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Abstract. The current standardization calls for threshold signatures
have highlighted the need for appropriate security notions providing se-
curity guarantees strong enough for broad application. To address this,
Bellare et al. [Crypto’22] put forward a hierarchy of unforgeability no-
tions for threshold signatures. Recently, Navot and Tessaro [Asiacrypt’24]
introduced a new game-based definition of strong (one-more) unforgeabil-
ity for threshold signatures, which however does not achieve Bellare’s
strongest level of security.
Navot and Tessaro analyzed several existing schemes w.r.t. their strong
unforgeability security notion, but all positive results rely on idealized
models. This is in contrast to the weaker security notion of (standard)
unforgeability, for which standard-model constructions exist. This leaves
open a fundamental question: is getting strong unforgeability fundamen-
tally harder than standard unforgeability for threshold signatures?
In this paper we bridge this gap, by showing a generic construction lift-
ing any unforgeable threshold signature scheme to strong unforgeability.
The building blocks of our construction can be instantiated in the stan-
dard model under standard assumptions. The achieved notion of strong
unforgeability extends the definition of Navot and Tessaro to achieve the
strongest level of security according to the hierarchy of Bellare et al.
(following a recent classification of security notions for (blind) threshold
signatures by Lehmann, Nazarian, and Özbay [Eurocrypt’25]).
The starting point for our transformation is an existing construction
for single-user signatures from chameleon hash functions by Steinfeld,
Pieprzyk and Wang [RSA’07]. We first simplify their construction by
relying on a stronger security notion for chameleon hash functions. The
bulk of our technical contribution is then to translate this framework
into the threshold setting. Towards this goal, we introduce a game-based
definition for threshold chameleon hash functions (TCHF) and provide a
construction of TCHF that is secure under DLOG in the standard model.
We believe that our new notion of TCHF might also be of independent
interest.

⋆ Part of the work was done while the author was at ETH Zurich, Switzerland.



1 Introduction
Threshold signatures [Des88, DF90] allow a subgroup of at least T signers to
generate signatures on behalf of N ≥ T parties, and guarantee unforgeability
as long as at most T − 1 parties are corrupt. Threshold signatures have a wide
range of applications, particularly in the blockchain environment (e.g., in digital
wallets), and many schemes have been developed in recent years [KG20, CKM21,
RRJ+22, BLT+24, DKM+24]. Their ability to distribute trust among N parties
has prompted both IETF [CKGW23] and NIST [BP23] standardization efforts.

For (non-distributed) digital signatures the desired security notion is agreed
upon: it should be hard to compute a non-trivial forgery σ on a message m given
access to a signing oracle. Here, non-trivial means that the message is fresh, i.e.,
has never been queried to the signing oracle (EUF-CMA). For some applications
it is also important that the signature σ itself cannot be tampered with: the
signature σ on m is considered non-trivial if the pair (σ,m) is fresh, i.e., m
might have been queried to the signing oracle but σ was never output by the
signing oracle on input m (strong EUF-CMA).

In the threshold setting, the adversary can corrupt up to T − 1 signers and
interact with the remaining honest signers via signing oracles (one per honest
signer). Again, it should be hard to compute a non-trivial signature, however,
the classification of non-triviality is more nuanced and “strength” of the security
notion is two-dimensional. As in the non-distributed case, we can distinguish
between unforgeability and strong unforgeability. However, in the threshold set-
ting, we have a new dimension of “strength” of the security notion coming from
the fact that it is not obvious how to formalize that a message (resp. message-
signature pair) is fresh.
Security hierarchy. Many works define a signature σ on message m to be trivial
if m was queried to one of the signing oracles (e.g., [GJKR96, Bol03, GJKR07,
CKM23, BLT+24]). As pointed out by Bellare et al. [BCK+22], this is a rather
weak notion. For example, if the adversary A corrupted only a single signer, then
intuitively we expect that A must interact with at least T − 1 honest signers to
obtain a valid signature. However, the aforementioned notion already classifies
the signature trivial if m was queried for a single honest signer. Shoup [Sho00]
gives a stronger security notion that demands that at least T −C honest signers
were queried on message m, where C is the number of corrupted signers.

Bellare et al. [BCK+22] give a full hierarchy (increasing in strength) for
non-interactive threshold signatures of security notions that carefully classifies
which forgeries are considered non-trivial. The weakest notion declares a forgery
as trivial if its associated message m has been queried to any signing oracle
(as above), that is, if at least one partial signature on m has been generated.
The strongest notion in their hierarchy intuitively declares a forgery as trivial
only if the adversary completed an entire signing session for the message m,
that is, every honest party involved in the signing process completed it. In the
non-interactive setting (with preprocessing) the concept of completed sessions
is formalized through leader requests: a leader request specifies the message m,
some preprocessing tokens and the set of co-signers S. A forgery is trivial only if



its message m appeared in a leader request that was signed by all honest signers
within the leader request’s signer set S. Above, preprocessing refers to signing
protocols that can be split into a message-independent part and a message-
dependant part. Importantly, the former subprotocol can be precomputed offline
before the to-be-signed message is determined. This saves valuable resources in
the online phase.

Strong unforgeability. To capture non-malleability, Bellare et al. [BCK+22]
also define strong unforgeability for non-interactive schemes (in the random or-
acle model). The recent work by Navot and Tessaro [NT24] provides a more
general game-based definition for multi-round schemes based on one-more un-
forgeability 3. Here, the adversary is tasked to output ℓ signatures (σi)i∈[ℓ] on
some message m. (Note that the game cannot observe the aggregated signatures,
therefore demanding that (σ,m) is fresh is not well-defined.) The forgeries are
considered non-trivial only if at most ℓ − 1 signing sessions for message m pro-
ceeded to the final round. Note that the counter increases every time a honest
party completes a signing session for m, even though it could still be incom-
plete for some honest users (in contrast to the strongest notion in Bellare et
al. [BCK+22]’s hierarchy).

Random oracle model. Bellare et al. [BCK+22] show that FROST1 satisfies
strong unforgeability at the second strongest security level in their hierarchy. The
same work then also provides a transformation of the scheme to the strongest
security notion. The same transformation can also be applied to FROST1-H
which was presented and proven strongly secure at the second security level by
Tessaro and Zhu [TZ23], again in the random oracle model.

Standard model. For (non-distributed) signatures, it is well-known that strong
EUF-CMA security can be achieved in the standard model under non-interactive
assumptions (e.g., [BSW06]). For threshold signatures, there are also several
constructions in the standard model, however to the best of our knowledge, all
such constructions [LJY16, MMS+24] only satisfy weaker unforgeability notions
(i.e., non-strong unforgeability and the weakest / second weakest security notion
in [BCK+22]’s hierarchy).

On a technical level, this discrepancy seems to stem from the techniques
employed to prove stronger unforgeability notions for threshold signatures. In the
case of multi-signatures, [NT24] guess a specific random oracle query associated
to the forgeries or employ an interactive assumption to facilitate simulation of
the signing oracles to achieve strong unforgeability. In this work, we investigate
whether such strong assumptions are required to build threshold signatures that
satisfy strong security guarantees in the standard model.

3 One could argue that this scenario is easier to deal with in the UC framework [Can01].
However, as already noted in [NT24] many of the most promising candidates for
standardization are not UC-secure, thus the need for game-based definitions.



1.1 Our Contributions

We show that every threshold signature that satisfies the weakest (non-strong)
unforgeability notion in Bellare et al. [BCK+22]’s hierarchy can be lifted into
a scheme that satisfies the strongest security notion (both with respect to non-
malleability and non-triviality of the forgery) in the standard model. Notably,
we also capture multi-round schemes and strengthen the strong unforgeability
notion by [NT24] with respect to its non-triviality classification following the
techniques by [BGHJ24, LNÖ25].

Our transformation is entirely in the standard model and relies on a novel
building block Threshold Chameleon Hash Functions (TCHF) which we in-
troduce in this work. It is a distributed variant of chameleon hash functions
(CHF) [KR00], however, the security definitions require much care as we will
explain in section 2. We believe that our strengthened multi-round (strong) un-
forgeability definition and our TCHF contributions might be of independent
interest.

We instantiate TCHF under the DDH assumption in prime-order groups. As
a result, we can lift the security guarantees of any weakly-secure threshold sig-
nature under standard assumptions. The lifted threshold signature requires only
two additional message-independent rounds (which can be preprocessed) and a
single additional online round. The overhead in signature size is small: signa-
tures consist of a signature of the to-be-lifted scheme and the randomness of the
chameleon hash function. Given our instantiation, this amounts to 2 additional
Zp elements. Combining our TCHF constructions with, e.g., the construction
by Mitrokotsa et al. [MMS+24], yields, to the best of our knowledge, the first
strongly-unforgeable threshold signatures in the standard model from standard
assumptions (without generic MPC). Similarly, we obtain the first threshold sig-
nature that satisfies the highest level of security in the interactive analogy of
Bellare et al. [BCK+22]’s hierarchy in the standard model.

On a technical level, we obtain our transformation by modifying and translat-
ing the transformation by Steinfeld, Pieprzyk and Wang [SPW07] to the thresh-
old setting, which combines a signature with chameleon hash functions [KR00]
to obtain strong unforgeability (cf. fig. 1). Interestingly, we not only boost non-
strong unforgeability to strong unforgeability, but also the level in Bellare et
al. [BCK+22]’s hierarchy.

1.2 Related Work

Before we detail our techniques, we discuss additional related work.
Chameleon Hash Functions. Bellare and Ristov [BR08] show that Σ-protocols
yield chameleon hash functions (CHFs). It is also well-known that Σ-protocols
yield signatures via the Fiat-Shamir transformation [FS87]. Looking ahead, we
leverage this relation to construct our threshold chameleon hash function.

Camenisch et al. [CDK+17] introduces CHFs with ephemeral trapdoors. In
such schemes, there is a master and ephemeral trapdoor for collision-finding.
While the master trapdoor is generated during setup of the CHF, the ephemeral



trapdoor is generated during hash evaluation. In order to find the collision,
both the master and the ephemeral trapdoor are required. This property and its
policy-based extension [DSSS19] are, e.g., useful for sanitizable signatures.

Perhaps the closest work to our threshold CHF definition is [AMVA17]. Ate-
niese et al. [AMVA17] provide a distributed protocol for collision-finding and
provide a UC-based security notion. This notion is, e.g., useful for controlled
edits in blockchains. In contrast, our notion is game-based and heavily relies on
setting up the image point y in a distributed manner. Further, we require ad-
ditional properties such as preimage resistance and image unbiasability for our
framework. We refer to section 2 for details.
Security Properties of Threshold Signatures. The aforementioned security
hierarchies [BCK+22, LNÖ25] and strong unforegeability [NT24] notions for
threshold signatures are in the selective-corruptions setting, i.e., the adversary
chooses the set of corrupted users before interacting with the signing oracles.
In contrast, several works consider adaptive unforgeability where the adversary
can corrupt up to T − 1 signers at any time [LJY14, BL22, BLT+24, CKM23,
KRT24, DR24, Che25]. As prior definitional frameworks for stronger threshold
signature notions are in the selective corruption model, we focus on this setting
in our work. We believe that, assuming the to-be-lifted threshold signature is
adaptively-secure, we can obtain an adaptive boosting framework with a TCHF
notion with adaptive corruptions. We believe that it is likely that, e.g., techniques
from [KRT24], combined with our construction, yield such an TCHF. As this is
out of scope, we leave it for future work.

2 Technical Overview

Before we describe our framework, let us briefly discuss our unforgeability defi-
nitions for threshold signatures.
Assumed security notion. We aim to upgrade the security of signature schemes
that only satisfy the weakest unforgeability notion in [BCK+22]’s hierarchy (ex-
tended to interactive signing protocol). This notion declares a forgery as trivial
if the associated message m has been queried to any signing oracle. This means
that a signing session on m might have been started and later aborted, yet any
forgery on m is classified as trivial.
Our achieved security notion. We aim to achieve the strongest notion, where
the adversary A is tasked to output ℓ signatures (σi)i∈[ℓ] on some message m.
The forgeries are declared as trivial only if the adversary completed (at least)
ℓ entire signing sessions for the message m. We model this intuitive classifi-
cation by adopting the post-fix session identification via sub-session identifiers
from [BGHJ24, LNÖ25]. That is, we consider a session on message m completed
if all honest signers completed the last round of the signing protocol on message
m and agree on the set of honest co-signers SH ⊆ S, some arbitrary context ctx
and the sub-session identifier ssid. Note that ssid is output in the last signing
round by each signer and, e.g., specifies the signer’s view during the signing
transcript. Observe that ssid plays the role of the leader request in [BCK+22].



2.1 The CHF-based Framework

Since the transformation by Steinfeld, Pieprzyk and Wang [SPW07] serves as
the starting point of our work, let us give a brief overview. Chameleon hash
functions (CHF) [KR00] are (randomized) collision-resistant hash functions for
which there exists a trapdoor that allows to efficiently find a second preimage
for any input/output pair 4. To boost an EUF-CMA secure signature scheme to
strong EUF-CMA security (in the non-distributed setting), the idea of Steinfeld,
Pieprzyk and Wang [SPW07] is to make the signature σ “dependent on itself”.
They achieve such circular property by utilizing chameleon hash functions. The
signing procedure is as follows:

– Instead of signing the actual message m, sign an output y := H(x′, r′) of a
collision resistant chameleon hash function H (for fixed x′ and random r′).
Let σ̃ be the signature on y.

– Then, employ the trapdoor for H to find an r that maps the pair of signature
σ̃ and message m back to y, i.e., H(σ̃∥m, r) = y.

– As the final signature σ, output both σ̃ and r.

For verification, given a signature σ = (σ̃, r) for a message m, first compute
y := H(σ̃∥m, r) and then verify that σ̃ is a valid signature for y. Indeed, given
a set of message/signature pairs (mi,σi)i∈I , assuming collision resistance of H
and (non-strong) unforgeability of the base signature scheme it is hard to find
a forgery (m∗,σ∗) with (m∗,σ∗) ̸= (mi,σi) for all i ∈ I, as required to break
strong unforgeability.

The problem with this simple construction is, that a security reduction prov-
ing strong unforgebility needs to create valid message/signature pairs (mi,σi) in
the first place, i.e., it needs to simulate the signing oracle in the security game
for unforgeability, thereby breaking circularity and finding a signature for the
hash of the signature. This can only be done by knowing both the secret signing
key and the trapdoor for the chameleon hash function.

Hence, in the final construction, a second chameleon hash function F is
chained in between the evaluation of H and the signing procedure as shown
in the left part of fig. 1. This allows to break circularity through either of the
two chameleon hash functions F and H, i.e., for signing, knowledge of a trapdoor
for one of the two hash functions is sufficient. A signature now consists of both
random strings rH and rF as well as the signature σ̃ (shown in orange in the fig-
ure), and the secret key consists of the secret key s̃k of the base signature scheme
and the trapdoor for H. The security reduction based on collision resistance of
the two chameleon hash functions H and F, and unforgeability of the signature
scheme then works by sampling keys for two of the primitives when aiming to
break security of the third, respectively.

4 For some CHF H, a preimage to y = H(x, r) consists of the input x and the random-
ness r. We sometimes use the term preimage for just the randomness r if the input
x is clear by context.
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Fig. 1. Relation between message and signature values in the original framework
by [SPW07] (left) and our modified framework (right) assuming adaptive collision-
resistance which is easier to thresholdize. Blue value represents the input message m
and orange values the signature on m.

2.2 A Simplifcation of the Framework

To explain our distributed framework, let us first introduce a conceptual simpli-
fication of [SPW07]’s framework in the single user case. 5 In particular, we show
that a stronger security notion for CHF allows to prove security of the frame-
work sketched above without the second chameleon hash function F. Looking
ahead, a construction with just one chameleon hash function is much simpler
to thresholdize, and hence this conceptual simplification allows us to provide a
round-efficient threshold framework with strong guarantees.

Before we explain the stronger security notion (adaptive collision-resistance)
of H and how it helps in the proof, let us mention that we make one additional
change to the framework. Namely, we change the place in which m is introduced:
instead of signing y, we sign y∥m to obtain σ̃, and then employ the trapdoor of
the chameleon hash function H to close the circle (cf. right side of fig. 1).6 This
will simplify the security proof.
Adaptive collision-resistance. Our simplification is based on the following
observation. While the reduction must simulate the signing oracles, the oracle
does not need to be able to compute collisions itself. That is, only the value rH
computed via the trapdoor is output as part of the signature, but not r′H. In
particular, the circle can be closed if the game can sample an adaptively-chosen
5 This framework is implicit in our work and obtained by adapting our threshold

signature framework to the non-distributed case. We describe it here for exposition.
6 In our final construction discussed in section 5, we additionally insert a collision-

resistant hash function f after the signing algorithm to map σ̃ back to the message
space of H.



preimage for H for an image point y. If no other preimage is known for y, then
this does not produce a collision for H. To allow for such simulation, we modify
the collision-resistance game of CHF as follows. The adversary has access to two
oracles:

1. OEval(x): Outputs an H image y for x without revealing the randomness r
used to sample y.

2. OTrapColl(y, x∗): Given an image y produced by the Eval-oracle and an input
x∗, outputs r∗ such that y = H(x∗, r∗). Here, x∗ can be chosen adaptively
after y is determined. This oracle can be invoked at most once per y.

The adversary is still tasked to find a full collision for H.
Such stronger security notion allows to prove strong unforgeability as fol-

lows: Assume that the adversary outputs its forgery m∗,σ∗ = (σ̃∗, r∗). We can
compute the image y∗ = H(σ̃∗, r∗) from the signature and distinguish two cases:

Case y∗∥m∗ never signed. This immediately breaks (non-strong) unforgeabil-
ity of the underlying signature.

Case y∗∥m∗ signed before. We argue that in this case, we can find an H col-
lision.
To simulate a signature on some message m, the reduction samples an image
y via OEval(x′) (recall that x′ is fixed a-priori). Then, the reduction signs y∥m
to obtain σ̃ and invokes OTrapColl(y, σ̃) to obtain r such that H(σ̃, r) = y. It
answers the signing query with the signature σ = (σ̃, r).
It remains to discuss how the reduction extracts a collision from the forgery
(m∗,σ∗). As we assume that y∗∥m∗ has been signed before, there is a signing
query that yields another preimage y∗ = H(σ̃, r). Furthermore, the tuples
(σ̃∗, r∗) and (σ̃, r) must be distinct by the winning condition of strong un-
forgeability, therefore this breaks adaptive collision-resistance of H.

In section 2.4 we discuss the difficulty of achieving adaptive collision-resistance
for CHF from standard assumptions.

2.3 Our Distributed Framework for Threshold Signatures

For our threshold framework, we require a threshold chameleon hash function
(TCHF) H that allows T -out-of-N parties holding shares of the trapdoor to pro-
duce a preimage for some image y that is sampled beforehand. Both evaluation
(to determine the image y) and collision finding (to compute the preimage r) are
now distributed protocols DEval and DTrapColl, respectively, with T parties 7.
In a bit more detail, parties first jointly execute DEval to produce an image y.
Additionally, each party might keep some private state (e.g., randomness they
used during the DEval protocol). Using their trapdoor shares and private states,
parties run DTrapColl to find randomness r such that y = H(x, r) for some x,
7 Let us remark that the DTrapColl protocol does not generate a collision, only a

preimage (x, r). We keep the name DTrapColl for consistency with prior works on
chameleon hash functions.



potentially chosen after the protocol DEval was ran. Observe that again, the
protocol itself reveals only the final randomness, so we define adaptive collision-
resistance similar to the non-distributed notion. That is, after corrupting at
most T − 1 parties, the adversary should not be able to find a collision, even
given access to DEval and DTrapColl protocols. The message x for DTrapColl can
be chosen adaptively. Again, it is crucial that only the preimage (x, r) for y is
revealed.

Compared to our simplified framework for the single user case, we now replace
the non-distributed chameleon hash function and signature with a TCHF and
a threshold signature scheme to boost the security of the threshold signature
scheme. Looking at the right side of fig. 1, the algorithms computing y, σ̃ and
rH would be replaced with the respective threshold protocols.
Additional TCHF properties. It turns out that adaptive collision-resistance
is not sufficient to prove security of the threshold version of our construction.
The issue is that in the distributed setting, the adversary can arbitrarily in-
terleave sessions or even abort sessions before their completion. For instance,
the adversary might employ the signer oracles to obtain a signature σ̃ on y∥m
and then produce an appropriate preimage for y without finishing the signing
sessions. Under our strong unforgeability notion for threshold signatures, this
session does not classify the obtained signature as trivial, therefore the adver-
sary might break unforgeability without breaking collision-resistance. Hence, we
need two additional security properties:

Preimage resistance. It is hard to find a preimage for an image point y de-
termined by DEval without finishing the session, i.e., the DTrapColl protocol
must be executed fully by all honest users.

Image unbiasability. The image y is unique, i.e., y will be the output of DEval
at most once amongst all sessions.

We note that we formalize preimage resistance via sub-session identifiers ssid and
context ctx, similar to the threshold signature definition, to enforce that parties
agree on their public view within the session (without having to introduce pre-fix
session identifiers). These additional properties, together with adaptive collision-
resistance, allow us to prove strong security guarantees of the resulting threshold
signature.

Interestingly, while the natural analogues of these properties in the non-
distributed setting are implied by collision-resistance, this is not the case in the
distributed setting. For instance, the adversary might be able to enforce some
specific image y into the DEval protocol to break image unbiasability, without
being able to find an appropriate preimage. Indeed, a variant of our TCHF
construction in the group setting (which we discuss later) is adaptively collision-
resistant but not image unbiasable.
Proving stronger unforgeability. The proof of one-more unforgeability of
our threshold signature scheme roughly follows the proof outline of the non-
distributed construction, however, several technical challenges are introduced
due to the distributed nature of the protocol.



Assume that an adversary against the one-more unforgeability outputs a
forgery (m∗, (σ∗

i )i∈[ℓ]). From the ℓ signature, we can compute the corresponding
images (y∗i )i∈[ℓ]. The first case is very similar as in the single user case:

Case 1: ∃i : y∗i ∥m∗ never signed. In this case, we assume that for one of the
image points y∗i it holds that no honest party has ever started a signing
session for the message y∗i ∥m∗.8 This case can easily be reduced to the un-
forgeability of the underlying signature scheme.

Case 2: ∃i ̸= j : y∗i = y∗j . In this case, we assume that we have a collision in
the image values derived from the ℓ forged signatures. It is not difficult to
show that this leads to a collision of H.

Case 3: none of the above applies. This is the most technical part of our
proof. We show that if all y∗i ∥m∗ have been signed and all the image points
y∗i are pairwise distinct, then either we break unbiasability or preimage re-
sistance. Intuitively, the image unbiasability property guarantees that each
of the ℓ image points y∗i was derived in exactly one DEval session (with high
probability). Since case 1 did not happen, we know that this must have been
in an m∗ signing session.
By one-more unforgeability, we know that strictly less than ℓ signing sessions
for m∗ have been completed, yet, the adversary was able to output ℓ valid
signatures. Intuitively, this means that the adversary was able to find a
preimage for one of the image values y∗i even though the corresponding
DTrapColl session was not completed. This breaks the preimage resistance of
the TCHF H.

2.4 TCHF Instantiation

Before discussing our instantiation of TCHF, we discuss the challenge in con-
structing even single-user adaptively collision-resistant CHF. Later we explain
our solution to this challenge based on standard assumptions and how to thresh-
oldize it.
Achieving adaptive collision-resistance. We argued that adaptive collision-
resistance simplifies the framework, but we still need to instantiate such a cha-
meleon hash function H. However, there is a barrier towards achieving this goal.
Intuitively, the adaptive choice of the preimage x∗ in the TrapColl enforces that
the simulation can produce collisions. To see this, observe that the simulation
must be able to provide preimages for arbitrary x∗ with high probability. As x∗

is chosen adaptively, it must, in particular, be able to produce a preimage for
distinct x∗

0, x
∗
1, breaking collision resistance.

For instance, we believe that this property cannot be achieved in the standard
model under a non-interactive assumptions for the original CHF construction
by [KR00] which works over a group G of prime-order p with generator G.
Given another generator H , an image Y for x is computed by sampling r ← Zp

8 Recall that we assume the weakest notion of unforgeability for the underlying sig-
nature scheme



and setting Y = xG + rH . Under the DL assumption, it is easy to see that
this CHF is collision-resistant by embedding a DL challenge into H . However,
if a reduction is able simulate the TrapColl-oracle for [KR00]’s CHF, then the
reduction intuitively can break DL itself:

– To break DL, we forward a fresh DL challenge to the reduction which embeds
the challenge into H .

– We can simulate the adversary in the game by calling OEval(x) to obtain
some Y ∈ G.

– Then, we call OTrapColl(Y, x0) for some x0 ∈ Zp and obtain r0 such that
Y = x0G+ r0H .

– Let x1 ̸= x0 be some Zp element. While we cannot invoke OTrapColl(Y, x1)
anymore, we can rewind the reduction to the point just before the TrapColl-
oracle is called. Then, we obtain a second r1 such that Y = x1G+ r1H .

– Finally, given (x0, r0) and (x1, r1) with x0 ̸= x1, we can always compute the
DL of H .

While the above is not a formal argument, we hope it illustrates the challenge.
An adaptive CHF. We base our construction on the chameleon hash function
from [KR00]: the image is of the form Y = xG+ rH with H = hG. To compute
a collision for input x∗, we can set r∗ = (x∗ − x)τ + r via the trapdoor τ =
h−1 mod p. As described above, it seems that we cannot prove adaptive collision-
resistance for this construction. Therefore, we make the following simple but
crucial modification:

Y = xG+ r0H0 + r1H1

Here, Hb = hbG is part of the CHF description and the values r0, r1 ← Zp form
the CHF randomness. As in [KR00], we can employ h−1

0 mod p to compute a
preimage. But now, we can also employ h−1

1 mod p to do so, and importantly,
it is indistinguishable which trapdoor was employed to compute the preimage.
Thus, we can simulate adaptively-chosen preimages for images Y in two distinct
modes. When the adversary outputs its collision, we can compute either the
discrete logarithm of H0 or H1, depending on how the collision is distributed. If
we play our cards right, then this property allows us to prove adaptive collision-
resistance under the DL assumption.
Our Threshold CHF. To build a distributed variant, we can rely on the tech-
niques from threshold Schnorr signatures (e.g., [CKM23]), as the response re-
sembles the structure of Schnorr. That is, each user chooses some Ri = r0,iH0+
r1,iH1 in DEval, and then outputs z0,i = (x − x∗)τi + r0,i and z1,i = r1,i in
DTrapColl, where τi are secret shares of τ := h0.

To prove adaptive collision resistance, our goal is to simulate the DEval and
DTrapColl oracles either with h0 or with h1 (such that the adversary cannot
distinguish the cases). For Schnorr signatures, a natural simulation strategy relies
on partial keys Xi = τiG and simulating the response via honest-verifier zero-
knowledge. Adapting this approach to our setting, a valid response (z0,i, z1,i)
can be simulated by embedding Ri = (x−x∗)Xi + z0,iG+ z1,iH1 into the DEval
session. The core difference is that for distributed Schnorr signatures, the secret



is not inverted modulo p: this allows to simulate the partial public keys Xi given
X = xG via the properties of Shamir’s secret sharing, as xi is a sharing of x and
not of x−1 mod p. In our case, this modular inversion makes it difficult to setup
the partial keys Xi without knowing the discrete logarithm in the first place.

Instead, we rely on the recent masking technique from [DKM+24]: 9 in our
construction, the response z0,i, z1,i is additionally masked with a zero shares
∆0,i,∆1,i, respectively. Then, each response zb,i is distributed uniformly over Zp

conditioned on summing to a correct preimage for Y . Together with the above
observations, this allows us to prove adaptive collision-resistance of our TCHF.

At this point, the distributed construction is not yet secure. In particular,
the adversary can bias the image Y by choosing its contribution Rc for some
corrupted party c to DEval based on the honest contributions Ri. To resolve this,
we employ a commit-and-open protocol to determine Y , i.e., each party commits
to Ri in a first DEval round and then opens the commitment to Ri in the second
round. Given this change, we can also prove preimage resistance and image
unbiasability. The latter crucially requires that the views of all honest users are
consistent in every session, which is ensured by signing the round message at
the end of DEval, and forcing DTrapColl and AggEval to abort if a signature does
not pass verification.

In addition to helping with collision-resistance, the properties of ZeroShare en-
able us to prove rather strong preimage resistance properties of our construction
which we require for our generic framework. In hindsight, similar masking-related
arguments are also employed in [LNÖ25, Section 6.2] to achieve higher levels of
security, however, their boosting technique is insufficient for our purpose.

Finally, as we wish to avoid the random oracle which is usually employed
to realize commit-and-open protocols, we assume that the commitment scheme
is both equivocal and extractable. Such commitments are, e.g., instantiatable
under DDH. We refer to section 6 for more details.

3 Preliminaries

3.1 Notation

For a function f : N → N we write f(λ) ≤ negl(λ) to denote that f is a negligible
function. For a list S, by writing S[·] := x, we mean the assignment of S[i] := x
for every i. We write ε to denote the empty string and ⊥ as a special symbol
denoting that a variable is undefined, i.e. X := ⊥ means that the value of X
is undefined. We assume every algorithm and oracle outputs ⊥ when run on an
input containing a variable that is set to ⊥. For an event E we write JEK = 1
if E is true, and JEK = 0 else. For a set R, we write r ← R to denote that r is
sampled uniformly at random from set R.

9 Note that masking was also used for distributed Schnorr signatures, but for a different
purpose than ours [KRT24].



Protocol notation and assumptions. We rely on trusted setup and key generation,
consistent with prior game-based definitions for threshold signatures [BCK+22,
NT24]. We use natural numbers to refer to parties participating in a protocol.

Consider a protocol run among parties from set S ⊂ N running in R rounds.
At the beginning of each round r ∈ [R], a party k ∈ S receives messages that
other parties sent to k in round r− 1 (if r > 1). Party k then performs some lo-
cal computation (which potentially updates the party’s private state), and sends
messages to other parties in the protocol. We define the local computation of a
party k in a given round r as an algorithm that takes as input the party’s state
stk, a vector of round messages (rms,r−1)s∈S and potentially some additional in-
puts. The algorithm outputs an updated (private) state stk and a round message
rmk,r. The round message represents the message being sent from k to all other
parties in S in round r.

Throughout this paper, whenever we refer to a cryptographic primitive, we
will assume it to be correct without explicitly mentioning correctness, e.g., by
“commitment scheme” we refer to a correct commitment scheme.

We recall some standard preliminaries in section A, including collision re-
sistant hash functions, (non-distributed) signatures, PRFs, and commitment
schemes.

3.2 Threshold signatures

In the following we provide the definition of (strongly) unforgeable threshold
signatures (TS).

We follow the work on threshold (blind) signatures [LNÖ25] and add a con-
text ctx as input into the threshold signing algorithm. As the name suggest, ctx
is a string representing values coming from a larger protocol using the TS scheme
as a building block. Moreover, we assume that users participating in the signing
protocol output a subsession identifier ssid in the last round of the protocol. The
purpose of this ssid is post-facto identification of a session users believe to have
participated in. Looking ahead, this is an important concept in our definition of
strong unforgeability, as it allows us to argue whether certain users completed
the same signing session. The definition does not dictate how exactly the sub-
session identifier should be set in the protocol, but it implies that ssid must be
of high min-entropy such that two different sessions result in two different ssids
(with high probability) and consistent within one session for honest users. We
elaborate on these two properties in a bit more detail in remark 1 stated after
the formal definition of TS.

Definition 1 (Threshold signatures). An R-round threshold signature scheme
TS consists of four algorithms Setup, KeyGen, Sign, Vrfy that have the following
syntax:

– Setup(1λ, N, T ): Takes as input a security parameter (in unary), a total num-
ber of users N and a threshold T , and outputs public parameters pp, which
include λ, N , T , as well as a message space M.



– KeyGen(pp): Takes as input public parameters pp and outputs a public key
pk and secret key shares (ski)i∈N . The public key pk includes the public
parameters pp and each secret key share ski includes pk.

– Sign = ((Signj)j∈[R], SigAgg): This is an interactive protocol among a set of
users S ⊆ [N ] where each participating user k ∈ S gets as input the set
of users S and a message m ∈ M, as well as a secret key share skk and
a context ctx. In addition to the public output of a signature σ, each user
also outputs a subsession identifier ssid identifying the session they believe
to have participated in.
• Signj((rmi,j−1)i∈S , stk): This is an algorithm intended to be run by a

party k ∈ S in round j ∈ [R]. It takes as input round messages rmi,j−1

of all users i ∈ S from the previous round (with rmi,0 = ε) and state
stk (with stk := (k,S,m, skk, ctx) for j = 1). It outputs a round message
rmk,j and an updated state stk. For j = R, any private state is deleted
and the state stk is set to ssid.

• SigAgg(pk,S,m, (rmi,r)i∈S,r∈[R]): Takes as input a public key pk, a set S
of participating users, the message m, and a protocol transcript (rmi,r)i∈S,r∈[R]

and outputs a signature σ.
– Vrfy(pk,m,σ): Takes as input a public key pk, a message m ∈ M, and a

signature σ, and outputs a bit b.

Definition 2 (Correctness). An R-round threshold signature TS = (Setup,
KeyGen, Sign,Vrfy) satisfies correctness if for all N, T ∈ poly(λ) with 0 < T ≤ N ,
S ⊆ [N ] with S = T , pp ← Setup(1λ, N, T ), (pk, (skk)k∈N ) ← KeyGen(pp),
m ∈ M and ctx ∈ 0, 1∗ it holds

Pr[Games−cor
TS (1λ, N, T,S, pk, (skk)k∈S ,m, ctx) = 0] ≤ negl(λ)

where the game Games−cor
TS is defined as:

Games−cor
TS (1λ, N, T,S, pk, (skk)k∈S ,m, ctx)

1. for k ∈ S: stk := (k,S,m, skk, ctx), rmk,0 := ε
2. for j ∈ [R]:
3. for k ∈ S: (rmk,j , stk) ← Signj((rmi,j−1)i∈S , stk)
4. σ ← SigAgg(pk,S,m, (rmi,j)i∈S,j∈[R])
5. output JVrfy(pk,m,σ) = 1K

In the following, we define standard as well as strong unforgeability. Standard
unforgeability guarantees that it is hard to come up with a signature for a
message for which no signing session has ever been initiated. We call this notion
standard, as it is the security notion that was used in most recent works on
threshold signature schemes (e.g., [CKM23, BLT+24]).

Our notion of strong unforgeability strengthens security guarantees in two
aspects: It guarantees that it is hard to come up with one more signature for



a message than the number of signing sessions that have been completed for
that message. How to count the number of completed sessions in a distributed
protocol, however, is non-trivial. Recently, in [LNÖ25], Lehmann et al. proposed
a hierarchy of security notions for threshold blind signatures. Our notion of
strong unforgeability for (non-blind) threshold signatures is analogous to their
strongest security notion. In a nutshell, in order to increase the counter keeping
track of the number of completed signatures for a message m, we require that all
honest users from a signer set completed the last round of an m signing session
by outputting the same subsession identifier ssid.

Our strong unforgeability notion is slightly stronger than the recent definition
by Navot and Tessaro [NT24], where a counter for a message m is increased as
soon as one honest user completes the last signing round.

Definition 3 ((Standard/Strong) unforgeability for threshold signa-
tures). An R-round threshold signature TS = (Setup,KeyGen, Sign,Vrfy) sat-
isfies strong (one-more) unforgeability if for all N,T ∈ poly(λ) with 0 < T ≤ N
and any PPT adversary A, we have

AdvsufTS,A(1
λ, N, T ) := Pr[GamesufTS,A(1

λ, N, T ) = 1] ≤ negl(λ)

where the game GamesufTS,A is defined as below, including the gray-shaded steps
and excluding the dashed red-shaded step. An R-round threshold signature TS =
(Setup,KeyGen, Sign,Vrfy) satisfies (standard) unforgeability if the same is true
for parameter ℓ set to 1 in GamesufTS,A, excluding the gray-shaded steps and in-
cluding the dashed red-shaded step.

GamesufTS,A(1
λ, N, T )

1. pp ← Setup(1λ, N, T )
2. C ← A(1λ, N, T ) // set of corrupted users C ⊆ [N ], C < T

3. (pk, (ski)i∈[N ]) ← KeyGen(pp)
4. Q[·] := ∅, S[·] := ⊥,M[·] := ⊥,R[·] := 0,RM[·] := ⊥, St[·] := ⊥,CTX := ⊥
5. ctrsid = 0, SSID = ∅
6. (m∗, (σ∗

j )j∈[ℓ]) ← AONextSes, (OSignj )j∈[R](pk, (skj)j∈C)
7. output

Jℓ > Q[m∗]  ∀i ̸= j : σ∗
i ̸= σ∗

j  ∀j ∈ [ℓ] : Vrfy(pk,m∗,σ∗
j ) = 1K

ONextSes()

1. ctrsid := ctrsid + 1
2. output sid = ctrsid

OSignj (sid, k,S,m, ctx, (rmi)i∈S) // sid ∈ [ctrsid], k ∈ S \ C, R[sid, k] = j − 1

if j = 1: ∀i ∈ S : rmi := ε

if j > 1: RM[sid, k, j − 1] = rmk,S = S[sid, k],m = M[sid, k], ctx = CTX[sid, k]



1. if j = 1 then
– S[sid, k] := S, M[sid, k] := m, CTX[sid, k] := ctx
– St[sid, k] := (k,S,m, skk, ctx)

– Q[m] := Q[m]  sid
2. (rm, st) ← Signj((rmi)i∈S , St[sid, k])
3. RM[sid, k, j] := rm, St[sid, k] := st,R[sid, k] = j
4.

if j = R, then
– ssid := st, SH := S \ C
– SSID[ssid, ctx,SH,m] := SSID[ssid, ctx,SH,m]  k
– if SH ⊆ SSID[ssid, ctx,SH,m], then Q[m] := Q[m]  ssid

5. output rm

Remark 1 (Properties of ssid). Note that we did not explicitly state any con-
sistency or uniqueness requirements on ssid. This is because these properties (to
the extend needed) are implied by the strong one-more unforgeability.

Consistency of ssid: Intuitively, if a signing session is successfully completed
(meaning that all honest parties completed the last round of signing and the
adversary is able to aggregate transcripts into a valid signature), all honest
parties should output the same ssid. We argue that such consistency property
follows from the strong one-more unforgeability. Assume for contradiction
that honest parties output different ssid’s in the same signing session of a
message m, and an adversary A aggregate to a valid signature on m. Due to
the inconsistent ssids, the completed-session counter for m is not increased.
Hence, the signature aggregated by A is a valid forgery for m.

Uniqueness of ssid: The intuitive property that one would want from ssid is
uniqueness across different signing sessions (for the same message m and
the same honest user signer set SH). Again, this property is implied by
the strong one-more unforgeability. Assume there are two completed signing
sessions for the same message m, context ctx and SH and an adversary A is
able to aggregate transcripts of both sessions into (different) valid signatures.
Moreover, assume that in both sessions, honest users output the same ssid.
Then the completed-session counter for m is increased only by one although
A is able to output two different valid signatures. Hence, the strong one-more
unforgeability is broken.

Remark 2 (Context (in)dependency). Our definition explicitly requires that within
one signing session, all honest users run with respect to the same context ctx,
i.e., we define one-more unforgeability for schemes that are context-dependant.



One could state an alternative definition in which ctx is not part of the indexing
of SSID (i.e., we would have SSID[ssid,SH,m] instead of SSID[ssid, ctx,SH,m]).
Context-dependent schemes would then be captured by such definition through
an additional requirement of ssid containing ctx.

4 Definition of Threshold Chameleon Hash Functions

In this section, we define our novel notion of threshold chameleon hash functions
(TCHF) – a distributed version of chameleon hash functions, which we recall in
the appendix A.5 for reference.

More concretely, T out of N parties can jointly execute a distributed evalua-
tion protocol DEval. As a result, each party holds a public hash value y and their
secret state is updated. For any input x∗, parties can engage in a distributed
DTrapColl protocol to find some randomness r∗ such that (x∗, r∗) hashes to y.
To this end, each party uses their secret state and their share of the trapdoor.

Following the TS definition, we add a context ctx as an additional input to
our TCHF protocol and require users to output a post-facto subsession identifier
ssid in the last round of the protocol execution. Concretely, ctx is provided as an
additional input to the distributed DTrapColl protocol, capturing the fact that
the final subsession identifier ssid might depend on values computed between
the execution of DEval and DTrapColl if TCHF is run as a building block in
a larger protocol. Looking ahead, this is exactly what happens in our generic
construction of the strongly unforgeable threshold signature scheme presented
in section 5. We only add ctx to DTrapColl and not to DEval, as we envision the
DEval procedure to be run independently of the rest of the larger protocol (as is
the case for our construction), potentially in a pre-processing phase.

Definition 4 (Threshold chameleon hash function). An (Re, Rt)-round
threshold chameleon hash function TCH consists of five algorithms Setup, Gen,
Eval, DEval, DTrapColl that have the following syntax:

– Setup(1λ, N, T ): Takes as input a security parameter (in unary), a total num-
ber of users N and a threshold T , and outputs public parameters pp (which
include λ, N , and T ).

– Gen(pp): Takes as input public parameters pp and outputs the description
ch of a function X ×R → Y (which includes pp) as well as trapdoor shares
(τi)i∈[N ] for ch.

– Eval(ch, x, r): Takes as input the description of a chameleon hash function
ch, an input x ∈ X and random coins r ∈ R, and outputs some y ∈ Y.

– DEval = ((DEvalj)j∈[Re],AggEval): This is an interactive protocol among a
set of users S ⊆ [N ] where each participating user k ∈ S gets as input the
description of a chameleon hash function ch, an input x ∈ X and the set of
participating users S. In addition to some public output y ∈ Y, the users’
secret state is updated.
• DEvalj((ermi,j−1)i∈S , stk): This is a randomised algorithm intended to be

run by party k ∈ S in round j ∈ [Re]. It takes as input messages ermi,j−1



of all users i ∈ S output in the previous round (with ermi,0 := ε), and the
user’s state stk (with stk := (k, ch,S, x) for j = 1). It outputs a round
message ermk,j and an updated state stk.

• AggEval(ch,S, x, (ermi,j)i∈S,j∈[Re]): This deterministic algorithm takes
as input the description ch of a chameleon hash function, a set S of
participating users, input x and the protocol transcript (ermi,j)i∈S,j∈[Re],
and outputs some y ∈ Y.

– DTrapColl = ((DTrapCollj)j∈[Rt],AggColl): This is an interactive protocol
among a set of users S ⊆ [N ] where each participating user k ∈ S gets
as input the description of a chameleon hash function ch, the set of partic-
ipating users S, an input x∗ ∈ X , a trapdoor share τk and a context ctx.
In addition to some public output r∗ ∈ R, each user outputs a subsession
identifier ssid indicating the session they believe to have participated in.
• DTrapCollj((trmi,j−1)i∈S , stk): This is an algorithm intended to be run by

party k ∈ S in round j ∈ [Rt]. It takes as input messages trmi,j−1 of all
users i ∈ S output in the previous round (with trmi,0 := ermi,Re

), as well
as user k’s state stk (for j = 1, the state stk consists of k’s output state
in the DEval protocol, the trapdoor share τk, a target value x∗ ∈ X , and a
context ctx , i.e. stk := (stk, τk, x

∗, ctx)). The algorithm outputs a round
message trmk,j and an updated state stk (with ssid := stk if j = Rt).

• AggColl(ch,S, x∗, (trmi,j)i∈S,j∈[Rt]): Takes as input the description ch of
a chameleon hash function, a set S of participating users, and input x∗ ∈
X , and the protocol transcript (trmi,j)i∈S,j∈[Rt], and outputs r∗ ∈ R.

Definition 5 (Correctness). An (Re, Rt)-round threshold chameleon hash func-
tion TCH = (Setup,Gen,Eval,DEval,DTrapColl) satisfies correctness if for all
N,T ∈ poly(λ) with 0 < T ≤ N , S ⊆ [N ] with S = T , pp ← Setup(1λ, N, T ),
(ch, (τi)i∈N ) ← Gen(pp), x, x∗ ∈ X , ctx ∈ 0, 1∗ it holds

Pr[Gamech−cor
TCH (1λ, N, T,S, ch, (τi)i∈S , x, x

∗, ctx) = 0] ≤ negl(λ)

where the game Gamech−cor
TCH is defined as

Gamech−cor
TCH (1λ, N, T,S, ch, (τi)i∈S , x, x∗, ctx)

1. for i ∈ S: sti := (i, ch,S, x), ermi,0 := ε,
2. for j ∈ [Re]:
3. for k ∈ S: (ermk,j , stk) ← DEvalj((ermi,j−1)i∈S , stk)
4. y ← AggEval(ch,S, x, (ermi,j)i∈S,j∈Re

)
5. for i ∈ S: trmi,0 := ermi,Re

, sti := (sti, τi, x
∗, ctx)

6. for j ∈ [Rt]:
7. for k ∈ S: (trmk,j , stk) ← DTrapCollj((trmi,j−1)i∈S , stk)
8. r∗ ← AggColl(ch,S, x∗, (trmi,j)i∈S,j∈[Rt])
9. output JEval(ch, x∗, r∗) = yK



In the following, we define security for threshold chameleon hash functions.
Our notion is selective in the sense that the adversary in the security game has
to decide a priory on the set of corrupted users (as is the case for all security
notions in the threshold setting considered in this work). However, it is target-
input adaptive in the sense that the adversary can choose the target value x∗

for which it aims to find randomness r∗ such that (x∗, r∗) hashes to the image
y of DEval after the DEval protocol was run. Our security definition consists of
three properties: collision resistance, preimage resistance and image unbiasabil-
ity. Before stating the definition formally, let us provide some intuition about
these properties (and why we need all three of them).

It is instructive to first emphasize the main difference between threshold
chameleon hash functions and their single user counterpart. Recall that the single
user evaluation algorithm Eval is a deterministic algorithm that evaluates the
chameleon hash function on some input x and it gets its random coins r explicitly
as input as well. Hence, the execution of Eval results in full knowledge of a
preimage (x, r) for an image y, and a follow-up execution of TrapColl on input
x∗ provides a second preimage (x∗, r∗) for y. Hence, (Eval,TrapColl) can be used
to generate collisions.

In contrast, the protocol DEval is a randomized protocol. While DTrapColl
might depend on the random coins users used during evaluation DEval, these
random coins not necessarily get revealed during protocol execution. In other
words, by running DEval on input x, users agree on an image y, but no user
actually learns a valid preimage for the image y. Follow-up execution of the
distributed DTrapColl protocol on input x∗ then provides a preimage (x∗, r∗) for
y. But due to the hidden coins of DEval, a collision is not implied. This is also
the reason why collision resistance is not enough in our security definition and
we need preimage resistance as an explicite additional property.

In a bit more details, let y be an image generated through a DEval proto-
col execution. Preimage resistance guarantees that unless a DTrapColl protocol
finding a preimage for y was completed, it is hard to find a preimage for y.
Similarly as in the threshold signature definition, it is not immediately obvious
how to formalize that a TCHF session was completed. We chose a very similar
approach as in the threshold signature case. Namely, we say that a DTrapColl
protocol searching for a preimage of y is completed if all honest users complete
the last round of the protocol and output the same subsession identifier ssid.

Finally, let us explain the image unbiasability property and why we need
it. At a high level, image unbiasability guarantees that running the protocol
DEval twice (even if on the same input x) results in two different output values
with high probability. This is formalized by requiring that an honest user never
aggregates DEval to the same value y twice, and that DEval sessions with different
honest user signing sets never result in the same value y. While intuitively, it
might seem that “collisions” in DEval should imply TCHF collisions, this is not
necessarily the case. There could be two sessions in which DEval results in the
same y, but we are not able to complete the DTrapColl protocol execution in



(one of) these sessions (due to inconsistent views of honest parties, abort etc.)
and hence we cannot find two different preimages for y.

The formal definition of TCHF follows.

Definition 6 (Secure Threshold Chameleon Hash Function).
An (Re, Rt)-round threshold chameleon hash function TCH = (Setup,Gen,

Eval,DEval,DTrapColl) is secure if for all N,T ∈ poly(λ) with 0 < T ≤ N , and
any PPT adversary A it holds

Pr[Gamech−sec
TCH,A(1

λ, N, T ) = 1] ≤ negl(λ)

where the game Gamech−sec
TCH,A is defined as

Gamech−sec
TCH,A(1

λ, N, T )

1. C ← A(1λ, N, T ) // set of corrupted users C ⊆ [N ], C < T

2. ctrsid := 0, S[·] := ⊥, St[·] := ⊥, CTX := ⊥
// initialise sid counter and lists of user sets, user states and
user contexts

3. Xe[·] = ⊥, Re[·] := 0, RMe[·] := ε, Ye[·] := ⊥ // initialise lists of
inputs, user rounds, user round messages (sent and received) for
DEval, and user results of AggEval.

4. Xt[·] := ⊥, Rt[·] := 0, RMt[·] := ⊥ // initialise lists of target
inputs, user rounds, user round messages for DTrapColl

5. Agg := ∅, Cmpl := ∅, dCollision := false // initialize sets
of aggregated and completed values, and a variable for DEval

collisions
6. pp ← Setup(1λ, N, T ), (ch, (τi)i∈N ) ← Gen(pp)

7. (x, r, x∗, r∗) ← AONextSes, (ODEvalj )j∈[Re],OAggEval, (ODTrapCollj )j∈[Rt](ch, (τi)i∈C)
8. output 1 iff one of the three conditions below is satisfied:

Collision resistance:
Eval(ch, x, r) = Eval(ch, x∗, r∗)  (x, r) ̸= (x∗, r∗)
// A found a collision

Preimage resistance:
(y, ·, ·) ∈ Agg and y ∈ Cmpl for y = Eval(ch, x∗, r∗)
// A found a preimage for an incompleted session.

Image unbiasability:
dCollision = true
// Two DEval sessions were aggregated to the same value.

ONextSes()

1. ctrsid := ctrsid + 1
2. output sid = ctrsid



ODEvalj (sid, k,S, x, (ermi)i∈S) // sid ∈ [ctrsid], k ∈ S \ C, S = T,Re[sid, k] =

j − 1

if j = 1: ∀i ∈ S : ermi = ε, x ∈ X
if j > 1: RMe[sid, k, k, j − 1] = ermk, S = S[sid, k], Xe[sid, k] = x

1. if j = 1 then S[sid, k] := S, St[sid, k] := (k, ch,S, x)
2. ∀i ∈ S[sid, k] : RMe[sid, k, i, j − 1] := ermi

3. (erm, st) ← DEvalj((ermi)i∈S[sid,k], St[sid, k])
4. RMe[sid, k, k, j] := erm, St[sid, k] := st, Re[sid, k] := j
5. output erm

OAggEval(sid, k, (ermi)i∈S[sid,k]) // sid ∈ [ctrsid], k ∈ S[sid, k] \ C, Re[sid, k] =

Re, RMe[sid, k, k, Re] = ermk, Ye[sid, k] = ⊥

1. S := S[sid, k], x := Xe[sid, k]
2. ∀i ∈ S: RMe[sid, k, i, Re] := ermi

3. y ← AggEval(ch,S, x, (RMe[sid, k, i, j])i∈S,j∈[Re])
4. if y = ⊥ then output ⊥
5. if (y, ·, k) ∈ Agg  (∃S ′ s.t. (y,S ′, ·) ∈ Agg and k ∈ S ′) then

dCollision = true // Earlier DEval aggregation to y by k or with
different honest user

6. Ye[sid, k] := y, Agg = Agg  (y,S, k)

ODTrapCollj (sid, k, x∗, ctx, (trmi)i∈S[sid,k]) // sid ∈ [ctrsid], k ∈ S[sid, k] \
C, Rt[sid, k] = j − 1, Ye[sid, k] ̸= ⊥
If j = 1: x∗ ∈ X , ∀i ∈ S[sid, k]: trmi = RMe[sid, k, i, Re]

If j > 1: x∗ = Xt[sid, k], ctx = CTX[sid, k], trmk = RMt[sid, k, j − 1]

1. if j = 1 then Xt[sid, k] := x∗, CTX[sid, k] := ctx, St[sid, k] :=
(St[sid, k], τk, x

∗, ctx)
2. (trm, st) ← DTrapCollj((trmi)i∈S[sid], St[sid, k])
3. RMt[sid, k, j] := trm, St[sid, k] := st, Rt[sid, k] := j
4. if j = Rt then

(a) ssid := st, SH := S[sid, k] \ C, y := Ye[sid, k], ctx := CTX[sid, k]
(b) SSID[ssid, ctx,SH, y] := SSID[ssid, ctx,SH, y]  k
(c) if SH ⊆ SSID[ssid, ctx,SH, y], then Cmpl := Cmpl  y

5. output trm

Remark 3 (Properties of ssid). Very similarly to the definition of Threshold Sig-
natures (c.f. remark 1), consistency and uniqueness of ssid’s is implied by the
security properties of TCH (concretely preimage resistance and image unbiasabil-
ity).

For the proof of our generic construction, it is useful to realize that if a
threshold chameleon hash function satisfies image unbiasability, every value y



can be added to Cmpl only once. This is formalized and proven by the following
technical lemma.
Lemma 1. Assume a threshold chameleon hash function satisfying image unbi-
asability. Then the following implication holds:

y ∈ Cmpl ⇒ ∃!(ssid, ctx,SH) : SH ⊆ SSID[ssid, ctx,SH, y]

Proof. By definition of the set Cmpl, if y ∈ Cmpl, then there exists (ssid, ctx,SH)
such that SH ⊆ SSID[ssid, ctx,SH, y] and ∀k ∈ SH; ∃S such that SH ⊆ S \
C and (y,S, k) ∈ Agg. In other words, all users from the set SH aggregated
DEval to y, and in that session completed DTrapColl executed in the context ctx
by outputting the subsession identifier ssid. We need to show that the image
unbiasability property implies that the triple (ssid, ctx,SH) is unique.

The first condition of image unbiasability says that an honest party never
aggregates to y twice. Hence, if an honest party k ∈ SSID[ssid, ctx,SH, y], then
k ̸∈ SSID[ssid′, ctx′,S ′

H, y] for any (ssid′, ctx′,S ′
H) ̸= (ssid, ctx,SH). This means

that if there are two different tuples (ssid, ctx,SH) and (ssid′, ctx′,S ′
H), the honest

user sets SH and S ′
H must be disjoint. But this implies that there must exist

honest users k ̸= k′ and user sets S,S ′ with SH = S \ C, S ′
H = S ′ \ C and

SH  S ′
H = ∅ such that (y,S, k), (y,S ′, k′) ∈ Agg. Assume (y,S ′, k′) was added

to Agg before (y,S, k). Since k ∈ S ′, this gives a contradiction to the second
property of image unbiasability. Thus, the triple (ssid, ctx,SH) satisfying the
property of the claim must be unique.

5 Generic Transformation to Strong Unforgeability

In this section, we describe our generic transformation that turns a (standard)
unforgeable threshold signature scheme into a strongly unforgeable threshold sig-
nature scheme utilizing the novel distributed primitive of threshold chameleon
hash functions introduced in the previous section. We recommend the reader to
follow the high-level pseudo-code description of the protocol given in fig. 2 and
the right part of fig. 1 while reading the following description. We stress that
the distributed signing is described at a high level here and excludes somewhat
tedious but important details (i.e., how state is passed between different dis-
tributed building blocks). We present our protocol round-by-round in section B.

Let Σ̃ be an unforgeable threshold signature scheme and H a collision-resistant
threshold chameleon hash function with input space XH. Moreover, let h be a
collision-resistant hash function mapping Σ̃ signatures to XH. We construct a
strongly unforgeable threshold signature scheme Σ = (ΣSetup,ΣGen,ΣSign,
ΣVrfy) as follows.

Basic protocol description. The ΣSetup algorithm simply runs the setup al-
gorithms of the building block primitives and outputs public parameters pp
consisting of the public parameters of the building blocks.

The key generation algorithm ΣGen on input the public parameters pp first
executes the (key) generation algorithms of the building block primitives. Then



it chooses an input value x′ ∈ X uniformly at random. The output public key
pk consists of the public parameters pp, the chosen threshold chameleon hash
function chH, the public key for Σ̃, the chosen hash function fh and the fixed
input value x′. Each secret key share ski consists of the public key, a secret key
share ski for Σ̃ and a trapdoor share τi for chH.

The signing algorithm ΣSign on input a signer set S, the message m and
context ctx, firstly executes the distributed evaluation of the hash function chH
on input x′ (which was fixed during key generation). As a result, each user i ∈ S
possesses an output y and a private state esti. Thereafter, users engage in a
distributed signing protocol of Σ̃, signing the message y∥m. After completion of
the signing process, users hold the signature σ̃. Each party can now locally eval-
uate fh on σ̃ to obtain x. Finally, parties jointly run the distributed HDTrapColl
protocol to find rH such that HEval(H, x, rH) = y, thereby closing the signing cir-
cle. Importantly, parties initiate HDTrapColl with their private state containing
their private output state esti from the HDEval protocol. They run the protocol
in the context ctxt = (ctx,m), i.e., the context of the overall signing protocol
and the message m being singed. The output of the signing protocol is a signa-
ture σ = (σ̃, rH). Recall that by definition the final state of each party defines
the subsession identifier ssid of the given party. In our construction ssid is set
to be the subsession identifier output by the party in the HDTrapColl protocol
together with the target output value y.

The verification algorithm ΣVrfy is rather straightforward. The algorithm
simply parses the signature, recomputes the value x by evaluating fh on σ̃ and
computes y by evaluating chH on x and randomness rH. Finally, it verifies that
σ̃ is a valid signature for the message y∥m.

Before stating and proving security of our generic construction, let us make
a few remarks.
Remark 4. First, note that the HDEval protocol is completely independent of
any input parameters (in particular, also the context ctx) except for the set of
signers. Hence, this part of the signing protocol can be run in a pre-processing
phase, even before the message m to be signed is known. The Σ̃Sign protocol, on
the other hand, is independent of the TCHF H, i.e. it only relies on the output y
of HDEval but not on any H-related parameters or the secret state users derive
during HDEval execution. Finally, the HDTrapColl protocol only relates to the
TS Σ̃ through the hash of the signature σ̃ as well as the context ctxt, that
in addition to ctx also contains the message m to be signed. In contrast, the
HDTrapColl protocol strongly relates to the HDEval protocol and in particular
all secret user states esti.

It is easy to see that Σ satisfies correctness if the underlying primitives
do. In the remainder of this section, we focus on the security of our generic
transformation.
Theorem 1. If in Construction 2 all building blocks satisfy (the primitive-
specific notions of) correctness and

– Σ̃ is a (standard) unforgeable threshold signature scheme,



ΣSetup(1λ, N, T ):

1. ppH ← HSetup(1λ)
2. ppΣ̃ ← Σ̃Setup(1λ, N, T )
3. pph ← hSetup(1λ)
4. Output pp := (ppH, ppΣ̃ , pph)

ΣGen(pp):

1. (chH, τii∈[N ]) ← HGen(ppH)

2. (pk, skii∈[N ]) ← Σ̃KeyGen(ppΣ̃)
3. fh ← hGen(pph)
4. x′ ← X
5. Output pk := (pp, chH,pk, , fh, x′)

ski := (pk, ski, τi)i∈[N ]

ΣSign(S,m, skii∈S , ctx):

1. (y, estii∈S) ← HDEval(chH,S, x′)

2. (σ̃, s̃sid) ← Σ̃Sign(skii∈S , y ∥ m,S, ctx)
3. x := fh(σ̃)
4. ctxt := (ctx,m)
5. (rH, ssidt) ← HDTrapColl(chH,S, x, τii∈S , estii∈S , ctxt)
6. Output σ = (σ̃, rH), ssid = (ssidt, y)

ΣVrfy(pk,m,σ):

1. Parse σ as (σ̃, rH)
2. y ← HEval(chH, fh(σ̃), rH)

3. Output JΣ̃Vrfy(pk, y ∥ m, σ̃) = 1K

Fig. 2. A simplified description of our generic construction of a strongly unforgeable
threshold signature scheme. See Figure 5 for the complete round-by-round formal pro-
tocol description.

– H is a secure threshold chameleon hash function,
– h is a collision-resistant hash function,

then the threshold signature scheme Σ satisfies strong unforgeability.

Proof. Assume A succeeded in providing a valid forgery (m∗, (σ∗
k)k∈[ℓ]) for some

parameter ℓ, where all ℓ signatures are pairwise distinct. We can parse the sig-
natures as σ∗

k = (σ̃∗
k, r

∗
H,k), and set x∗

k := fh(σ̃
∗
k) and y∗k := HEval(x∗

k, r
∗
H,k).

We define the following four events:

– Eforgery : ∃i ∈ [ℓ] s.t. no Σ̃ signing session for y∗i ∥m∗ has ever been started in
the view of any honest user.

– Ecol−h: ∃i, j ∈ [ℓ], σ̃∗
i ̸= σ̃∗

j  x∗
i = x∗

j

– Ecol−H: ¬Ecol−h  ∃i, j ∈ [ℓ], i ̸= j : y∗i = y∗j
– Epreim = ¬Eforgery  ¬Ecol−h  ¬Ecol−H.

If Eforgery happens, we can reduce to unforgeability of the signature scheme Σ̃. If
event Ecol−h occurs, we reduce to collision resistance of h. If event Ecol−H occurs,
we reduce to collision resistance of H. If none of the three events happen, we
reduce to preimage resistance and output unbiasability of H. We prove this in
Lemmata 2, 3, 4, 5.

Lemma 2. Event Eforgery occurs with negligible probability due to unforgeability
of Σ̃.

Proof. The reduction simulates the game just as an honest challenger does, ex-
cept for the parameters and keys corresponding to Σ̃, for which it embeds the



challenge parameters and public key. It simulates queries to the signing oracles
of Σ via the signing oracles of Σ̃. The simulation is perfect. If the adversary
initiates q signing sessions for Σ, then the reduction initiates at most q signing
sessions for Σ̃. In the end of the game, since there exists some i ∈ [ℓ] such that
y∗i ∥m∗ has never been queried to Σ̃Sign, the reduction forwards (y∗i ∥m∗, σ̃∗

i ) as
a valid forgery. This breaks unforgeability of Σ̃.

Lemma 3. Event Ecol−h occurs with negligible probability under collision resis-
tance of h.

Proof. The reduction simulates the game just as an honest challenger does, ex-
cept for the public parameters corresponding to h and the function description,
for which it embeds the challenge parameters and challenge function description.
It answers signing queries exactly as a challenger does and hence the simulation
is perfect. In the end of the game, since there exists some i, j ∈ [ℓ] such that
σ̃∗
i ̸= σ̃∗

j  x∗
i = x∗

j , the reduction forwards (σ̃∗
i , σ̃

∗
j ) as a collision. This breaks

the collision-resistance of h.

Lemma 4. Event Ecol−H occurs with negligible probability under collision resis-
tance of H.

Proof. The reduction simulates ΣSetup and ΣGen just as an honest challenger
does, except for the parameters and function description corresponding to H, for
which it embeds the challenge parameters and function description.

To simulate the signing oracles, the reduction uses the HDEval and HTrapColl
oracles provided by the collision resistance challenger for H (cf. definition 6).

– For each fresh signing session, i.e., A calls the ΣNextSes oracle, make a query
to the HNextSes oracle.

– For each query the adversary makes to a ΣSignj oracle for a round j that
belongs to the block of rounds where HDEval is evaluated, use the respec-
tive HDEvalj oracles to compute the respective output. This simulation is
perfect.

– For aggregation just follow the honest protocol.
– Engage in the signing protocol on behalf of honest parties to distributedly

compute σ̃. This simulation is perfect because, while in an honest execu-
tion of the protocol users keep their state from the HDEval protocol during
Σ̃Sign, the Σ̃Sign part of the protocol only depends on the output of the
HDEval-protocol and not on secret internal state derived during HDEval as
discussed already in remark 4.

– Perform the evaluation of h according to the honest protocol.
– Simulate the HDTrapColl part of signing via the HDTrapCollj oracle. Again,

this simulation is perfect, because the HDTrapColl rounds in ΣSign only
depend on σ̃, m∗ and the HDEval-dependent parts of each user’s state.

We will now argue how a collision for H can be extracted from the forgery
given that we assume that Ecol−H happened. Recall that the event is defined as

¬Ecol−h  ∃i, j ∈ [ℓ], i ̸= j : y∗i = y∗j 



The condition ¬Ecol−h implies that ∀i, j ∈ [ℓ] : σ̃∗
i = σ̃∗

j  x∗
i ̸= x∗

j  Hence, we
know that there exist i, j ∈ [ℓ] i ̸= j such that either

1. σ̃∗
i = σ̃∗

j  y∗i = y∗j or
2. x∗

i ̸= x∗
j  y∗i = y∗j .

In both cases, (x∗
i , r

∗
H,i) and (x∗

j , r
∗
H,j) form an H collision. In the latter case,

this is immediate to see as x∗
i ̸= x∗

j . In the former case, this follows from the
fact that the forgery of the adversary contains ℓ pairwise distinct signatures
σ∗
1 ,    ,σ

∗
ℓ . Recall that the signatures are of the form σ∗

i = (σ̃∗
i , r

∗
H,i). Hence if

σ̃∗
i = σ̃∗

j , it must hold that r∗H,i ̸= r∗H,j .

Lemma 5. Event Epreim occurs with negligible probability under preimage resis-
tance and image unbiasability of H.

Proof. The reduction simulates the game exactly as in lemma 4. We will now
argue how a preimage for H can be extracted from a forgery given that we assume
that Epreim happened. Recall that

Epreim = ¬Eforgery  ¬Ecol−h  ¬Ecol−H

Since ¬Ecol−h  ¬Ecol−H, we know that y∗i ̸= y∗j for all i, j ∈ [ℓ], i ̸= j. The
condition ¬Eforgery implies for each i ∈ [ℓ], there is a user that started a Σ̃
signing session on a message y∗i ∥m∗. Hence, this user aggregated the transcript
of DEval to y∗i in an m∗ signing session. Consequently, we know that for all
i ∈ [n], (y∗i , ·, ·) ∈ Agg. Our goal is to show that there exists i ∈ [ℓ] such that
y∗i ̸∈ Cmpl and hence the forgery breaks preimage resistance.

For contradiction, assume that for all i ∈ [ℓ] it holds that y∗i ∈ Cmpl.
By lemma 1, this implies that for every i ∈ [ℓ] there exists a unique tuple
(ssidi, ctxi,SH,i) such that

SH,i ⊆ SSID[ssidi, ctxi,SH,i, y
∗
i ] (1)

where SSID is the set from the end of the security game of the CHF security
definition, ssidi is the output of parties after TrapColl, ctxi is the context in
which TrapColl was run and SH,i is the set of honest parties participating in the
TrapColl protocol.

By our construction, we know that ctxi = (ctx
(Σ)
i ,m∗), where ctx

(Σ)
i is the

context in which the whole signature scheme Σ is run. Moreover, we know that
honest parties output a subsession identifier ssid(Σ)

i which is equal to the subses-
sion identifier output by the party after TrapColl and y∗i , i.e, ssid(Σ)

i = (ssidi, y
∗
i ).

The honest signer set S(Σ)
H,i in Σ is the same as in the underlying TrapColl pro-

tocol (i.e., S(Σ)
H,i = SH,i). Finally, the last round of Σ is the last round of the

TrapColl protocol. Hence, we have
Hence eq. (1) implies that for every i ∈ [ℓ]

S(Σ)
H,i ⊆ SSID(Σ)[ssid

(Σ)
i , ctx

(Σ)
i ,S(Σ)

H,i ,m
∗]



and therefore ssid
(Σ)
i ∈ Q[m∗], where Q[m∗] denotes the set of ssids for which

a signing session fo m∗ was completed by the end of the security game, as
defined in the security definition of TS. As we assume that all the ℓ target
output value y∗i are pairwise distinct, then so are all the ℓ subsession identifiers
ssid

(Σ)
i = (ssidi, y

∗
i ). This implies that Q[m∗] ≥ ℓ which is a contradiction with

one-more unforgeability of Σ.

6 Group-based Instantiation

We present our threshold CHF instantiation based on prime-order groups. It
is based on the CHF by [KR00], where the images are Pedersen commitments
Y = xG + rH of the message. Our modification allows to prove input-adaptive
collision resistance.

6.1 Preliminaries

Let GenG be an algorithm that on input 1λ, outputs a description of a group G,
together with a generator G and G’s order p. We use additive group notation
and denote group elements G ∈ G by capital letters. We denote Zp elements by
lowercase letters.

Definition 7 (DL). The discrete logarithm (DL) assumption states that for
any PPT adversary A, it holds for (G, G, p) ← GenG(1λ) that

Pr[A(G, xG) = x  x ← Zp] = negl(λ)

We recall T -out-of-N Shamir’s secret sharing over Zp [Sha79]. Let s ∈ Zp

denote the to-be-shared secret. Then, SShareN,T,Zp
(s) proceeds as follows on

input x:

1. sample a random degree T −1 polynomial of P ∈ Zp[X] such that P (0) = x,
2. output shares (xi)i∈[N ], where xi := P (i).

We denote the lagrange coefficients by LS,i =
∏

j∈S\{i}
−j
i−j . Let S ⊆ [N ] be an

arbitrary subset of size at least T . Note that the s can be reconstructed via

s =
∑

i∈[S]

LS,i · si

6.2 Threshold Chameleon Hash

We introduce our threshold chameleon hash function based on the Discrete Log-
arithm (DL) assumption.

Let COM be an equivocable and extractable commitment scheme. Let SIG
be a EUF-CMA secure signature scheme. Let PRF be a pseudorandom function
that maps from 0, 1ℓ+1 into Zp where ℓ is the bit-size required to represent



ssid and ctx in our construction (cf. fig. 3). Let seedi = (seedi,j , seedj,i)j∈[N ]\{i}
be a tuple of random strings. For some subset S ⊆ [N ], denote by seedi[S] =
(seedi,j , seedj,i)j∈S\{i}. Also, let ZeroShare denote the algorithm (implicitly pa-
rameterized by PRF) that on input seedi[S] and arbitrary str ∈ 0, 1ℓ+1 outputs

ZeroShare(seedi[S], str) :=
∑

j∈S\{i}
(PRFseedj,i(str)− PRFseedi,j (str)) mod p

Observe that


i∈S ZeroShare(seedi[S], str) = 0. As in [DKM+24], we employ
ZeroShare to generate zero-shares in order to mask the user outputs in our dis-
tributed protocol. We describe our construction TCH in fig. 3.

Security Analysis. We start by giving some intuition for the security of our
group-based construction.

Collision resistance. Observe that if it is possible to simulate the game with-
out trapdoors (shi)i∈S , then any collision allows to solve DL (either of H0

or H1). However, some private information seems required to simulate the
DTrapColl oracle. This is because the image Y is determined before the input
x∗ in DTrapColl is provided. Therefore, the game must be able to produce a
valid preimage of Y given any x∗. However, preimage resistance implies that
this must be hard except if DTrapColl is invoked which relies on (shi)i∈S .
The core insight is that it is sufficient to either know h−1

0 or h−1
1 to simulate

DTrapColl. This is because we can open Y to x∗ as follows

Y = xG+ r0H0 + r1H1

= x∗G+ (h−1
0 · (x− x∗) + r0)H0 + r1H1

= x∗G+ r0H0 + (h−1
1 · (x− x∗) + r1)H1

Also, the view of the adversary A is independent of whether h−1
0 or h−1

1 was
employed for the simulation. Hence any collision-finder A allows to recover
the DL of H1−b if h−1

b was used in the simulation. Interestingly, the commit-
and-open protocol to establish R =


i∈S Ri is not required for collision

resistance.
Preimage resistance. Roughly, we must show that it is hard to find a preim-

age for Y output by AggEval without following the DTrapColl protocol. This
seems to contradict the intuition given above: the simulator must be able to
come up with arbitrary preimages for Y . However, the preimage found by
A is for some Y established in an unfinished session. We can therefore guess
which session is unfinished and embed a discrete logarithm challenge Ỹ into
AggEval by employing the properties of COM. We show that simulation of
unfinished sessions is possible even for such misformed outputs Ỹ in DEval. If
we further know the discrete logarithm of H0 and H1, then any TCH opening
to Ỹ allows to compute its discrete logarithm.

Image unbiasability. At a first glance, this seems to follows immediately by
the properties of COM. While the corrupted users k ∈ C must commit to Rk



TCHSetup(1λ, N, T ):

1. Set (G, G, p) ← GenG(1λ)
2. Output pp = (G, G, p,N, T )

TCHEval(ch, x, (r0, r1)):

1. Output Y ← xG+ r0H0 + r1H1

TCHGen(pp):

1. Set Hb := hbG for hb ← Zp, b ∈ 0, 1
2. (shi)i∈[N ] ← SShareN,T,Zp(h

−1
0 mod p)

3. ∀i ∈ [N ]:
randi,j ← 0, 1λ for j ∈ [N ]
seedi,j = i∥j∥randi,j for j ∈ [N ]
seedi := (seedi,j , seedj,i)j∈[N ]\{i}

4. Set cki ← COMSetup(1λ) for i ∈ [N ]
5. Set (pki, ski) ← SIGSetup(1λ)
6. Set ch := (H0, H1, (cki, pki)i∈[N ])
7. Set τi := (shi, ski, seedi)
8. Output (ch, (τi)i∈[N ])

TCHDEval1((erm0,i)i∈S , estk):
// estk := (k, ch,S, x), ∀i ∈ S : erm0,i = ε

1. ∀b ∈ 0, 1
Sample rb,k ← Zp

Set Rb,k := rb,kHb

2. Set Rk := R0,k +R1,k

3. (cmtk, decmtk) ← COMCommit(ckk, Rk)
4. Add (cmtk, decmtk, (Rb,k, rb,k)b∈{0,1}) to estk
5. Output (erm1,k := cmtk, estk)

TCHDEval2((erm1,i)i∈S , estk):
// estk := (cmtk, decmtk, (Rb,k, rb,k)b∈{0,1}, k,
ch,S, x), ∀i ∈ S : erm1,i = cmti

1. Set µk := x∥k∥S∥Rk∥(cmti)i∈S
2. Compute σk ← SIGSign(skk, µk)
3. Set erm2,k ← (decmtk, Rk,σk)
4. Replace cmtk with (cmt)i∈S in estk.
5. Output (erm2,k, estk)

TCHDTrapColl1((erm2,i)i∈S , estk):
// estk := ((cmti)i∈S , decmtk, (Rb,k, rb,k)b∈{0,1}, k,
ch,S, x, τk, x∗, ctx), ∀i ∈ S : erm2,i = (decmti, Ri,σi)

1. If ∃i ∈ S : COMVerify(cki, cmti, Ri, decmti) =
0, return ⊥.

2. If ∃i ∈ S : SIGVrfy(pki, µi,σi) = 0 for µi =
x∥i∥S∥Ri∥(cmtj)j∈S , return ⊥.

3. Set ssid := S∥x∥x∗∥(Ri)i∈S
4. ∀b ∈ 0, 1

Set ∆b,k ← ZeroShare(seedk[S], b∥ssid∥ctx)
5. Set z0,k := LS,k · shk · (x− x∗) + r0,k +∆0,k

6. Set z1,k := r1,k +∆1,k

7. Output (trmk,1 := (z0,k, z1,k), ssid)

TCHAggEval(ch,S, x, ermi,1, ermi,2i∈S):
// erm1,i = cmti, erm2,i = (decmti, Ri,σi)

1. If ∃i ∈ S : COMVerify(cki, cmti, Ri,
decmti) = 0, return ⊥.

2. If ∃i ∈ S : SIGVrfy(pki, µi,σi) = 0 for
µi = x∥i∥S∥Ri∥(cmtj)j∈S , return ⊥.

3. Set R :=
∑

i∈S Ri

4. Return Y := xG+R

TCHAggColl(ch,S, x∗, trmi,1i∈S):
// trmk,1 = ((z0,k, z1,k))

1. r∗b =
∑

i∈S zb,i for b ∈ 0, 1
2. Return (r∗0 , r

∗
1)

Fig. 3. Our group-based threshold chameleon hash. We assume that if parsing fails,
then the algorithm outputs ⊥. We denote by LS,k the Lagrange coefficient.

in the first round, honest user keys can be set up in equivocable mode, in
which case the honest contributions Rk for k ∈ H are revealed only in the
second round. As at least one Rk is honestly chosen in each signing session
and has high min-entropy, the aggregated value R = xG +


k∈S Rk for a

priori chosen x will not appear twice, except with negligible probability.
However, this argument crucially relies on the views of all honest users in S
being consistent in every session. We ensure that through attaching a signa-
ture on x∥k∥S∥Rk∥(cmti)i∈S to the round message at the end of TCHDEval2
and enforcing that TCHAggEval and TCHDTrapColl1 abort if one of the sig-



natures is not valid. This avoids correlations between sessions, and prevents
that the adversary opens commitments freely in equivocation mode: Now,
the adversary is forced to reuse the opening that was signed by the honest
user. We now argue that any pair of sessions aggregates to the same value
with at most negligible probability. There are two cases how an adversary
could break image unbiasability:
Case 1: the same honest user aggregates to Y in different sessions. We guess

this user k and set up the commitment key ckk in equivocable mode, all
other commitment keys we set up in extractable mode. The user k then
samples commitments in TCHDEval1 and equivocates them to a random
nonce Rk in TCHDEval2. Due to the signature check, the adversary must
open the commitments cmtk, cmtk of the two sessions via the TCHDEval2
oracle and it obtains nonces Rk and Rk. As commitments of all the other
users (including the honest users ones) are set up in extractable mode
and input x is part of the users state, the respective nonces Ri are fixed
already by the commitments input to the TCHDEval2 oracle. Hence the
choice of Rk determines the aggregated value Y . When Rk is later chosen
at random in the TCHDEval2 call of the other session, the probability
that the aggregated value Y is equal to Y is negligible.

Case 2: different honest users aggregate to Y and Y in sessions with distinct
user sets such that Y = Y . The same entropy argument as above works,
however, we must identify appropriate calls to TCHDEval2 carefully.
Because the signer sets are different and bound to the commitments
through the signature, there must be two distinct TCHDEval2 calls that
determine the aggregated Y and Y . As such, the nonces Rk and Rk in
these distinct calls randomize Y and Y across sessions, dependent on the
order of the TCHDEval2 calls.

Note that the masking via ZeroShare implicitly ensures that users must agree
on ssid (similar to [KRT24, LNÖ25]): if the values in ssid disagree, then the
outputs by DTrapColl look uniform and therefore reveal no critical information.
Theorem 2. The scheme in fig. 3 is a (2, 1)−threshold chameleon hash satisfy-
ing correctness, collision resistance, preimage resistance and unbiasability under
the security of PRF, extractability and equivocability of COM, unforgeability of
SIG, and the DL assumption.
Proof. Correctness is straightforward and follows from the definition of ZeroShare
and SShare. That is, for Y = xG+ r0H0 + r1H1 with rb =


k∈S rb,k, b ∈ 0, 1,

we have

x∗G+ r∗0H0 + r∗1H1

=x∗G+ (
∑

k∈S
(LS,k · shk · (x− x∗) + r0,k +∆0,k))H0 + (

∑

k∈S
(r1,k +∆1,k))H1

=x∗G+ (h−1
0 · (x− x∗) +

∑

k∈S
r0,k)H0 + (

∑

k∈S
r1,k)H1

=xG+ r0H0 + r1H1 = Y



as


i∈S ∆b,k = 0 and h−1
0 =


k∈S LS,k · shk. In the remaining, let us prove

security of TCH (cf. definition 6). For this, we define three events depending on
the behavior of adversary A.

– EA,1: the event that A breaks collision resistance, i.e., Eval(ch, x, (r0, r1)) =
Eval(ch, x∗, (r∗0 , r

∗
1)) and (x, (r0, r1)) ̸= (x∗, (r∗0 , r

∗
1)).

– EA,2: the event that A breaks preimage resistance, i.e., (y, ·, ·) ∈ Agg and
y ∈ Cmpl for y = Eval(ch, x∗, (r∗0 , r

∗
1)).

– EA,3: the event that A breaks image unbiasability, i.e., dCollision = true.

Below, we assume that one of the above events occurs and bound the probability
of this event occurring with negligible probability. The statement follows.

Below, let N > T ∈ N and let A be a PPT adversary against security of
TCH. We denote by C the set of corrupted users, and by H the set of honest
users. For any S ⊆ [N ], denote SC = S  C and SH = S  H. Also, we denote
by Q the number of started sessions. We proceed via game hops and denote by
εi the probability that A wins in Game i. For ℓ ∈ 1, 2, 3, we denote by εℓ.0
the probability that A triggers event EA,ℓ. Thus, the probability that A breaks
security of the construction can be bounded by ε :=


ℓ∈{1,2,3} εℓ.0. We proceed

via game hops to bound the probabilities εℓ.0, where we define starting games
Game ℓ0 for each ℓ as the honest game Gamech−sec

TCH,A(1
λ, N, T ) and denote by εℓ.i

the probability that A triggers event EA,ℓ in Game ℓi.

Collision resistance. Let us show collision resistance. Below, we bound the prob-
ability that event EA,1 occurs.

Game 1.0. This is the honest game Gamech−sec
TCH,A(1

λ, N, T ). By definition, the
adversary A succeeds in Game 1.0 with probability at most

ε1.0 := Pr[EA,1]

Game 1.1. In this game, the game aborts if the adversary’s collision (x, (r0, r1),
x∗, (r∗0 , r

∗
1)) is valid and satisfies r1 − r∗1 ̸= 0. Call this event E1.

Let us show that Pr[E1] = negl(λ) under the DL assumption. For this,
observe that h1 is not needed to simulate Game 1.0 except to setup H1.
Therefore, the DL reduction simply sets H1 equal to its DL challenge. If
r1 − r∗1 ̸= 0 in A’s collision, then the reduction outputs (x − x∗ + (r0 −
r∗0)h0) · (r∗1 − r1)

−1 as the DL for H1. This will be a valid DL for H1 as we
have

xG+ r0H0 + r1H1 = x∗G+ r∗0H0 + r∗1H1

=⇒ (x− x∗)G+ (r0 − r∗0)h0G = (r∗1 − r1)H1

=⇒ (x− x∗ + (r0 − r∗0)h0) · (r∗1 − r1)
−1G = H1,

Moreover, we know that (x − x∗ + (r0 − r∗0)h0) ̸= 0. This follows because
if (x − x∗ + (r0 − r∗0)h0) = 0 then (r∗1 − r1) would be a zero divisor, which
cannot be possible because (r∗1 − r1) ∈ Zp \ 0 and p prime. Hence the



reduction outputs a valid DL for H1 and hence the reduction’s advantage on
DL is identical to Pr[E1], i.e.,

ε1.0 − ε1.1 ≤ negl(λ)

Next, our goal is to show that event E0, defined as r0− r∗0 ̸= 0, also does not
occur except with negligible probability. If so, then A’s advantage on finding a
collision is 0 as E0 and E1 does not occur. For this, our goal is to simulate the
game via h1 without knowing h0.

Note that ssid is unique in ODTrapColl1 for user k (i.e., user k never obtains the
same ssid twice in a non-aborting call to ODTrapColl1), except if the game samples
twice an identical Rk in ODEval1 . The latter occurs with probability at most
Q2p, where Q is the number of ODEval1 invocations, by a standard birthday
bound argument. In consequence, every honest user executes ODTrapColl1 with
ssid at most once. In the following, we use this fact implicitly to define values for
each user with respect to ssid that occurs in ODTrapColl1 . By the above discussion,
these values are well-defined.

Game 1.2. The game initializes empty tables UnCollHS[·] = ⊥,PartialMask[·] =
⊥,Mask[·] = ⊥ and MaskedResp[·] = ⊥ in the beginning. These tables are
updated in ODTrapColl1 to store the following.

– UnCollHS[ssid, ctx] stores the set of honest users that have not executed
ODTrapColl1 with ssid yet.

– PartialMask[b, ssid, ctx, i, j] stores the partial masks mb,i,j = PRFseedi,j (b∥
ssid∥ctx) for honest users i, j ∈ H used within ZeroShare.

– Mask[b, ssid, ctx, k] stores the zero share ∆b,k.
– MaskedResp[b, ssid, ctx, k] stores the masked response zb,k.

Recall that SC = S  C and SH = S  H. We also unroll the definition of
ZeroShare, i.e., the game samples

∆b,k ←
∑

j∈SC

(PRFseedk,j
(b∥ssid∥ctx)− PRFseedj,k(b∥ssid∥ctx))+

∑

j∈SH

(PartialMask[b, ssid, ctx, k, j]− PartialMask[b, ssid, ctx, j, k]),

and stores ∆b,k in Mask[b, ssid, ctx, k]. This game change is purely syntactic
if ssid is unique (as discussed above), and we have

ε1.1 − ε1.2 ≤ Q2p

Game 1.3. The game samples random values for the partial masks mb,i,j stored
in PartialMask for honest users i, j ∈ H and b ∈ 0, 1. That is, if PartialMask[b,
ssid, ctx, i, j] = ⊥, it samples mb,i,j ← Zp and sets PartialMask[b, ssid, ctx, i, j] =
mb,i,j .
Clearly, we have by security of PRF that

ε1.2 − ε1.3 ≤ negl(λ)



Game 1.4. The game samples ∆b,k directly either at random or consistently
for the last honest user in ODTrapColl1 with ssid and ctx. That is, it sets
S̃H ← UnCollHS[ssid, ctx] and if S̃H ̸= k, it samples ∆b,k ← Zp and sets
Mask[b, ssid, ctx, k] ← ∆b,k. Else, k is the last honest user by definition of
UnCollHS, and the game samples the mask consistently. In particular, it
samples

Mask[b, ssid, ctx, k] = −
∑

j∈SH\{k}
Mask[b, ssid, ctx, j]−

∑

j∈C
∆b,j ,

where ∆b,j = ZeroShare(seedj [S], b∥ssid∥ctx) for j ∈ C.
Let us show that Game 1.3 and Game 1.4 are identically distributed. Observe
that in Game 1.3, the value PartialMask[b, ssid, ctx, k, j] and PartialMask[b, ssid,

ctx, j, k] is distributed uniformly at random if there is some j ∈ S̃H\k, as in
this case these entries were not initialized yet, and therefore mb,k,j and mb,j,k

are freshly sampled at random. On the other hand, if S̃H = k, then k is the
last honest user with respect to ssid and PartialMask[b, ssid, ctx, i, j] is defined
for all j, i ∈ SH. As it holds that


j∈S ∆b,j = 0, where ∆b,j = Mask[b, ssid,

ctx, j] for j ∈ SH and ∆b,j = ZeroShare(seedj [S], b∥ssid∥ctx) for j ∈ SC , it
must hold that

∆b,k = −
∑

j∈S\{k}
∆b,j  (2)

This is exactly the distribution of ∆b,k in Game 1.4, and we have

ε1.3 = ε1.4

Note that at this point, the values stored in PartialMask[·] are not referenced
anymore. Therefore, we do not ensure that PartialMask is setup consistently
in the following games.

Game 1.5. The game samples the response zb,k either at random or consis-
tently for the last user in ODTrapColl1 with ssid. In more detail, denote sh∗0 =
h−1
0 mod p. To simulate ODTrapColl1 for honest user k, the game sets zb,k ← Zp

and MaskedResp[b, ssid, ctx, k] ← zb,k if S̃H ̸= k, where S̃H ← UnCollHS[ssid, ctx],
and else it sets MaskedResp[b, ssid, ctx, k] ← zb,k for

z0,k =(x− x∗)sh∗0 − (x− x∗)
∑

j∈SC

LS,jshj +
∑

j∈SH

r0,j

−
∑

j∈SH\{k}
MaskedResp[0, ssid, ctx, j]−

∑

j∈SC

∆0,j ,

z1,k =
∑

j∈SH

r1,j −
∑

j∈SH\{k}
MaskedResp[1, ssid, ctx, j]−

∑

j∈SC

∆1,j ,

where ∆b,j = ZeroShare(seedj [S], b∥ssid∥ctx) for j ∈ C and rb,j are the dis-
crete logarithms of Rb,j for honest users j ∈ SH.



Let us show that Game 1.4 and Game 1.5 are identically distributed. Let us
consider an intermediate game between Game 1.4 and Game 1.5, where the
game samples

∆0,k := ∆∗
0,k − (LS,k · shk · (x− x∗) + r0,k)

∆1,k := ∆∗
1,k − r1,k

for ∆∗
b,k ← Zp if S̃H ̸= k, else it sets ∆b,k as in eq. (2). Clearly, this

intermediate game is distributed as in Game 1.4.
On the other hand, a simple calculation yields that z0,k = LS,k · shk · (x −
x∗) + r0,k + ∆0,k = ∆∗

0,k and z1,k = ∆∗
1,k for S̃H ̸= k, which is the

same distribution as in Game 1.5. Also, if S̃H = k, then we have in the
intermediate game that

z0,k = LS,k · shk · (x− x∗) + r0,k +∆0,k

= LS,k · shk · (x− x∗) + r0,k −
∑

j∈S\{k}
∆0,j

= LS,k · shk · (x− x∗) + r0,k −
∑

j∈SH\{k}
∆0,j −

∑

j∈SC

∆0,j

= LS,k · shk · (x− x∗) + r0,k −
∑

j∈SH\{k}


∆∗

0,j − (LS,j · shj · (x− x∗) + r0,j)

−

∑

j∈SC

∆0,j

= (x− x∗)(sh∗0 −
∑

j∈SC

LS,jshj) +
∑

j∈SH

r0,j −
∑

j∈SH\{k}
∆∗

0,j −
∑

j∈SC

∆0,j

In the second to last equality, we used the fact that x∗ is fixed in ssid, in
particular, it coincides for each honest user for ODTrapColl1 calls with ssid, and
that


j∈S LS,jshj = sh∗0. As above, we also obtain

z1,k = r1,k +∆1,k

= r1,k −
∑

j∈SH\{k}
∆1,j −

∑

j∈SC

∆1,j

= r1,k −
∑

j∈SH\{k}


∆∗

1,j − r1,j

−

∑

j∈SC

∆1,j

=
∑

j∈SH

ri,j −
∑

j∈SH\{k}
∆∗

1,j −
∑

j∈SC

∆1,j

It follows that the intermediate game is also distributed identically to Game
1.5, and we have

ε1.4 = ε1.5

Game 1.6. The game samples the consistent response zb,k with respect to ssid
and ctx for the last honest user k in ODTrapColl1 differently. In more detail,



denote sh∗1 = h−1
1 mod p. As before, in ODTrapColl1 for honest user k ∈ SH, the

game sets zb,k ← Zp and MaskedResp[b, ssid, ctx, k] ← zb,k if S̃H ̸= k, where
S̃H ← UnCollHS[ssid, ctx]. But if S̃H = k, i.e., k is the last user to answer
ODTrapColl1 for ssid, then the game sets MaskedResp[b, ssid, ctx, k] ← zb,k for

z0,k =− (x− x∗)
∑

j∈SC

LS,jshj +
∑

j∈SH

r0,j −
∑

j∈SH\{k}
MaskedResp[0, ssid, ctx, j]−

∑

j∈SC

∆0,j ,

z1,k =sh∗1 · (x− x∗) +
∑

j∈SH

r1,j −
∑

j∈SH\{k}
MaskedResp[1, ssid, ctx, j]−

∑

j∈SC

∆1,j 

Let us inspect the distribution of zb,k in both games if S̃H = k, otherwise
the distribution remains identical by construction. We can write

Rk = r0,kH0 + r1,kH1

= r0,kH0 − (x− x∗)G+ (x− x∗)G+ r1,kH1

= (r0,k − sh∗0 · (x− x∗))  
r∗0,k

H0 + (r1,k + sh∗1 · (x− x∗))  
r∗1,k

H1

Observe that r∗0,k and r∗1,k are distributed as r0,k and r1,k in Game 1.5.
Furthermore, using r∗0,k and r∗1,k instead of r0,k and r1,k in the definition of
zb,k in Game 1.5, we obtain the distribution in Game 1.6. The distribution
of Rk remains unchanged. Therefore, we have

ε1.5 = ε1.6

Game 1.7. In this game, the shares shi of corrupt users i ∈ C are sampled
uniformly at random.
Observe that in Game 1.6, the game is simulated without the shares shi of
honest users i ∈ H. Due to the properties of Shamir’s secret sharing, each
share shi for i ∈ C is distributed at random, as in Game 1.7. Therefore, we
have

ε1.6 = ε1.7

Finally, observe that simulation in Game 1.7 does not rely on sh∗0. Therefore,
we can argue as in Game 1.1 that Pr[E0] = negl(λ) under the DL assumption.
Collecting the above bounds, we obtain

Pr[EA,1] = negl(λ)

Preimage resistance. We bound the probability that event EA,2 occurs.

Game 2.0. This is the honest game Gamech−sec
TCH,A(1

λ, N, T ). By definition, the
adversary A succeeds in Game 2.0 with probability

ε2.0 := Pr[EA,2]



Game 2.1. In the beginning, the game initializes empty tables UnCollHS[·] =
⊥ and MaskedResp[·] = ⊥. As in Game 1.2, These tables are updated in
ODTrapColl1 to store the following.

– UnCollHS[ssid, ctx] stores the set of honest users that have not executed
ODTrapColl1 with ssid yet.

– MaskedResp[b, ssid, ctx, k] stores the masked response zb,k.
Further, the game samples the masked response zb,k either at random or
consistently for the last user in ODTrapColl1 with ssid and ctx as in Game 1.5.
That is, denote sh∗0 = h−1

0 mod p. To simulate ODTrapColl1 for honest user k,
the game sets zb,k ← Zp and MaskedResp[b, ssid, ctx, k] ← zb,k if S̃H ̸= k,
where S̃H ← UnCollHS[ssid, ctx], and else it sets MaskedResp[b, ssid, ctx, k] ←
zb,k for

z0,k =(x− x∗)sh∗0 − (x− x∗)
∑

j∈SC

LS,jshj +
∑

j∈SH

r0,j

−
∑

j∈SH\{k}
MaskedResp[0, ssid, ctx, j]−

∑

j∈SC

∆0,j ,

z1,k =
∑

j∈SH

r1,j −
∑

j∈SH\{k}
MaskedResp[1, ssid, ctx, j]−

∑

j∈SC

∆1,j ,

where ∆b,j = ZeroShare(seedj [S], b∥ssid∥ctx) for j ∈ C and rb,j are the dis-
crete logarithms of Rb,j for honest users j ∈ SH.
As in the proof of collision resistance in Game 1.2 to Game 1.5, we can show
that

ε2.0 − ε2.1 ≤ negl(λ)

Observe that as consequence, the discrete logarithms of R0,k and R1,k for
k ∈ SH are only required for simulation when the last user answers ODTrapColl1

with consistent ssid and ctx. Further, recall that ssid = S∥x∥x∗∥(Ri)i∈S .
Observe that Y = xG+


i∈S Ri determines Y and note that Y must have

been aggregated to in OAggEval. Furthermore, the fact that EA,2 occurs implies
two important events:

1. It holds that (Y, ·, ·) ∈ Agg and Y ∈ Cmpl for Y = Eval(ch, x∗, (r∗0 , r
∗
1)).

By definition, there is some honest user kdcoll ∈ SH such that kdcoll ∈
SSID[ssid, ctx,SH, Y ], that is, honest user kdcoll did not yet execute ODTrapColl1

with (ssid, ctx), where SH ∈ S and Y is determined by ssid.
2. As (Y, ·, ·) ∈ Agg, there must be a session for which OAggEval was invoked

for some honest user kdeval ∈ SH that aggregated to Y , i.e., ODEval2 was
executed for kdeval and the other contributions ermi,2 = Ri for i ∈ S\kdeval
are determined and yield Y = xG +


i∈S Ri. Also, the commitments

must have been opened to values extracted in ODEval2 when invoked for
user kdeval.

Next, we will guess this unfinished session and embed a DL challenge D.



Game 2.2. The game initially guesses a session sid ∈ [Q] and the honest user
kdeval ∈ H as described above. It aborts in the end if user kdeval did not
aggregate to Y in session sid, where Y = Eval(ch, x∗, (r∗0 , r

∗
1)). Also, if user

kdeval executes ODTrapColl1 with ssid and ctx in session sid, then the game
aborts if all honest users i ∈ SH executed ODTrapColl1 with ssid and ctx.
The game aborts if the guess for kdeval or sid is incorrect. As such a user
and session must exist by the above discussion, the guess is correct with
probability 1(T ·Q). Therefore we have

ε2.1 ≤ T ·Q · ε2.2
Game 2.3. This game sets up the commitment keys cki differently. That is,

upon receiving the list of corrupted users C, the game generates all commit-
ment keys cki of COM for i ∈ [N ] \ kdeval with COMExtSetup.
By a standard hybrid argument and extractabilityof COM, it holds

ε2.2 − ε2.3 ≤ negl(λ)

Game 2.4. Now, the game extracts R′
i from the commitments cmti for all par-

ties i ∈ S \ kdeval in ODEval2 for session sid and user k = kdeval. Further, the
OAggEval oracle aborts if there exists an i ∈ S \ kdeval such that Ri ̸= R′

i,
where R′

i was extracted in ODEval2 . The extractability property of COM yields
that the abort probability of OAggEval is negligible, therefore we have

ε2.3 − ε2.4 ≤ negl(λ)

Game 2.5. The game initially sets up ckkdeval
via (ckkdeval

, td) ← COMEqvSetup.
In ODEval1 , the game sets (cmtk, eqtdk) ← SimCom(ckk, td) instead of com-
mitting to Rk for k = kdeval in session sid. In ODEval2 in session sid, the game
samples D ← G and sets Rk := D − xG−

i∈S\{k} Ri for k = kdeval, where
Ri is extracted from cmti. Then, it equivocates the commitment cmtk to ob-
tain an opening decmtk ← Equivocate(tdk, cmtk, eqtdk, Rk) to Rk for cmtk.
Otherwise, the game proceeds as in Game 2.4.
Observe that Rk is distributed as in Game 2.4. Also, as discussed above, the
discrete logarithm of Rk is not required for simulation. Thus, we have under
equivocability of COM that

ε2.2 − ε2.3 ≤ negl(λ)

Finally, let us show that a successful adversary A in Game 2.5 allows us to
construct an adversary B on the DL assumption. In particular, B simulates Game
2.5 to A and embeds its DL challenge D as described in Game 2.5 in session sid.
When A outputs its solution, B outputs x∗+r∗0 ·h0+r∗1 ·h1 to the DL challenger.

As EA,2 occurs, we have that

Y = Eval(ch, x∗, (r∗0 , r
∗
1)) = (x∗ + r∗0 · h0 + r∗1 · h1)G

Further, we know that Y = xG+


i∈S Ri as computed in OAggEval. By definition
of Rkdeval

, it holds that Y = D. This concludes the proof of preimage resistance.



Image unbiasability. We bound the probability that event EA,3 occurs and pro-
vide a negligible upper bound. That is, a user k aggregated twice to Y in distinct
sessions or Y was aggregated to by distinct honest user sets SH ⊆ S and S ′

H ⊆ S ′.

Game 3.0. This is the honest game Gamech−sec
TCH,A(1

λ, N, T ). By definition, the
adversary A succeeds in Game 3.0 with probability at least

ε3.0 := Pr[EA,3]

Game 3.1. This game sets up all commitment keys in extractable mode. That
is, the game initially samples all cki for i ∈ [N ] via ExtSetup. By the ex-
tractability property of COM, it holds

ε3.0 − ε3.1 ≤ negl(λ)

Game 3.2. This game aborts if there exists an honest user i ∈ H who produces
the same commitment cmti in two different sessions. To see that this game
and the previous one are indistinguishable, note that since values rb,i ← Zp

are sampled freshly and uniformly at random in each session, with all but
negligible probability, user i is committing to a different value Ri in each
session. Extractability of the commitment scheme then guarantees that with
high probability an honest user does not sample the same commitment twice.
Hence

ε3.1 − ε3.2 ≤ negl(λ)

Game 3.3 In OAggEval, the game aborts if there exists an honest user i ∈ SH
such that σi is a valid signature for µi = x∥S∥Ri∥(cmtj)j∈S , but µi was
never signed before in ODEval2 by user i. We have under EUF-CMA security
of SIG that

ε3.2 − ε3.3 ≤ negl(λ)

Game 3.4. Now, the oracle ODEval2 extracts R′
i from the commitments cmti for

all corrupt parties i ∈ SC . The game aborts if in the OAggEval oracle there
exists a malicious user i ∈ SC such that cmti, Ri passes verification, but
Ri ̸= R′

i. In other words, if a malicious user opens cmti to a different value
than to the extracted one.
By the extractability property of COM, this occurs with at most negligible
probability.

ε3.3 − ε3.4 ≤ negl(λ)

Let us make couple of remarks about the implications of the introduced
aborts.

Remark 5. Assume that OAggEval is queried for two sessions sid and sid′ with
distinct user sets S ̸= S ′, and neither call to OAggEval aborts. Then for each
honest user in i ∈ SH  S ′

H the corresponding commitments cmti and cmt′i
in the two OAggEval queries must be distinct.



This follows from the aborts introduced in Games 3.2 and 3.3: There are
no repeating commitments sampled by honest users and any non-aborting
OAggEval query cannot contain a SIG-forgery.

Remark 6. Assume that OAggEval is queried for session sid and honest party k
(which defines x and S) and round messages specifying (cmti, decmti, Ri,σi)i∈S ,
and the OAggEval call does not abort. Then all honest users k ∈ SH have
opened their commitment cmtk to Rk in a call to ODEval2 and the user set,
input and commitments are equal to S, x, (cmti)i∈S in the ODEval2 call.

This holds because all σi verify if OAggEval does not abort. Therefore, message
µi = x∥i∥S∥Ri∥(cmtj)j∈S was signed before by user i in ODEval2 (due to the
abort condition added in game 3.3).

Now, let us argue that adversary A triggers event EA,3 in Game 3.4 with at
most negligible probability. If event EA,3 occurs then, it holds that dCollision =
true. Thus, there must exist an honest user k and a session sid such that when
user k aggregates in session sid with user set S to Y = xG+


j∈S Rj one of the

following cases must hold:

Case 1: (Y, ·, k) ∈ Agg, i.e., user k aggregated to Y also in a second session
sid′ ̸= sid;

Case 2: there exists a user set S′ such that k ∈ S ′ and (Y,S ′, ·) ∈ Agg, i.e.,
some honest user k′ ∈ S ′ aggregated to Y with different user set S′ ̸= S.

Case 1. Let us argue that Case 1 does not occur in Game 3.4 except with
negligible probability. Before doing so, we introduce additional games where we
guess the user k (as described above) and set up its commitment key in equivocal
mode. Looking ahead, we will then leverage the entropy in the committed nonces
Rk sampled by k to argue that event EA,3 occurs with negligible probability.
Below, denote by ε3.4.1 the probability that Case 1 occurs in Game 3.4. For
i > 4, we denote by ε3.i.1 the probability that Case 1 occurs in Game 3.i.1.

Game 3.5.1. Upon receiving the list of corrupted users C the game samples
k$ ← H. When Case 1 occurs for the first time (if it occurs at all), the game
aborts if the party k triggering this case is not k$, i.e., k ̸= k$. As there are
at most N honest users, we have that

ε3.4.1 = H · ε3.5.1 ≤ N · ε3.5.1

Game 3.6.1. The game sets up the commitment key of user k$ in equivocation
mode, i.e., it samples ckk$

using EqvSetup. By the equivocation property of
COM, it holds

ε3.5.1 − ε3.6.1 ≤ negl(λ)

Game 3.7.1 When ODEval1 is invoked for user k = k$, the game sets (cmtk, eqtdk) ←
SimCom(ckk, tdk) instead of committing to Rk. In ODEval2 for user k = k$,
the game samples Rk = R0,k + R1,k for rb,k ← Zp and Rb,k = rb,kG.



Then, it equivocates the commitment cmtk to obtain an opening decmtk ←
Equivocate(tdk, cmtk, eqtdk, Rk) to Rk for cmtk. Otherwise, the game pro-
ceeds as before. We have under equivocability of COM that

ε3.6.1 − ε3.7.1 ≤ negl(λ)

Remark 7. (a) There is a one-to-one correspondence between cmti and Ri in
OAggEval for all users i ∈ S, i.e., for each cmti there exists at most one Ri such
that the adversary A can invoke OAggEval without abort. (b) Furthermore, the
value Rk$

is sampled at random in ODEval2 after all other contributions Rj for
j ∈ S \ k$ are determined.

The one-to-one correspondence stated in (a) holds for dishonest users i ∈ SC due
to the abort condition added in game 3.4, and for honest users i ∈ SH due to
the fact that cmti and Ri are signed via σi in ODEval2 and that i never samples
the same commitment twice (cf. game 3.3 and remark 5). Let us now argue why
(b) holds. The correspondence between cmti and Ri for i ̸= k$ is established in
ODEval1 for honest users i ∈ SH \ k$, and in the input to the call to ODEval2 for
malicious users i ∈ SC because cki is setup in extractable mode. On the other
hand, the Rk$

is sampled only during the execution of ODEval2 .
Finally, let us upper bound the probability ε3.7.1, i.e., Case 1 occurs in game

3.7.1. If user k aggregated twice to Y , then there exist two sessions sid and
sid′ with commitments (cmtj)j∈S , (cmt′j)j∈S′ , values x, x′, user sets S,S ′, and
openings (Rj)j∈S , (R′

j)j∈S′ , respectively, in which user k aggregated to Y . Due
to the game hops above (see remark 7), the committed values Ri for cmti are
determined for i ̸= k before user k samples its value Rk in ODEval2 . Furthermore,
the value x is determined as it is part of the state of user k in the corresponding
ODEval2 call. Analogously, this holds for value R′

i in cmt′i and x′ for i ̸= k in the
corresponding call to ODEval2 .

Without loss of generality, let us assume that the call to ODEval2 for user k
occurs first in session sid′, then for session sid. In ODEval2 in session sid′ after the
game samples R′

k, the value Y ′ = x′G +


j∈S′ R′
j in OAggEval is information-

theoretically determined (cf. remark 7). Further, in ODEval2 in session sid, the
value Rk is sampled uniformly at random, whereas the other values Rj for j ∈
S \ k are already determined (again, by remark 7). This determines Y =
xG+


j∈S Rj . Importantly, at this point Y ′ is already determined, therefore it

holds that

Pr[Y = Y ′] = Pr[Rk = Y ′ − xG−
∑

j∈S\{k}
Rj ] = negl(λ)

Since we have polynomially many possible sessions (let CTR be an upper bound
on the number of sessions) a union bound yields

ε3.7.1 ≤
∑

sid,sid′∈[CTR]

Pr[Y = Y ′ for user k$, sessions sid, sid′]

≤ CTR2 · negl(λ) = negl(λ)



To conclude the bound on the probability of Case 1 in Game 3.4:

ε3.4.1 ≤ N · ε3.5.1 ≤ N · (ε3.7.1 + negl(λ)) = negl(λ)

Case 2. Let us turn towards Case 2. If this case occurs, then there exist two
sessions sid and sid′ with commitments (cmtj)j∈S , (cmt′j)j∈S′ , values x, x′, user
sets S,S ′, and openings (Rj)j∈S , (R′

j)j∈S′ , respectively, in which user k ∈ SH ⊆
S aggregated to Y and user k′ ∈ S ′

H ⊆ S ′ aggregated to Y with S ̸= S ′. and
k ̸= k′.

Hence, if Case 2 is true, then by remark 6 the oracle ODEval2 must have been
invoked for user k and user k′ with inputs (cmtj)j∈S and (cmt′j)j∈S′ , respectively.
Note that these calls determine Rk and R′

k′ , respectively. We assume that the
corresponding ODEval2 call for user k occurred after the one for user k′.10

As in Case 1, we guess user k$ = k initially, where k is defined as above. We
again define intermediate games 352 to 372 and corresponding probabilities
ε3.5.2 to ε3.7.2 analogously to Case 1 to abort if the guess is incorrect and to
sample k$’s contributions Rk$

in ODEval2 via equivocation. For conciseness, we
only sketch the games below.

Game 3.5.2 The game samples k$ ← H initially and once Case 2 occurs for
the first time (if it occurs at all), the game aborts if k ̸= k$.

Game 3.6.2 The game sets up the commitment key ckk$
of k$ in equivocal

mode.
Game 3.7.2 The game samples the nonce Rk of user k = k$ in ODEval2 instead

of ODEval1 .

We note that remark 7 holds in Game 3.7.2 analogously.
As in Case 1, we can show that

ε3.4.2 ≤ N · (ε3.7.2 + negl(λ))

To upper bound the probability of ε3.7.2, let us distinguish two further sub-
cases:

Case 2.1: k ∈ S ′. In that case, the value Y ′ in OAggEval is determined in the
ODEval2 call for user k′ which opens cmt′j to R′

k as all users i ∈ S in session
sid′ have extractable commitment keys (cf. remarks 6 and 7). Later, the
ODEval2 call determines Rk, and therefore Y , which is sampled at random
(cf. remark 7). We have

Pr[Y = Y ′] = Pr[Rk = Y ′ − xG−
∑

j∈S\{k$}
Rj ] = negl(λ)

Similar to Case 1, since there are polynomially many sessions and users, we
obtain

Pr[Case 2.1 in Game 3.7.2] = negl(λ)
10 The case that the corresponding ODEval2 call for user k occurred before the one for

user k′ can be argued analogously, but with inverse roles, i.e., we need to guess user
k′ instead of k and analyse the cases for k′ ∈ S and k ∈ S.



Case 2.2: k ∈ S ′. Intuitively, it must hold that user k and user k′ aggregate to
the same value Y in session sid′ due to symmetry (cf. remark 6). Therefore,
we could upper bound the probability that Y = Y ′ as in Case 2.1. However,
such an explicit OAggEval call for user k in session sid′ does not necessarily
occur. Hence, we instead argue through the entropy of either Rk or R′

k,
depending on which value is determined first through ODEval2 .
Since user k′ aggregated to Y ′, by remark 6, there exists a call to ODEval2

on input (cmt′j)j∈S′ for user k in which user k opens cmt′k to R′
k. This call

determines Y ′ by remarks 6 and 7.
Let us first argue that Y and Y ′ are determined in two different ODEval2

calls. Since S ′ ̸= S, we have cmtk ̸= cmt′k due to remark 5). Both of those
commitment must have been opened in two distinct ODEval2 calls.
The call that determines Y could happen either before or after the call that
determines Y ′. If the latter call occurs first, the value Y ′ is determined before
Rk is uniformly sampled, and vice versa. Therefore, it follows as above

Pr[Y = Y ′] = negl(λ)

Similar to Case 1, since there are polynomially many sessions and users, we
obtain

Pr[Case 2.2 in Game 3.7.2] = negl(λ)

In conclusion, we have

ε3.4.2 ≤ N · (ε3.7.2 + negl(λ))

≤ N · (Pr[Case 2.1 in Game 3.7.2] + Pr[Case 2.2 in Game 3.7.2] + negl(λ))

= negl(λ)

Finally, combining Cases 1 and 2 now yields

ε3.4 ≤ ε3.4.1 + ε3.4.2 = negl(λ)

6.3 Equivocable and Extractable Commitment from DDH

We employ the dual-mode commitment scheme from [GS08] based on ElGamal
encryption. It is shown to be extractable (for bit-messages) and perfectly-hiding
(depending on which setup is employed). We give a brief sketch and show that
it is also equivocable 11. The extractable setup employs the commitment key

CK =

(
d de
df def

)
·G,

where d, e, f ← Zp. To commit to a bit b ∈ 0, 1, sample r ← Z2
p and set

C := (0, bG) + r⊺CK

11 While we believe that this is folklore, we could not find a reference. We provide the
argument for completeness.



The vector r serves as decommitment and verification passes if the above equa-
tion holds. To extract the bit b, output b = 0 if 0 = (−e, 1)C⊺, else output 1. For
equivocation, set CK := X · G for X ← Z2×2

p such that det(X) ̸= 0. Note that
the setup is indistinguishability under DDH. The SimCom algorithm outputs a
commitment C to 0, as well as the randomness eqtd = r used to generate C. To
equivocate to 0, simply output r. To open C to 1, output

r∗ := r−

X−1

⊺
(
0
1

)


Observe that r∗ is well-distributed. Further, we have

(0, G) + (r∗)⊺ CK = (0, G) +

(
r−


X−1

⊺
(
0
1

))⊺
X ·G

= (0, G) +C−
((

0
1

)⊺
·X−1X

)
·G

= C

The commitment allows to commit to bits. Therefore, to commit to group
elements R ∈ G (as required for our TCH construction), we require p commit-
ments in total to commit to the binary representation of R. A straightforward
optimization is to commit to the B-ary decomposition for B = poly(λ) of the bit-
representation (when interpreted as binary number), similar to the encryption
scheme in [KRS23, Section 6]. Then, the commitment to R is of size 2⌈logB p⌉
group elements, however, extraction requires time O(

√
B). As finding a more

efficient instantiation is out-of-scope, we leave optimizations for future work.
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Supplementary Material

A Additional Preliminaries
We recall some standard notions.

A.1 Signatures
In the following, we recall the definition of single-user and threshold signatures.
Definition 8 (Signatures). A signature scheme Σ consists of four algorithms
Setup, KeyGen, Sign, Vrfy that have the following syntax:

– Setup(1λ): Takes as input a security parameter (in unary) and outputs public
parameters pp, which include λ, as well as message and signature spaces M
and S.

– KeyGen(pp): Takes as input public parameters pp and outputs a public key
pk and a secret key sk. The public key pk includes the public parameters pp
and the secret key sk includes pk.

– Sign(m, sk): Takes as input a message m ∈ M and a secret key sk and
outputs a signature σ.

– Vrfy(pk,m,σ): Takes as input a public key pk, a message m ∈ M and a
signature σ, and outputs a bit b.

Definition 9 (Correctness). A signature scheme Σ = (Setup, KeyGen, Sign, Vrfy)
satisfies correctness if for all pp ← Setup(1λ), (pk, sk) ← KeyGen(pp), m ∈ M
it holds

Pr[Vrfy(pk,m,σ) = 0  σ ← Sign(m, sk)] ≤ negl(λ)

Definition 10 (Unforgeability for signatures). A signature scheme Σ =
(Setup, KeyGen, Sign, Vrfy) satisfies unforgeability if for any PPT adversary A,
we have

AdvufΣ,A(1
λ) := Pr[GameufΣ,A(1

λ) = 1] ≤ negl(λ)

where the game GameufTS,A is defined as below.

GameufΣ,A(1
λ)

1. pp ← Setup(1λ)
2. (pk, sk) ← KeyGen(pp)
3. M := ∅ // initialize set of queried messages
4. (m∗,σ∗) ← AOSign

(pk)
5. output Jm∗ ∈ M  Vrfy(pk,m∗,σ∗) = 1K

OSign(m) // m ∈ M
1. σ ← Sign(m, sk)
2. M := M  m
3. output σ



A.2 Collision resistant hash functions

We recall the definition of collision resistant hash functions.

Definition 11. A hash function h with output length ℓ consists of three efficient
algorithms Setup, Gen and Eval with the following syntax:

– Setup(1λ): Takes as input a security parameter (in unary), and outputs public
parameters pph,

– Gen(pph): Given public parameters, outputs a description fh of a hash func-
tion 0, 1∗ → 0, 1ℓ(λ). We assume fh contains pph.

– Eval(fh, x): Given a description of a hash function fh and an input string
x ∈ 0, 1∗, outputs some y ∈ 0, 1ℓ(λ). We often write fh(x) to denote
Eval(fh, x).

Definition 12 (Collision resistance). We say that a hash function h is colli-
sion resistant, if for any PPT adversary A and pph ← Setup(1λ), fh ← Gen(pph)
we have

Pr[x ̸= x′  fh(x) = fh(x
′)  (x, x′) ← A(fh)] ≤ negl(λ)

A.3 Commitments

Our scheme will rely on extractable and equivocable commitments; we recall
their definition in the following.

Definition 13 (Commitment). A commitment COM consists of three effi-
cient algorithms Setup,Commit,Verify that have the following syntax:

– Setup(1λ): Takes as input a security parameter (in unary), and outputs a
commitment key ck. We assume that ck specifies a message space M.

– Commit(ck,m): Given commitment key ck and a message m, outputs a com-
mitment cmt and decommitment decmt.

– Verify(ck, cmt,m, decmt): Given commitment key ck, commitment cmt, mes-
sage m and decommitment decmt, outputs a bit b.

Definition 14 (Correctness). A commitment scheme COM = (Setup, Commit, Verify)
satisfies correctness if for all ck ← Setup(1λ) and m ∈ M it holds

Pr[Verify(ck, cmt,m, decmt) = 0  (cmt, decmt) ← Commit(ck,m)] ≤ negl(λ)

We define the extraction and equivocation properties. Note that these prop-
erties imply the standard notions binding and hiding, respectively.

Definition 15 (Extractability). A commitment scheme COM = (Setup,Commit,
Verify) is extractable if there exists a PPT algorithm ExtSetup and a determin-
istic PT algorithm Extract such that for any PPT adversary A it holds that



Pr


A(ckb) = b

∣∣∣∣∣∣

b ← 0, 1,
(ck0, td) ← ExtSetup(1λ),

ck1 ← Setup(1λ)


 ≤ 1

2
+ negl(λ)

and

Pr


 m ̸= m′ 
Verify(ck, cmt,m, decmt) = 1

∣∣∣∣∣∣

(ck, td) ← ExtSetup(1λ),
(cmt,m, decmt) ← A(ck)
m′ ← Extract(td, cmt)


 ≤ negl(λ),

Definition 16 (Equivocability). A commitment scheme COM = (Setup,Commit,
Verify) is equivocable if there exists PPT algorithms EqvSetup, SimCom and
Equivocate such that for any stateful PPT adversary A it holds that

Pr


A(ckb) = b

∣∣∣∣∣∣

b ← 0, 1,
(ck0, td) ← EqvSetup(1λ),

ck1 ← Setup(1λ)


 ≤ 1

2
+ negl(λ)

and

Pr[Gamecom−eq
COM,A (1λ) = 1] ≤ 1

2
+ negl(λ),

where the game Gamecom−eq
COM is defined as:

Gamecom−eq
COM,A (1λ)

1. b ← 0, 1
2. (ck, td) ← EqvSetup(1λ)

3. b′ ← AOCommit
b (ck)

4. output Jb′ = bK
OCommit

0 (m) // m ∈ M

1. (cmt, decmt) ← Commit(ck,m)
2. output (cmt, decmt)

OCommit
1 (m)

1. (cmt, eqtd) ← SimCom(ck, td)
2. decmt ← Equivocate(td, cmt, eqtd,m)
3. output (cmt, decmt)



A.4 Pseudorandom functions

We recall the definition of pseudorandom functions. Note that we define a multi-
challenge security game.

Definition 17. Let nλ,mλ, ℓλ > 0 be integers. We say that a deterministic
polynomial time algorithm PRF : 0, 1ℓ × 0, 1n → 0, 1m is a pseudorandom
function if for any PPT adversary A we have

Pr[GameprfPRF,A(1
λ) = 1] ≤ 1

2
+ negl(λ),

where Gameprf is defined as:

GameprfPRF,A(1
λ)

1. T[·] := ⊥.
2. K ← 0, 1ℓ
3. b ← 0, 1
4. b′ ← AOPRF(1λ)
5. output Jb′ = bK

OPRF(x) // x ∈ 0, 1n

1. y0 = PRFK(x)
2. if T[x] = ⊥, then T[x] ← 0, 1m.
3. y1 = T[x]
4. output yb

A.5 Chameleon hash functions

Chameleon hash functions were introduced by Krawczyk and Rabin [KR00].
Definition 18 (Chameleon hash function). A chameleon hash function CH
consists of four algorithms Setup, Gen, Eval, TrapColl that have the following syn-
tax

– Setup(1λ): Takes as input a security parameter (in unary) and outputs public
parameters pp which includes λ.

– Gen(pp): Takes as input public parameters pp and outputs the description ch
of a function X ×R → Y (that includes pp) as well as a trapdoor τ for ch.

– Eval(ch, x, r): Takes as input the description of a chameleon hash function
ch, an input x ∈ X and random coins r ∈ R, and outputs some y ∈ Y.

– TrapColl(ch, τ, x, r, x∗): Takes as in put the description of ch, two inputs
x, x∗ ∈ X and random coins r ∈ R, and outputs r∗ ∈ R.

Definition 19 (Correctness). A chameleon hash function CH = (Setup, Gen,
Eval, TrapColl) satisfies correctness if for all pp ← Setup(1λ), (ch, τ ) ← Gen(pp),
all x, x∗ ∈ X and r ∈ R

Pr[Eval(ch, x∗, r∗) ̸= Eval(ch, x, r)  r∗ ← TrapColl(ch, τ, x, r, x∗)] ≤ negl(λ)

We require a stronger notion of collision resistance than the original definition
in [KR00]: while in our definition any pair (x, r) ̸= (x∗, r∗) with Eval(ch, x, r) =
Eval(ch, x∗, r∗) counts as a collision, in the definition of [KR00], x ̸= x∗ is re-
quired.



Definition 20 (Collision resistance). A chameleon hash function CH =
(Setup, Gen, Eval, TrapColl) is collision-resistant if for any PPT adversary A

Pr



Eval(ch, x, r) = Eval(ch, x∗, r∗)


(x, r) ̸= (x∗, r∗)

∣∣∣∣∣∣

pp ← Setup(1λ),
(ch, τ) ← Gen(pp),

(x, r, x∗, r∗) ← A(ch)


 ≤ negl(λ)

Definition 21 (Indistinguishability). A chameleon hash function CH =
(Setup, Gen, Eval, TrapColl) with input space X and randomness space R sat-
isfies indistinguishability if for any PPT adversary A

Pr[Gamech−ind
CH,A (1λ) = 1] ≤ 1

2
+ negl(λ),

where the game Gamech−ind
CH is defined as:

Gamech−ind
CH,A (1λ)

1. b ← 0, 1
2. pp ← Setup(1λ)
3. (ch, τ) ← Gen(pp)

4. b′ ← AOTrapColl
b (pp, ch)

5. output Jb′ = bK

OTrapColl
0 (x∗) // x∗ ∈ X

1. r ← R
2. output r

OTrapColl
1 (x∗) // x∗ ∈ X

1. r ← R, x ← X
2. r∗ ← TrapColl(ch, τ, x, r, x∗)
3. output r∗

B Generic Transformation — Full Details

In this section, we describe the ΣSign protocol in full details. For the definition
of ΣSetup, ΣGen and ΣVrfy, as well as the high-level description of the whole
construction, we refer the reader to section 5.

The signing protocol ΣSig consists of multiple algorithms (ΣSignrr∈R,
ΣSigAgg), where ΣSignr describes the local computation of an honest user in
round r (we refer to these as round algorithms), and ΣSigAgg defines how to
aggregate the protocol transcript into a final signature.

Each round algorithm takes as input round messages of all parties from the
previous round rmss∈S , and the state st of the party executing the algorithm.
The first round algorithm is executed on empty round messages and the initial
state of each party consists of the inputs into the protocol; concretely, the index
of the party k executing the algorithms, the set of participating users S, the
message being signed m and the context ctxΣ in which the protocol is run. By
executing a round algorithm ΣSignr on a given set of round message from round
r−1 and state of user k, the r-th round message of user k is defined and the state
of the user k gets updated (by appending some values to the state including the
round message of the user).



We use the following conventions to update a user’s state. When we write
“Add x to st”, we formally mean that a new attribute of st is defined (under
the name x) and the value of stx is initially set to the value of x. When we
write “Update x in st, we implicitly assume that stx is already defined, but
the value is now overwritten by the value of x. Despite the informality of the
notation, we believe this does not cause confusion and eases the readability of
the pseudo-code.

Each round algorithm begins by parsing a user’s state (i.e. extracting the
input values of the protocol), checking that the input round message of user k is
consistent with what user k actually output in the previous round, and storing
previous round messages of other parties into the state (this allows to extract a
protocol transcript from a user’s state). To avoid repeating these instructions in
every round algorithm, we define a helper function OK which does exactly this,
see left part of fig. 4.

Another helper function that we find useful to define separately is Transcript.
As the name suggests, it helps to parse a protocol transcript. It takes as input
a keyword str ∈ DEval, Sign, TrapCol and a user’s state. Depending on the
keyword, the function extracts relevant round messages from the user’s state and
outputs a transcript of the HDEval, Σ̃Sig or HTrapColl protocol respectively.

We are now prepared to present the full pseudo-code of the protocol in fig. 5.
Let us stress that if st is set to ⊥, the algorithm immediately aborts (outputs
⊥ as round message and ⊥ as the user’s state). Moreover, we assume that if an
algorithm gets ⊥ as input (i.e., the input is undefined), it immediately outputs
⊥ again.

OK(r, (rms)s∈S , st):
// Checks consistency and outputs main
values stored in st

1. Extract k,S,m, skk, ctxΣ from st
2. If r = 1:

(a) ∃s ∈ S s.t. rms ̸= ε, then
st ← ⊥ // Abort if some initial
message non-empty

Else
(a) Extract (k, r − 1, rm) from st

// get message sent by k in
previous round

(b) If rm ̸= rmk, then st ← ⊥ // Abort if
k’s message inconsistent

(c) Else add (s, r − 1, rms) to st for all
s ∈ S // Store message from the
previous round

3. Output (k,S,m, skk, st, ctxΣ)

Transcript(str, st):
// Returns a transcript for an indicated
distributed protocol

1. Extract S from st
2. Set r0, r1 depending on str:

– DEval: r0 ← 1, r1 ← Re

– Sign: r0 ← Re + 1, r1 ← Re +RS

– TrapCol: r0 ← Re +RS + 1,
r1 ← Re +RS +Rt

3. Extract (s, j, rms,j)s∈S,j∈[r0,r1] from st
4. trsc ← (rms,j)s∈S,j∈[r0,r1]

5. Output trsc

Fig. 4. Helper functions



ΣSigni((rms)s∈S , st), for i ∈ 1,    , Re:
// i-th HDEval round

1. (k,S,m, skk, st, ctxΣ) ← OK(r, (rms)s∈S , st)
2. Extract chH, x

′ from skk
3. If i = 1

(a) Set est := (k,S, chH, x′)
(b) Add est to st
Else extract est from st

4. Set erms := rms for all s ∈ S
5. (est, erm) ← HDEvali((erms)s∈S , est)
6. rm ← erm
7. Add (k, r, erm) to st and update est in st
8. Output (st, rm)

ΣSignr=Re+i((rms)s∈S , st), for i ∈ 2,    , RS:
// i-th round of Σ̃Sign

1. (k,S,m, skk, st, ctxΣ) ← OK(r, (rms)s∈S , st)
2. Extract chH, x

′ and ˜skk from skk
3. If i = 1:

(a) trsc ← Transcript(DEval, st)
(b) y ← HAggEval(chH,S, x′, trsc)
(c) sst := (k, ˜skk,S, ym, ctxΣ)
(d) srms := ε for all s ∈ S
(e) Add y and sst to st
Else
(a) Extract sst from st
(b) srms := rms for all s ∈ S

4. (sst, srm) ← Σ̃Signi((srms)s∈S , sst)
5. rm ← srm
6. Add (k, r, srm) to st and update sst in st
7. Output (st, rm)

ΣSignr=Re+RS+i((rms)s∈S , st), i ∈ 1,    , Rt:
// i-th HDTrapColl round

1. (k,S,m, skk, st, ctxΣ) ← OK(r, (rms)s∈S , st)
2. Extract p̃k, τk, fh from skk
3. If i = 1:

(a) Extract est, y from st
(b) trsc ← Transcript(Sign, st)
(c) σ̃ ← Σ̃SigAgg(pk,S, ym, trsc)
(d) x := fh(σ̃)
(e) ctxt := (ctxΣ,m)
(f) tst := (est, τk, x, ctxt)
(g) For s ∈ S:

i. Extract (s,Re, erm)
ii. trms := erm

(h) Add σ̃, tst to st
Else
(a) Extract tst from st
(b) trms := rms for all s ∈ S

4. (tst, trm) ← HDTrapColli((trms)s∈S , tst)
5. rm ← trm
6. Add (k, r, trm) to st and update tst in st
7. If r = Re +RS +Rt:

– ssidt := tst
– Set st := (ssidt, y)

8. Output (st, rm)

ΣSigAgg(pk,S,m, (rms,r)s∈S,r∈[R]):
// Signature aggregation algorithm

1. st ← ε
2. For all s ∈ S, r ∈ [R]:

add (s, r, rms,r) to st
3. Extract p̃k, chH, x

′ from pk
4. trscE ← Transcript(DEval, st)
5. trscS ← Transcript(Sign, st)
6. trscC ← Transcript(TrapCol, st)
7. y ← HAggEval(chH,S, x′, trscE)
8. σ̃ ← Σ̃SigAgg(p̃k,S, ym, trscS)
9. rH ← HAggColl(chH,S, trscH)

10. Output σ = (σ̃, rH)

Fig. 5. Round-by-round signature protocol. Total number of rounds: R = Re+RS+Rt.


