar min-cost
flow problem from a convex optimization perspective. For a discussion on challenges in designing
combinatorial algorithms, we refer the reader to [43]. Prior to our result, the fastest min-cost flow
algorithm for planar graphs is based on IPMs and takes O(n*/ log? M) time [17]. Intuitively, Q(n?)
is a natural runtime barrier for IPM-based methods, since they require Q(+/n) iterations, each
computing a possibly-dense electrical flow.

Challenges in improving the number of iterations. The Q(+/n) term comes from the fact that IPM
uses the electrical flow problem (£,-type problem) to approximate the shortest path problem (¢-
type problem). This Q(+/n) term is analogous to the flow decomposition barrier: in the worst case,
we need Q(n) shortest paths (¢;-type problem) to solve the max-flow problem (£s-type problem).
Since ¢, and (. problems differ a lot when there are s-t paths with drastically different lengths,
difficult instances for electrical flow-based max-flow methods are often serial-parallel (see Figure
3 in [13] for an example). Therefore, planarity does not help to improve the vn term. Although
more general £, + ,, primitives have been developed [1-3, 47], exploiting their power in designing
current algorithms for exact max-flow problem has been limited to perturbing the IPM trajectory,
and such a perturbation only works when the residual flow value is large. In all previous works
tweaking IPMs for breaking the 3/2-exponent barrier [6, 15, 40, 52, 53], an augmenting path al-
gorithm is used to send the remaining flow at the end. Due to the residual flow restriction, all
these results assume unit-capacities on edges, and it seems unlikely that planarity can be utilized
to design an algorithm for polynomially-large capacities with fewer than v/n IPM iterations.

Challenges in improving the cost per iteration. Recently, there has been much progress using data
structures to design faster IPM algorithms for linear programs as well as flow problems on general
graphs. For general linear programs, robust IPMs have been developed recently with runtimes that
essentially match the matrix multiplication cost [14, 33, 64, 65, 68]. This version of IPM ensures
that the £, problem solved changes in a sparse manner from iteration to iteration. When used to
design graph algorithms, the ith iteration of a robust IPM involves computing an electrical flow
on some weighted graph G;. The edge support remains unchanged between iterations, while the
edge weights, representing conductance, change. Furthermore, if K; is the number of edges with
weight changes between G; and G;., then robust IPMs guarantee that

2 VKi =0 (Vmlog M)

Roughly, this says on average, each edge undergoes only poly-log many weight updates through-
out the algorithm. Unfortunately, any sparsity bound is not enough to achieve nearly-linear time.
Unlike the shortest path problem, changing any edge in a connected graph will result in the elec-
trical flow changing on essentially every edge. Therefore, it is very difficult to implement (robust)
IPMs in sublinear time per iteration, even if the subproblem barely changes every iteration. On
moderately dense graphs with m = Q(n'*®), this issue can be avoided by first approximating
the graph by sparse graphs and solving the electrical flow on the sparse graphs. This leads to
O(n) < O(m) time cost per step [68]. However, on sparse graphs, significant obstacles remain.
Recently, there has been a major breakthrough in this direction by using random walks to approx-
imate the electrical flow [25, 66]. Unfortunately, this still requires m!”% time per iteration.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:6 S. Dong et al.

Finally, we note that [20] gives an O(nt®log M)-time algorithm for linear programs with r
treewidth. Their algorithm maintains the solution using an implicit representation. This implicit
representation involves a 7 X 7 matrix that records the interaction between every variable within
the vertex-separator set. Each step of the algorithm updates this matrix once and it is not the bot-
tleneck for the O(nr? log M)-time budget. However, for planar graphs where 7 = O(y/n), this 7 X 7
matrix is a dense graph on +/n vertices given by the Schur complement on the separator. Hence,
updating this using their method requires Q(n) time per step.

Our article follows the approach in [20] and shows that this dense graph can be sparsified. This is,
however, subtle. Each step of the IPM makes a global update via the implicit representation, hence
checking whether the flow is feasible takes at least linear time. Therefore, we need to ensure each
step is exactly feasible despite the approximation. If we are unable to do that, the algorithm will
need to fix the flow by augmenting paths at the end like [6, 40], resulting in super-linear time and
polynomial dependence on capacities, rather than logarithmic.

1.3 Our Approach

In this section, we introduce our approach and explain how we overcome the difficulties mentioned
previously. To begin, the min-cost flow problem can be reformulated into a linear program in the
following primal-dual form:

(Primal) = min ¢'f and (Dual)= min Z min(I;s;, u;s;),
BTf=0, I<f<u By+s=c ;

where B € R™*" is the edge-vertex incidence matrix, f is the flow and s is the slack (or adjusted
cost vector). The primal is the min-cost circulation problem on a graph that is planar with two ad-
ditional vertices, and the dual is a variant of the min-cut problem. Our algorithm for min-cost flow
is composed of a novel application of IPM (Section 3.1) and new data structures (Section 3.4). The
IPM method reduces solving a linear program to applying a sequence of O(y/m log M) projections
and the data structures implement the primal and dual projection steps in roughly Oo(ym log M)
amortized time.

Robust IPM. We first explain the IPM briefly. To minimize ¢' f, each step of the IPM method
moves the flow vector f in the direction of —c. However, such f may exceed the maximum or
minimum capacities. IPM incorporates these capacity constraints by routing flows slower when
they are approaching their capacity bounds. This is achieved by controlling the edge weights w
and direction v in each projection step. Both w and v are roughly chosen from some explicit entry-
wise formula of f and s, namely, w; = Y1 (fi, s;) and v; = »(f3, s;). Hence, the main bottleneck is
to implement the projection step. For the min-cost flow problem, this projection step corresponds
to an electrical flow computation.

It has recently been observed by [14] that there is a lot of freedom in choosing the weights w
and the direction v. Specifically, instead of using f, s to compute w and v, it is possible to use
entry-wise approximations f,s By updating an entry of f,s only when the corresponding entry
of f,s change significantly, we can ensure f,s has mostly sparse updates, which in turn ensures
that w, v change sparsely and, therefore, permits low-rank updates to P,,.

We refer to IPMs that use approximations f, s as robust IPMs, which were a crucial breakthrough
of [14]. In this article, we apply the version given in [20] in a black-box manner. In Section 3.1, we
state the IPM in full detail. The key challenge is implementing each step in roughly O(+y/m) time.

Separators and nested dissection. Our data structures rely on the separability property of the
input graph, which dates back to the nested dissection algorithms for solving planar linear systems

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:7

[27, 51]. By recursively partitioning the graph into edge-disjoint subgraphs using balanced vertex
separators, we can construct a hierarchical decomposition of a planar graph G which is called
a separator tree [23]. This is a binary search tree over the edges in G, where each node in the
separator tree represents a region of G. In planar graphs, for a region H with |V(H)| vertices, an
O(\/|V(H)|)-sized vertex separator suffices to partition it into two balanced sub-regions which are
represented by the two children of H in the separator tree. The two sub-regions partition the edges
in H and share only vertices in the separator. The boundary of a region H is the set of vertices in H
that are adjacent to vertices outside H in G; these vertices appear in the separators of the ancestor
nodes of H. Any two regions can only share vertices on their boundaries, unless one of them is an
ancestor of the other.

Nested dissection algorithms [27, 51] essentially replace each region by a graph supported
only its boundary vertices in a bottom-up manner. For planar linear systems, solving the dense
Vn x y/n submatrix corresponding to the top level vertex-separator leads to a runtime of n®/?
where o is the matrix multiplication exponent. For other problems such as shortest path, this
primitive involving dense graphs can be further accelerated using additional properties of distance
matrices [23].

Technique 1: Approximate nested dissection and lazy propagation. Our representation of the Lapla-
cian inverse, and in turn the projection matrix, hinges upon a sparsified version of the nested dis-
section representation. That is, instead of a dense inverse involving all pairs of boundary vertices,
we maintain a sparse approximation. This sparsified nested dissection has been used in the ap-
proximate undirected planar flow algorithm from [55]. However, that work predated (and in some
sense motivated) subsequent works on nearly-linear time approximations of Schur complements
on general graphs [45, 46, 48]. Re-incorporating these sparsified algorithms gives runtime depen-
dencies that are nearly-linear, instead of quadratic, in separator sizes, with an overall error that is
acceptable to the robust IPM framework.

By maintaining objects with size nearly equal to the separator size in each node of the separator
tree, we can support updating a single edge or a batch of edges in the graph efficiently. Our data
structures for maintaining the approximate Schur complements and the slack and flow projection
matrices all utilize this idea For example, to maintain the Schur complement of a region H onto
its boundary, we maintain (1) Schur complements of its children onto their boundaries recursively,
and (2) Schur complement of the children’s boundaries onto the boundary H. Thus, to update an
edge, the path in the separator tree from the leaf node containing the edge to the root is visited. To
update multiple edges in a batch, each node in the union of the tree paths is visited. The runtime
is nearly linear in the total number of boundary vertices of all nodes in the union. For K edges
being updated, the runtime is bounded by O(VmK). Step i of our IPM algorithm takes O(v/mK;)
time, where K; is the number of entries changed in W and v in the step. Such a recursive ap-
proximate Schur complement structure was used in [28], where the authors achieved a runtime

of O(VmK;).

Technique 2: Batching the changes. It is known that over t iterations of an IPM, the number of
coordinate updates (by more than a constant factor) in w and @ is bounded by O(¢?) This directly

gives Z?:(;m) K; = m and thus, a total runtime of \/ﬁ(zgl‘ﬁ) VK;) = O(m!-®). In order to obtain
a nearly-linear runtime, the robust IPM carefully batches the updates in different steps. In the i-th
step, if the change in an edge variable has exceeded some fixed threshold compared to its value in
the (i — 2¢)-th step for some ¢ < ¢;, we adjust its approximation. Here, ¢; is the number of trailing
zeros in the binary representation of i, i.e., 27 is the largest power of 2 that divides i. This ensures
that K;, the number of coordinate changes at step i is bounded by O(2%). Since each value of ¢;

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:8 S. Dong et al.

arises once every 2¢¢ steps, we can show that the sum of square roots of the number of changes

over all steps is bounded by O(m), i.e., Z?Wﬁ) VK; = O(y/m). Combined with the runtime of the

=1
data structures, we obtain an O(m) overall runtime.

Technique 3: Maintaining feasibility via two projections. A major difficulty in the IPM is maintain-
ing a flow vector f that satisfies the demands exactly and a slack vector s that can be expressed
as s = ¢ — By. If we simply project v approximately in each step, the flow we send is not exactly
a circulation. Traditionally, this can be fixed by computing the excess demand each step and send-
ing flow to fix this demand. Since our edge capacities can be polynomially large, this step can take
Q(m) time To overcome this feasibility problem, we note that distinct projection operators P,, can
be used in IPMs for f and s as long as each projection is close to the true projection and that the
step satisfies BTAf = 0 and BAy + As = 0 for some Ay.

This two-operator scheme is essential to our improvement since one can prove that any projec-
tion that gives feasible steps for f and s simultaneously must be the exact electrical projection,
which takes linear time to compute.

2 Preliminaries

We assume all matrices and vectors in an expression have matching dimensions. That is, we will
trivially pad matrices and vectors with zeros when necessary. This slight abuse of notation
is unavoidable as we need to operate heavily on submatrices and subvectors in the technical
sections.

Computational model. Our algorithm uses the realRAM model, where arithmetic operations are
performed with real numbers in O(1) time Ghadiri, Peng, and Vempala [26] showed that the arith-
metic operations in IPM are stable and do not require more than log bits of precision in the fixed pre-
cision model. Kelner et al. [42] showed that symmetrical diagonally dominant (SDD) solvers simi-
larly do not require higher bit precision. Perhaps conveniently, our algorithm makes extensive use
of approximations, and therefore, can tolerate additional error coming from fixed precision; as a re-
sult, we would only incur an additional log M factor in the runtime under the fixed precision model.

General notations. An event holds with high probability if it holds with probability at least 1 —n¢
for arbitrarily large constant c. The choice of ¢ affects the hidden constant factors in the runtime.

We use boldface lowercase variables to denote vectors, and boldface uppercase variables to de-
note matrices. We use ||v||, to denote the 2-norm of vector » and ||v||y to denote v "Mw. A scalar
function applied to a vector means the function is applied entry-wise, for example, v + 1 or cosh .
We use nnz(v) to denote the number of nonzero entries in @ We use 0 for all-zero vectors and
matrices where dimensions are determined by context, and I for the identity matrix.

For any vector x € R®, we use x|c to denote x restricted to C C S; more specifically, x|c has
length |S|, where x; = 0 for all i ¢ C. For any matrix M € R**B, we use Mc, p to denote the
sub-matrix of M supported on C X D where C C Aand D C B.

For two positive semidefinite matrices L; and Ly, we write L; ~; Ly if e 'L; < Ly < e’L;, where
A < B means B — A is positive semidefinite. We define ~, analogously for scalars, that is, x ~; y
ifelx <y<elx

Trees. For a rooted tree 7, we write H € 7 to mean H is a node in 7. We use node instead of
vertex to distinguish between the contexts of tree vs. graph. We write 75 to mean the complete
subtree of 7 rooted at H. We say a node A is an ancestor of H, and H is a descendant of A, if H is
in the subtree rooted at A, and H # A.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:9

The level of a node in a tree is defined so that leaf nodes have level 0, and the root has level
n, where 7 is the height of the tree. For interior nodes, the level is the length of the longest path
from the node to a leaf. By this definition, note that the level of a node and its child can differ by
more than 1.

IPM data structures. When we discuss the data structures in the context of the IPM, step 0 means
the initialization step. For k > 0, step k means the kth iteration of the while-loop in Algorithm 1;
that is, it is the kth time we update the current solutions. For any vector or matrix x used in the
IPM, we use x*) to denote the value of x at the end of the kth step.

In all dynamic data structure functions, we assume inputs are given by the set of changed coor-
dinates and their values compared to the previous step Similarly, we output a vector by the set of
changed coordinates and their values compared to the previous output This can be implemented
using lists instead of full-dimensional vectors.

Laplacian matrix. We use L = BTWB to denote the Laplacian matrix of a graph G with edge-
vertex incidence matrix B and with non-negative edge weights W as a diagonal matrix For a sub-
graph H C G, we use L[H] to denote the Laplacian on H, and B[H] to denote the incidence matrix
of H. M' denotes the unique Moore-Penrose pseudo-inverse of M.

When we write L' x for some Laplacian L and vector x, we imply the use of an SDD-solver rather
than computing the pseudo-inverse:

THEOREM 3 ([61]). There is a randomized algorithm which is an e-approximate SDD-system solver.
Given an SDD matrix L € R™" with O(m) non-zeros, d € R", and ¢ € (0, 1), it finds x such that

b —17dll, < ef|"d,

in O(m-poly(log log n) log(1/(eAx(L))) time, where A5(L) is the second smallest eigenvalue of L. More-
over, the solver guarantees that x = Zd, where Z is an n X n-matrix depending only on L and ¢, is
a symmetric linear operator satisfying Z ~, L, and has the same image as L' [69, Section 3.4 and
Theorem 9.2].

3 Overview

In this overview, we give formal theorem statements for the various components of our min-cost
flow algorithm, along with the proof of the main result. We provide high-level explanations using
a simplified setup. Due to the large amount of notation introduced at different points, this section
should be read in its entirety sequentially. Since the completion of this manuscript, a simplified
version of our data structures has appeared in [18, 19].

The main components of our algorithm are: the primal-dual IPM from [20] (Section 3.1); a stan-
dard reduction of planar min-cost flow into the form according to IPM (Section 3.2); a data structure
to maintain a collection of Schur complements via nested dissection of the graph (Section 3.3); data
structures to maintain the primal-dual solutions f, s implicitly, notably using an abstract tree op-
erator (Section 3.4); a sketching-based data structure to maintain the primal-dual approximations
f and s needed in the IPM (Section 3.5); and finally, the definition of the tree operators for pri-
mal and dual solutions corresponding to the IPM projection matrices onto their respective feasible
subspaces (Section 3.6) These are combined in the overall proof (Section 3.7).

3.1 Robust IPM

In this subsection, we explain the robust IPM developed in [20], which is a refinement of the
methods in [14, 64]. Although there are many other robust IPMs, we simply refer to this method
as [PM.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:10 S. Dong et al.

ALGORITHM 1: Robust Interior Point Method from [20]
1: procedure SOLVELP(B € R™" b e R",c e R™ I e R"™, u € R™ ¢)

2 LetLY |lclla. R Jlu—I|l, and ¢i(x) & —log(u; — x) — log(x — I;)

> Modify the linear program and obtain initial (f,s”)

3: t<—221m5.f7f§.§
4: Compute fe < argmin; ¢, cTf+tp(f)and fo « argmingr e, || f = fellz
5: Define the new matrix B™W def [B; B; —B], the new barrier
¢§1€W(x) déf ¢i(x) ifl € [n’l]7
—logx else.

6 f e (fou3R+ fo— fer3R)
7o st (—tVP(fe). m’ %)

> Find initial (f, s) for the original linear program
((f(l),f(z),f(3)), (S(l), 3(2), 3(3))) «— IPMRUN(B™V, "W £/ s’ t LR)
9% (fos) e (f+ fO - O s)

o

> Optimize the original linear program
10: (f.s) < IPMRUN(B, ¢, f, s, LR, 75
11: return f
12: end procedure

13: procedure IPMRUN(B € R™*" barrier function ¢, f € R™,s € R™, tgart, teng)

14: Leta & ﬁ and 1 & 64 log(256m?)
15: t e tspart, [— fos — s, f—1
16: while t > t.,q do
. _
17: te—(1 \/ﬁ)t o
18: Update h = —a/|| cosh(Ay*(f,s))|l2 where y is defined in Equation (3.2)
19: Update the diagonal weight matrix W = diag(w) = (V2¢(?))_1
20: Update the direction v where v; = sinh(/lylt (7, $)i)
21: Pick v/l and vt such that W=/2oll € Range(B), BTW!/20L = 0 and
ol - Py ol < allolh,
ot = T=Py)oll2 < allv]l2
> P, & W1/2B(BTWB)'BTW!/2

22: f— f+hWY20L s — s+ TRW1/2pll
23: Update £, so that [[W™Y2(f = f)]leo < a and [[WY/2(s — 5)||eo < Fa
24: Update f « tif | — t| > af
25: end while

26: return (f,s)
27: end procedure

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:11

Consider a linear program of the form?
;ninc-'—f where F £ {B"f=b,1<f<u} (3.1)
eF
for some matrix B € R™*". The dual space is S « {s : By + s = c for some y}. IPM follows the
primal-dual central path from an interior point (¢ > 0) of ¥ X S to the optimal solution (¢ = 0).
The primal component of the path is given by

f*(t) = arg mine” f ~19(f) where 4(f) R Z log(fi - I;) - Z log(u; - f3),

where the barrier function ¢ controls how close the flow f can be to the capacity constraints u
and I. The optimality condition for f*(¢) is given by

p(fos) = s/t +V(f) = 0 (3.2)
(f,s) e F xS,

where p’(f,s) measures how close f is to the minimizer f*(t).

Following the central path exactly is expensive. Instead, IPM maintains feasible primal and dual
solution (f,s) € ¥ X S over discretized t, and ensures that after each step (decrease in value of £),
f is an approximate minimizer. Specifically, f, s satisfy

Y (o)l < _ B8

1
where y'(f,s); = s (3.3)
Clogm (V29)i/
for some universal constant C. The normalization term (V2¢);l{ ? makes the centrality measure
lly“(f,s)|le scale-invariant in I and u.
The procedure IPMRrRUN in Algorithm 1 takes as input a point close to the central path
(f (tstart)» S(tstart)), and outputs another point on the central path (f(tend), S(fend))- Each step of the
procedure decreases t by a multiplicative factor of (1— \/ﬁl;ogm) and moves (f, s) within ¥ XS such

that s/t + V@(f) is smaller for the current ¢. [20] proved that even if each step is computed approx-
imately, IPMRUN still outputs a point close to (f(tend), S(tend)) Using O(Wm log(tend/tstart)) Steps.
SoLveLP calls IPMrUN twice. The first call to IPMRruN finds a feasible point by following the
central path of the modified linear program
m T) 4 (T £68) 4 (T),
BT (fD+f@_f®)=p
1<fW<u, f@>0, f@>0

where ¢V & ¢, and ¢@, c¢® are some positive large vectors. The above modified linear program
is chosen so that we know an explicit point on its central path, and any approximate minimizer
to this new linear program gives an approximate central path point for the original problem. In
the first call to IPMRUN, each edge e of the original input graph G becomes three copies of the
edge with flow value fe(l), e(z), 6(3), however, edge duplication does not affect planarity for our use
case. The second call to IPMRUN finds an approximate solution by following the central path of
the original linear program.

We note crucially that IPMRUN requires access to (f,s) but not (f, s) during the main while-
loop. Hence, (f,s) can be implicitly maintained via any data structure. The complete solutions
(f, s) only need to be produced at the very end.

2 Although the min-cost flow problem can be written as a one-sided linear program, it is more convenient for the linear
program solver to have both sides. Everything in this section works for general linear programs and hence we will not use
the fact m = O(n) in this subsection.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:12 S. Dong et al.

THEOREM 4. Consider the linear program
min c'f
BT f=b, I<f<u

with B € R™". We are given a scalar r > 0 such that there exists some interior point f, satisfying
B'fo=bandl+r < f, <u-r.LetL = |c|ly andR = |lu = I||. For any 0 < € < 1/2, SOLVELP in
Algorithm 1 finds f such thatB" f =b,1 < f < u and

c'f< min ¢’ f+eLR.
BTf=b, I<f<u

Furthermore, the procedure IPMRUN has the following properties:
— The while-loop runs for O(\/ﬁlogmlog(’:—f)) many iterations (steps), and t is only updated
O(logm log(’g—f)) times.
—w;, v; are updated at a step only if f; ors; changed in the previous step.
— In each step, h||v||, = O(@)‘
— Line 18 to Line 20 takes O(K) time in total, where K is the total number of entry changes in ?, s
throughout [IPMRUN.

Proor. The number of steps follows from Theorem A.1 in [21], with the parameter w; = v; = 1
for all i The number of coordinate changes in w, v and the runtime of Line 18 to Line 20 follows
directly from the entry-wise formula of i/ (f, s) and y’(f, s) The bound on h||v||, follows from

i sinh(xyf(j__f,s))llz w0 (;) ,
Il cosh(y#(F. 51l logm

In working with P,,, we apply ideas from nested dissection and approximate Schur complements
to the matrix L.

hllvllz <

O

3.2 Problem Reduction

In this subsection, we show how to write down the planar min-cost flow problem as a linear pro-
gram of the form Equation (3.1) and produce an optimal flow using the solution returned by the
IPM (Algorithm 1). Suppose the input is as given in Theorem 1.

First, we add extra vertices s and ¢ to the input graph. For every vertex v with d,, < 0, we add
a directed edge from s to v with capacity —d,, and cost 0. For every vertex v with d,, > 0, we add
a directed edge from v to t with capacity d,, and cost 0. Then, we add a directed edge from ¢ to s
with capacity 4nM and cost —4nM The cost and capacity on the t — s edge are chosen such that
the min-cost flow problem on the original graph is equivalent to the min-cost circulation on this
new graph. Namely, if the min-cost circulation in this new graph satisfies all the demand d,, then
by ignoring the flow on the new edges we obtain the min-cost flow in the original graph.

Since Theorem 4 requires an interior point in the polytope, we first remove all directed edges e
through which no flow from s to ¢ can pass. To do this, we simply check, for every directed edge
e = (v1,v;), if s can reach v; and if v, can reach t. This can be done in O(m) time by a BFS from s
and a reverse BFS from t. With this preprocessing, we write the minimum cost circulation problem
as the following linear program

: new\T
b0, ik ene©) I

where B is the signed incidence matrix of the new graph, ¢™V is the new cost vector, and I"*V, u

are the new capacity constraints This LP is the input to SOLvVELP (Algorithm 1); we call the new
graph the IPM input graph.

new

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:13

Now, we bound the parameters L, R, r in Theorem 4. Clearly, L = |[¢"®V||; = O(Mm) and R =
[V —1"¢¥||, = O(Mm). To bound r, we prove that there exists an interior point f in the polytope
F . We construct this f by f = 3,z f©), where £ is a circulation passing through edges e and
(t,s) with flow value 1/(4m). All such circulations exist because of the removal preprocessing. This
f satisfies the capacity constraints because all capacities are at least 1. This shows r > ﬁ.

Let OPT denote the optimal objective value of the original min-cost flow with flow value F. Let
OPT’ denote the optimal objective value of the min-cost circulation which also has flow value F.
We know OPT’ = OPT — 4FnM. Theorem 4 shows that we can find a fractional circulation f” with
flow value F’ such that (¢"¥)" f” < OPT’ + ; by setting € = z77r— for some large constant C in
Algorithm 1 F’ is smaller F, but F—F’ < 2r+M because otherwise sending extra k units of fractional
flow from s to ¢ would give extra negative cost < —knM, leading to an objective value smaller than
OPT’. Let f denote f’ restricted to the original planar graph (still with flow value F’), then we can
round f to an integral flow £ with same or better flow value and no worst cost using O(m) time
[37]. Since f™ is integral with flow value > F — L. we conclude it routes the original demand
completely. Moreover,

. 1 1 1
c'fM <’ f<OPT + T 4F'nM = OPT + 5* 4nM(F’ — F) < OPT + 5
so fi" must have the minimum cost.

3.3 Nested Dissection and Approximate Schur Complements

A key idea in our work involves the manipulation of projection matrices required for the IPM. As
defined in Algorithm 1, the true projection matrix P,, is

P, =

w =

We let L denote the weighted Laplacian where L = BT WB, so that

P, = WY/2BL'BTW'/2,

W!/2B(BTWB)'BTW/2.

In this subsection, we discuss nested dissection and the corresponding Schur complements, and
explain how it relates to the inverse Laplacian L™!. We first illustrate the key ideas using a two-
layer nested dissection scheme.

By the well-known planar separator theorem [50] a planar graph can be decomposed into two
edge-disjoint subgraphs H; and H; called regions each with at most 2n/3 vertices. Furthermore, let
O0H; denote the boundary of region H; that is, the set of vertices v € H; such that v is adjacent to
some u ¢ H;, then 9H; has size O(+/n). As discussed in the previous section, the input graph to the
IPM is the original planar graph plus two additional vertices and O(n) additional edges. We may
add two vertices to both H; and Hj, and partition the edges accordingly.

Let Fy, = V(H;) \ 0H; denote the remaining interior vertices eliminated at region H;. Let C =
0H; U 0H, denote the union of the boundaries which is also a balanced vertex separator of G,
with size O(v/n). Let F = Fy, U Fyy, be the disjoint union of the two interior sets. F and C give a
natural partition of the vertices of G Using block Cholesky decomposition, we can show that the
pseudo-inverse of L is

I 0

I —Lgr 'L
o F,F F,C
L' = PL] _LC,FLF,F_l 1 PL’ (34)

0 I

LF, F_l 0
0 ScL,O)f

where Py, is the projection matrix onto the image of L the term Sc(L, C) < Le.c = LepLpp 'Ly e
is the Schur complement of L onto vertex set C, and Lr,c € R*C is the F x C-indexed submatrix
of L.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:14 S. Dong et al.

IPMRUN in Algorithm 1 updates LT at every step; written as the above decomposition, we must in
turn update the Schur complement Sc(L, C) at every step. Hence, the update cost must be sub-linear
in n. Computing Sc(L, C) exactly takes Q(|C|?) = Q(n) time, which is already too expensive. Our
key idea here is to maintain an approximate Schur complement, which is of a smaller size based
on the graph decomposition and can be maintained in amortized y/n time per step throughout
the IPM.

Let L[H;] denote the weighted Laplacian of the region H; for i = 1,2 Since these regions are
edge-disjoint, we can write the Laplacian L as the sum

L = L[H;] + L[H].
Based on the graph decomposition, we have the Schur complement decomposition
Sc(L, C) = Se(L[H;], C) + Sc(L[H:], O).

This decomposition allows us to localize edge weight updates. Namely, if the weight of edge e is
updated, and e is contained in region H;, we only need to recompute the single Schur complement
term for H;, rather than both terms in the sum.

For the appropriate projection matrices in the IPM it further suffices to maintain a sparse ap-
proximate Schur complement Sc(L[H;], C) ~ Sc(L[H;],C) for each region H; rather than the exact.
Then, the approximate Schur complement of L on C is given by

Se(L, C) = Sc(L[H;],) + Se(L[H], C). (3.5)
Each term S~c(L[H,-],C) can be computed in time nearly-linear in the size of H;. Furthermore,
Sc(L[H;],C) is supported only on the vertex set dH;, which is of size O(y/n) Hence, any sparse
approximate Schur complement has only O(v/n) edges. When we need to compute Sc(L, C)tx for
some vector x, we use a fast SDD-solver which runs in O(|C|) time; this is crucial in bounding the
overall runtime.

To extend the two-level scheme to more layers, we apply nested dissection recursively to
each region H;, until the regions are of constant size This recursive procedure naturally gives
rise to a separator tree 7 of the input graph G, which we discuss in detail in Section 4.2 Each
node of 7~ correspond to a region of G, and can be obtained by taking the union of the regions
corresponding to its two children Taking the union over all leaf regions gives the original
graph G The separator tree 7~ allows us to define a set Fy of eliminated vertices and a set
O0H of boundary vertices for each node H, analogous to what was shown in the two-layer
dissection. Let 1 denote the height of 77, then L admits an #-level recursive decomposition, and
within each level, the expression can be further decomposed according to nodes at the level.
Then, combined with approximate Schur complements, we can obtain an approximation to LY
as follows:

THEOREM 5 (LT APPROXIMATION). Let Py be the projection onto the image of L. Suppose for each
H € T, we have a Laplacian L'?) satisfying

L ~, Sc(L[H], dH U Fg).

Then, we have
L Xnep PLH(O)T RO 5 (U VARY (/D B H(O)PL’ (3.6)
wheré®

3Note that (L(FII? Fu Yisa pseudo-inverse when H is the root node; for notational convenience we use ~! even for the

pseudo-inverse.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:15

-1
H
LHeT(0) (L(FH),FH) 0 0
-1
H
0 0 ZHET(’?) (L;H),FH)

is a block-diagonal matrix, and

-1
(i) _ (H) (H)
I =1- Z LaHvFH (LFH,FH) ’
HeT(i)

where T (i) denotes the set of nodes at level i of T, and 1 is the n X n identity matrix.

To compute and maintain the necessary L)’s as the edge weights undergo updates throughout
the IPM, we have the following data structure:

THEOREM 6 (SCHUR COMPLEMENTS MAINTENANCE). Given a separator tree 7 of height n =
O(log m) for the IPM input graph G, the deterministic data structure DYNAmICSC (Algorithm 3) cor-
rectly maintains two Laplacians L'') and Sc(L™), 9HUFy) at everynodeH € T, which are dependent
on the dynamic weights w from the IPM. The data structure supports the following procedures:

—INtmiaLize(7,w € RZ,ep > 0): Given the separator tree T, initial weights w, target step
accuracy ep, preprocess in O(ep™>m) time.

—ReweiGHT(Aw € R7): Update the weights to w + Aw, and recompute the relevant Schur
complements in O(ep~2VmK) time, where K = nnz(Aw).
IfH is the set of leaf nodes in T~ that contain an edge whose weight is updated, then LD and
Sc(L), 9H) are updated only for nodes H € Py (H).

— Access to Laplacian LYD at any node H € T~ in O(ep™2|Fy U 0H|) time.

— Access to Laplacian Sc(LE), 9H) at any node H € T in O(ep2|0H|) time.

Furthermore, at all points during the IPM,
L ~_, Sc(L[H],Fyz UOH) and Sc(L'™,0H) ~,, Sc(L[H], 8H) (3.7)
forall H € T with high probability.

3.4 Implicit Representations Using Tree Operator

In this subsection, we outline the data structures for maintaining the flow and slack solutions f, s

as needed in Algorithm 1, Line 22. Recall at IPM step k with step direction »¥), we want to update
s s+ fhW_l/Zva(k),

f — f+hW2® _ pw1/2p! o),

for some approximate matrices P, and P/, satisfying Range(W '/°P,) C Range(B) and

BTW'/?P/, = BTW'/2, The first term for the flow update is straightforward to maintain. For this
overview, we therefore, focus on maintaining the second term

e fH+ WP o),

Computing P, o) and ﬁ;, o), respectively, is too costly to do at every IPM step. Instead, we
maintain vectors s, f;-, z, and implicitly maintain two linear operators MGleek) MEAoW) which de-
pend on the weights w, so at the end of every IPM step, the correct current solutions s, f* are

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:16 S. Dong et al.

recoverable via the identity
s = s + MG,
fJ_ — fOJ_ + M(ﬂow)l.

We will abstract away the difference between slack and flow to give a general data structure MAIN-
TAINREP, which maintains x = y + Mz for M with a special tree structure.

At a high level, MAINTAINREP implements the IPM step: To move in step k with direction
v®) and step size a'X) the data structure first computes z¥) as a function of »¥), then updates
z — z+ a®z® which translates to the desired overall update in x of x < x + M(a®z5)) To
update the data structure with respect to new weights w™") (which does not change the value
of x) the data structure first computes M%) using w™*") and AM & M®e%) _ M, then updates
M « M®W)_ This causes an increase in value in the Mz term by AMz which is then offset in the
y term with y «— y — AMz.

In later sections, we will define Mk and M@oW) go that MGl (k) = W1/2p oK) and
MUflow) Z(k) — w1/ 2?; o%) for the desired approximate projection matrices. With these operators
appropriately defined, observed that MAINTAINREP correctly captures the updates to s and f* at
every IPM step.

Let us now discuss the definition of z, which is common to both slack and flow: Recall the
DynamicSC data structure from the previous section maintains some Laplacian LD for every
node H in the separator tree 77, so that at each IPM step, we can implicitly represent the matrices
o©, ... 107V T based on the current weights w, which together give an nep-approximation of
L' MaINTAINREP Will contain a DyNamIicSC data structure, so we can use these Laplacians in the
definition of z.

At step k, let

0=y nOB W20,

where T, the IT)’s, and W are based on the state of the data structure at the end of step k. Next, z
is defined to be the accumulation of a¥z(’s up to the current step; that is, at the end of step k,

k
z= Z a®z®),
i=1

Rather than naively maintaining z, we decompose z and explicitly maintaining c, z(**P), and z(**™),
such that
z def c- Z(step) + Z(sum)’
where we have the additional guarantee that at the end of IPM step k,
25t) — -V .. [OBTW/2¢0).

The other term, z*™), is some remaining accumulation so that the overall representation is correct.

The purpose of this decomposition of z is to facilitate sparse updates to v between IPM steps:
Suppose v©) = o*~D 4+ Ay where nnz(Av) = K, then we can update z**P) and 2" with
runtime as a function of K, while producing the correct overall update in z. We compute Az(5"P) =
TV .. . TTOBTWY2Av, and then set

Z(step) - Z(step) + AZ(StEP), Z(sum) - Z(sum) _c- AZ(Step),C —c+a,

which can be performed in O(nnz(Az**P))) time.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:17

Let us briefly discuss how to compute TTI"1 ... TIO'd for some vector d. We use the two-layer
nested dissection setup from Section 3.3 for intuition, so
-1
EF 0] d.

L 0 I
0 Sc(L.C)f] [“Lerlpy 1
The only difficult part for the next left matrix multiplication is —Lc¢, FL;’IF. However, we note
that Lr r is block-diagonal with two blocks, each corresponding to a region generated during
nested dissection. Hence, we can solve the Laplacians on the two subgraphs separately. Next,
we note that the two terms of L¢, FL;’IFd are both fed into §c(L, C)T, and we solve this Laplacian

0 =

in time linear in the size of Sc(L, C). The rest of the terms are not the bottleneck in the overall
runtime. In the more general nested-dissection setting with O(log n) layers, we solve a sequence
of Laplacians corresponding to the regions given by paths in the separator tree. We can bound the
runtime of these Laplacian solves by the size of the corresponding regions for the desired overall
runtime.

On the other hand, to work with M efficiently, we define the notion of a tree operator M sup-
ported on a tree. In our setting, we use the separator tree 7. Informally, our tree operator is a
linear operator mapping R” to R™. It is constructed from the concatenation of a collection of edge
operators and leaf operators defined on the edges and leaves of 7. If H is a node in 7~ with parent P,
then the edge operator for edge (H, P) will map vectors supported on Fp U dP to vectors supported
on Fy U 0H. If H is a leaf node, the leaf operator for H will map vectors on Fy U dH to vectors
on E(H). In this way, we take advantage of the recursive partitioning of G via 7 to map a vector
supported on V(G) recursive to be supported on smaller vertex subsets and finally to the edges.
Furthermore, we will show that when edge weights update, the change to M can be localized to
a small collection of edge and leaf operators along some tree paths, thus allowing for an efficient
implementation. We postpone the formal definition of the operator until Section 5.2.

THEOREM 7 (IMPLICIT REPRESENTATION MAINTENANCE). Suppose, for simplicity of this theorem
statement, that we can solve mxm SDD matrices in O(m) time to high accuracy. Given an appropriate
separator tree T~ for the IPM input graph with height n, the deterministic data structure MAINTAINREP
(Algorithm 6) maintains the following variables correctly at the end of every IPM step:

— the dynamic edge weights w and step direction v from the current IPM step,

— a DynamIcSC data structure on T based on the current IPM edge weights w,

— an implicitly represented tree operator M supported on T~ with complexity T(K), computable
using information from DynamIcSC,

— scalar ¢ and vectors z®P) Z(svm) yohich together represent z = czteP) 4 Z(um) o eh that at the
end of step k, the variables satisfy

k
7 = Z a2
i=1

where a'?) is the step size a given in MOVE for step i,
— 29) satisfies ZtP) = TII0-D ... [TOBTW!/ 20,
— an offset vector y which together with M, z represent x = y + Mz, such that after step k,

k
¥ = xnit) Z MO (D2,
i=1

where "V is an initial value from INrTIALIZE, and MY is the state of M after step i.

The data structure supports the following procedures:

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:18 S. Dong et al.

— INrTIALIZE(T , M € R™" v € R™, w € R™ | xiY) € R™ ¢p > 0): Given a separator tree T~ for
the input graph, a tree operator M supported on T~ with complexity T, initial step direction v,
initial weights w, initial vector ™Y, and target step accuracy ep, preprocess in O(ep™2m+T(m))
time and set x « x™Y),

— RewercHT(Aw € R™): Update the weights to w + Aw. Update the implicit representation of x
without changing its value, so that all the variables in the data structure are based on the new
weights.

The procedure runs in 5(6122\/"1_1(+ T(K)) total time, where K is an upper bound on nnz(Aw)
and the number of leaf or edge operators changed in M. There are most O(K) nodes H € T for
which 2P| and ™|, are updated.

—Move(a € R, Av € R"): Update the current direction to v + Av, and then update the implicit
representation of x to reflect the following change in value:

x — x + M(az"*P).

The procedure runs in 5(6132\/mK) time.
— Exact1(): Output the current exact value of x = y + Mz in O(T(m)) time.

3.5 Solution Approximation

In the flow and slack maintenance data structures, one key operation is to maintain vectors f,s
that are close to f, s throughout the IPM. Since we have implicit representations of the solutions
of the form x = y + Mz we now show how to maintain x close to x. To accomplish this, we will
give a meta data structure that solves this in a more general setting. The data structure involves
three steps; the first two steps are similar to [20] and the key contribution is the last step:

(1) We maintain an approximate vector by detecting coordinates of the exact vector x with large
changes In step k of the IPM, for every ¢ such that 2¢|k, we consider all coordinates of the
approximate vector x that did not change in the last 2¢ steps If any of them is off by more
than €/(2[log m]) from x, it is updated We can prove that each coordinate of x has additive
error at most é compared to x The number of updates to x will be roughly O(2%/¥), where 2%+
is the largest power of 2 that divides k. This guarantees that K-sparse updates only happen
ym/K times throughout the IPM algorithm.

(2) We detect coordinates with large changes in x via a random sketch and sampling using
the separator tree We can sample a coordinate with probability exactly proportional to the
magnitude of its change, when given access to the approximate sum of probabilities in each
region of the separator tree and to the exact value of any single coordinate of x.

(3) We show how to maintain random sketches for vectors of the form x = y + Mz, where M is
an implicit tree operator supported on a tree 7 Specifically, to maintain sketches of Mz, we
store intermediate sketches for every complete subtree of 7~ at their roots. When an edge
operator of M or a coordinate of z is modified, we only need to update the sketches along
a path in 7 from a node to the root For our use case, the cost of updating the sketches at a
node H will be proportional to its separator size, so that a K-sparse update takes O(VmK)
time.

While the data structure is randomized, it is guaranteed to work against an adaptive adversary
that is allowed to see the entire internal state of the data structure, including the random bits.

THEOREM 8 (APPROXIMATE VECTOR MAINTENANCE WITH TREE OPERATOR). Given a constant
degree tree T with height n that supports tree operator M with complexity T there is a randomized
data structure MAINTAINAPPROX that takes as input the dynamic variables M, ¢, z5'P), 25" 4 qt

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:19

every IPM step, and maintains the approximation X to x “ y + Mz = y + M(c - 2051P) 4 zlsum))

satisfying ||D1/ 2(x —f)”Oo < €, where D is coordinate-wise a fixed function of x. It supports the
following procedures:

— INrTiALIZE(tree T, tree operator M, ¢ € R, Ztep) ¢ g glsum) R™y € R™,p > 0,é > 0):
Initialize the data structure with initial vector x = y+M(cz®P) + 2"™) target approximation
accuracy €, success probability 1 — p, in O(mn® log mlog(%)) time. Initialize X «— x.

— ApPROXIMATE(M, ¢, 2'P), %) 4)): Update the internal variables to their new iterations as
given. Then output a vector X such that |DV%(x — X)|le < € for the current vector x and
diagonal scaling D corresponding to x.

Suppose || x5+ — x®)||5wy < B for all k where D% and x'¥) are the D and x at the kth call to

APPROXIMATE. Then, for the kth call to APPROXIMATE, we have

— the data structure updates x; «— xgk) for O(Nj. = 22(k(B/€)* 1og? m) coordinates, where (. is

the largest integer £ with k = 0 mod 2.
— The amortized time cost of APPROXIMATE is

) (qz log (%)logm) T (0 (Ne_yee +1S1)).

where S is the set of nodes H where either Mg, py, Ju, z(Step)l Fyp» OF Z(sum) |F,; changed, or where
Ye changed for coordinate e, compared to the (k — 1)-th step.

3.6 Slack and Flow Projection

We want to use MAINTAINREP data structures to implicitly maintain the flow and slack solutions
throughout the IPM, and use MAINTAINAPPROX data structures to explicitly maintain their approx-
imations. It remains to define suitable tree operators M6k o g MEow) o that at IPM step k, the
updates in MAINTAINREP are correct IPM updates:

s s+ fhW_l/zﬁwv(k) —s+ th(slaCk)z(step)
fJ_ - fJ_ n hwl/Z'I";:V,U(k) — fJ_ + hM(ﬂow)Z(step)’

where z(%P) = TII-D ... TIOBTW!/20®) at the end of IPM step k. Let LT denote the approxima-
tion of LT from Equation (3.6), maintained with a DynamicSC data structure. We define

P, = W/2BL'BTWY2 = W/2B® ... 17V . .. OB W12,

then P,, ~yep Py, and Range(P,,) = Range(P,,) by definition. Hence, P,, suffices as the approxi-
mate slack projection matrix.
Using Section 3.4, we can write

P, 0¥ = WY2BIOT ... DTS 0tep), (3.8)

The matrix multiplication applied to z**?) can indeed be represented by a tree operator M on the
tree 7~ Intuitively, observe that each IT) operates on level i of 7 and can be decomposed to be
written in terms of the nodes at level i. Furthermore, the IT)’s are applied in order of descending
level in 7~ Finally, at the leaf level, W'/?B maps vectors on vertices to vectors on edges. In Section 7,
we present the exact tree operator and its correctness proof. With it, we have

P, o%) = W/ZMz0teP),

We set MC12k) & \g71/2M which is also a valid tree operator.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:20 S. Dong et al.

For the flow update, observe we need a flow f ~ P, v satisfying BTW'/2 f = BTW!/20. Let us
define demands on vertices by d &£ BTW!/2q, Unwrapping the definition of P,, < W/2BL'd, we
see f must be a flow routing demand d, i.e., BTWY2f = BTWBL'd = d. We will in fact define
f P, v where P, is the same as the slack update. However, f might not satisfy the feasible flow
condition; the insight then is to route the remaining demands in individual leaf-node regions in
the separator tree, rather than on the whole graph.

In Appendix C, we formalize an interpretation of f in association with the tree operator. Here,
we give an intuitive explanation. For simplicity of notation, let z denote z(***P). The first step is
recognizing a decomposition of d using the separator tree, such that we have a demand term d'#)
for each node H € 7. Furthermore, d") = L)z|; for the Laplacian L) supported on the
region H maintained by pyNamicSC. This decomposition allows us to route each demand d‘*) by
electrical flows using only the corresponding region H rather than the entire graph. To show that
the resulting flow f indeed is close to the electrical flow one key insight is that the decomposed
demands are orthogonal (Lemma 74). Hence, routing them separately by electrical flows gives a
good approximation to the true electrical flow of the whole demand (Theorem 71).

To give an illustrative example, consider the two-layer graph decomposition scheme from
Section 3.3, and suppose we have a demand d that is non-zero only on vertices of C Then, observe

that
L:! 0
= EF d.
£ [0 ScL,0)f] [~LerLply 1 }
Looking at the sub-vector indexed by C on both sides, we have that

Sc(L,C)z=d

where we abuse the notation to extend Sc(L, C) from C X C to [n] X [n] by padding zeros. Using
Equation (3.5), we have

(s}(L[Hl],C) + §c(L[H2],C)) z=d

This gives a decomposition of the demand d into demand terms Sc(L[H;],C)z fori = 1,2. Crucially,
each demand Sc(L[H;], C)z is supported on the vertices of the region H;, and we can route the flow
on the corresponding region only In a O(log n)-level decomposition, we recursively decompose
the demand further based on the sub-regions according to the separator tree 7°. This guarantees
that f, is the electrical flow on the subgraph H; that satisfies the demand Sc(L[H;], C)z Finally,
we will let the output be f > ﬁ Note that by construction, if all the Schur complements were
exact, then this f routes the demand d exactly.

We only state and prove the data structure theorem for the flow solution in our article. The slack
solution is essentially identical and omitted.

THEOREM 9 (FLOW MAINTENANCE). Suppose, for simplicity of this theorem statement, that we can
solve m x m SDD matrices in O(m) time to high accuracy. Given the appropriate separator tree T
with height n for the IPM input graph, the data structure MAINTAINFLow (Algorithm 10) implicitly
maintains the flow solution f undergoing IPM changes, and explicitly maintains its approximation _?
and supports the following procedures with high probability against an adaptive adversary:

— InrTiaLize(T, f (nit) ¢ RM ¢, € R™ w € RZ),ep > 0,€ > 0): Given the separator tree T,
initial solution f™Y, initial direction v initial weights w, target step accuracy ep, and target
approximation accuracy € preprocess in 5(m61§2) time and set the internal representation f «—

f00 and f — f.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:21

— RewerGHT(Aw € R™): Set the current weights to w + Aw in 5(61;2\/171_1() time, where K =
nnz(Aw).

— Movi(a € R, Av € R™): Update v to v+ Av. Implicitly update f «— f+aW'2v—aW'/?P,v
for some P, where ||(P,, — Py,)o|l; < O(nep) ||vl|, and BTWY2P,, v = B"WY 20, The runtime
is 5(6;2W), where K = nnz(Av).

— ApPROXIMATE() — R™: Output the vector? such that ||[W~ 2(7 —)l < € for the current
weight w and the current vector f.

— Exact() — R™: Output the current vector f in 5(m6p_z) time.

Suppose al||v|ly < f for some B for all calls to MoVE. Suppose in each step, REWEIGHT, MOVE and
APPROXIMATE are called in order. Let K denote the total number of coordinates changed in v and w

between the (k — 1)-th and kth REWEIGHT and MoVE calls. Then at the kth APPROXIMATE call,

— the data structure sets ?e — fék) for O(Ng “ 22’7’<(é)2 log? m) coordinates e where {y. is the

largest integer € withk = 0 mod 2° whenk # 0 and ty = 0.
— The amortized time for the kth APPROXIMATE call is O(e;zw/m(K + N0).

3.7 Main Proof

We are now ready to prove our main result, restated here:

THEOREM 1 (MAIN REsurt). Let G = (V,E) be a directed planar graph with n vertices and m
edges. Assume that the demands d, edge capacities u and costs ¢ are all integers and bounded by M
in absolute value. Then there is an algorithm that computes a minimum-cost flow satisfying demand
d in O(nlog? M)* expected time.

Proor. First, we use Section 3.2 to reduce the planar min-cost flow problem to a form suitable
for the solver in Theorem 4 The solver uses Algorithm 1, which involves the procedure IPMRUN
twice. In the first run, the constraint matrix is the incidence matrix of a new underlying graph,
constructed by making three copies of each edge in the original graph G Since copying edges does
not affect planarity, and our data structures allow for duplicate edges, we simply focus on the
second run.

In the pseudocode given in Algorithm 2, we use| f |and| s |to denote the solution data structures
for flow and slack accordingly (as described in Theorem 9). During initialization, the data structures
are given the initial IPM step direction ©» for preprocessing. At each step of IPM, we perform
implicit updates of f and s using the procedure MoVE in their respective data structures. Since
W is changing between steps, the data structures need to update their internal representations at
each step, which we do using REWEIGHT Finally, we construct the explicit approximations f and
s using APPROXIMATE. We return the true solutions (f, s) by ExacT.

Since s must approximate s to an accuracy of fa, we must reinitialize the slack data structure
during the IPM when f changes, which is not required for the flow data structure. However, note
that changes every O(vm) steps, so this is not a bottleneck.

By the guarantees of Theorem 9, we correctly maintain s and f at every step in Algorithm 2,
and the requirements on f and s for the IPM are satisfied.

To prove the runtime, we first introduce a lemma bounding the number of entry-changes in ©
and w each step.

LEMMA 10. When updating w and v at the (k+1)-th step of the IPM implementation in Algorithm 2,
w and v change in O(22‘« log? m) coordinates, where €. is the largest integer £ withk = 0 mod 2¢.

“Throughout the article, we use 5(f(n)) to denote O(f(n) logo(l)f(n)).

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:22 S. Dong et al.

ALGORITHM 2: Implementation of IPM of Algorithm 1

1: procedure IPMRUN(B € R"*" barrier function ¢, f € R™,s € R™, tsiart, tend)

2: Leta & ﬁ and 1 & 64 log(256m?)

3: Construct separator tree 7~ for the input graph G by Corollary 25

4 J_c(_f9§(_saf<_tstart

5: W «— Vztﬁ(?)_l > initial weights
6: v — sinh(/lyi (?, s);) forall i € [n] > initial step direction
7 .INITIALIZE(T ,f.u, W, ep « O(a/logm), € & a) > implicit data structs

8: .INITIALIZE(‘T, i1s,0,W,ep & O(arflogm),é < a)
9: while ¢t > t.,q do

10: t «— max{(1 - \/%)t, tond }

11: Update step size h = —a/|| cosh(/lyf(?,g))ﬂg

12: Update diagonal weight matrix W = V2¢()™

13: Update step direction v where v; < sinh(Ay!(f,5s);)

14: .REWEIGHT(W)

15: .REWEIGHT(W)

16: .MOVE(h, v) > Update f — f + hW1/20 - hWWV/2 f with f ~ P, v
17: .MOVE(h, v) > Update s <« s + FRW /2§ with § ~ Pyv
18: ? — .APPROXIMATE() > Maintain ? such that [W~1/ 2(? - Pllo < a
19: S 1*I- .APPROXIMATE()) > Maintain s such that [|[WY2(s = s)||e < fa
20: if |f —t| > af then

21: s 1 .EXACT())

22: te—t

23: [s [INrT1aLize(7. F's, 0, W, ep < O(a/logm), € € a)

24: end if

25: end while

26: return .EXACT(), t- .EXACT())

27: end procedure

ProoF. Since both w and v are an entry-wise function of 7 s and £, we need to examine these
variables. First, f changes every O(y/m) steps, and when f changes, every coordinate of w and v
changes. Over the entire algorithm, changes O(1) number of times, so we may incur an additive
O(m) term overall, and assume 7 does not change for the rest of the analysis.

By Theorem 4, we have h||v||; = O(@) at all steps. So, we apply Theorem 9 both with pa-

1
log

nates of ? which change to the exact solution f*) and no other changes. Hence w(**? differ
from w®) in O(Z”k log2 m) coordinates. We have an analogous bound for s, and, therefore, for the
change in v.]

—)and € = a = ©(loém). At step k, there are O(2%'x log? m)-many coordi-

rameters § = O(

Finally, we bound the runtime of Algorithm 2. The total cost is dominated by the cost of the
while-loop. Since we call Move, REWEIGHT and APPROXIMATE in order in each step and the runtime
for MovE, REWEIGHT are both dominated by the runtime for APPROXIMATE, it suffices to bound
the runtime for APPROXIMATE only. Theorem 4 guarantees that there are T = O(v/m log nlog(nM))

total APPROXIMATE calls. Lemma 10 shows that at the kth call, the number of coordinates changed

def

in w and v is bounded by K = 0O(2%/¢1 log® m), where {; is the largest integer £ with k = 0

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:23

mod 2¢, or equivalently, the number of trailing zeros in the binary representation of k. Theorem 4
further guarantees we can apply Theorem 9 with parameter f = O(1/log m), which in turn shows
the amortized time for the kth call is

0 (ep_z1 [m(K + Ni_ye,)) .
def

where Np = 2%k (B/a)?log? m = O(22 log® m), where « = O(1/logm) and ep = O(1/logm).
Observe that K + N, _,¢, = O(N,_,¢,.). Now, summing over all T calls, the total time is

T T
O (Vmlogm) Z VN, = O (Vmlog® m) Z 2bteathy
k=1

k=1

= O (Vmlog® m) Z

T
k'=1

T
200 3 [k =2 = k),
k=1

where we use [-] for the indicator function, ie., [k — 2k = k'] = 1if k — 2%k = k’ is true and 0,
otherwise. As there are only log T different powers of 2 in [1, T], the count 3, ., o[k — 2/ = k']
is bounded by O(log T) for any k" € {1,...,T}. Then the above expression is

T
=0 (Vmlog® mlogT) Z 20,
k'=1
Since ¢ is the number of trailing zeros on k it can be at most log T for k < T. We again rearrange
the summation by possible values of £+ and note that there are at most T/2"*! numbers between
1 and T with i trailing zeros, so

T log T
Z 2lK = Z 20 . T/21*1 = O(T log T).
k=1 i=0

So the overall runtime is O(v/mT log mlog® T), where T = O(y/mlog nlog(nM)) as guaranteed
by Theorem 4. Our data structure theorems assumed for convenience that solving an m x m SDD-
system takes O(m) time; as discussed in Section A, an additional 5(10g M) factor is incurred. Alto-
gether, we conclude the overall runtime is O(m log? M). O

4 Nested Dissection and Approximate Schur Complements
This section lays the foundation for a recursive decomposition of the input graph. Our goal is to
set up the machinery to approximate P,, £ W'/2B(BTWB)'B"W'/2 as needed in the robust IPM.
In particular, we are interested in the weighted Laplacian matrix L < BTWB.

We begin with a discussion of nested dissection and the associated Schur complements.
4.1 Cholesky Decomposition and Schur Complement

Let G be an edge-weighted graph. Consider the partition of vertices in G into two subsets C and
F =V(G) \ C called boundary and interior vertices. This partitions L into four blocks:

L= Lrr Lfgc
Ler Lece |

Definition 11 (Block Cholesky Decomposition). The block Cholesky decomposition of a symmetric
matrix L with blocks indexed by F and C defined as above is

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:24 S. Dong et al.

I (] } [Ler 0 } [I (Lrr) 'Lrc 1)

L= LerLpp)? 1 0 ScLC) || o I

Note that Lp p is full-rank. The middle matrix in the decomposition is a block-diagonal matrix
with blocks indexed by F and C, with the lower-right block being:

Definition 12 (Schur Complement). The Schur complement Sc(L, C) of L onto C is the Laplacian
matrix resulting from a partial symmetric Gaussian elimination on L. Formally,

Sc(L,C) =L¢,c - Lc,FL;“,lFLF»C'

It is known that Sc(L, C) is the Laplacian of another graph with vertex set C. We further use the
convention that if H is a subgraph of G and V(H) c C, then Sc(H, C) simply means Sc(H, CNV(H)).
Graph theoretically, the Schur complement has the following interpretation:

LemMA 13. Let V(G) = {v1,...,vn}. Let C = V(G) — vy. Let w;; denote the weight of edge v;v;.
Then
Sc(L,C) = G[C] +H,
where G[C] is the subgraph of G induced on the vertex set S, and H is the graph on S with edges v;v;

where i,j € N(vq), and w;j = wy;wyj/wy, where wy is the total weight of edges incident to vy in G.
Note that on the right hand side, we use a graph to mean its Laplacian.]

Taking Schur complement is an associative operation. Furthermore, it commutes with edge dele-
tion, and more generally, edge weight deletion. Finally, for our purposes, it can be decomposed
under certain special circumstances.

LEmMMA 14. IfX C Y € V(G), then Sc(Sc(L, Y), X) = Sc(L, X). O

LEmMA 15. Let w, denote the weight of edge e in G. Suppose C C V(G), and H is a subgraph of G
on the vertex set C with edge weights w, < w, for all edges in G[C]. Let L’ denote the Laplacian of H
Then, Sc(L—L’,C) = Sc(L,C) - L". O

LEMMA 16. Let w, denote the weight of edge e in G. Suppose C C V(G), and e is an edge not incident
to any vertex in C. Let L' be the Laplacian of G \ e. Then, Sc(L’, C) = Sc(L, C). O

LEMMA 17. Let L be the Laplacian of graph G with the decomposition L = L; + Ly, whereL; is a
Laplacian supported on the vertex set Vi and Ly on V, Furthermore, suppose Vi NV, € C for some
vertex set C C V(G). Then

SC(L, C) = SC(Ll,C N V]) + SC(Lz,C N Vz)
Proor. We have

Sc(L,C) = Sc(L; + Ly, C)
= SC(SC(Ll + Lz, cu Vz), C)

= Sc(Se(Ly, CUV;) + Ly, C) (by Lemma 15)
= SC(SC(Ll, C) + Lo, C) (since (C U Vz) nv c C)
= Sc(Ly, C) + Sc(L,, C), (by Lemma 15)
=Sc(L;,CNVy) + Sc(Ly, C N Vy) (since L; is supported on V; for i = 1, 2)
as desired. O

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:25

4.2 Separator Tree

In the overview, we briefly gave the intuition for a 2-level partition of the input graph; here
we extend it to a recursive partitioning scheme with O(log n)-levels. We begin with the formal
definitions.

Definition 18 (Separable Graph). A subgraph-closed family of graphs G is a-separable if there
exists two constants ¢ > 0 and b € (0, 1) such that every G € G with n vertices and m > 2 edges
can be partitioned into H; and H; such that

— E(Hy) U E(H) = E(G), E(Hy) N E(H,) = 0,
—|V(H) N V(Hy)| < c[n*],
— |E(H;)| < bm, fori=1,2.

def

We call S(G) = V(H;) N V(Hy) the balanced vertex separator of G.
It is known that planar graphs are 1/2-separable.

Remark 19. As we discussed in Section 3.2, the IPM input graph is planar with two additional
vertices and O(n) additional edges incident to them. This graph is 1/2-separable with the constant
¢ in Definition 18 increased by 2.

We apply nested dissection recursively to each region using balanced vertex separators, until
the regions are of constant size The resulting hierarchical structure can be represented by a tree
7", which is known as the separator tree of G:

Definition 20 (Separator Tree). A separator tree 7 of a graph G is a binary tree whose nodes
represent subgraphs of G such that the children of each node H form a balanced partition of H.

Formally, each node of 7™ is a region (edge-induced subgraph) H of G; we denote this by H € 7~
At a node H, we store subsets of vertices dH, S(H), Fy C V(H) where 0H is the set of boundary
vertices that are incident to vertices outside H in G; S(H) is the balanced vertex separator of H;
and Fyy is the set of eliminated vertices at H Concretely, the nodes and associated vertex sets are
defined recursively in a top-down way as follows:

(1) The root of 7 is the node H = G, with 0H = 0 and Fy = S(H).

(2) A non-leaf node H € 7 has exactly two children Dy, D, € 7 that form an edge-disjoint

partition of H in Definition 18, and their vertex sets intersect on the balanced separator
S(H) of H. D; and D, does not have any isolated vertex. Define dD; = (0H U S(H)) N V(D,),
and similarly 0D, = (0H U S(H)) N V(D). Define Fy = S(H) \ 0H.

(3) Ifaregion H contains a constant number of edges, then we stop the recursion and H becomes
aleaf node. Furthermore, we define S(H) =) and Fy = V(H)\ dH. Note that by construction,
each edge of G is contained in a unique leaf node.

Let n(H) denote the height of node H which is defined as the maximum number of edges on a
tree path from H to one of its descendants. n(H) = 0 if H is a leaf. Note that the height difference
between a parent and child node could be greater than one. Let 7 denote the height of 7~ which is
defined as the maximum height of nodes in 7. We say H is at level i if n(H) = i.

OBSERVATION 21. Using the above definition, {Fy : H € T} partitions the vertex set V(G).

OBSERVATION 22. Suppose H is a node in 7 with children Dy and D,. We have D, U 0D, =
O0H U Fy.

OBSERVATION 23. Suppose H is a node in 7. Then 0H C Uqancestor A of FIF A-
Fakcharoenphol and Rao [23] gave an algorithm that computes the separator tree for any planar

graph.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:26 S. Dong et al.

THEOREM 24 (SEPARATOR TREE CONSTRUCTION [23]). Given a planar graph G there is an algo-
rithm that computes a separator tree of G with height n = O(logn) in O(nlogn) time

For computing the separator tree 7~ of our IPM input graph we may apply their method to the
original planar graph to get the separator 7, and add the two new vertices s, ¢ to Fg at the root
node G, and to the boundary sets 0H at every non-root node H The additional edges incident to
s, t can be recursively partitioned from a node to its children, which increases the height of 7~ by
O(log n) Thus, we have

COROLLARY 25. There is an algorithm that computes a separator tree 7 for the IPM input graph
with height n = O(logn) in O(nlog n) time.

To discuss the structures in the separator tree, we define the following terms:

Definition 26. Let 7 (i) be the subset of nodes in 7 at level i. For a node H, let 75 be the subtree
of 7" rooted at H. Let P7(H) be the set nodes on the path from H to the root of 77, including H.
Given a set of nodes H = {H : H € 7 }, define

Pr(H) = |] PrH).
HeH
Finally, we partition these nodes by their level in 7, and use Ps(H, i) to denote all the nodes
in Pr(H) at level i in 7.
Fakcharoenphol and Rao [23, Section 3.5] showed that for a set H of K nodes in T, the total
number of boundary vertices from the nodes in Po(H) is O(VmK). However, their claim is not

stated as a result we can cite here We provide a simple, self-contained proof in the appendix of a
slightly weaker bound that in addition requires bounding the number of separator vertices.

LEMMA 27. Suppose T is the appropriate separator tree for the IPM input graph. Let H be a set of
K nodes in 7. Then

> |oH| + |Ful < 5(@).

HePr(H)

4.3 Approximating LT Using Separator Tree
For a height-n separator tree 7, we generalize the sets C and F from the block Cholesky decom-
position (Equation (4.1)) to a sequence of sets Cy, ...,Cy, and Fy, ..., F, based on 7.

Definition 28 (C;, F;). Let 7 be the separator tree from Corollary 25. For all 0 < i < 5, define
Fi = Ugeq) Fu to be the vertices eliminated at level i. For all 0 < i < , define C; = Upeq;) OH
to be the vertices remaining after eliminating vertices in F;. We define C_; to be V(G).

By Observation 21, F; is the disjoint union of Fyy over all nodes H at level i in the separator tree.
Fy, ..., F, partitions V(G). By the definition of 0H and Fy, we know F; = C;_;\C; forall0 < i < 7.
It follows that V(G) =C.1D>2CyD>---D CU_l D C” = (and C; = Uj>iFj.

LEMMA 29. By recursively applying Equation (4.1), we can decompose L as follows:

Se(L.C-Dr.R - 0
L =yoT...gh-nT . . 0 uyru.. ~U(0), (4.2)
0 0 Sc(L.Cy-1)F,F,

where the U ’s are upper triangular matrices with

U(i) =1+ (SC(L, Ci—l)F,,Fi)_l SC(L, Ci—l)Fi,C,-

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:27

Furthermore, the projection matrix ontoL’s image isP, = 1— 117 /n. O
Next, we consider approximating L:

Definition 30 (Approximate Schur Complement). Let G be a weighted graph with Laplacian L, and
let C be a set of boundary vertices in G. We say that a Laplacian matrix Sc(L, C) is an e-approximate
Schur complement of L onto C if §C(L, C) =, Sc(L,C), where we use ~, to mean an e‘-spectral
approximation.

We will approximate L by approximating the terms in its decomposition (4.2). First, a piece of
notation:

Definition 31 (L')). Let ep > 0. For each H € 7", let L) denote a Laplacian on the vertex set
Fy U 0H such that

L ~, Sc(L[H], 9H U Fy).

We show how to compute and maintain L*?) in the next subsection Using these matrices at the
nodes of 7, we have the following approximation of L:

LEMMA 32. We have

L ~pe LSOO GO-DTRGOD GO, 43)
where
2HeT(0) L}Z) o 0
F- . . 0
0 0 Swerin Ly gy
and®

) H @
o =1+ (LFH’FH) L
HeT(i)

Furthermore, 1 is in the null space of L, and rank(L) = n — 1.

Proor. Let C;, F; be defined for each i according to Definition 28.
Let L) = HeT (i) LD, Note we have the decomposition

(i) def (H)
LFi»Fi - Z LFH»FH’

HeT(i)
@ _ (H) _ (H)
LCi» ' Z Lci,Fi - Z LéH,FH'
HeT(i) HeT(i)

Recall that the regions in 7(i) partition the graph G. Furthermore, the intersection of H,H’ €
7 (i) is on their boundary, which is contained in C; € C;_;. Thus, we apply Lemma 17 to get

Se(L.Ci1) =) Se(LH] Ci N V(H))

HeT{(i) (44)
Se) Se(L[H.OHUFm) = » L =10, '
HeT(i) HeT(i)

Swhen H is the root node, (Lg} FH) is rank-deficient, but we still use ~! to denote the pseudo-inverse instead of ¥ for

notational convenience.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:28 S. Dong et al.

Now, we prove inductively that

(0)
LE),FO s 0 0
L ~iep 0O . gi-oT R . (1)) 0 | gt-b...00. (4.5)
0 0L 0

Fi-1,Fiq)
0 o o LO

When i = 0, we have the approximation trivially as L = L.
For general i, we factor L") in Equation (4.5) recursively using Cholesky decomposition L) is
supported on C;_1, and we can partition C;_; = F; U C;. Then,

L9=| (1) -] [" [, (L(l) o)_1143;) RE (4.6)
Lo p Ly g)7 Sc(L(‘) Ci) I
For the Schur complement term in the factorization, we have
Sc(LD, C;) %4 Se(Se(L, Ci_1), C;) (by Equation (4.4))
= Sc(L,Cy) (by transitivity of Schur complements)
~g, LUTD, (by Equation (4.4))

So we can use LU*1 in place of the Schur complement term in Equation (4.6), whose equality
becomes an approximation with factor ep. At the nth level, Lg:”,,) R = L since Cy = 0, so we have

the overall expression.

To show L1 = 0, we start with the fact that L is a Laplacian, so its rows and columns sum to
zero. Substituting L™ in (4.6) for i = — 1, we see that L""V’s rows and columns also sum to zero.
Continuing this process, we conclude L’s rows and columns sum to zero.

Finally, in the decomposition of i, observe that UG~ ... 0O is full rank, and each block of Tis
full rank, except for the last block L™ whose rank is one less than full. Therefore, the rank of L is
n—1. i

Before we consider the pseudo-inverse of L, we need the following standard fact about the
pseudo-inverse of a product of matrices:

Fact 33. Suppose A is a symmetric matrix and X is a non-singular matrix, and P is the projection
matrix onto the image of X" AX. Then,

(X"AX)" = Px AT (x71) " P.
Finally, we come to the approximation of L.

TueorEM 5 (LT APPROXIMATION). Let Py, be the projection onto the image of L. Suppose for each
H € T, we have a Laplacian L'®) satisfying

L ~, Sc(L[H], dH U Fy).

Then, we have
L % PLIOT .. I DTTOD . TOPy, (3.6)

where®

®Note that (L(FII{{) Fu Y is a pseudo-inverse when H is the root node; for notational convenience we use ~! even for the

pseudo-inverse.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:29

-1
H
2 HeT(0) (L(FH),FH) 0 0
r= 0 k& 0
-1
H
0 0 ZHET(’?) (L;H),FH)

is a block-diagonal matrix, and

-1
(i) _ (H) (H)
I =1- Z LaHvFH (LFH,FH) ’
HeT(i)

where T (i) denotes the set of nodes at level i of T, and 1 is the n X n identity matrix.

PRrOOF OF THEOREM 5. Let L denote the ep approximation of L in Lemma 32. Applying Fact 33,
we have

B N\T
L' =p; (ﬁ(n—l)...ﬁ(o)) ITT((fJ(”'l)---ﬁ(O)) 1) P;,

where T is the block diagonal matrix in Lemma 32. We note that (U?)"T =), and T! = T.
Since 1 spans the null space of both L and L, we conclude P; = Py and L” ~ L. O

Remark 34. Our overall goal is to efficiently maintain an approximation of the matrix
P, = W/?BL'BTW!/2,

Since one can easily verify that PLBT = BT, the projection matrix Py can be safely omitted from
the data structure without affecting the approximation.

4.4 Recursive Schur Complements on Separator Tree

In this section, we prove Theorem 6 which maintains approximate Schur complements at each
node H in 7 We use the following result as a black-box for computing sparse approximate Schur
complements:

LeEMMA 35 (APPROXSCHUR PROCEDURE [22]). Let L be the weighted Laplacian of a graph with n
vertices and m edges, and let C be a subset of boundary vertices of the graph. Let y = 1/n> be the error
tolerance. Given approximation parameter ¢ € (0,1/2) there is an algorithm ApprRoxScHUR(L, C, ¢)
that computes and outputs a e-approximate Schur complement Sc(L,C) that satisfies the following
properties with probability at least 1 — y:

(1) The graph corresponding to Sc(L, C) has O(¢72|C| log(n/y)) edges.

(2) The total running time is O(mlog®(n/y) + e *nlog*(n/y)).

First, we prove the correctness and runtime of APPROXSCHURNODE(H) in Algorithm 3. We say
APPROXSCHURNODE(H) ran correctly on a node H at level i in 7, if at the end of the procedure,
the following properties are satisfied:

— LU js the Laplacian of a graph on vertices 9H U Fy with O(87%|0H U Fy|) edges,
— L ;5 Sc(L[H], 0H U i), .
—Sc(LUD 9H) ~(i+1)s Sc(L[H], dH), and the graph is on dH with O(67%|0H]|) edges.

LEMMA 36. Suppose ApPROXSCHURNODE(D) has run correctly for all descendants D of H. then
ApProxSCHURNODE(H) runs correctly.

ProoF. When H is a leaf, the proof is trivial L) is set to the exact Laplacian matrix of the
induced subgraph H of constant size Sc(L!, H) §-approximates Sc(L'H#), 3H) = Sc(L[H], dH) by
Lemma 35.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:30 S. Dong et al.

ALGORITHM 3: Data structure to maintain dynamic approximate Schur complements

1: data structure DynamicSC

2: private: member

3: w € R™: weight vector

4 ep > 0: Overall approximation factor

5 § > 0: Fast Schur complement approximation factor

6: T: Separator tree of height 1. Every node H of 7 stores:

7: Fg, 0H: Interior and boundary vertices of region H

8 L) € R™<™: Laplacian supported on Fr U dH

9 Sc(LU), 9H) € R™<™: §-approximate Schur complement

11: procedure INITIALIZE(T, w € R™, ep > 0)

12: T «—T

13: d«—ep/(n+1)

14: w— w

15: fori=0,...,ndo

16: for each node H at level i in 7~ do

17: APPROXSCHURNODE(H)

18: end for

19: end for

20: end procedure

21:

22: procedure ReweicHT(w(®eW) € R™)

23: H set of leaf nodes in 7 that contain an edge e whose weight is updated
24: w — wlnew)

25: fori=0,...,ndo > Pq-(H) is the set of nodes in H and their ancestors
26: for each node H at level i in Py(H) do
27: APPROXSCHURNODE(H)

28: end for

29: end for

30: end procedure

31:

32: procedure ApPPROXSCHURNODE(H € 7")
33: if H is a leaf node then

34; LD — (B[H])TW) BIH]

35: §c(L(H), OH) — ApproxScHUR(LH), 0H, d) > Lemma 35
36: else

37: Let Dy, D5 be the children of H

38: LUD Se(LPV, 9Dy) + Sc(LP2), 6D,)

39: Sc(LW), 9H) — ApproxScuur(LD), 4H, §)

40: end if

41: end procedure

Otherwise, suppose H is at level i with children D; and D,. By construction of the separator
tree and Observation 22, we have dD; U dD; = 0H U Fy. For each j = 1,2, we know inductively
Sc(LP), dD;) has O(572|AD;]) edges. Since we define L™ to be the sum, it has O(§2(|dD,| +
|dD,|)) = O(57%|6H U Fgl) edges, and is supported on vertices dH U Fy, so we have the first
correctness property.

Inductively, we know Sc(L®2), 0D;) ~(i—1)s Sc(L[D;],dD;) for both j = 1,2 (The height of D;
may or may not equal to i — 1 but it is guaranteed to be no more than i — 1.) Then

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:31

L = Se(LPV, 4Dy) + Se(L'P?, 8D,)
~(i-1s S¢(L[D1], D) + Sc(L[D-], 0D,)
= Sc(L[Dy],(0H U Fg) N V(Dy)) + Sc(L[D;], (0H U Fi) N V(Dy))
(by construction of the separator tree, dD; = (0H U Fg) N V(D;) for j = 1,2)
= Sc(L[H],0H U Fg), (by Lemma 17)
so we have the second correctness property.
Line 39 returns Sc(L™), 8H) with O(672|0H|) edges by Lemma 35. Also,
Se(L™), 9H) =5 Se(L™), 9H)

~(i-1)s Sc¢(Sc(L[H], 0H U Fy), 0H)
= Sc(L[H], 0H), (by Lemma 14)

giving us the third correctness property. O
LEMMA 37. The runtime of APPROXSCHURNODE(H) is O(572|0H U Fy).

Proor. When H is a leaf node, computing L) = L[H] takes time proportional to |H| = dHUFy
Computing STC(L(H), OH) takes 5(5_2|H |) time by Lemma 35.

Otherwise, when H has children D;,D;, computing L) requires summing together
Sc(LP), dD;) for j = 1,2, in time O(|@D; | + |8D,|) = O(|0H U Fy|) Then, computing Sc(L™), 9H)
take O(57%|0H U Fy;|) by Lemma 35. o

Next, we prove the overall data structure correctness and runtime:

THEOREM 6 (SCHUR COMPLEMENTS MAINTENANCE). Given a separator tree I~ of height n =
O(log m) for the IPM input graph G, the deterministic data structure DYNAmMICSC (Algorithm 3) cor-
rectly maintains two Laplacians L' and Sc(L'H),)HUFy) at every node H € T, which are dependent
on the dynamic weights w from the IPM. The data structure supports the following procedures:

— INtTIALIZE(T , W € RZ ., ep > 0): Given the separator tree T, initial weights w, target step
accuracy ep, preprocess in O(ep™2m) time.

— REwerGHT(Aw € RZ\): Update the weights to w + Aw, and recompute the relevant Schur
complements in O(ep 2V/mK) time, where K = nnz(Aw).
IfH is the set of leaf nodes in T~ that contain an edge whose weight is updated, then LD and
Sc(LUD_9H) are updated only for nodes H € Po(H).

— Access to Laplacian L™ at any node H € T in O(ep™%|Fy U dH)|) time.

— Access to Laplacian Sc(LY), 9H) at any node H € T in 5(ep'2|t9H|) time.

Furthermore, at all points during the IPM,

L ~, Sc(L[H], Fy UH) and Sc(L'®),8H) ~., Sc(L[H], 0H) (3.7)
forall H € T with high probability.

PrRoOOF OF THEOREM 6. Because we set § « ep/(n + 1) in INITIALIZE, combined with Lemma 36,
we conclude that for each H € 7,

L) ~_ Sc(L[H],8H U Fy)
and _
Sc(L'®), 0H) ~, Sc(L[H], dH).
We next prove the correctness and runtime of INITIALIZE. Computing the separator tree costs
O(nlogn) time by Corollary 25. Because APPROXSCHURNODE(H) is called in increasing order of

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:32 S. Dong et al.

level of H, each ApPrROXSCHURNODE(H) runs correctly and stores the initial value of L) by
Lemma 36. The runtime of INITIALIZE is bounded by running APPROXSCHURNODE on each node, i.e:

o} (5—2 > 10H U FH|) =0 (67%m) = O (ep2m) .
HeT

Where we bound the sum using Lemma 27 with K = O(m), since 7 has O(m) nodes in total.

The proof for REWEIGHT is similar to INITIALIZE Let K be the number of coordinates changed
in w Then P4(H) contains all the regions with an edge with weight update. For each node H
not in Pq(H), no edge in H has a modified weight, and in this case, we do not need to update
L) For the nodes that do require updates, since APPROXSCHURNODE(H) is called in increasing
order of level of H we can prove inductively that all ApProxScHURNODE(H) for H € P4(H) run
correctly The time spent is bounded by O(572 3, Hep () |OH U Fy|). By Lemma 27, this is further
bounded by O(ep~2VmK).

For accessing L) and Sc(LUD, H), we simply return the stored values The time required is
proportional to the size of LD and Sc(L)_ oH), respectively, by the correctness properties of
these Laplacians, we get the correct size and, therefore, the runtime. m|

5 Maintaining the Implicit Representation

In this section, we give a general data structure MAINTAINREP. Since the completion of this man-
uscript, a significantly simplified version of this section has appeared in [19].

At a high level, MAINTAINREP implicitly maintains a vector x throughout the IPM by explicitly
maintaining vector y, and implicitly maintaining a tree operator M and vector z, with x E] y +Mz.
MAINTAINREP supports the IPM operations Move and REWEIGHT as follows: To move in step k
with direction o) and step size a'¥) the data structure computes some z(*) from %) and updates
x « x + M(a'®z®)) To reweight with new weights w™") (which does not change the value of
x) the data structure computes M™™) using w™™), updates M «— M®V), and updates y to offset
the change in Mz. In Section 5.1, we define z*) and show how to maintain z = Y% | z(?) efficiently.
In Section 5.2, we define tree operators. Finally in Section 5.3, we implement MAINTAINREP for a
general tree operator M.

Our goal is for this data structure to maintain the updates to the slack and flow solutions at
every IPM step Recall at step k, we want to update the slack solution by AW/ 2p,, o) and the
partial flow solution by AW~/ ZFI;;, o0, In later sections, we define specific tree operators M(12k)
and M@°) 5o that the slack and flow updates can be written as M2 (fhz(%)) and Mfo%)(hz(K)),
respectively. This then allows us to use two copies of MAINTAINREP to maintain the solutions
throughout the IPM.

To start, recall the information stored in the DynamicSC data structure: at every node H we have
weighted Laplacian LU, In the previous section, we defined matrices T and TI’s as functions of
the L#’s, in order to approximate L'. MAINTAINREP will contain a copy of the DynamicSC data
structure; therefore, the remainder of this section will freely refer to T and oo, ... o,

5.1 Maintaining the Intermediate Vector z

We define a partial computation at each step of the IPM, which will be shared by both the slack

and flow solutions:
def

Definition 38 (z'©)). At the kth step of the IPM, let %) be the step direction. Letd = BTW/2g(k),
Define z(¥) to be the partial computation

POR S (U (OF) (5.1)

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:33

ALGORITHM 4: Data structure to maintain the intermediate vector z, Part 1

1: data structure MAINTAINZ

2: private: member

3 7 : separator tree of input graph G of height n

4: ¢ € R, 2(5tep) Z(sum) ¢ R7. coefficient and vectors to be maintained

5 u € R™: vector to be maintained such that u = II7~V ... IOBTWo

6 v € R™: direction vector from the current step

7 w € R™: weight vector > we also use W & diag(w)
8 DynamicSC: data struct which gives access to L) for each H € T

9: procedure INITIALIZE(T ,v € R™, w € R™, ep)

10: DynamicSC.INITIALIZE(T , W, €p)
11: W W, —v

12: u « PARTIALPROJECT(BTW1/20)
13: Z(teP) Ty

14: Zsum) o

15: ce—0

16: end procedure

17: procedure PARTIALPROJECT(d € R, H = {H € T : d|p, # 0})

18: > if HH is not given in the argument, then it takes the default value above
19: u—d

20: for i from 0 ton — 1 do

21: U — U= Ve (T, i) L%,FH(L;‘II—?’FH)_I “ulpy
22: end for

23: return u

24: end procedure

25:

26: procedure INVERSEPARTIALPROJECT(u € R", H)
27: for i fromn—1to 0 do

28: U —u+YHep (H,i) L%},FH@;’QFH)* |y
29: end for

30: d—u

31: return d

32: end procedure

Observe that this is a partial projection: If we apply WY/2BITIOT ... TI"~UT to z(X), then the
result is an approximation to P,, o).

We first show how to multiply TTTI7~V ... TI) to a vector efficiently. The main idea is to take
advantage of the hierarchical structure of the separator tree 7~ in a bottom-up fashion. If d is
a sparse vector with only K non-zero entries, then we can apply the operator while avoiding
exploring parts of 7 that are guaranteed to contain zero values.

For notational convenience, let us define X(F) & L(HIQ Fur (Lg) FH)_I.

LEMMA 39. Given a vectord e R", let H 2 {H € T : d|p, # 0} and suppose |H| = K. Then the
procedure PARTIALPROJECT(d, H) in the MAINTAINZ data structure (Algorithm 4) returns the vector

u=T1w"0.. -H(I)H(O)d,

where the T1')’s and ep are from the DyNamicSC data structure in MAINTAINZ.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:34 S. Dong et al.

The procedure runs in 5(6132\/mK) time, and u|f,, is non-zero for at most O(K) nodes H € Pr(H).

Proor. First, we consider the runtime. We remark that the creation of vector u is for readability;
the procedure can in fact be computed using d in-place.
The bottleneck of PARTIALPROJECT is Line 21. For each H € P4(H), recall from Theorem 6 that

L") is supported on the vertex set F;; UdH and has O(ep™2|Fy UOH)) edges. Hence, (Lg) FH)‘lulpH
can be computed by a high-accuracy Laplacian solver in O(ep™2|F;UAH|) time, and the subsequent
left-multiplying by Lg}’ Fir also takes O(ep%|Fy; U 9H|) time. Finally, we can add the resulting
vector to u in time linear in the sparsity. Summing this over all H € P¢(H), we get that the total
runtime is 5(61)_2 VmK) by Lemma 27.

To show the correctness of PARTIALPROJECT, we have the following claim:

Cramv 40. Letu™Y = d be the value of u in ParTIALPROJECT(d, H) before the first double for-loop.
Let u'?) be the value of u after iteration i of the outer loop (Line 20) for 0 < i < n. Then

u® =@ ... 10q.
Furthermore, u”|g,, # 0 only if H € Pr(H).

Proor. We prove the claim by induction.
For i = —1, we are given u('l)lFH =d|r, # 0 exactly forall H € H C Pg(H). For i + 1, we have,
by inductive hypothesis and definition of IT*) from Theorem 5:

@ .. p@©g = iy, @

=(1- > x|ul.

HeT(i+1)

Since XH) € ROF*Fr gpd 4| ry # 0 only if H € Pr(H), the summation above can be taken over
def

the smaller set 7 (i + 1) N Pr(H) = Py(H, i+ 1), giving
—u® _ Z X(H)u(”IFH.
HePqr(H,i+1)
This is exactly what is computed as u after iteration i of the outer loop at Line 20. Hence, this is
equal to u'**V by definition.

For the sparsity condition, we note that if u'*?] py, differs from u®| Fj, at a node H’, then it
was changed by a term in the summation above, and so we must have Fg N 0H # 0 for some
H € Pq(H,i+ 1). By construction of the separator tree, this occurs only if H’ is an ancestor of H,
which implies H’ € Pg(H). Combined with the inductive hypothesis, we have that u*V|p, # 0
only if H € Py(H). O

Setting i = n—1 in the above claim immediately shows that at the end of the first double for-loop
in PARTIALPROJECT, we have u = I~V ... [IVTIO) g,

Finally, to complete the sparsity argument, we have |H| = K, and consequently |Ps(H)| =
OK -n) = O(K). Combined with the claim, we get the overall sparsity guarantee. O

For the correctness of our data structure, we will need a more specific structural property of
PARTIALPROJECT:

LEmMA 41. Let H be any subset of nodes in 7. Let Hy, ..., H, be any permutation of all nodes
from Py(H) such that if H; is an ancestor of H;, then i < j. Then

ParriALProjecT(d, H) = (1 - X)) . (1- XF))d.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:35

ALGORITHM 4: Data structure to maintain the intermediate vector z, Part 2
33: procedure REWEIGHT(Aw € R™)

34: wmew) €4 Ay

35: H « set of leaf nodes in 7~ that contain all edges whose weight has changed
36: Au « PARTIALPROJECT(BT (W(NeW)1/2 _ y1/2)g,)

37: we—w+Aw

38: u<—u+Au

39: d — INVERSEPARTIALPROJECT(u, H) > revert projection with old weights
40: dynamicSC.REWEIGHT(w) > update LH)’s to use the new weights
41 > specifically, L) changes for each H € Po(H)
42: u < PARTIALPROJECT(d, H) > apply projection with new weights
43: y « Z(step) > backup copy of z(tP)
44: for H in Py(H) do

45: Z(SteP)|FH - (L(I*‘I;I-I).FH)_IulFH

46: end for

47: Z(sum) lsum) _ . ((step) _ 4y > update 25" to maintain the invariant
48: end procedure

49:

50: procedure Move(a € R, Av € R™)

51: ve—v+Av

52: Au « PARTIALPROJECT(BTW!/2A0)

53: u<—u+Au

54y Z(step) > backup copy of z(steP)
55: for H in Py(H) do

56: ZteP)|p (ng,), £ ulEy

57: end for

58: Zlsum) . (sum) _ .. (Z(step) -y)

59: ce—c+a

60: end procedure

Proor. First, we observe that I-X#) and 1-XH) are commutative if H, ; and H; are not ancestor-
descendants. The reason is that X(H)XH) = o since XH1) € ROH:XFH; and Fy, N 0H; # 0 only if
H; is an ancestor of H;.

From the proof of Claim 40, we observe that iteration i of the for-loop in PARTIALPROJECT applies
the operator

- > x®= [a-x"),
HePr(H,i) HePr(H,i)

where the equality follows from expanding the RHS and applying the property X)X (H) = ¢
Thus, we have a stricter version of the claim:

ParTIALPROJECT(d, H) = (I - X)) .. (1- XF g,

where Hy, . .., H, is any permutation of P7(H) such that nodes at lower levels come later. Then
we apply commutativity to allow Hi, ..., H, to be any permutation such that if H; is an ancestor
of Hj theni < j. O

Next, we show there is a procedure that reverses PARTIALPROJECT using select nodes of 7.

LeEMMA 42. Given a set of K nodes H in T and a vector u, INVERSEPARTIALPROJECT(u, H) in the
MAINTAINZ data structure (Algorithm 4) is a procedure that returns d such that

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:36 S. Dong et al.

d= (1 + X(Hr>) - (I + X(Hl)) u,

where Hy, . . ., H, is any permutation of all nodes from Pq(H) such that if H; is an ancestor of H;,
then i < j The procedure runs in O(eljz\/mK) time, where K = |H|.

Proor. Intuitively, observe that INVERSEPARTIALPROJECT is reversing all the operations in PAR-
TIALPROJECT. The runtime analysis is analogous to PARTIALPROJECT. The proof of the equation
is also analogous to PARTIALPROJECT. We first observe that iteration i of the for-loop applies the
operator

1+ > x®=] (1+X<H>).
HePr(H,i) HePr(H,i)

Then by commutativity as in Lemma 41, we have
d= (1 + X)) (14 X<H1>) u.

where Hy, ..., H, is any permutation of 4() such that nodes at lower levels come later. Then
we apply commutativity to allow Hj, ..., H, to be any permutation such that if H; is an ancestor
of Hj then i < j. O

Finally, we have the data structure for maintaining a vector z dependent on v throughout the
IPM. For one IPM step, there is one call to REwWEIGHT followed by one call to MovE.

THEOREM 43 (MAINTAIN INTERMEDIATE VECTOR 2z). Given an appropriate separator tree T~ of the
IPM input graph with height n, the deterministic data structure MAINTAINZ (Algorithm 4) maintains
the following variables correctly at the end of each IPM step:

— the dynamic edge weights w is and current step direction v from the IPM
— a DyNamiIcSC data structure on I~ based on the current edge weights w
— scalar ¢ and vectors z5'P), 25" which together represent z = cz*P) + 205%™ sych that at the

end of IPM step k,
k
z= Z 20, (5.2)
i=1

— Z0tP) satisfies ztP) = T ... IOBTW/2p,
The data structure supports the following procedures:

—InrriaLize(T,v € R™,w € R7,ep > 0): Given a graph G, its separator tree T, initial step
direction v, initial weights w, and target step accuracy ep, preprocess in O(ep~*m) time and
initialize z = 0.

—ReweicHT(w € RT given implicitly as a set of changed coordinates): Update the current
weight to w and update DyNAMICSC, and update the representation of z. The procedure runs
in 5(61;2\/%) total time, where K is the number of coordinates updated in w. There are most
O(K) nodesH € T for which z(t¢P)| Fy and Z(5um)| Fy, are updated.

—Move(a € R, v € R" given implicitly as a set of changed coordinates): Update the current
direction to v, and set z «— z + oITI™D .. .TIOBTW/2x with the correct representation.
The procedure runs in 5(6;2W) time, where K is the number of coordinates changed in v
compared to the previous IPM step.

Proor. If MovE is implemented correctly, then by the definition of the update to z, the invariant
in Equation (5.2) is correctly maintained.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:37

For the runtime analysis, recall {Fy : H € 7 } partition the vertex set of G. Therefore, v has K
non-zero entries, then d & BTW'/?o has O(K) non-zero entries, and consequently d|r, # 0 for
O(K) nodes H. There are O(m) total nodes in the separator tree 7.

We maintain a vector u with the invariant u = I~V ... TIOBTW'/20. We now prove the

correctness and runtime of each procedure separately.
INTTIALIZE: By the guarantee of Lemma 39, at the end of INITIALIZE, we have
u=0""0.. . mOB W%y

and
28 =Ty =T ... TIOB"W' /20,
Since ¢ and 20" are initialized to zero, we have z = ¢z(tP) 4 Z(sum) — o,
We initialize the DynamIcSC data structure in (ep~2m) time. There is no sparsity guarantee for v,
but the call to PARTIALPROJECT takes at most O(ep~2m) time because of the size of 7. To calculate
Tu, we solve a Laplacian system (L(FIZ) Fir) 'ulF, in time O(IL®)|) for each node H. The total time

is O(ep~2m) as well by |LH)| = O(ep~2|Fy U 8H|) from Theorem 6 and by Lemma 27.

MovVE: Let v, u be the variables at the start of MovE, and let ©’,u’ denote them at the end.
Similarly, let z = cz('P) + 25" denote z and the respective variables at the start of MOVE, and let
z/ = ¢'Z01P) 4 Z(um)’ denote these variables at the end.

First, after Line 53, we have

u =u+Au
=7 V... MYB"WY (v + Av)
= v .. ~H(°)BTW1/20’,

where the second equality follows from the guarantee of PARTIALPROJECT and the guarantee from
the previous IPM step. By Lemma 39, u” is updated only on Fry where H € P7(H). Thus, to update
z0tP)" = T/, we only need to update z)’| .. for H € P7(H), which happens on Line 56 Observe
that the update in value to z*P) is cancelled out by the update in z**™ at Line 58, so that the value
of z does not change overall up to that point But we have

z = c2®tep) 4 Zum)’ — T OBTW /2y 4 psum)

Then in Line 59, incrementing ¢ by « represents increasing the value of z by azP)’ | which is
exactly the desired update.

For the runtime, first note nnz(Av) = K. So PARTIALPROJECT runs in O(ep 2VmK) time by
Lemma 39. Line 56 takes 5(61)_2 vVmK) time in total by Theorem 6 and Lemma 27. The remaining
operations in the procedure are adding vectors with bounded sparsity.

ReEwEIGHT: Let w(®'9) denote the weight vector immediately before this procedure is called, and
wW) js the new weight passed in as an argument.

Let T and IT) denote these matrices defined using the old weights, and let I” and II) denote
the matrices using the new weights. Similarly let u be the state of the vector at the start of the
procedure call and u’ at the end.

In REWEIGHT, we do not change the value of z, but rather update 205teP) and 25U g6 that at the
end of the procedure,

z(step) — i-?/n(r]—l)' . H(O)IBTW(HEW)I/Z’U,

so that we maintain the invariant claimed in the theorem statement.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:38 S. Dong et al.

To see that the value of z does not change at the end of the procedure, observe that we modify
z%P) during the procedure, and cancel all the changes to z'P) by updating z(**™ appropriately
at the last line (Line 47).

Immediately before Line 38, the algorithm invariant guarantees

u =Y. . OgTweldi/2,,
By Lemma 39,
Au — 1-[(?7—1) . H(O)BT(w(neW)l/Z _ w(Old)l/Z)v.
Therefore, after executing Line 38, we have
u—u+Au=1""70. . . IOBTWEW/2,,

Next, we need to update u to reflect the changes to f, . Updating these matrices is done via
dynamicSC. However, calling PARTIALPROJECT(BT W (%)1/20)) afterward is too costly if done di-
rectly, since the argument is a dense vector. To circumvent this problem, we make the key obser-
vation that the change to u is restricted to a subcollection of nodes on 7 (in fact a connected subtree
containing the root), and it suffices to partially reverse and reapply the operator TTI7~ ... 1),
Intuitively, INVERSEPARTIALPROJECT revert all computations in PARTIALPROJECT that are related
to the changes to W.

Let Hy, ..., H; be a permutation of all nodes in 77, such that the nodes in P7(H) is a prefix of

the permutation, and it satisfies that for any node H; with descendant H;, i < j. Then by Lemma 41,
after executing Line 38, we have

u = PARTIALPROJECT(BT WeW)1/24, ™)
= (- Xy (1= XHE)H)BTWEeW1/2q, (5.3)

Let r = |P7(H)|. Then INVERSEPARTIALPROJECT(12, H) on Line 39 returns d by Lemma 42 satisfy-
ing

d=0+X5)) 1+ XH)yy,
Plugging in u from Equation (5.3), we have
d=1+XH)) (@ XE) @ - X)) (1= XH)BTWmew/2g,
We use the fact that each I — X is nonsingular and has inverse I + X9 to get
d=(1-XH=)y (11— XH)BTWreW/2g,

We then call dynamicSC.REWEIGHT, which updates L) and in turn X" for precisely all
nodes in Pr(H) = {Hi,...,H,}. Let X denote the matrix after reweight. Next, we call
PARTIALPROJECT again. Let us denote it by PARTIALPROJECT(™™) to emphasize that it runs with
new weights. This gives

u’ = PARTIALPROJECT"™) (d, H)
=1-XH"y . 1-xH) g
= (1= XHYy (1= XED Y1 = XHE)) (1= XE)BTWReW1/2g,
= (1— Xy (1= XH)BTWnew/2, (since XH)" = XHD for all i > r)
= PARTIALPROJECT W) (BT WReW)/24, 7).

Because u'|f,, is updated on H € Po(H), and LUD is updated on H € P+(H) by Theorem 6,
running Line 45 on H € Pg(H) correctly sets 25 = T’

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:39

For the runtime, the first call to PARTIALPROJECT has a vector with O(K) sparsity as the argument,
and therefore runs in O(ep~2VmK). Next, we know |H| = O(K). The call to INVERSEPARTIALPRO-
JECT and the subsequent call to PARTIALPROJECT both have H as an argument, so they run in
O(ep~2VmK). The DynamicSC.REWEIGHT call runs in O(ep~2VmK) Updating z'P) (Line 45) takes
O(ep~>VmK) time in total by Theorem 6 and Lemma 27. And finally, we can update z*"™ in the
same time.

We remark that although INVERSEPARTIALPROJECT returns a vector d that is not necessarily
sparse, and we then assign u « PARTIALPROJECT(d, H), this is for readability. d is in fact an
intermediate state of u, on which we perform in-place operations. O

5.2 Tree Operator

At IPM step k, our goal is to write the slack update va(k) as MGlack) (k) ang similarly, write
the partial flow update ﬁ(v v®) approximately as M°W)z(K) where z(¥) is defined in the previous
subsection, and M®12%K) and M%) are linear operators that are efficiently maintainable between
IPM steps.

In this section, we define a general class of operators called tree operators and show how to
efficiently compute and maintain them. In later sections, we show that M®2K) and M®°") can be
defined as tree operators.

We begin with the formal definitions. Recall for a tree 7 and node H € 7, we use 75 to denote
the subtree rooted at H.

Definition 44 (Tree Operator). Suppose 7 is a rooted tree with constant degree and root G. Let
each node H € 7 be associated with two sets V(H) and Fy C V(H). Let each leaf node H € 7

be further associated with a non-empty set E(H) of constant size, where the E(H)’s are pairwise
def

disjoint over all leaf nodes For a non-leaf node H, define E(H) = Uy peg;, E(D). Finally, define

def def

E 2 B(G) = Ureat ey EH) and V £ V(G).

Let each node H with parent P be associated with a linear edge operator M, p) : RY®P) s RV,
In addition, let each leaf node H be associated with a constant-time computable linear leaf operator
Ju : RVE) s REFD We extend all these operators trivially to RY and RZ, respectively, in order to

have matching dimensions overall. When an edge or leaf operator is not given, we assume it to be 0.
def

For a path H, — H; = (Hy, ..., H;), where each H; is the parent of H;_; and Hj is a leaf node
(call these tree paths), we define

MH1<—Ht = M(Hl»Hz)M(Hz‘Hﬁ e M(Ht—lsHt)'

Ift = 1, then My, gy, = L.

We define the tree operator M : RV +— RE supported on 7™ to be

def

M= Z JuMpAlF,. (5.4)
leaf H,node A: HETA

We always maintain a tree operator implicitly by maintaining
{Ju :leaf H} U {M(z, p) : edge (H, P)} U {Fy : node H}.

Remark 45. Although we define the tree operator in general and hope it will find applications
in other problems we have used suggestive names in the definition to suit our min-cost flow set-
ting. In particular, our tree operators will be supported on the separator tree 7. For each node H,
the sets V(H), Fy, E(H) associated with the tree operator are, respectively, 9H U Fy of region H,
the eliminated vertices Fy of region H, and the edge set of region H, all from the separator tree
construction.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:40 S. Dong et al.
To maintain M using the tree efficiently, we also need some partial operators:

Definition 46 (M(H) MH)). For convenience of notation, define 7 to be the subtree of 7~ rooted
at node H. We define the subtree operator M) : V(H) + E(H) at a node H to be

M = Z JoMpep. (5.5)
leaf DeTy
We also define the partial sum
MH) Z M1, . (5.6)
DeTy

We state a straightforward corollary without proof.
COROLLARY 47. Based on the above definitions, we have

M= M™I1g, = MO,
HeT

Furthermore, if H has children Dy, D, then
M = MPIMp, gy + MPMp,). .7)
We observe an orthogonality property of the subtree operators:

LEMMA 48. For any nodes H,H' at the same level in 7", Range(M)) and Range(M™")) are or-
thogonal.

Proor. Since H and H’ are at the same level in 7, we know 7y and 7g- have disjoint sets
of leaves. The range of M) is supported on edges in the regions given by leaves of 75, and
analogously for the range of M),]

We define the complexity of a tree operator to be parameterized by the number of tree edges.

Definition 49 (Complexity of Tree Operator). Let M be a tree operator on tree 7. We say M has
complexity function T if for any k > 0, for any set S of k distinct edges in 7 and any families
of vectors {u, : e € S} and {v, : e € S} the total cost of computing {u]M, : e € S} and
{M.v, : e € S} is bounded by T(k).

Without loss of generality, we may assume T(0) = 0, T(k) > k, and T is concave.

We can show the structure of a tree operator by the procedure CompuTEMZ(M, 2) to compute
Mz. Intuitively, z is given as input to each node H. The edge operators are concatenated in the
order of tree paths from H to a leaf, but we apply them level-wise in descending order.

COROLLARY 50. Suppose M : RV — RE is a tree operator on tree T~ with complexity T, where
|V| = n and |E| = m. Then for z € RV, Exact(M, z) outputs Mz in O(T(K)) = O(T(m)) time where
K is the total number of non-zero edge and leaf operators in M.

Proor. Note only non-zero edge and leaf operators contribute to Mz. We omit the proof of
correctness as it is simply an application of the definition.

Since E = Ujear pE(D), and each E(D) has constant size, we know there are at most O(m) leaves
in 7 Hence, there are O(m) edges in 7, and K = O(m). Since we define each leaf operator to be
constant time computable, applying] for leaves in P7(H) costs O(K) time in total. The bottleneck
of the procedure is to apply the edge operator M, to some vector exactly once for each edge e in
7, the time cost is O(T(K)) by definition of the operator complexity. O

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:41

ALGORITHM 5: Compute Mz for a tree operator M

1: procedure CoMPUTEMZ(M, 2)
2 H « set of all nodes H in 7~ such that My, py or Jg is nonzero
3 Pq(H) « set of H and all ancestor nodes of H in T~
4: vy «— 0foreachH e T > sparse vectors for intermediate computations
5: for each node H € Py(H) do
6 vy «— I,z = z|f, > apply the If,, part of the operator
7 end for
8 for each node H € Py(H) by decreasing level do
9: Let P be the parent of H
10: vy < vg + Mg, pyop > apply Mg, p) as we move from P to H
11: end for
12: for each leaf node H € P(H) do
13: xgH) < Juon > apply the leaf operator
14: end for
15: return x

16: end procedure

5.3 Proof of Theorem 7

Finally, we give the data structure for maintaining an implicit representation of the form y +
Mz throughout the IPM. For an instantiation of this data structure, there is exactly one call to
INTTIALIZE at the very beginning, and one call to Exact at the very end. Otherwise, each step of the
IPM consists of one call to REWEIGHT followed by one call to MoVE. In our pseudocode, we use a
box around a vector to mean that vector is maintained using a data structure rather than directly
accessible.

Proor or THEOREM 7. First, we discuss how M is stored in the data structure: Recall M is repre-
sented implicitly by a collection of edge operators and leaf operators on the separator tree 77, so
that each edge operator is stored at a corresponding node of 77, and each leaf operator is stored
at a corresponding leaf node of 7. However, the data structure does not store any edge or leaf
operator matrix explicitly. We make a key assumption that each edge and leaf operator is com-
putable using O(1)-number of L) matrices from DynamicSC. This will be true for the slack and
flow operators we define. As a result, to store an edge or leaf operator at a node, we simply store
pointers to the matrices from DYNAMICSC required in the definition, and an O(1)-sized instruction
for how to compute the operator. The computation time is proportional to the size of the matrices
in the definitions, but crucially the instructions have only O(1)-size.

Now, we prove the correctness and runtime of each procedure separately. Observe that the
invariants claimed in the theorem are maintained correctly if each procedure is implemented
correctly.

INTTIALIZE: Line 11 sets y « x™ and .INITIALIZE sets z < 0. So we have x = y + Mz at
the end of initialization. Furthermore, the initialization of z correctly sets 20tP) in terms of v.

By Theorem 43, .INITIALIZE takes O(ep™2m) time. Storing the implicit representation of M
takes O(m) time.

REwEIGHT: By Theorem 43, .REWEIGHT updates its current weight and DynamicSC, and
updates z*'P) correspondingly to maintain the invariant, while not changing the value of z.
Because M is stored by instructions, no explicit update to M is required. Line 19 updates y to zero
out the changes to Mz.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27

42 S. Dong et al.

ALGORITHM 6: Implicit representation maintenance

10:
11:
12:

1
2
3
4
5:
6
7
8
9

: data structure MAINTAINREP
: private: member
T : separator tree
y € R™: offset vector
M: instructions to compute the tree operator M € R™*"
: an instance of MAINTAINZ which maintains z = ¢z(5t¢P) 4 z(sum)
: procedure INITIALIZE(T ,M,v € R™, w € R’;’O,x(init) €R™, ep > 0)
MM > initialize the instructions to compute M
.INITIALIZE(T L0 ER™ weRM e >0)
y — x(init)

end procedure

13:

14:
15:
16:
17:
18:
19:
20:

procedure REWEIGHT(w(MeW))
Let M(0ld) represent the current tree operator M
.REWEIGHT(W(neW)) > update representation of z and DynamicSC
> M is updated as a result of reweight in DynamicSC
AM «— M — M(ld) > AM is represented implicitly
y «— y — ComPUTEMZ(AM, cz(step) 4. Zlsum)y > Algorithm 5

end procedure

21:

22:
23:
24:

procedure MovEe(a, p(new))

.MOVE(a, p(new))

end procedure

25:

26:
27:
28:

procedure Exact()
return y + COMPUTEMZ(M, ¢z(5t€P) 4 z(5um)) > Algorithm 5
end procedure

th

The instructions for computing AM require the Laplacians from DynamicSC before and after
e update in Line 16 For this, we monitor the updates of dynamicSC and store the old and new

values The runtime of this is bounded by the runtime of updating dynamicSC, which is in turn
included in the runtime for [z | REWEIGHT.

Let K upper bound the number of coordinates changed in w and the number of edge and leaf

operators changed in M. Then Super.REWEIGHT takes O(ep~2VmK) time and ExacT(AM, z) takes
O(T(K)) time. Thurs, the total runtime is O(ep >VmK + T(m)).

to

Move: The runtime and correctness follow from Theorem 43.

Exact: ComPUuTEMZ computes Mz correctly in O(T(m)) time by Corollary 50. Adding the result
y takes O(m) time and gives the correct value of x = y + Mz. Thus, EXacT returns x in O(T(m))

time. O

6

Maintaining Vector Approximation

Recall at every step of the IPM, we want to maintain approximate vectors s, ? so that

fo

Hw—l/z(f- f)”m <5 and le/z(s— s)”w <&

r some additive error tolerances § and §’.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:43

In the previous section, we showed how to maintain some vector x implicitly as x “ y+ Mz
throughout the IPM, where x should represent s or part of f. In this section, we give a data struc-
ture to efficiently maintain an approximate vector x to the x from MAINTAINREP, so that at every
IPM step,

where D is a diagonal scaling matrix that is a fixed function of x. (It will be W™ for the flow or W
for the slack.)

In Section 6.1, we reduce the problem of maintaining x to detecting coordinates in x with large
changes In Section 6.2, we detect coordinates of x with large changes using a sampling technique
on a binary tree, where Johnson-Lindenstrauss sketches of subvectors of x are maintained at each
node of the tree In Section 6.3, we show how to compute and maintain the necessary collection
of JL-sketches on the separator tree 77; in particular, we do this efficiently with only an implicit
representation of x. Finally, we put the three parts together to prove Theorem 8.

We use the superscript (¥) to denote the variable at the end of the kth step of the IPM; that is, D)
and x©) are D and x at the end of the kth step. Step 0 is the state of the data structure immediately
after initialization.

D2 (% — x)” <5,

6.1 Reduction to Change Detection
In this subsection, we show that in order to maintain an approximation x to some vector x, it

suffices to detect coordinates of x that change a lot.

To do so, we make use of dyadic intervals. At step k of the IPM, for each £ such that k = 0 mod 2¢
(k)

we find the set Ié(,k) that contains all coordinates i of x such that x;"’ changed significantly compared

(k-2%) . ¢ .
to x; , that is, compared to 2° steps ago. Formally:

Definition 51. At step k of the IPM, for each ¢ such that k = 0 mod 2¢, we define

(k) def (. oD) (k20 é
I, ={ie[n]: Dy 7 |x;" —x; IZW
and X; has not been updated since the (k — 2°)-th step}.

We show how to find the sets Ii,k) with high probability in the next subsection. Assuming the
correct implementation, we have the following data structure for maintaining the desired approx-
imation x:

LEMMA 52 (APPROXIMATE VECTOR MAINTENANCE). Suppose FINDLARGECOORDINATES({) is a pro-
cedure in ABSTRACTMAINTAINAPPROX that correctly computes the set Iﬁ,k) at the kth step. Then the
deterministic data structure ABSTRACTMAINTAINAPPROX in Algorithm 7 maintains an approximation
x of x with the following procedures:

— INrTiaLize(T,x € R™, p > 0, § > 0): Initialize the data structure at step 0 with tree T, initial
vector x, target additive approximation error §, and success probability 1 — p.
— APPROXIMATE(x ™) € R™): Increment the step counter and update vector x. Output a vector X
such that |[DY?(x — X)||e < & for the latest x and D.
Furthermore, if||x(k) - x(k_l)llD(k-n < p for all k, then at the kth step, the data structure updates
X; — xgk) for O(2%4%(B/5)? log? m) coordinates, where £y is the largest integer £ with k = 0 mod 2°.

Remark 53. In our problem setting of maintaining approximate flows and slacks, we do not have
full access to the exact vector The algorithms in the next two subsections; however, will refer to
the exact vector x for readability and modularity We observe that access to x is limited to two

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:44 S. Dong et al.

ALGORITHM 7: Data structure ABSTRACTMAINTAINAPPROX, Part 1

1: data structure ABSTRACTMAINTAINAPPROX
2: private : member

3: 7: constant-degree rooted tree with height n and m leaves

4: w o(n? log(%)): sketch dimension

5: @ ~ N(0, %)me: JL-sketch matrix

6: § > 0: additive approximation error

7 k: current IPM step

8: X € R™: current valid approximate vector

9: {x) e rm }]].Czoz list of previous inputs
10: (DY) € Rmxm}jk:(): list of previous diagonal scaling matrices
11:

12: procedure INITIALIZE(T,x € R™,p > 0,6 > 0)
13: T «— T, 8,k0

14: % — x,x9 — x, DO computed from x

15: sample @ ~ N(0, L)w>m

16: end procedure

17:

18: procedure APPROXIMATE(x(1€%) € R™)

19: k—k+1,

20: x(F) — y(new)

21: I—20

22: for all 0 < £ < [logm] such that k = 0 mod 2¢ do
23: Ii,k) «— FINDLARGECOORDINATES()

24: 11U

25: end for

26: if k = 0 mod 2/1°¢™1 then

27: I — [m] > Update X in full every 2M°8™1 steps
28: end if

29: Xj — xgk) foralliel

30: D®) « D*-D then update D(i];) for i € I from x;
31: return x

32: end procedure

types: accessing the JL-sketches of specific subvectors, and accessing exact coordinates and other
specific subvectors of sufficiently small size. In later sections, we show how to implement these
oracle accesses to x.

Proor oF LEMMA 52. We first prove the correctness of APPROXIMATE in
ABSTRACTMAINTAINAPPROX Fix some coordinate i € [m] and fix some IPM step k Suppose the

latest update to x; is x; « xgk,) We have that D(i?) is the same for all k > d > k’ and that i is
not in the set I{(,d) returned by FINDLARGECOORDINATES for all k > d > k’. Since we set x « x
every 2/°¢™1 steps by Line 27 we have k — 2M°¢™1 < k’ < k. Using dyadic intervals, we can write
k" =ko < ki <k, < --+ < ks = k such that kj. — k; is a power of 2, and |s| < 2[log m]. Hence,
we have that

s—1
X 5B = k) _ k) X = ((k1) _ l(k;))_
Jj=0

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:45

_5
~ 2[logm]

We know that DE?) is the same for all k > d > k’. By the guarantees of FINDLARGECOORDINATES,
(j+1)

we have
'DEI;—U . xl 'D(k]+1)

for all 0 < j < s Summing over allj =0,1,...,5s — 1 gives

oI -5 <.

Hence, we have ||[D2(x = X)||eo < 6.
Next, we bound the number of coordinates changed from x*7Y to x* Fix some ¢ with k =

0 mod 2¢. For any i € I}k), we know Dg) = DE’;_I) for all j > k — 2 because x; did not change in

(kj+1) J
X; - X

the meanwhile. By definition of I (k) , we have
(k-1) (J+1) (J) (k=1) (k) _ (k 20)
ok Z [ERVL Fay b | >
P 2 |'log m]’
Using DU) D(k Yforall j > k — 2° again, the above inequality yields

(), U+1) G)
Z Dyl = x|
j=k—2¢

2 |'log m] ~

k-1
< |2f Z Dg)lxi(iﬂ) —xi(i)lz. (by Cauchy-Schwarz)
j=k-2¢

Squaring and summing over all i € I{(,k) gives

278%\ 01, U+D _ 02
Q(log)|1 |<Z ZD | x|

i1 j=k=2*

m

Z Z DY [x0*D) _ x)}2

i=1 j—f_2¢
<ol ﬁz,
where we use [|xU*V — xU)||5,) < B at the end. Hence, we have
1171 = 0% (B/5) Iog* m).

Recall this expression is for a fixed ¢ At the kth step, summing over all £ with k = 0 mod 2¢ we
have that the total number of coordinates changed is

Ck
Z 9] = 022 (/) log? m). o
£=0

6.2 From Change Detection to Sketch Maintenance

Now we discuss the implementation of FINDLARGECOORDINATES(() to find the set Iék) in Line 23
of Algorithm 7. We accomplish this by repeatedly sampling a coordinate i with probability pro-
DD) _ (k202

12 1 1

portional to , among all coordinates i where x; has not been updated since

2¢ steps ago. With high probability, we can find all i € Ii,k) in this way efficiently. To implement

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:46 S. Dong et al.

ALGORITHM 8: Data structure ABSTRACTMAINTAINAPPROX, Part 2

1: procedure FINDLARGECOORDINATES(()
2: > D and q are symbolic definitions

3: > D: diagonal matrix such that

B {DE’;_I) if X; has not been updated after the (k — 2¢)-th step
i =

0 otherwise.
g 5 q ¥ DY (k) _ xlk2) i
: q (x x) > vector to sample coordinates from
5:
6: I—0 > set of candidate coordinates
7: for N & 0(22((B/5)* log? mlog(m/p)) iterations do
8: > Sample coordinate i of ¢ w.p. proportional to qf by random descent down 7~ to a leaf
9: while true do
10: u « root(7), py «— 1
11: while u is not a leaf node do
12: Sample a child u” of u with probability
Pl u’) & g gl
S child u” of u 1PEWn g3
> let @, o @I, for each node u
13: pu — pu-Plu—u’)
14: ue—u
15: end while
16: break with probability paccept = [[lzw)|” /(2 - pu - 194112)
17: end while
18: I — TUE(u)
19: end for

20: return {l el : qi = m}
21: end procedure

the sampling procedure, we make use of a data structure based on segment trees [16] along with

sketching based on the Johnson-Lindenstrauss lemma.

el — 1/2 _of o=
Formally, we define the vector ¢ € R™ where q; = Dglf b (xl(.k) - xgk 2)) if X; has not been

updated after the k — 2¢-th step, and q; = 0, otherwise Our goal is precisely to find all large
coordinates of q.

Let 7 be a constant-degree rooted tree with m leaves, where leaf i represents coordinate q;. For
each node u € 7, we define E(u) C [m] to be set of indices of leaves in the subtree rooted at u. We
make a random descent down 77, in order to sample a coordinate i with probability proportional to
q’. At anode u, for each child u” of u, the total probability of the leaves under u’ is given precisely

by ||q|E(u/)||§. We can estimate this by the Johnson-Lindenstrauss lemma using a sketching
matrix ®. Then we randomly move from u down to child 4" with probability proportional to the
estimated value. To tolerate the estimation error, when reaching some leaf node representing
coordinate i, we accept with probability proportional to the ratio between the exact probability
of i and the estimated probability of i. If i is rejected, we repeat the process from the root again
independently.

LEMMA 54. Assume that ||[x*+V — x|, < B for all IPM steps k Let p < 1 be any given failure

def

probability, and let N = ©(2%¢(B/5)? log? mlog(m/p)) be the number of samples Algorithm 8 takes.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:47

Then with probability > 1 — p, during the kth call of APPROXIMATE, Algorithm 8 finds the set Ii,k)
correctly Furthermore, the while-loop in Line 9 happens only O(1) times in expectation per sample.

Proor. The proof'is similar to Lemma 6.17 in [21]. We include it for completeness For a set S of
indices, let Is be the m X m diagonal matrix that is one on S and zero, otherwise.

We first prove that Line 16 breaks with probability at least ;11. By the choice of w, Johnson-
Lindenstrauss lemma shows that ||®g(,)qll? = (1 + &)||Igw)qll? for all u € 7~ with probability at

on
least 1 — p Therefore, the probability we move from a node u to its child node u” is given by
1 Irwnqll? 1\ Mewnqll?
b) = (11_) Merdlh (11_) LEWrY
3’7 Zu” is a child of u ”IE(u")q”z 3’7 ”IE(u)q”z
Hence, the probability the walk ends at a leaf u € 7 is given by
2
1" IlLgl? 1, lalewll
pu=|12— - = (1 =) —1—.
3n) llqll; 37 llqll
Now, paccept 00 Line 16 is at least
2 2
gzl gzl liqll3 1
Pt = e gl lalzeoll S 2t Lylegly 4
Y L e Y1)"0l
liqli}

On the other hand, we have that paccept < < 1 and hence this is a valid probability.

2(1-3,)7 g
Next, we note that u is accepted on Line 16 with probability

latzl?
2- |l oqll

pacceptpu -

Since ||®q||? remains the same in all iterations, this probability is proportional to ||q|E(u)||2.
Since the algorithm repeats when u is rejected, on Line 18, u is chosen with probability exactly

2
lglecoll” /gl

Now, we want to show the output set is exactly {i € [n] : |q;| > m}. Let S denote the set
of indices where x did not update between the (k — 2°)-th step and the current kth step. Then

s (D)1 2(x 8 — k=2,

k-1

D Is@E)2D D),
i=k—2¢

k-1

DT IO —),
i=k—2¢

k-1

DI D — XDy,
i=k—2¢
< 2B,

lqll2

IN

IA

where we used IsD® IsD* =D Hence, each leaf u is sampled with probability at least

el /2EBY2 Tf Iqil

\%

m, and i € E(u) for a leaf node u, then the coordinate i is not

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:48 S. Dong et al.

in I with probability at most

2\ N
 latsll) 1- 1 Y
@pr |~ 220%p/6) [logm)?) m’
by our choice of N. Hence, all i with |q;| > m lies in I with probability at least 1 — p. This
proves that the output set is exactly Ii,k) with probability at least 1 — p.]

Remark 55. In Algorithm 8, we only need to compute || ®£(,)q||2 for O(N) many nodes u € 7.
Furthermore, the randomness of the sketch is not leaked and we can use the same random sketch ®
throughout the algorithm. This allows us to efficiently maintain ®p,)q for each u € 7~ throughout
the IPM.

6.3 Sketch Maintenance

In FINDLARGECOORDINATES in the previous subsection, we assumed the existence of a constant
degree tree 7 and for the dynamic vector q the ability to access ®g(,)q at each node u € 7 and
q|E() at each leaf node u € 77(0).

In this section, we consider when the required tree is the separator tree 7 of the overall input
graph, and the vector q is of the form g = y + Mz, where M is a tree operator supported on 7, and
each of y, M, z undergo changes at every IPM step We present a data structure that implements
two features efficiently on 7

— access (y + Mz)|g) at every leaf node H, where E(H) “ Range(Ju).

—access ®p(p)(y + Mz) at every node H, where ®g() is ® restricted to columns given by
def

E(H) = UleafD €Ty E(D)
Remark 56. As seen in the pseudocode, sketches for y and Mz can be maintained separately. We
collected them together to represent x as a whole for simplicity.

First, we present some lemmas about the structure of the expression Mz which will help us to
implement the requirements above. For any node H € 7, let 75 be the subtree of 7 rooted at H.

LeEMMA 57. At any leaf node H € T (0), we have

(Mz)|pm) = Z JuMpc Alp,z = Julp,z + Z JuMpyalf,z.
A:HeTy ancestor A of H

ProorF. Recall from the definition of the tree operator that Range(Jy) are disjoint. So to get
(M2)|g(), it suffices to only consider the terms corresponding to the leaf H in the expression
Equation (5.4) for M; this gives the first equality. The second equality simply splits the sum into
two parts. (We do not consider a node to be its own ancestor.)]

LEMMA 58. At any node H € T, we have

(I)E(H)MZ = PdMUDz + (I)M(H) Z MH<—AIFAZ-
ancestor A of H

Intuitively, the lemma shows that the sketch of Mz restricted to E(H) can be split into two parts
The first part involves some sum over all nodes in 7y, i.e., descendants of H and H itself, and the
second part involves a sum over all ancestors of H.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:49

Proor. First, note that since ® is restricted to E(H), it suffices to consider the terms in the sum
for M that map into E(H). In particular, this is the set of leaf nodes 75 in the subtree rooted at H.

OpMz =P Z Z JpoMpalp,z.
leaf DT A:DET4

The right hand side involves a sum over the set {(D,A) : D € 7y is a leaf node, D € 74}. Observe
that (D, A) is in this set if and only if A € 75 or A is an ancestor of H. Hence, the summation can
be written as

Z JoMpplp,z + Z Z JpMpealp,z.

leaf D € Ty A€Tu leaf D € Ty ancestor A of H

The first term is precisely M)z, For the second term, we can use the fact that A is an ancestor of
H to expand Mp—4 = Mp—gMp— 4. Then, the second term is

Z JoMpcuMpcalf,z
leaf D € Tg; ancestor A of H

= Z JDMD<—H(Z MH<—AIFAZ)

leaf D € Ty ancestor A of H
H
=M (MH(—AIFAZ) ,

ancestor A of H

by definition of M#1), O

LEMMA 59. Let T be a rooted tree with height n supporting tree operator M with complexity T.
Let w = O(p? log(%)) be as defined in Algorithm 7, and let ® € R¥*™ be a JL-sketch matrix. Then
MAINTAINSKETCH (Algorithm 9) is a data structure that maintains ®(y + Mz), asy, M and z undergo
changes in the IPM. The data structure supports the following procedures:

— INITIALIZE(r00ted tree T, & € R¥X™, tree operator MUPY) e R™*n Z(init) ¢ Rr 4(nit) ¢ gm).
Initialize the data structure with tree operator M < MUY and vectors z « 2z, y « (i),
and compute the initial sketches in O(w - m) time.

— UPDATE(M"eW), z(eW) (0eW)): [pdate M «— MW, 2z« 20%) ¢« y®%) gnd all the
necessary sketches in O(w - T(n - |S|)) time, where S is the set of all nodes H where one of
M, p),J > ZlFy, y|E(H) is updated.

— SUMANCESTORS(H € T"): Return 3. ancestor 4 of H MH—AlF, 2.

— EsTIMATE(H € T°): Return ® gy (y + Mz).

— QuERY(H € T'): Return (y + Mz)|gm).

If we call QUERY on N nodes, the total runtime is O(w - T(nN)).

If we call EsTIMATE along a sampling path (by which we mean starting at the root, calling estimate
at both children of a node, and then recursively descending to one child until reaching a leaf), and then
we call QUERY on the resulting leaf, and we repeat this N times with no updates during the process,
then the total runtime of these calls is O(w - T(nN)).

Proor. First, we note that each edge operator M, should be stored implicitly In particular, it
suffices to only support the operation of computing u™ M, and M, x for any vectors u and x.
We prove the running time and correctness for each procedure.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:50 S. Dong et al.

ALGORITHM 9: Data structure for maintaining ®(y + Mz), Part 1

1: data structure MAINTAINSKETCH
2: private : member

3: 7 :rooted constant degree tree, where at every node H, there is

4 ®MH) | : sketch of partial tree operator

5: OMH)z |: sketched vector > gives ®Mz at the root
®y|p(H) |: sketched subvector of y

6
7: > boxes around expressions are to indicate they are sketched vectors
8: ® € RYX™M . JL-sketch matrix
9: M : tree operator on 7~
10: z € R™ : vector z
11: y € R" :vector y > M, z, y are pointers to read-only memory

12: procedure INITIALIZE(rooted tree 7, ® € RW*™ tree operator M, z, y)
13: D— D, « 7T

14 | oMP) |0, @MEz | 0,| @yl |« O forall H e T

150 UppATEM, z,y, V(7))
16: end procedure

17: procedure UpDATE(M(NEW), z(new) 4 (new) g < Set of nodes admitting changes)

18: M — MeW) 7 z(new) 4 (4 (new)

19: for H € P4(S) by increasing node level do

20: if H is a leaf then

21: oM | — o)y

22: OMHE)z | — @)zl

23: QyleH) | — PYlem)

24: else

25: M | — 3 ia p of 1| @MP) (D, H)
26: OMH)z | — | oM |z| Fi + Dchild D of 5| PMP)z
27: Qylp(H) | < Lenild D of H| PYlED)

28: end if

29: end for

30: end procedure

INTTIALIZE: 1t sets the sketches to 0 in O(w - m) time It then calls UppATE with the initial M, z, y,
and updates the sketches everywhere on 7~ By the runtime and correctness of UPDATE, this step
is correct and runs in O(w - T(m)) time.

UpDATE(M®W), 2(neW) ¢/ (new)y: T et S denote the set of nodes admitting changes as defined in the
theorem statement. If a node H is not in § and it has no descendants in S, then by definition,
M) and M(H)z are not affected by the updates in M and z. Similarly, in this case, y| E(H) is not
affected by the updates to y Hence, it suffices to update the sketches only at all nodes in P7(S)
We update the nodes from the bottom level of the tree upwards, so that when we’re at a node H,
all the sketches at its descendant nodes are correct. Hence, by definition, the sketch at H is also
correct.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:51

ALGORITHM 9: Data structure for maintaining ®(y + Mz), part 2

31: procedure SUMANCESTORS(H € 7)

32: if UpDATE has not been called since the last call to SUMANCESTORS(H) then

33: return the result of the last SUMANCEsTORS(H)

34: end if

35: if H is the root then return 0

36: end if

37: return My p)(2|F, + SUMANCESTORS(P)) > P is the parent of H

38: end procedure

39: procedure ESTIMATE(H € T)
40: Let u be the result of SUMANCESTORS(H)

41: return| oM |u+ M)z | +| y|pp)

42: end procedure

43: procedure QuERryY(leaf H € T")
44: return y|g(y + Ja(2|F,; + SUMANCESTORS(H))
45: end procedure

To compute the runtime, first note |P7(S)| = O(n|S]) since for each node H € S, the set
includes all the O(n) nodes on the path from H to the root For each leaf node H € P#(S), we can
compute its sketches in constant time. For each non-leaf node H € S with children D;, D, Line 25

multiplies each row of | ®MPV) | with M(p,, 1), each row of M) | with M(p,, i), and sums the

results. For a fixed row number, the total time over all H € P#(S) is bounded by O(T(|P+(S)|)).
So the total time for Line 25 in the procedure is O(w - T(n|S])).

Line 26 multiply each row of | ®M™) | with a vector and then performs a constant number of
additions of O(w)-length vectors. Since MU | js computed for all H € T(|P#(S)]) in O(w -
T(n|S])) total time, this runtime must also be a bound on the number of total non-zero entries.

Since each | ®M!) | is used once in Line 26 for a matrix-vector multiplication, the total runtime
over all H is also O(w - T(n|S|)). Lastly, the vector additions across all H takes O(w - 5|S|) time.
Line 27 adds two vectors of length w. This is not the bottleneck.

SUMANCEsTORS(H): At the root, there are no ancestors, hence we return the zero matrix When
H is not the root, suppose P is the parent of H. Then we can recursively write

My alp,z = Mg, p) |1,z + Z Mp alf, 2] .

ancestor A of H ancestor A of P

The procedure implements the right hand side, and is therefore, correct.

EsTiMATE and QUERY: Their correctness follows from Lemmas 57 and 58, and the correctness of

®y| gz | maintained by UPDATE.

Overall ESTIMATE and QUERY time along N sampling paths: We show that if we call ESTIMATE
along N sampling paths each from the root to a leaf, and we call QUERY on the leaves, the overall
cost for these calls is O(w - T(nN)):

Suppose the set of nodes visited is given by H, then |H| < nN. Since there is no update, and
EsTIMATE is called for a node only after it is called for its parent we know that SUMANCEsTORS(H)

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:52 S. Dong et al.

is called exactly once for each H € H. Each SUMANCESTOR(H) multiplies a unique edge operator
M#, p) with a vector Hence, the total runtime of SUMANCESTORS is T(|#|). Furthermore, the total
number of non-zero entries of the return values of these SUMANCESTORS is also O(T(|H)).
Finally, each QUERY applies a constant-time operator Jx to the output of a unique SUMANCES-
TORS call, so the overall runtime is certainly bounded by O(T(|H|)). Adding a constant-sized y|gx)

can be done efficiently. Similarly, each EsTIMATE multiplies with the output of a unique
SuMANCESTORSs call. This can be computed as w-many vectors each multiplied with the SUMANCEs-
TORs output. Then two vectors of length w are added. Summing over all H € H, the overall runtime
is O(w - T(|H])) = O(w - T(nN)).

QUERY time on N leaves: Since this is a subset of the work described above, the runtime must
also be bounded by O(w - T(nN)). O

6.4 Proof of Theorem 8

We combine the previous three subsections for the overall approximation procedure. It is essen-
tially ABSTRACTMAINTAINAPPROX in Algorithm 7, with the abstractions replaced by a data struc-
ture implementation. The corresponding pseudocode is omitted.

Proor or THEOREM 8. The data structure ABSTRACTMAINTAINAPPROX in Algorithm 7 performs
the correct vector approximation maintenance, however, it is not completely implemented. MAIN-
TAINAPPROX simply replaces the abstractions with a concrete implementation using the data struc-

ture MAINTAINSKETCH from Algorithm 9.
First, for notation purposes, let z = cz®P) 4+ zZ("™ and let x = y + Mz, so that at step k,
APPROXIMATE procedure has x©) (in implicit form) as input, and return x Let £ € {1, ..., O(log m)}.

We define a new dynamic vector x, symbolically, which is represented at each step k for k > 2¢ by

k) def (k k) _(k
X0 & 04 0,60

where the new tree operator My at step k is given by

MW = diag(M™® Mk-20) for each child-parent edge (H, P) in 7~
¢ @p) =~ M8 My p) My p) P ge ’

— ot
—_]([k)H = Dgn), B(H) [J(Hk) Jg; 2)] for each leaf node H € 7,
where D is the diagonal matrix defined in FINDLARGECOORDINATES, with D; ; = Dg’ki) at step k if
X; has not been updated after step k — 2, and zero, otherwise.
At step k, the vector y, is given by yi,k) = 131/2(y(k) — y*29) and z, by z(l,k) L 20 k29T,
Then, at each step k with k > 2¢, we have

k) def (k k)_(k
61 88 61 (66 (6.1

_ (51/2y<k> " 51/2M<k>z<k>) _ (51/2y(k—2‘) " 51/2M<k—z‘>z<k—z"))
=D — x k=20,

Note this is precisely the vector q for a fixed ¢ in FINDLARGECOORDINATES in Algorithm 7. It is
straightforward to see that M, indeed satisfies the definition of a tree operator. Furthermore, M
has the same complexity as M. MAINTAINAPPROX will contain O(log m) copies of the MAINTAINS-
KETCH data structures in total, where the {th copy sketches x, as it changes throughout the IPM
algorithm.

We now describe each procedure in words, and then prove their correctness and runtime.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:53

INrTIALIZE(T , M, ¢, Z(step) (sum) y,p,d): This procedure implements the initialization of AB-
STRACTMAINTAINAPPROX, where the dynamic vector x to be approximated is represented by
x & y + M(cz(tP) + z(um)) The initialization steps described in Algorithm 7 takes O(wm) time.
Let @ denote the JL-sketching matrix.

We initialize two copies of the MAINTAINSKETCH data structure, ox_cur and ox_prev. At step
k, ox_cur will maintain sketches of ®x¥), and ox_prev will maintain sketches of Bx kD), (The
latter is initialized at step 1, but we consider it as part of initialization.)

In addition, for each 0 < £ < O(m), we initialize a copy sketch, of MAINTAINSKETCH. These are
needed for the implementation of FINDLARGECOORDINATES({) in APPROXIMATE. Specifically, at
step k = 2¢ of the IPM, we initialize sketch, by calling sketch,.INITIALIZE(T, @, M) zi,k), y([k)).
(Although this occurs at step k > 0, we charge its runtime according to its function as part of
initialization.)

The total initialization time is O(wmlog m) = O(mn?* log m log(%)) by Lemma 59 By the existing
pseudocode in Algorithm 7, it correctly initializes x « x.

APPROXIMATE(M(neW),C(new),Z(Step)(new),z(sum)(new),y(new)): This is APPROXIMATE in Algorithm 7
We consider when the current step is k.
First, we update the sketch data structures sketch, for each ¢ via sketch,.UpDATE. Recall at

step k, sketch, maintains sketches for the vector x;k) = Bl/z(x(k) - x(k'zt)), although the actual
representation in sketch, of the vector x; is given by x¢ = y, + Mz, as defined in Equation (6.1).

Next, we execute the pseudocode given in APPROXIMATE in Algorithm 7:

To update x. to x5V fora single coordinate in Algorithm 7 we find the leaf node H containing
the edge e, and call ox_cur.QUERY(H) This returns the subvector x*~1| £(e)> from which we can
make the assignment to x,.

In the subroutine FINDLARGECOORDINATES(¢) the vector q defined in the pseudocode is exactly
xi,k). We get ®g(,,)q at a node u by calling sketch,.ESTIMATE(u), and we get the value of q|g(,) at
a leaf node u by calling sketch,.QUERY(u).

Number of coordinates changed in x during ArPROXIMATE. The procedure collects a set of coor-
dinates for which we update x, by calling FINDLARGECOORDINATES() for each 0 < { < {,
where ¢ is defined to be the number of trailing zeros in the binary representation of k (These
are exactly the values of ¢ such that k = 0 mod 2%). In each call of FINDLARGECOORDINATES(()
There are O(2%¢(5/8)? log? mlog(m/p)) iterations of the outer for-loop and O(1) iterations of
the inner while-loop by the assumption of [|x*!) — x|+, < B and Lemma 54 Each iteration
of the while-loop adds a O(1) sized set to the collection I of candidate coordinates. So overall,
FINDLARGECOORDINATES(() returns a set of size O(2%¢(y/8)? log? mlog(m/p)). Summing up over
all calls of FINDLARGECOORDINATES, the total size of the set of coordinates to update is

45
N ¥ Z 0(22¢(B/5)* log? mlog(m/p)) = O(2%% (B/8)? log? m). (6.2)
£=0

We define £, = Ny = 0 for convenience.

Changes to sketching data structures. Let S®) denote the set of nodes H, where one of (when
applicable) My, py, JH., 261P) | 2(um) .y changes during step k (They are entirely induced
by changes in v and w at step k.) We store S*) for each step.

For each £, the diagonal matrix D is the same as D, except D;; is temporarily zeroed out for
2¢ steps after x; changes at a step Thus, the number of coordinate changes to D at step k is the

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:54 S. Dong et al.

number of changes to D, plus Nix_; + Nj_,¢: Ni_1 entries are zeroed out because of updates to x;
in step k — 1. The N_,¢ entries that were zeroed out in step k — 2¢ + 1 because of the update to
X; in step k — 2¢ are back.

Hence, at step k, the updates to sketch, are induced by updates to D, and the updates to x at
step k, and at step k — 2¢ The updates to the two x terms are restricted to the nodes Sk-2y s®)
in 7 for Algorithm 9. Updates to ox_cur and ox_prev can be similarly analyzed.

Runtime of APPROXIMATE. First, we consider the time to update each sketch,: At step k, the
analysis above combined with Lemma 59 show that sketch,.UpDATE with new iterations of the
appropriate variables run in time

) (w T (q : (lS(k)l +18% 29 4 N, + Nk_ze)))
<w-0 (T (r] : (|S<’<>| + Np_t + Nk_zf))) +w-0 (T (r] : |S<’<—2’>|)),

where we use the concavity of T The second term can be charged to step k — 2¢ Thus, the
amortized time cost for sketch,.UPDATE at step k is

w-O(T(7 - (ISW] + Ny + Np_y0)))-

Summing over all 0 < £ < O(log m) for the different copies of sketch,, we get an extra O(log m)
factor in the overall update time.

Similarly, we can update ox_prev and ox_cur in the same amortized time.

Finally, we analyze the remainder of the procedure, which consists of FINDLARGECO-
ORDINATES({) for each 0 < ¢ < ¢ and the subsequent updates to entries of x: For each
FINDLARGECOORDINATES(£) call, by Lemma 54, N, = ©(22((8/8)? log? mlog(m/p)) sampling
paths are explored in the sketch, data structure, where each sampling path correspond to
one iteration of the while-loop. We calculate ||®gx¢||? at a node H in the sampling path
using sketchy.ESTIMATE(H), and at a leaf node H using sketch,.QUERY(H) The total time is
w - O(T(n - Ni.¢)) by Lemma 59. To update a coordinate i € E(H) that was identified to be large,
we can refer to the output of sketch,.QUERY(H) from the sampling step.

Summing over each 0 < ¢ < {, we see that the total time for the FINDLARGECOORDINATES
calls and the subsequent updates fo x is

Cie
D w-O(T(- Nio)) = w - O(T(n - Ni),
=0

where Ny is the number of coordinates that are updated in x as shown in Equation (6.2).
Combined with the update times, we conclude that the total amortized cost of APPROXIMATE
at step k is

9] (;72 log (%) log m) T (r] . (|S(k)| + Ny + Nk—z[k)) .

Observe that Ni_; = Ni_z and N;._,¢ are both bounded by O(N, _,¢,): When £ # £}, the number
of trailing zeros in k — 2¢ is no more than £;. When ¢ = £y, the number of trailing zeros of k — 2
is {;_,¢,. In both cases, {;_y¢ < {;_,¢, So we have the desired overall runtime. O

7 Slack and Flow Projection

In this section, we define the slack and flow tree operator as required to use MAINTAINREP, and
then give the data structures for the solution maintenance.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:55

7.1 Tree Operator for Slack
The full slack update at IPM step k with step direction %) and step size 7h is

s — s+ W 2P (tho'),

where we require Py, ~ P,, and P,,o®) € Range(W'/?B). Let L" denote the approximation of L
from Equation (3.6), maintained and computable with a DynamicSC data structure. If we define

P, = W/2BL'BTW'2 = W/2BnI®T ... =0T ... OB W2,

then P,, Xpep Pw, and Range(f;w) = Range(P,,) by definition, where 1 and ep are parameters
in DynamicSC. Hence, this suffices as our approximate slack projection matrix. In order to use
MAINTAINREP to maintain s throughout the IPM, it remains to define a slack tree operator M(2ck)
so that
W—l/z'lsw v(k) — M(slack)z(k)’
where z®) € T ... TIOBTW!/25(®) at IPM step k. We proceed by defining a tree operator
M = W/2BIOT ... TI7"DT Then we set Mk = w=1/2M,
For the remainder of the section, we use z to mean z*) for one IPM step k.

Definition 60 (Slack Projection Tree Operator). Let 7 be the separator tree from data structure
DyNamIcSC, with Laplacians L) and Sc(L™), 9H) at each node H € 7. We use B[H] to denote
the adjacency matrix of G restricted to the region.

For anode H € 7, define V(H) and Fy required by the tree operator as 0H U Fy and Fy from
the separator tree construction respectively. Note the slightly confusing fact that V(H) is not the
set of vertices in region H of the input graph G, unless H is a leaf node. Suppose node H has parent
P, then define the tree edge operator M(g, p) : RV®) - RV(H) a5

def H)
M(H,p)—laHUFH—(LFH’FH) L (7.1)

For notational convenience, let X(H)T & (Lg), Fir)'ng), oH"

At each leaf node H of 7", define the leaf operator J;; = W'/2B[H].

The remainder of this section proves the correctness of the tree operator.

LEMMA 61. Let M be the tree operator as defined in Definition 60. We have
Mz = W/2BIOT ... ;17 DT,

We begin with a few observations about the IT?’s:

OBSERVATION 62. For any 0 < i < 5, and for any vector x, we have 1" x = x + y;, wherey; is
a vector supported on F; = Uy eq(i)Fy. Extending this observation, for0 <i < j <,

no7.. .V Vx = x +y,

where y is a vector supported on F; U - - U F;_1 = Up.j<pH)<;FH. Furthermore, if x is supported on
Fy4 forn(A) = j, theny is supported on Ugreq, Frr.

The following helper lemma describes a sequence of edge operators from a node to a leaf.

LEMMA 63. For any leafnode H € T, and a node A with H € T (A is an ancestor of H or H itself),
we have
My azlr, = Tonup, IO - T Vg|p, . (7.2)

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:56 S. Dong et al.
Proor. To start, observe that for a node A at level 5(A), we have I1Vz|r . = 2|, foralli > n(A).
So it suffices to prove
My azlp, = IV(H)H(O)T - H('I(A)—l)TleA'
def

Let the path from leaf H up to node A in 7 be denoted (Hy = H,Hy,...,H; o A), for some
t < n(A). We will prove by induction for k decreasing from t to 0:

My, azlF, = IV(Hk)H(U(Hk))TH(U(Hk)H)T . H('I(A)—I)TleA. (7.3)

For the base case of H; = A, we have My, —az|r, = zlp, = Iyu,)zlF,.
For the inductive step at Hy, we first apply induction hypothesis for Hy; to get

MHk+1<—AZ|FA — IV(HkH)H(’](HkH))T .. .H('I(A)—l)TleA_ (7.4)

Multiplying by the edge operator Mg, #,.,) on both sides gives

MHk<—AZ|FA — M(Hk,Hk+1)IV(HkH)H(U(HkH))T .. .H(’I(A)—l)TleA_ (7.5)

Recall the edge operator Mg, p,.,) maps vectors supported on V(Hy,{) to vectors supported
on V(Hg) and zeros otherwise. So we can drop the Iy(g,,,) term in the right hand side. Let

x & MOERDT L A-DT 4 F4- Now, by the definition of the edge operator, the above equa-
tion becomes

M, azlp, = Ay - XFO T, (7.6)
On the other hand, we have

IV(Hk)H('?(Hk))T IO HE)=DT o IV(Hk)H(TI(Hk))T (H(’?(Hk)+1)T .. .H('I(Hk+1)—1)'l'x)
= Ty (g T (x + y),

where y is a vector supported on UFg for nodes R at levels n(Hy) + 1,--- ,n(Hg4+1) — 1 by Ob-
servation 62. In particular, y is zero on Fp,. Also, y is zero on dHy, since by Observation 23,
O0Hj € Uancestor A’ of Hy Far, and ancestors of Hy are at level n(Hy.;) or higher. Then y is zero on
V(Hy) = 0Hg U Fg,., and the right hand side is

= Iy — XU T)x,

where we apply the definition of TI"#&))T and expand the left-multiplication by Iy (x,).
Combining with Equation (7.6) and substituting back the definition of x, we get

Migcazlr, = Ty g IO L n@-07 2

which completes the induction. O

To prove Lemma 61, we apply the leaf operators to the result of the previous lemma and sum
over all nodes and leaf nodes.

Proor or LEMMA 61. Let H be a leaf node. We sum Equation (7.2) over all A with H € 74 to get

Z My azlr, = lonury, Z 13 (CAIRRY § LARAP P
AHET, AHET,

= Topup, TOT - TV,

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:57

where we relax the sum in the right hand side to be over all nodes in 77, since by Observation 62,
for any A with H ¢ 74, we simply have Ipgur, ITOT - - TI"DTz|p, = 0. Next, we apply the leaf
operator J = W'/2B[H] to both sides to get

Z JuMuc azlr, = WB[H]lppup, TOT - 072,
AHET,
Since B[H] is zero on columns supported on V(G) \ (0H U Fy), we can simply drop the Ispur,, on
the right hand side.
Finally, we sum up the equation above over all leaf nodes. The left hand side is precisely the
definition of Mz. Recall the regions of the leaf nodes partition the original graph G, so we have

Z Z JuMycazlp, = W2 Z B[H] |0OT ...~ DT, 7.7)
HeT(0) A:HETA HeT(0)

Mz = W2BIMOT ... 11(1=DT 4.

]

The tree operator M defined in Definition 60 satisfies Mz*) = P,, o) at step k, by the definition
of z® To support the proper update s — s + thW~Y2P,,o*), we define MCak) & W~1/2M and
note it is clearly also a tree operator with the same complexity.

We now examine the slack tree operator complexity.

LEMMA 64. The complexity of the slack tree operator as defined in Definition 60 is T(k) = O(Vmk -
ep2), where ep is the Schur complement approximation factor from data structure DyNAMICSC.

Proor. Let M(p p) be a tree edge operator Applying M(p py = Iap — (L%))) FD)‘IL;? op to the left

or right consists of three steps which are applying Iyp applying Lg;)’ op and solving for L%)J)’ P =

b for some vectors v and b Each of the three steps costs time O(ep2|dD U Fp|) by Lemma 35 and
Theorem 3.

For any leaf node H, H has a constant number of edges, and it takes constant time to compute
Jru for any vector u. The number of vertices may be larger but the nonzeros of J;; = W'/?B[H]
only depends on the number of edges. To bound the total cost over k distinct edges, we apply
Lemma 27, which then gives the claimed complexity. O

7.2 Additional Considerations for Flow

As discussed in Section 3.6 we intend to set the flow update f =P, v = Mz where P,, is the same

as was defined for slack using the tree operator M in Definition 60. This immediately satisfies

I f -P,o|, < 5(qep)||v||2, so one additional complication remains: feasibility constraints require

the slack update to lie in Range(W/2B) while the flow update f needs to be a valid flow ie., if

d ¥ BTW'/20 denotes the vertex demands, then f needs to satisfy BTWY/2f = d.
To resolve this, recall from Equation (7.7) that

f=Mz=wWY2 (Z B[H]) 7. Ty,
leaf H

def

while d = BTW'20 = ¥,..c y B[H]"W!/2%; in other words, they both admit a decomposition at
the leaf node level. We define the excess demand at each leaf node H by dm = B[H]"W!?(v - f).
The vector d'?) is indeed a demand on region H with its entries summing to 0, which we can route

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:58 S. Dong et al.

exactly using a maximum-weighted spanning tree in time linear in the size of H. Let the resulting
flow be denoted r|g), and let r = 3., g ¥ |g(zr), Which we also include in the flow update. Then
BTW!/%(f +r) = BTW'/20, meaning we once again guarantee that the flow update is a circulation.
Next, it remains to show ||r|l2 < O(yep)||v|l2.

Let us first consider r|g(z) for any leaf region H. We have

7|z ll; < O(1) - (||r|E(H)||oo)2 (regions are constant size)
- 2
d]l; . .
<0Q)- 1z (r routes d in a weighted manner)
min

< 0 (wgh) - (14*01)°

min
_ 2
<O (wy) - (Ild(H)HZ) , (again regions are constant size)

= min

where wp;, is the minimum entry in W, and wy,,y is the maximum. Next, since || f — Py, vl <
O(nep)||v|l2, and B is an adjacency matrix, we also know that

3

leaf H

2 2

< O (nepWma) - 10113

= 2. BIHITW (@ - f)

leaf H

2 2

We are happy to incur poly(m) error. Hence, combining the two inequalities above with the bound
ON Winax/ Wmin 1 (A.1), we get
713 < Oep - poly(m)llo]l3.

as required.
In Appendix C, we give an alternative interpretation of the tree operator based on electrical
flows.

7.3 Proof of Theorem 9

Finally, we present the overall solution maintenance data structure. We only give the flow version,
as the slack is analogous and slightly simpler. In our pseudocode, we use a box around a vector to
mean that vector is maintained using a data structure rather than directly accessible.

Proor oF THEOREM 9. We have the additional invariant that the IPM flow solution f can be
recovered in the data structure by the identity

f=f-f (7.8)
where f* is implicit maintained by MAINTAINREP, and f is implicitly maintained by the identity
f = f() + cWo.

We prove the runtime and correctness of each procedure separately Recall by Lemma 63, the
tree operator M has complexity T(K) = O(ep 2VmK).

INITIALIZE: By the initialization of MAINTAINREP (Theorem 7), the implicit representation of f*
is correct and f* = 0 We then set f £ fy +¢Wwo = £ So overall, we have f & f+ fL = flinit),
By the initialization of MAINTAINAPPROX, f is set to f = £V to start.

Initialization of takes O(mep™2) time by Theorem 7, and initialization of takes O(m)
time by Theorem 8.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:59
ALGORITHM 10: Flow maintenance, main algorithm

1: data structure MAINTAINFLOW

2: private: member

3: w € R™: weight vector

4 v € R™: direction vector

5 f* | € R™: MAINTAINREP instance that implicitly maintains f where

fJ_ def y+ WI/ZM(CZ(step) + z(sum))

6: ceR, ng € R™: scalar and vector to implicitly maintain f o fo +¢-Wo.

7: : MAINTAINAPPROX instance that implicitly maintains ? approximating f

8

9: procedure INITIALIZE(T, £ € R™ » € R™, w € RZ.ep > 0,€ > 0)

10: .INITIALIZE(T,WI/ZM, v, w,0,ep) > initialize f* « 0
11: Wewoeo R

12: &0, fo « flinit > initialize f « f{ni)
13: .INITIALIZE(—Wl/zM, ¢, 2(5tep) Zsum) _y i £y e Wo, Wl 05)

14: > initialize f — fUnit
15: end procedure

16:

17: procedure REWEIGHT(Aw € RT

18: w—w+Aw

19: .REWEIGHT(AW)
200 fo — fo-e(AW) /20
21: end procedure

22:
23: procedure Move(a, Av € R™)
24: v —v+Av

25: H.MOVE([Z, Av)
26: _on — fo - éwl/zAU

27: Ce—C+a
28: end procedure
29:

30: procedure APPROXIMATE()
31 return .APPROXIMATE(—WI/ZM, c,Z(5tep) Zsum) _yy 4 £ 46 Wo, W)
32: end procedure

33:
34: procedure Exact()

35 fl .EXACT()

36: return (fo +¢-Wo) - f+
37: end procedure

Move: The call .MOVE(a, v0) updates the implicit representation of f* by

fre— fH+wWMaz®,

where M is the flow projection tree operator defined in Definition 60. By Lemma 61, this is

equivalent to the update

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:60 S. Dong et al.

fJ_ - fJ_ + an/zf,
where ||f - Pw'v(k)”2 < O(nep) |||, and BTW!/2f = BTW!/2(®) by Theorem 71.
For the f term, let f”, f,¢’, v’ be the state of f, fy, ¢ and v at the start of the procedure. At the
end of the procedure, we have
f “ f'o +¢Wo = f'o’ - ¢WYAv + (&' + a)Wo = ﬁ)' + W20 + aW 2o = f’ +aW 2y,
s0 we have the correct update f « f + aW'/20. Combined with f, the update to f is
fe—f+ aW'y — an/zf.

By Theorem 7, if 20 differs from 0¥~V on K coordinates, then the runtime of .MOVE is
O(ep~2\/mK). Furthermore, z¢P) and z(s*™ change on Fy for at most O(K) nodes in 7. Updating

f takes O(K) time where K < O(m), giving us the overall claimed runtime.

Exact: The runtime and correctness follow from the guarantee in Theorem 7 and the invariant
that f = f — f*.

APPROXIMATE: By Theorem 8, the returned vector satisfies
W2 (F = (F =) I < &,

where f' and f* are maintained in the current data structure.
. . . —(k)
Finally, we have the following lemma about the runtime for APPROXIMATE. Let f = denote the
returned approximate vector at step k.

LEMMA 65. Suppose a||v|l; < B for some B for all calls to MovVE. Let K denote the total number
of coordinates changed in v and w between the k — 1-th and kth REWEIGHT and MoVE calls. Then at
the kth APPROXIMATE call,

— The data structure first sets 7e — fe(k_l) for all coordinates e where w, changed in the last
REWEIGHT, then sets ?e — fe(k) for O(Ng < 22[’<(§)z log® m) coordinates e, where . is the
largest integer € withk =0 mod 2¢ when k # 0 and £, = 0.

— The amortized time for the kth APPROXIMATE call is 5(6132w/m(K + Ny _ye))-

Proor. We apply Theorem 8 with x = f and diagonal matrix D = W~ We need to prove
[|lx®) — x* =V || < O(P) for all k first. The constant factor in O(B) does not affect the guarantees
in Theorem 8. The left-hand side is

” £ f(k—l)“ _ ||—a<k>Mz<k> + a(k)v(k)” (by MoOVE)
2
< H_a<k)Mz<k>|| + ”a(k)v(k)“
2 2

<2+ O(I]GP))(Z(k)”U(k)Hz (by the assumption that «||v||; < f)
< 3p.

wik-n71

Now, we can apply the conclusions from Theorem 8 to get that at the kth step, the data structure
first sets f, « fe(k_l) for all coordinates e where w, changed in the last REWEIGHT, then sets
def

?e — fe(k) for O(Ny = 22()’<(§)Z log® m) coordinates e, where ¢y is the largest integer £ with k = 0
mod 2¢ when k # 0 and ¢, = 0.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:61

For the second point, Move updates zP) and z5*™ on Fy for O(K) different nodes H € 7~ by
Theorem 7. REWEIGHT then updates zP) and z("™ on Fy; for 5(K) different nodes, and updates
the tree operator W~/2M on O(K) different edge and leaf operators. In turn, it updates y on E(H)
for O(K) leaf nodes H. The changes of f cause O(K) changes to the vector —y + f'o + ¢ - Wo,
which is the parameter y of Theorem 8. Now, we apply Theorem 8 and the complexity of the tree
operator to conclude the desired amortized runtime. O

We have shown the correctness and runtime for each of the procedures in the data structure,
so we are done. O

8 Min-cost Flow for Separable Graphs
In this section, we extend our result to a-separable graphs.

COROLLARY 2 (SEPARABLE MIN-cOST FLow). Let G be an a-separable graph class, and suppose
there is convex function s such that we can compute a balanced vertex-separator for any G € G
with m edges in s(m) time. Then given connected G € G with m edges, and integral demands d,
edge capacities u, costs ¢, all bounded by M in absolute value, there is an algorithm that computes a
minimum-cost flow on G satisfying demand d in O((m + m*/?*®)log® M + s(m)) expected time.

The change in running time essentially comes from the parameters of the separator tree which
we discuss in Section 8.1. We then calculate the total running time and prove Corollary 2 in
Section 8.2.

8.1 Separator Tree for Separable Graphs

Since our algorithm only exploits the separable property of the planar graphs, it can be applied to
other separable graphs directly and yields different running times. Similar to the planar case, by
adding two extra vertices to any a-separable graph, it is still ¢-separable with the constant ¢ in
Definition 18 increased by 2.

We define a separator tree 7 for an a-separable graph G in the same way as for a planar graph.
The only two differences are their construction time and update time (for k-sparse updates). For
the planar case, these are bounded by Corollary 25 and Lemma 27, respectively. We shall prove
their analogs Lemma 66 and Lemma 67.

[28] showed that the separator tree can be constructed in O(s(n) log n) time for any class of 1/2-
separable graphs where s(n) is the time for computing the separator. The proof can be naturally
extended to a-separable graphs. We include extended proofs for the following two lemmas in the
appendix for completeness.

LEMMA 66. Let C be an a-separable class such that we can compute a balanced separator for any
connected graph in C with n vertices and m edges in s(m) time for some convex function s(m) > m.
Given an a-separable graph G € C, there is an algorithm that computes a separator tree T~ for G in
O(s(m)log m) time.

We then prove the update time. Same as the planar case, we define Ps(H) to be the set of all
ancestors of H in the separator tree and P7(H) to be the union of Ps(H) for all H € H. Then we
have the following bound:

LEMMA 67. Let G be an a-separable graph with separator tree T constructed via Lemma 66. Let H
be a set of K nodes in 7. Then

Z |0H| + |S(H)| < O(K™*m®).
HePqr(H)

By setting « as 1/2, we get Lemma 27 for planar graphs as a corollary.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:62 S. Dong et al.

8.2 Proof of Runtime

In this section, we prove Corollary 2. The data structures (except for the construction of the sepa-
rator tree) will use exactly the same pseudocode as for the planar case. Thus, the correctness can
be proven in the same way. We prove the runtimes only.

We first construct the separator tree in O(s(m)logm) time by Lemma 66. Then we can simply
change the runtime from O(VmK) in Lemma 27 to O(m®K'~%) in Lemma 67 to all the data struc-
tures and to the complexity T(-) of the flow and slack tree operators.

LEMMA 68. For any a-separable graph G with separator tree T, the flow and slack operators defined

in Definition 60 both have complexity T(K) = O(ep 2K'™*m®).
Proor. The leaf operators of both the flow and slack tree operators has constant size. Let My, p)
be a tree edge operator. Note that it is a symmetric matrix. For the slack operator, Applying
D) \-17(D
Mp.p) = Top — (L) 1)7Ly o1
Isp, applying L(F[I))) op and solving for L%))) F,, @ = b for some vectors v and b. For the flow operator,

to the left or right consists of three steps which are applying

Mz, pyu consists of multiplying with Sc(L™), §H) and solving the Laplacian system L),

Each of the steps costs time O(ep 2|0D U Fp|) by Lemma 35 and Theorem 3. To bound the total
cost over K distinct edges, we apply Lemma 67 instead of Lemma 27, which gives the claimed
complexity. m|

With the updated subroutine runtimes, we can prove Corollary 2.

Proor or COROLLARY 2. The correctness is exactly the same as the proof for Theorem 1. For the
runtime, we may assume a > 1/2 because otherwise the graph is 1/2-separable and the runtime
follows from Theorem 1. The amortized time for the kth IPM step is

5(6p_2ma(K + Ny)1_a),

def

where Ni. = 2%k (B/a)? log® m = 0(2% log® m), where & = O(1/log m) and ep = O(1/log m).
Observe that K + N_,¢, = O(N;._,¢,). Summing over all T steps, the total time is

T T
O(m™logm) » (N)" ™ = O(m log? m) " 21~
k=1 k=1
T T
= O(m™logtm))~ 221700 3 [k = 2k = k],
k'=1 k=1
T
= O(m® log® mlog T) Z 2M1-0)le (8.1)
k'=1
Without 1 — @ in the exponent, recall from the planar case that
T log T
Z 2lw = Z 2! T/2"1 = O(Tlog T).
k=1 i=0

The summation from Equation (8.1) is

3t = 3
zz(l—a)fk — (sz)z—za
k=1 k=1
2-2a

T 20=1 e\ 1/(2-2)
< Z 11/@a=D Z ((2[’“)) (by Hélder’s Inequality)

k=1 k=1

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:63

= O (T** (T log T)* %)

= O(¥mlog Mlog T),
where we use T = O(y/m log nlog(nM)) from Theorem 4. So the runtime for IPM is O(m/*+« log M)
Combined with Lemma 66, the overall runtime is O(m'/?*% log M + s(m)). O
References

(1]

(2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

Deeksha Adil, Brian Bullins, Rasmus Kyng, and Sushant Sachdeva. 2021. Almost-linear-time weighted fp-norm
solvers in slightly dense graphs via sparsification. In Proceedings of the 48th International Colloquium on Automata,
Languages, and Programming. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 9:1-9:15.

Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. 2019. Iterative refinement for p-norm regression.
In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms. Timothy M. Chan (Ed.), SIAM,
1405-1424. DO1 : https://doi.org/10.1137/1.9781611975482.86

Deeksha Adil and Sushant Sachdeva. 2020. Faster p-norm minimizing flows, via smoothed g-norm problems. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 892-910.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1988. Network Flows. Prentice Hall.

] Mudabir Kabir Asathulla, Sanjeev Khanna, Nathaniel Lahn, and Sharath Raghvendra. 2018. A faster algorithm for

minimum-cost bipartite perfect matching in planar graphs. In Proceedings of the 29th Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM, 457-476.

Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. 2020. Circulation control for faster minimum cost flow in
unit-capacity graphs. In Proceedings of the 2020 IEEE 61st Annual Symposium on Foundations of Computer Science.
IEEE, 93-104.

Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. 2021. Deterministic decremental SSSP
and approximate min-cost flow in almost-linear time. In Proceedings of the 62st IEEE Annual Symposium on Founda-
tions of Computer Science. IEEE.

Glencora Borradaile. 2008. Exploiting Planarity for Network Flow and Connectivity Problems. Brown University.
Glencora Borradaile and Philip N. Klein. 2009. An O(n log n) algorithm for maximum st-flow in a directed planar
graph. journal of the ACM 56, 2 (2009), 9:1-9:30.

Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-Nilsen. 2017. Multiple-
source multiple-sink maximum flow in directed planar graphs in near-linear time. SIAM Journal on Computing 46, 4
(2017), 1280-1303.

Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. 2012. Homology flows, cohomology cuts. SIAM Journal on
Computing 41, 6 (2012), 1605-1634.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. 2022. Max-
imum flow and minimum-cost flow in almost-linear time. In Proceedings of the 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science. IEEE, 612-623.

Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-Hua Teng. 2011. Electrical
flows, Laplacian systems, and faster approximation of maximum flow in undirected graphs. In Proceedings of the
Forty-third Annual ACM Symposium on Theory of Computing. 273-282.

Michael B. Cohen, Yin Tat Lee, and Zhao Song. 2021. Solving linear programs in the current matrix multiplication
time. Journal of the ACM 68, 1 (2021), 1-39.

Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. 2017. Negative-weight shortest paths and
unit capacity minimum cost flow in O(m™/7 log W) time. In Proceedings of the 28th Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM, 752-771.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms. MIT
Press.

Samuel L. Daitch and Daniel A. Spielman. 2008. Faster approximate lossy generalized flow via interior point algo-
rithms. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing. 451-460.

Sally Dong. 2024. Convex Optimization with Combinatorial Characteristics: New Algorithms for Linear Programming,
Min-cost Flow, and Other Structured Problems. Ph.D. Dissertation. University of Washington.

Sally Dong, Gramoz Goranci, Lawrence Li, Sushant Sachdeva, and Guanghao Ye. 2024. Fast algorithms for separable
linear programs. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 3558-3604.
Sally Dong, Yin Tat Lee, and Guanghao Ye. 2021. A nearly-linear time algorithm for linear programs with small
treewidth: A multiscale representation of robust central path. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC’21). ACM, 1784-1797.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:64 S. Dong et al.

[21] Sally Dong, Yin Tat Lee, and Guanghao Ye. 2021. A nearly-linear time algorithm for linear programs with small
treewidth: A multiscale representation of robust central path. arXiv:2011.05365v2. Retrieved from https://arxiv.org/
abs/2011.05365v2

[22] David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva. 2017. Sampling random spanning
trees faster than matrix multiplication. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing. 730-742.

[23] Jittat Fakcharoenphol and Satish Rao. 2006. Planar graphs, negative weight edges, shortest paths, and near linear
time. Journal of Computer and System Sciences 72, 5 (2006), 868—889.

[24] Lester R. Ford and Delbert R. Fulkerson. 1956. Maximal flow through a network. Canadian Journal of Mathematics 8
(1956), 399-404.

[25] Yu Gao, Yang P. Liu, and Richard Peng. 2021. Fully dynamic electrical flows: Sparse maxflow faster than goldberg-rao.
In Proceedings of the 62st IEEE Annual Symposium on Foundations of Computer Science. IEEE.

[26] Mehrdad Ghadiri, Richard Peng, and Santosh S. Vempala. 2023. The bit complexity of efficient continuous optimiza-
tion. In Proceedings of the 2023 IEEE 64th Annual Symposium on Foundations of Computer Science. IEEE, 2059-2070.

[27] J.R. Gilbert and R. E. Tarjan. 1987. The analysis of a nested dissection algorithm. Numerische Mathematik 50, 4 (1987),
377-404. DOI : https://doi.org/10.1007/BF01396660

[28] Gramoz Goranci, Monika Henzinger, and Pan Peng. 2018. Dynamic effective resistances and approximate schur
complement on separable graphs. In Proceedings of the 26th Annual European Symposium on Algorithms (LIPIcs’18).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 40:1-40:15.

[29] Keith D. Gremban. 1996. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant Linear Systems.
Ph.D. Dissertation. Carnegie Mellon University.

[30] Refael Hassin. 1981. Maximum flow in (s, ¢) planar networks. Information Processing Letters 13, 3 (1981), 107.

[31] Refael Hassin and Donald B. Johnson. 1985. An O(n log2 n) algorithm for maximum flow in undirected planar net-
works. SIAM Journal on Computing 14, 3 (1985), 612-624.

[32] Monika R. Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. 1997. Faster shortest-path algorithms for
planar graphs. Journal of Computer and System Sciences 55, 1 (1997), 3-23.

[33] Baihe Huang, Shunhua Jiang, Zhao Song, and Runzhou Tao. 2021. Solving tall dense SDPs in the current matrix
multiplication time. arXiv:2101.08208. Retrieved from https://arxiv.org/abs/2101.08208

[34] Hiroshi Imai and Kazuo Iwano. 1990. Efficient sequential and parallel algorithms for planar minimum cost flow. In
Proceedings of the Algorithms, International Symposium SIGAL 90 (Lecture Notes in Computer Science). Springer, 21-30.

[35] Alon Itai and Yossi Shiloach. 1979. Maximum flow in planar networks. SIAM Journal on Computing 8, 2 (1979),
135-150.

[36] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. 2011. Improved algorithms for
min cut and max flow in undirected planar graphs. In Proceedings of the 43rd ACM Symposium on Theory of Computing.
ACM, 313-322.

[37] Donggu Kang and James Payor. 2015. Flow rounding. arXiv:1507.08139. Retrieved from https://arxiv.org/abs/1507.
08139

[38] Haim Kaplan and Yahav Nussbaum. 2013. Min-cost flow duality in planar networks. arXiv:1306.6728. Retrieved from
https://arxiv.org/abs/1306.6728

[39] Adam Karczmarz and Piotr Sankowski. 2019. Min-cost flow in unit-capacity planar graphs. In Proceedings of the 27th
Annual European Symposium on Algorithms (LIPlcs’19). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 66:1—
66:17.

[40] Tarun Kathuria, Yang P. Liu, and Aaron Sidford. 2020. Unit capacity maxflow in almost O(m*?) time. In Proceed-
ings of the 61st IEEE Annual Symposium on Foundations of Computer Science. 119-130. DOI: https://doi.org/10.1109/
FOCS46700.2020.00020

[41] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. 2014. An almost-linear-time algorithm for
approximate max flow in undirected graphs, and its multicommodity generalizations. In Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 217-226.

[42] Jonathan A.Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. 2013. A simple, combinatorial algorithm
for solving SDD systems in nearly-linear time. In Proceedings of the 45th Annual ACM Symposium on Theory of
Computing. 911-920.

[43] Samir Khuller, Joseph Naor, and Philip Klein. 1993. The lattice structure of flow in planar graphs. SIAM Journal on
Discrete Mathematics 6, 3 (1993), 477-490.

[44] Valerie King, Satish Rao, and Rorbert Tarjan. 1994. A faster deterministic maximum flow algorithm. Journal of Algo-
rithms 17, 3 (1994), 447-474.

[45] Rasmus Kyng. 2017. Approximate Gaussian Elimination. Ph.D. Dissertation. Yale University.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:65

[46] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman. 2016. Sparsified Cholesky and
multigrid solvers for connection laplacians. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing. ACM, 842-850.

[47] Rasmus Kyng, Richard Peng, Sushant Sachdeva, and Di Wang. 2019. Flows in almost linear time via adaptive precon-
ditioning. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. 902-913.

[48] RasmusKyng and Sushant Sachdeva. 2016. Approximate gaussian elimination for Laplacians—fast, sparse, and simple.
In Proceedings of the 2016 IEEE 57th Annual Symposium on Foundations of Computer Science. IEEE, 573-582.

[49] Nathaniel Lahn and Sharath Raghvendra. 2019. A faster algorithm for minimum-cost bipartite matching in minor-
free graphs. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 569-588.

[50] R.]J.Lipton and Robert Tarjan. 1979. A planar separator theorem. SIAM Journal of Applied Mathematics 36, 2 (1979),
177-189.

[51] Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. 1979. Generalized nested dissection. SIAM Journal on
Numerical Analysis 16, 2 (1979), 346-358.

[52] Aleksander Madry. 2013. Navigating central path with electrical flows: From flows to matchings, and back. In Pro-
ceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. IEEE, 253-262.

[53] Aleksander Madry. 2016. Computing maximum flow with augmenting electrical flows. In Proceedings of the 2016
IEEE 57th Annual Symposium on Foundations of Computer Science. IEEE, 593-602.

[54] Gary L. Miller and Joseph Naor. 1995. Flow in planar graphs with multiple sources and sinks. SIAM Journal on
Computing 24, 5 (1995), 1002-1017.

[55] Gary L. Miller and Richard Peng. 2013. Approximate maximum flow on separable undirected graphs. In Proceedings
of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1151-1170.

[56] James Orlin. 1988. A faster strongly polynomial minimum cost flow algorithm. In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing. 377-387.

[57] John H. Reif. 1983. Minimum s- cut of a planar undirected network in O(n log? n) time. SIAM Journal on Computing
12, 1 (1983), 71-81.

[58] Jonah Sherman. 2013. Nearly maximum flows in nearly linear time. In Proceedings of the 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science. IEEE, 263-269.

[59] Jonah Sherman. 2017. Area-convexity, linf regularization, and undirected multicommodity flow. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing. 452—460.

[60] Aaron Sidford and Kevin Tian. 2018. Coordinate methods for accelerating linf regression and faster approximate
maximum flow. In Proceedings of the 2018 IEEE 59th Annual Symposium on Foundations of Computer Science. IEEE,
922-933.

[61] Daniel A. Spielman and Shang-Hua Teng. 2004. Nearly-linear time algorithms for graph partitioning, graph spar-
sification, and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing.
81-90.

[62] Robert E. Tarjan. 1971. An Efficient Planarity Algorithm. Technical Report.

[63] Balachandran Vaidyanathan and Ravindra K. Ahuja. 2010. Fast algorithms for specially structured minimum cost
flow problems with applications. Operations Research 58, 6 (2010), 1681-1696.

[64] Jan van den Brand. 2020. A deterministic linear program solver in current matrix multiplication time. In Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 259-278.

[65] Jan van den Brand. 2021. Unifying matrix data structures: Simplifying and speeding up iterative algorithms. In Pro-
ceedings of the Symposium on Simplicity in Algorithms. SIAM, 1-13.

[66] Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, Richard Peng, and Aaron Sidford. 2022.
Faster maxflow via improved dynamic spectral vertex sparsifiers. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing. 543-556.

[67] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, and Di Wang. 2021.
Minimum cost flows, MDPs, and ¢1-regression in nearly linear time for dense instances. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing. 859—-869.

[68] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. 2020. Solving tall dense linear programs in nearly
linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. 775-788.

[69] Nisheeth K. Vishnoi. 2013. Lx = b Laplacian solvers and their algorithmic applications. Foundations and Trends in
Theoretical Computer Science 8, 1-2 (2013), 1-141.

[70] Karsten Weihe. 1997. Maximum (s, ¢)-flows in planar networks in O(|V|log |V'|) time. Journal of Computer and
System Sciences 55, 3 (1997), 454-475.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:66 S. Dong et al.

Appendices
A Inexact Laplacian Solver

As part of computing the overall runtime of our algorithm, we bound the runtime of the SDD-solver
from Theorem 3; more specifically, we bound the term log(1/A;(L)). Whenever we apply the SDD-
solver, the matrix is either L'®) or L(H) 1.1, for anode H Without loss of generality, we may assume
the graphs associated with these matrices are connected, otherwise we independently solve for
each connected component By the Cauchy Interlacing Theorem, we know A, (L() 1. Far) > Ay (L)),
Furthermore, recall LD ~, Sc(L™), F;U9H), and Schur complements are better condltloned than
the original matrix, therefore A,(L")) > 2,(L) up to polynomial factors Next, recall L is a weighted
Laplacian with weights (V2 ¢(?))_1 from the IPM, so to lowerbound A,(L) up to polynomial factors,
it suffices to lowerbound these weights We have

Wi = (i~ f)2+(f, - L) 2 d?)2, (A1)

where d; is the distance from f; to the boundary, i.e., I; and u;. In Lemma 69, we prove that d; is
polynomially bounded in terms of the polytope parameters L, R, and the central path parameter
t, meaning that all k x k SDD-solves in our algorithm can be performed in time O(k log M) time,
where M is an upper bound on the values from the original problem inputs.

LEMMA 69. Given (x,s) in the robust central path region of the LP with central path parametert,
let be the distance from x to the boundary of the feasible region. Then n is polynomially bounded
from below as a function of t.

Proor. We roughly follow the proof of [21, Theorem A.18] using the same notation. Consider
the function f(x) = ¢"x + t¢(x) over the domain P E {x : Ax = b,x > 0}, where ¢ is v-self-

concordant. We define the corresponding dual set by D < {y:ATy+s=c}.
Given (x s) with central path parameter ¢, we note that x must be optimal point of the function

g(x) =c'x+t-¢(x)over P, where ¢ = ¢ —s — t - V¢(x) Indeed, by definition, we have
Vg(x)=c+tVe(x) =c—s=A"y

for some y Since (v, Vg(x)) = (b,y) is constant for all v € P, we conclude Vg(x) is orthogonal P
and therefore x is optimal.

Recall that as part of the initial set up, contains a ball of radius 7 around some point z Define
the line segment between x and z:

def

PDEA-) x+1-z

Consider the directional derivative at x in the direction z — x. Since p(0) minimizes g, we know
diﬁg(p(l))l 2=0 = 0. In particular,

0< ﬁg(P(ﬂ))IA 0 = (€ +1V¢(x))"(z - x).
Define @ = s/t + V¢(x). Then, we have ¢ = ¢ — t - a. By assumption of RIPM, we have
llexilly, < 1/16 for all i. (A.2)
Then,
(€ +tVh(x)"(z — x)
=(c—ta+tVe(x)) (z - x)

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:67
<2LR+ £ 3 Nz = xille, + 199(0) " (z - x), (A3)
i

where the last inequality follows from the ||¢||; < L, [[x — z||; < 2R, and Equation (A.2).

To bound the last two terms, let us first fix i € [m], and define {5 to beg; restricted on the line p
containing z; and x;. Then g;; is a v;-self-concordant barrier function on the interval [,], where
«a and f are two points of JK; uniquely defined by p.

Without loss of generality, suppose the points are ordered a, x;, z;, f on the line p, and we view
them in 1 dimension, denoted, respectively, by «, x, z, . Then, we have

ui = — llzi = xilly, + Vehi(x:) " (zi — x1)

NP @z - x|+ F)z -)

, 1 (z—«a
S4Vi_6_4(x—(x).

For most i € [m], we simply use the bound u; < 4v%.

For each i € m, let ; be the distance from x; to the boundary of [¢;, u;]. Since 7 is the distance
from x to the boundary, we must have 1 = n; for some i. For this fixed dimension, we use a tighter
bound that includes the second term in the above expression. Let ¢ & argmingepxk; ||o — xil|,. Let
¢ be the line through q and «. Let P be the projection function of x; onto £ so that Px; = g, then let
¢ Pz; be the projection of z; onto £. Since K; is convex, we know z’ ¢ K;. Finally, an argument
of similar triangles shows

llg —xill, _ 12 —zill,
lx—-al, llz-al,’
Hence,
noo_T

xX—a z-a

This gives us the tighter bound u; < 4v? — @ for the i with n; = 7.
Putting it back to Equation (A.3), we have

(¢ +1tVe(x)) (z—x) < 2LR+ & Z llzi — xillx, + tVP(x) " (z — x)

gzLR+tZu,~
i

rt
< 2LR + 4tV — —.
16

n

. 2 _ rt
Since 2LR + 4tv* — 12—” > 0, we have n O

= 64LR+64tv?*"

The RIPM additionally guarantees that the approximation x satisfies ||W'1/ 2 = Do <
O(1/log m). Hence, we also have

COROLLARY 70. Let x be the approximation of x guaranteed by the RIPM. Then the distance from
x to the boundary of the feasible region is also bounded from below with polynomial dependence on
t.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:68 S. Dong et al.

B Deferred Graph Lemmas

LEMMA 27. Suppose T is the appropriate separator tree for the IPM input graph. Let H be a set of
K nodes in 7. Then

> |0H|+|Ful < O (\/mK) .
HePqr(H)
Proor. Note that Fy is always a subset of S(H). We will instead prove
Z |0H| + |S(H)| < O(VmK).
HePr(H)
First, we decompose the quantity we want to bound by levels in 7

n

DL IeHI+ IS =) > |9H] + |SH). (B.1)

HePr(H) i=0 HePr(H,i)

We first bound Y. e, (44, 1) |0H|+|S(H)| for a fixed i. Our main observation is that we can bound
the total number of boundary vertices of nodes at level i by the number of boundary and separator
vertices of nodes at level (i + 1) Formally, our key claim is the following:

DT 1oHI < DT (0H'|+2IS(H)). (B.2)
HePq(H,i) H'ePy(H,i+1)

Without loss of generality, we may assume that if node H is included in the left hand sum, then its
sibling is included as well. Next, recall by the definition of 77, for siblings H;, H, with parent H’
their boundaries are defined as

0H; = (S(H') UOH') N V(H;) = (S(H') N V(H;)) U (0H" \ S(H")) N V(H,)),

for i = 1, 2. Furthermore, V(H;) U V(H,) = V(H). Another crucial observation is that a vertex from
OH' exists in both H; and H; if and only if that vertex belongs to the separator S(H").

|0H, | + |0H,| < |S(H')| + |(0H" \ S(H")) N V(Hy)| + [S(H)| + [(0H" \ S(H')) N V(H,)]
< |6H'| + 2|S(H")|. (B.3)

By summing Equation (B.3) over all pairs of siblings in P#(H, i), we get Equation (B.2). By
repeatedly applying Equation (B.2) until we reach the root at height r, we have

n
Z |0H| < 2 Z Z IS(H")]. (B.4)
HePq(H,i) J=i+1 H' ePr(H,j)

Summing over all the levels in 7, we have

n n
DT (eHI+IsE<2) G+ D ISEH) (by Equation (B.4))
i=0 HePy(H,i) Jj=0 H'ePr(H,j)
n
< chg +1) Z VIEH)), (B.5)
j=0 H’ePr(H,j)

where c is the constant such that [S(H’)| < ¢(|E(H’)|)!/? in the definition of being 1/2-separable.
Furthermore, the set of ancestors of H at level j has size |Pr(H,j)| < |H| = K. Applying the

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:69

Cauchy-Schwarz inequality, we get that

1/2
7
DT (oH| +ISED) < 2 Y (G + DVIPAHDI-| - > G
HePs(H) Jj=0 H’' ePsr(H,j)
y 1/2
< 2cZ(; +1)VK - Z |E(H)|
J=0 H'ePr(H.j)

1/2

szcm/f?i > IEE)

=0 \H'ePr(7.j)

< O(n*VmK),

where the final inequality follows from the fact that nodes at the same level form an edge partition
of G. As n = O(log m), the lemma follows. O

LEMMA 66. Let C be an a-separable class such that we can compute a balanced separator for any
connected graph in C with n vertices and m edges in s(m) time for some convex function s(m) > m.
Given an a-separable graph G € C, there is an algorithm that computes a separator tree T~ for G in
O(s(m)log m) time.

Proor. First, we let G be the root node of 7(G). Let G; and G, be the two disjoint components
of G obtained after the removal of the vertices in S(G). We define the children ¢;(G), c2(G) of G as
follows: V(c;(G)) = V(G;)US(G) and E(c;(G)) = E(G;), fori = 1, 2. Edges connecting some vertex in
G; and another vertex in S(G) are added to E(c;(G)). For each edge connecting two vertices in S(G),
we append it to E(c1(G)) or E(cz(G)), whichever has less edges. We continue by repeatedly splitting
each child ¢;(G) that has at least one edge in the same way as we did for G, whenever possible.
There are O(m) components, each containing exactly 1 edge. The components containing exactly 1
edge form the leaf nodes of 7 (G). Note that the height of 7(G) is bounded by O(log m) = O(log m)
as for any child H’ of a node H, |E(H')| < b|E(H)|.

The runtime of the algorithm is bounded by the total time to construct the separator for all nodes
in the tree. Because the tree has height O(log m) and nodes with the same depth does not share
any edge, the sum of edges over all tree nodes is O(mlog m). Since s(m) is convex, the algorithm
runs in no more than O(s(m) log m) time. O

LEMMA 67. Let G be an a-separable graph with separator tree T~ constructed via Lemma 66. Let H
be a set of K nodes in . Then

Z |0H| + |S(H)| < O(K'~“m%).
HePr(H)

Proor. Using the separator tree, we have Equation (B.5) in exactly the same way as for the
planar case.

n

DT (oH|+ISHE)) <20 Y G+1) > VIEEH)

HePyr(H) j=0 H'ePr(H,j)

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:70 S. Dong et al.

Applying Holder’s Inequality instead of Cauchy—-Schwarz for the planar case, we get

a

n
<2 Y G+ DIPHH D[D EE)
Jj=0 H' ePr(H,j)
n 24
<2 Zo + 1)K Z |E(H))|
=0 H'ePr(H,j)

o
n
< 2enK'@ Z Z |E(H)|
J=0 \H’ePr(H.j)
< O(UzKl—ama)’

where the final inequality follows from the fact that nodes at the same level form an edge partition
of G. As 1 = O(log m), the lemma follows. O

C Interpretation of the Flow Operator

Suppose we have an exact SDD-solver, i.e., given an SDD matrix L and d, we can compute x such
that Lx = d. Then this section provides an intuitive interpretation of how the flow update is
computed at every step via electrical flows.

Recall the definition of the slack projection tree operator in Definition 60. On an edge from node
H to parent P, we have the edge operator

-1
def (H) (H) _
M, p) = lonur, — (LFH, FH) Ly o =

-1
(H) (H)
Iry - (LFH,FH) Lr,.om }
0 Ion

As shown in [66, Lemma 5.2], this linear operator satisfies

H= @
Iy - (LF F) Lreron 0 — (Lo
l . H> IfaH H, Tog — 117 /|0H|| = L¥)'Sc(LY, 0H).

We only apply Mg p) to vectors that are zero on Fy, and are orthogonal to 1 on dH; hence, over
this domain,

M. py = L) TSc(LD, 9H).

We use this version of the edge operator, with the additional modification of using approximate
Schur complements instead of exact. The remainder of the section proves the following theorem
of correctness:

THEOREM 71. Letv € R™, and z = TII-V .. .TIOBTW20. Let M be the flow projection tree

operator as defined above, and let ep be the overall target step accuracy from DyNamicSC. Then f E

Mz satisfies BTWY/2f = BTW'/20 and Hf - PwvH2 < O(nep) ||oll,-

We first recall some terminology: A vector d is a demand vector if }; d; = 0. If B is the edge-
vertex incidence matrix of a graph, then B x is a demand for any x. Similarly, B"WBx = Lx is a
demand vector. We say a flow f routes a demand d if (W'/?B)T f = d.

Next, we introduce some definitions and properties of electrical flow, which we use in later to
prove Theorem 71. In this setting, the graph is viewed as an electrical circuit with each edge e

. . . . -1/2
being a wire with resistance W, 2,

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:71

Definition 72. Let WY2B € R™" be the edge-vertex weighted incidence matrix of some graph

G, and let L £ BTWB be the Laplacian. Let d £ Lz be a demand vector and f be any flow that

routes d; that is, (W'/?B)" f = d. Then we say ||f||§ is the energy of the flow f.

There is a unique energy-minimizing flow f* routing the demand d on G From the study of
electrical flows, we know f* = W'/2BL'd. Hence, we can refer to its energy as the energy of the
demand d on the graph of L, given by

Ed=E min [fl?=d"B"WB)'d=d"L'd =z"Lz. (C.1)
(W/2B)T f=d

If another flow f routing d is approximately energy-minimizing, then]; must be close to f*:
LEMMA 73. We continue using the notation from Definition 72. For any flow f routing d on G, if
IFIZ <. E(d), then IIf = £*1 < 0@ [£*]f
Proor. Ifa flow f routes d on G, then (W'/2B)™ f = d. So we have
A= =dUBTW(f - f*) = d"Lid ~d) = 0.
Hence, we have an orthogonal decomposition || f 2 =|| f |12+] f-f *||Z. It follows that

< 2 2
L = £ < (e =1 - £l = 0@ I, - .
We want to understanding how the energy changes when, instead of routing d using the edges of
G, we use edges of some other graphs related to G. In particular, we are interested in the operations
of graph decompositions and taking Schur complements It turns out the energy behaves nicely:
LEMMA 74. Suppose G is a weighted graph that can be decomposed into weighted subgraphs Gy, G,.
That is, if L is the Laplacian of G, and L") is the Laplacian of G;, then L = LV + L), Suppose d ER P
is a demand on the vertices of G. Then if we decomposed = dV) + d®, where dV) = LUz, then the
energies are related by

&L (d) =& (d(l)) + &0 (d(z)) .
Proor. We have, by definition,
& (d(l)) + 8 (d(z)) =2"LWz+2"L@;
=z'Lz
=&u(d). m]
The following lemma shows if G’ is a graph derived from G by taking Schur complement on a

subset of the vertices C, and d is a demand supported on C, then the flow routing d on G will have
lower energy than the flow routing d on G’.

LEMMA 75. Suppose G is a weighted graph with Laplacian L Let C be a subset of vertices of G. Let
L’ = Sc(L, C) =, Sc(L,C) be an e-approximate Schur complement Then for any demand d supported
onC,

EL(d) = & (d).
Proor. We have, by definition,
E.(d)=d"L'd =d"Sc(L,C)'d ~, d"L"'d = &1.(d),
where the second equality follows from the fact that d is supported on C combined with the formula

for LT in Equation (3.4). Note that we may omit the projection Py onto L’s kernel in Equation (3.4),
as d is a demand and therefore already in the kernel. O

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:72 S. Dong et al.

We are now ready to prove Theorem 71.

Let G denote the input graph with weights W and Laplacian L. Let d & BTW'/?v be the demand
vector Let f* < P,v = W/2BL'd, that is, [* is the electrical flow routing d. In the first part of
the proof, we show that f routes the demand d (Lemma 79). In the second part of the proof, we
show that f is close to f*.

We note the following fact: if L and L’ are two Laplacians, then LL'L’ = L’, since the range of
L’ is orthogonal to the kernel of L. In our proofs, we will often apply this to products of Schur
complements (which are themselves Laplacians).

LEMMA 76. Let z = TTI=VD .. .TIOBTW'/2% be as given in Theorem 71. For each node H € T,
let z|F,, be the sub-vector of z supported on the vertices Fy;, and define the demand d'P) = LH) 2|k, .
Thend = Y g d™.

ProOF. In the proof, note that all I are n X n matrices, and we implicitly pad all vectors with the
necessary zeros to match the dimensions. For example, z|r,, should be viewed as an n-dimensional
vector supported on Fy. Define

-1
(i) def () (1) & () (D)
X0 %N X where X —LaH’FH(LFH’FH) :
HeT{(i)

So that TI) = T~ X, Suppose H is at level i of 7. We have

-1
zlp, = (Lg)’FH) nov-v...oWno©q

_(y®@ T D1y(0
= (LFH,FH) 3 SR 5 (O} (OF A (C.2)

where we use the fact In(X*")) 0 Fy = 0 if y(H’) > i From this expression for z|p,,, we have

dH Lz,

_ 1 (H) (H)
= L&H,FHZ|FH + LFH,FHleH

_ X(H)(H(i_l) . -H(I)H(O)d)FH + (H(n—l) .. .H(I)H(O)d)lFH’

where the last line follows from Equation (C.2). By padding zeros to X)), we can write the equation
above as

dH) = xE -0 o pOn©g + (H(’I—l) .. .H(l)H(O)d)IFH_

Now, computing the sum, we have

n n
Z dH = Z Z XE MY o On©g + Z Z (H(fl-l) o H(I)H(O)d)IFH
HeT i=0 HeT(i) i=0 HeT(i)
n
= Z XD -H(I)H(O)d) +T770 . ©d (Fy partition V(G))
i=0

n—1
((I- H(i))n(i—l) o H(l)H(O)d) NI 5 (OB 5 (O] 5 (OF]
i=0

=d, (telescoping sum)

completing our proof.]

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:73

Next, we examine the feasibility of f . To begin, we introduce a decomposition of f based on the
decomposition of d, and prove its feasibility.

Definition 77. Let M1 be the flow tree operator supported on the tree 7 (Definition 46). We
define the flow f) € MHEz|p,,.

LEMMA 78. We have that (WI/ZB)Tf(H) = d""). In other words, the flow f'(H) routes the demand
d"™ using the edges of the original graph G (in fact, the edges are all from the region H).

Proor. We will first show inductively that for each H € 77, we have BTW/2M) = L) In
the base case, if H is a leaf node of 77, then 7 is a tree with root H and a single leaf node under
it. Then M) = W'/2B[H]. It follows that

BTwl/ZM(H) — BTwl/Zwl/ZB[H] — L(H),

by definition of L) for a leaf H of 7. In the inductive case, H is not a leaf node of 7". Let Dy, D,
be the two children of H. Then

BTW!EMUD = BTW2 (MPOMp, 1) + MM, 1 |
- L(Dl)M(DhH) + L(DZ)M(Dz,H) (by induction)
— L(Dl)(L(DI))Tgc(L(DI)’ aDy) + L(Dz)(L(Dz))Tg’c(L(Dz), 4D,)
= Sc(LPY,4Dy) + Se(L'P?), dD,)
=L%.

Finally, we conclude that (W'/2B)T fH) = BTW'/2MH)z|, = Lz = dH), where the last
inequality follows by definition of d*?). O

LEmMMA 79. f is a feasible flow routing d on G.
Proo¥r. We first decompose d = Y ;o7 d'™) according to Lemma 76. By definition of the flow

tree operator,
r~ def def H ~(H
fEME) MPzly, =) FO.
HeT HeT

where f () routes demand d") by Lemma 78. Hence,

(W2B)Tf =)" (W2B)TfH) = " d) = d. o

HeT HeT

Next, we show f is close to f* in terms of energy. To start, we know f (H) routes d*) in the
region H and we want to relate its energy to the minimum energy flow routing d* in H:

LemMa 80. Let H be a node at level i in T~ Given any z let d E Lz be a demand. Then the flow
£ ME), satisfies ||f||§ <iep E111|(d) Consequently,

f=
~ 2
|7¢7], =1 Evt (a).

Proor. We proceed by induction for the first part of the lemma. In the base case, H is a leaf
node, and we have

”M(H)z”z = 2" (B[H])"WB[H]z = 2 L[H]z = &y (d).

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

27:74 S. Dong et al.

Suppose H is at level i > 0 in 7, with children D, and D, at level at most i — 1. Then
e
2
2
= H(M(DI)M(DI,H) + M(DZ)M(DZ,H)) z”
2
Since Range(M(PV) and Range(M(P2)) are orthogonal, we have

2 2
- HM(DI)M(DI’H)z”z * ||M(D2)M(D2‘H)z||z

S(i-er ELIDy] (L(Dl)M(Dl,mZ) +&1yp,| (L(DZ)M(DZ,H)Z)
(by inductive hypothesis with z = M(p, f)z)

= Eupy| (L<Dl>(L<Dl>)T§C(L(D1>’ aDl)z) + &by (L(Dz)(L(Dz))Tgc(L(Dz)’ oD z)z)
(substituting the definition of M(p, f))

= Euyp,) (Se@P?, Dy)z) + Exyp,) (S P, aDy)z)

Since the demand vectors are supported on dD; and dD;, respectively, we may take exact Schur
complements and apply Lemma 75 with ¢ = 0 to get

= Esc(L[D,].8D;) (§C(L(D1), <9D1)Z) + Esc(L(D,].dD,) (§C(L(D2) , 3Dz)l) .
Theorem 6 guarantees Sc(L[D;], 0D;) =, STc(L(D"), 0dD;), so again by Lemma 75,

<o 852(]“([)1}’61)1) (§C(L(Dl), 6D1)z) + 8§c(L(Dz>,6D2) (é;:(L(Dz), 6Dg)z)
= &y (LM2). (by Lemma 74)

T
Applying the lemma to dD = Lz|f,, gives the bound on ” f (H)” as required.]
2

Next, we show that the sum of energies for routing the demand terms on different regions is
approximately equal to the energy for routing the entire demand on G.

LEmMA 81. We have the following approximation of the energy of routing d:

Z Evjm (d(H)) X(n+1)ep OL (d) .
He7T

Proor. We need the following matrix multiplication property: For any matrices A, B, D,

Al o A B Al o Al o
[o OHBTDHO 0]:[0 0]' (C3)

Recall in our setting, all matrices are padded with zeros so that their dimension is n X n, and
vectors padded with zeros so their dimension is n.

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time 27:75

Let g &

def

7D ... IO for simplicity of notation, so that z|f,, = (Lg) r,,)"' B Then,

SuH) (d(H)) Rep Epim (d(H)) (by Lemma 75)

=z" |, Lz,

_ a7 (yH) H (& |7

=7 (L FH) L)(LFH FH) ;

g (L) g (by Equation (C.3
= FoosFir . y Equation (C.3))

Summing over all H € 7, we get

Z Evin) (d()) o B Z(L%Z’FH)

HeT

_ gTOT nT
=dTOT ... p-D FHFH
HeT

Z (L(H) l |3 O s (UF]

Xy d'L'd

= &L(d).
O
Finally, we conclude the proof of Theorem 71 by showing f is close to f* <P,
LEMMA 82. We have Hf — || <ome) I1oll,.
2
Proor. We know f routes d on G. Its energy is bounded by
2
~||2 .
— (H)
7= 27
HeT 2
. 2
< Z Z f () (by triangle inequality)
i=0 ||HeT(i) 5
. 2
<(mp+1)- Z Z f (H) (by Cauchy-Schwarz)
i=0 ||HeT(i))
n
<(n+1)- Z ” f pu)” (by orthogonality, Lemma 48)
i=0 HeT(i)
1
<(n+1): Z Z e’ - Eppmy (d(H)) (by Lemma 80)
i=0 HeT(i)
~0o(pep) CL (d) . (by Lemma 81)
Now, we apply Lemma 73 to get that
. 2 5
|7 - 57|, < otmen - 1*[l; < 0wer) - et
where the last inequality follows from the fact that P,, is an orthogonal projection matrix. O

Received 11 August 2022; revised 15 March 2025; accepted 30 April 2025

J. ACM, Vol. 72, No. 4, Article 27. Publication date: July 2025.

