Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis
and Evaluation Framework

André Garcia Gomez, Max Landauer, Markus Wurzenberger,
Florian Skopik, Edgar Weippl

Pll: S0167-739X(25)00384-X

DOI: https://doi.org/10.1016/j.future.2025.108090 { .. e
Reference: FUTURE 108090

To appear in: Future Generation Computer Systems

Received date: 2 March 2025

Revised date: 14 August 2025

Accepted date: 17 August 2025

Please cite this article as: André Garcia Gbmez, Max Landauer, Markus Wurzenberger,
Florian Skopik, Edgar Weippl, Collaborative Anomaly Detection in Log Data: Comparative
Analysis and Evaluation Framework, Future Generation Computer Systems (2025), doi:
https://doi.org/10.1016/j.future.2025.108090

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

(©) 2025 Published by Elsevier B.V.

https://doi.org/10.1016/j.future.2025.108090
https://doi.org/10.1016/j.future.2025.108090

Journal Pre-proof

Highlights
Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

André Garcia Gomez,Max Landauer,Markus Wurzenberger,Florian Skopik,Edgar Weippl

e An overview of the present state of Log Anomaly CIDS.
e A classification of various Log Anomaly CIDS.

e Presentation of an open-source platform for assessing different Log Anomaly CIDS.

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis
and Evaluation Framework

André Garcia Gémez®?*, Max Landauer?, Markus Wurzenberger®, Florian Skopik® and
Edgar Weippl®

“Austrian Institute of Technology GmbH AIT, Vienna, 1210, Austria
bUniversity of Vienna, 1010, Vienna, Austria

ARTICLE INFO ABSTRACT

Keywords: Log Anomaly Collaborative Intrusion Detection Systems (CIDS) are designed to detect suspicious
Machine Learning activities and security breaches by analyzing log files using anomaly detection techniques while
CIDS leveraging collaboration between multiple entities (e.g., different systems, organizations, or network
IDS nodes). Unlike traditional Intrusion Detection Systems (IDS) that require centralized algorithm
Anomaly Detection updates and data aggregation, CIDS enable decentralized updates without extensive data exchange,
Al improving efficacy, scalability, and compliance with regulatory constraints. Additionally, inter-
Log Analysis detector communication helps to reduce the number of false positives. These systems are particularly

useful in distributed environments, where individual system have limited visibility into potential
threats. This paper reviews the current landscape of Log Anomaly CIDS and introduces an open-
source framework designed to create benchmark datasets for evaluating system performance. We
categorize log anomaly detectors into three categories: Sequential-wise, Embedding-wise, and Graph-
wise. Furthermore, our open framework facilitates rigorous evaluation against different challenges
identifying weaknesses in existing methods like Deeplog and enhancing model robustness.

1. Introduction or intrusion attacks in decentralized systems known as Log
Anomaly CIDS [37].

It is important to note that not all CIDS utilize logs [17]
for anomaly detection, nor do all CIDS examine anomalous
behavior. A more detailed discussion will be provided in the
paper. While our primary focus is on Log Anomaly CIDS,
we will also explore other Anomaly CIDS and comparable
methods to obtain a broader understanding of the current
state of the art and emerging trends. This paper revolves
around the following research questions (RQ).

RQ1: What methods and baselines are used in the
literature for Anomaly CIDS? We will explore different
methods to detect anomalies in CIDS from recent years. As
noted previously, not all Anomaly CIDS rely solely on logs;
some utilize network traffic packets or diverse time series
outputs from multiple sensors. To broaden our investigation,
we will also consider Intrusion Detection Systems (IDS),
which function similarly to CIDS but focus on centralized
systems. Furthermore, we will examine Log Anomaly De-
tection (LAD) approaches, which involve algorithms that
scan logs to identify unusual behavior in a similar way as
Log Anomaly CIDS. Figure 1 illustrates all the publications
referenced in this study, all the methods considered are ma-
chine learning based. We compile the articles by employing
the snowball technique on Google Scholar, utilizing the
previously specified keywords.

RQ2: How can we categorize the different Log Anomaly

Information and communication systems are increas-
ingly growing in size and complexity while becoming more
essential in our daily lives. As mentioned in [16], cyber
attacks on these systems pose a substantial threat to society,
consistently endangering them. Automating certain tasks,
such as cybersecurity, is vital to keep up with this trend.
This subject has been discussed before; 25 years ago, IBM
released a manifesto [43] advocating for the development
of self-managing systems that can autonomously configure,
repair, and secure themselves. The core idea is that systems
are evolving to a level of complexity that human main-
tenance is not feasible, thereby emphasizing the necessity
of creating automated tools for these tasks. Over the past
two decades, publications have addressed this topic. Early
approaches to Collaborative Intrusion Detection Systems
(CIDS) can trace back to 2003. For instance, [102] investi-
gated CIDS to enhance intrusion detection across distributed
systems. In 2012, [72] motivated their research in creating
parsers capable of automatically processing logs to aid in
the maintenance of large systems. Another example is from
2015, when LogCluster [66] was developed to autonomously
detect system failures through log data analysis and was
implemented in Microsoft online services. The developers
underscored the importance of such a tool, as these services
generated petabytes of logs each day, an amount too vast

for manual human analysis. In alignment with this thought CIDS and other Log Anomaly approaches? We will

process, our work will focus on current methods employed . lassification based 1 the logoi thod
ically analyze logs to identify anomalous behavior organize our classication based on ail the Jogging Methods
to automaticatly y & y collected in RQ1. Other studies, such as [99] or [48], often

*Corresponding author categorize methods according to the architecture of the ma-
ORCID(s): 0000-0003-3102-6986 (A.G. G6mez); 0000-0003-3813-3151 chine learning model. Although this aspect has significance,

(M. Landauer); 0000-0003-3259-6972 (M. Wurzenberger); we believe that it is not the most crucial element. Since
0000-0002-1922-7892 (F. Skopik); 0000-0003-0665-6126 (E. Weippl)

A.G. Gémez et al.: Preprint submitted to Elsevier Page 1 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

_| [

FSL-SCNN
| |

VLSTM

|
L
| _| L _| | _| M Parser M RNN
a FL-LSTM DeepFeed HS-TCN A
. . - L Semioporisod @ N |
> W Graph AN
% I: MCPS FNN _I I: FIDS _l I._ FID-GAN j I: FED-IDS j : :e:EFraled 'Zr::stormer
2 ’
é -Mulli-Chain AE_I -AMCNN-LSTM VANET BIGAN_| E FeLIDS _l
2 u
]
3
g = DioT _I - VAE-LSTM _l = Lockedge _| = FedLog _l
L « L - L L
<= 2020 2021 2022 2023 2024>=
: I: DeeplLog _.l I: LogBert _l C.DeepTraLog_| C- GLAD _l I: LogSD _|
o
T mm]]] o T -1 -]
% "CNN" NeuralLog LogGD LogGT PreLog
s L L L | L
<§ I:LogAnomaly_.l I:. LogFlash _l I: TransLog _| I._- LogBD _l I: LogPrompt _|
=4
o
- I: LogRobust _.l I: PLELog _l I:- LogGPT _l I: SuperLog j
I: LogTransier_.l I._ LogTAD _.l I:.LogLLaMA _|
I: 0C4Seq —| I: Metalog —|
| |

Figure 1: The literature review distinguishes between publications that introduce new Intrusion Detection Systems (IDS) and
Collaborative Intrusion Detection Systems (CIDS) methods on the upper section and those identified via Log Anomaly Detection
(LAD) on the lower section. Each method is color-coded to indicate the presence of specific keywords and the type of machine
learning architecture employed. All the publications are sorted in chronological order.

machine learning models are data-driven algorithms that
depend on an optimization process, our categorization will
emphasize data pre-processing techniques and the objective
functions employed during training.

RQ3: To what extent can we improve the reliability
of Log Anomaly CIDS? To effectively create and deploy
these systems in practical environments, it is crucial to
ensure their robustness. We have created an open-source
framework intended to produce well-organized datasets, en-
abling preliminary assessment of these techniques in diverse
contexts. Our main objective is to provide tools to allow for
a thorough analysis that support the creation and evaluation
of more sophisticated and robust algorithms in this domain.
Although this study will not definitively resolve RQ3, it will
provide tools to address it in future research.

The corresponding code is available for access here [25].

The paper is organized into these sections: In Section
2, a comparison with prior studies on the same subject is
presented. Section 3 introduces the concept of a CIDS and
examines how multiple nodes can collaborate for intrusion
detection in decentralized systems. Section 4 evaluates cur-
rent state-of-the-art trends to address RQI1. In Section 5,
we analyze the log processing in Log Anomaly CIDS and

categorize them, focusing on RQ2. Section 6 discusses exist-
ing benchmarks and shows how our open-source framework
addresses RQ3. Section 7 includes a demonstration of how
our framework can be used to compare different models.
Section 8 answers the research questions based on insights
from previous sections. Finally, Section 9 covers conclusions
and future work.

2. Related work

The literature includes several SoK papers and surveys
focused on CIDS, such as those on Log Anomaly CIDS.
In addition, there are numerous surveys that discuss Log
Anomaly methods in more general. We have classified these
into distinct categories on the basis of their content.

e CIDS Taxonomies: The extensive topic of CIDS al-
lows multiple taxonomies to be formulated depend-
ing on which CIDS aspect is being emphasized. The
2015 work by [95] offers a CIDS classification that
is broader than what is used in this paper, with less
emphasis on specific algorithms, but a stronger focus
on commercial variants. In contrast, [99] highlights
the role of federated learning in CIDS and presents
various concepts at a more introductory level, lacking
comprehensive technical details.

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 2 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

e [DS Surveys: Intrusion detection systems (IDSs) are
generally divided into two primary categories, as we
will discuss later. In the survey by [65], these are
further broken down into several subclasses. Further-
more, [44] enumerates different tactics used to avoid
IDS detection.

e SoK Publications: The work of [37] provides an exten-
sive overview of the entire detection system pipeline.
However, their primary concern is about reducing the
volume of logs processed by the CIDS, which diverges
from the focuses of this study.

o Log Anomaly Surveys: The study by [48] thoroughly
investigates various deep learning methods to detect
log anomalies, although it remains theoretical and
does not incorporate IDS practically. Similarly, [52]
discusses different strategies, concentrating mainly on
the clustering of different logs.

Our research enhances prior studies in Log Anomaly CIDS
by offering a more detailed categorization of prevalent al-
gorithms. In addition, we introduce innovative tools, such
as our framework, to support the development of these
systems. We assert that the perspective offered in this paper
is distinctive and has not previously been addressed in the
existing literature.

3. Anomaly CIDS

Anomaly CIDS covers an extensive and cross-disciplinary
topic. Initially, this section will clarify the concept of an
IDS before diving into multiple CIDS and highlighting their
advantages over IDS in complex environments. We define
Anomaly CIDS as those designed to recognize anomalies,
and Log Anomaly CIDS specifically as those that utilize log
inputs for anomaly detection. Ultimately, we will explore
the prevalent trends within the reviewed literature for this
study. This section aims to provide a thorough overview
that extends beyond just Log Anomaly CIDS, whereas the
subsequent sections will focus on examining the algorithms
used for detecting log-based anomalies.

3.1. Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDSs) were created to
facilitate automated protection of systems against threats.
Their primary role is to recognize attacks through the
examination of data generated by the system. IDSs are
integrated into a broader framework for analyzing and
evaluating the behavior of the entire infrastructure. Based on
the research presented in [37], Figure 2 illustrates a standard
pipeline designed to collect and analyze logs in multiple IDS
algorithms. Similar pipelines can be found in LogLens [17]
and in CIDS approaches [102]. The primary functions are as
follows. First, there is the capture layer, whose fundamental
role is to gather logs from the system’s various nodes. Next,
the reduction layer processes these logs; as highlighted in
[66], the volume of logs can be excessive, so the critical
function of this layer is to sort and eliminate redundant

logs to reduce the burden on the subsequent layer. However,
determining which logs are redundant can be complex and
poor decisions could negatively influence IDS performance.
This issue is beyond the scope of this document; more
comprehensive details are provided in [37]. Following this,
the infrastructure layer is responsible for the storage of
the various logs. Finally, at the peak of the diagram, the
detection and investigation layers are found. The detection
element is automatically managed by IDS techniques, while
the investigation layer offers users a platform to track alerts
and oversee the system. An actual example of an open source
initiative that follows this architecture is documented in [54].

As mentioned above, the detection layer enables multiple
IDSs to collaborate. The literature identifies various types of
IDSs. Signature-based methods excel at identifying known
threats, but maintaining their currency is both burdensome
and labor-intensive. In addition, they fail to detect unknown
threats and can be easily bypassed by sophisticated adver-
saries such as advanced persistent threats (APTs). On the
other hand, anomaly-based IDSs identify deviations from
typical system and user behaviors, allowing them to detect
zero-day attacks. However, they are prone to generate ex-
cessive alerts through false positives and duplicates, which
requires alert aggregation strategies to minimize the number
of alerts presented to users [53].

3.2. Collaborative IDS (CIDS)

As technologies like the Internet of Things (IoT) expand,
information and communication systems have evolved to
be more intricate and decentralized. Consider a typical fog
architecture as described in [4], which includes three main
layers for distributed computation as shown in Figure 3.
First, the IoT layer is primarily used to collect data from sen-
sors in various locations. Second, the fog layer serves as the
connecting element of the overall system. Third, the cloud
layer hosts the nodes with the highest computational capac-
ity. This fog architecture can operate on multiple devices
located in various global locations. Such a decentralized
system does not integrate well with a centralized IDS, which
may encounter issues like scalability or latency. CIDS were
developed to address these challenges. These systems com-
prise two components: monitor nodes and analysis nodes.
For simplicity, it is assumed that the capture layer resides in
the monitor nodes, while the remaining layers are located on
the other ones. According to [95], CIDS can be categorized
into three types:

e Centralized CIDS: Their operation is similar to reg-
ular IDS, as they incorporate just one analysis node.
Nevertheless, for scalability, they possess numerous
monitoring nodes distributed across the system.

e Decentralized CIDS: The system employs a hierar-
chical configuration among the analysis nodes, with
each monitoring node linked to a particular analysis
node.

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 3 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

e Distributed CIDS: Generally, it employs a Peer-2-
Peer structure where each node simultaneously per-
forms analysis and monitoring.

Centralized CIDS are susceptible to failure due to their
single point of vulnerability and do not scale as efficiently
as other methods. Consequently, this study will not focus
on centralized CIDS, as existing literature on Log Anomaly
CIDS assumes that multiple analysis nodes come into play.

Decentralized systems are generally more challenging to
develop and maintain than centralized systems, introducing
unique obstacles for CIDS that IDS do not encounter. These
systems depend on message exchanges between various
nodes, posing a risk of interception or alteration by attack-
ers. Additionally, when updates are made to the detection
methods utilized in CIDS, not all nodes may be accessible,
leading to nodes running different software versions. As
highlighted in [99], a significant number of such methods
in current research employ the FedAvg [73] algorithm for
model training. The Pseudo-code 1 describes a generic al-
gorithm for this approach. Initially, it involves sampling
N clients (Line 3). If the connection to a node in the
sample using the not_fail() method is successful (line 4),
the node is instructed to perform local training and return
its local weights (Lines 5-6). These local weights are then
merged through an aggregation process (Line 9). Finally,
all available nodes are updated with the new global weights
(Line 12). It is important to note that it is unnecessary for
all nodes to participate in the training process, but the final
model must be updated for all accessible nodes. In FedAvg,
the aggregation function calculates a weighted average of
the weights. The literature presents alternative aggregation
techniques Fed+ [46] as well as modifications to FedAvg,
such as DDFef [108]. As noted above, adversaries can in-
tercept messages sent during the federated learning training
process. This can alter the final model’s performance and
potentially create weaknesses in detection systems that can
be exploited. Related literature on these types of attack is
cited as [6], [105] and [7].

Algorithm 1 Federated learning generic pseudo-code.

1: for round in rounds do

2: Ws, <[] > List of trainable weights

3 for n in sample_nodes(IN') do > Sample N clients
4 if n.not_fail() then
5 n.do_train(local_epochs)
6: W s;.append(n.get_weights())
7: end if
8 end for
9: W, < aggregate_weights(W's,)
10: for nin Nodes do
11: if n.not_fail() then
12: n.set_weights(W,,)
13: end if
14: end for
15: end for

IDS 1 —l

| B2 1 Aert | |

L
° I_aggregation

Investigation |

Layer

: > L
\L_"’s"j |+
A

Infrastructure | | 3

Layer

/\
Reduction —l 2
L £

Layer

/\
Capture _| |1_

Layer

Figure 2: Generic alert system architecture based on the
previous work of [37] and [53].

Cloud layer

Cloud |
| Node 1 ¢ oo

V A Fog layer

Fog | Fog |
| Server 1 o0 |2

V loT layer

I_ De|v°i<T:e1 —l ¢oe o —l |1_

Figure 3: The foundational fog architecture as described in [4]
comprises K Cloud nodes, M fog servers, and N loT devices.
The numbering system organizes the layers from those nearest
to those farthest from the user's view, assuming interaction
with the loT devices.

Node K

Cloud —l |3_

As revealed in the survey by Zhang et al. [115], Fe-
dAvg is used in various disciplines. It is a fundamental
training technique in federated deep learning with proof of
convergence [62]. A key challenge in CIDS applications is
the prohibition against transferring data to a central loca-
tion due to privacy concerns. However, training techniques
such as FedAvg eliminate this need, allowing each node to
leverage the training data from other nodes effectively. In
an empirical study conducted by Rahman et al. [85], three
use cases were assessed by comparing federated with cen-
tralized CIDS, demonstrating that federated outcomes can
closely approximate centralized performance depending on

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 4 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

the data distribution among nodes, although typically results
tend to be inferior. Campos et al. [9] conducted a similar
study, evaluating FedAvg and Fed+ [46] in various dataset
distributions, highlighting the critical role of data distribu-
tion and showing that Fed+ generally outperforms FedAvg.
Communication costs can be further reduced in training by
adapting FedAvg variations such as LotteryFL [59], which
involves only transmitting a subset of the model to the central
hub according to the hypothesis of the lottery ticket [22],
exemplified in FedLog [60], a Log Anomaly CIDS. Another
example is AMCNN-LSTM [68], where compressed gradi-
ents are transmitted instead of model weights.

4. Literature Discussion

As depicted in Figure 1, this research investigates schol-
arly articles using the keywords Log Anomaly Detection
(LAD) and Intrusion Detection Systems (IDS). This section
will highlight the unique traits of these two fields. Our
approach used the snowball methodology. We started by
conducting a search on Google Scholar for articles with
more than 300 citations dated between 2020 and 2024, or
recent works that may capture the interest of the field. After
accumulating a set of approximately 7 papers, we examined
the citations listed in their related work sections. Those
citations deemed essential were included if they formed
the foundation for the authors’ work, were used in their
experiments, or appeared multiple times, specifically more
than three, in various related studies. This approach was
repeated until no additional relevant papers could be found.
Articles were considered pertinent and included only if they
demonstrated innovative methods that set them apart from
others. If the method appeared irrelevant or unrelated to
the topic, it was excluded. Furthermore, we included some
papers due to their compelling empirical experiments [85]
or interesting use cases [1]. LAD is primarily focused on
identifying anomalies in log data, which can originate from
both system malfunctions and cyber attacks. In contrast,
works related to CIDS/IDS generally concentrate solely on
anomalies caused by attacks within various data contexts. It
should be noted that methods from these fields can often be
used interchangeably, as illustrated by [33], where an LAD
method [20] was applied within a CIDS setting. Table 1 lists
the three types of dataset used:

o Log Datasets: datasets derived from the system’s
generated logs.

e Network traffic Datasets: datasets that examine the
transmission of packages across a network. Most of
these fields consist of numerical values such as byte
size, sending time, and others.

o Time series: numerical sequences over time observed
in various industrial contexts.

Two additional datasets identified in the literature but not
within these groups include the SEA dataset [90], which
is derived from various UNIX commands and employed in

Logs IDS m LAD
AT ol 6%
Spark miem 6%
SPirit ml— 25
Thunderbird =& 6%
Rubis ke 6%
Hadoop miie— 179
BOL bl 89%
Openstack i 119
HDFS ity
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Network traffic Time series
InSDN % Engine 6%
MQTTset 6% o
Car-Hacking % Gas Pipeline
TON_loT 6% Power demand
CSE-CIC-IDS2018 6% ECG o
UNSW-NB15 12%
WADI 6% Nyc taxi 6%
SwaT &% Gesture 6%
KDD99 6% o
Respiration 6%
BoT-loT 6%
NSL-KDD 12% Space shuttle

0% 5% 10% 15% 0% 5% 10%

Figure 4: Distribution of different datasets used in the litera-
ture related to publications on Log Anomaly Detection (LAD)
and Intrusion Detection Systems (IDS).

Table 1
Datasets found in the literature.
Datasets || Publications
Log HDFS [109], BGL [82], Thunderbird [82], Hadoop [32],

OpenStack [32], Rubis [3], Spirit [82], Spark [120] , AIT-
LDS [51]

Network traffic NSL-KDD [87], Bot-loT [78], KDD99 [74], SWaT [47],
WADI [47], UNSW-NB15 [79], TONi_loT [2], Car

Hacking [93]

Time series Space Shuttle [42], Respiration [42], ECG [42], Power
demand [42], Gesture [42] Gas pipeline [77], Nyc taxi

(81]

[117], and MIMIC [40], a dataset concerning critical care
utilized by [89]. Figure 4 illustrates the distribution across
multiple datasets referenced in the literature. Examining
LAD among log datasets reveals that HDFS, BGL, and
Thunderbird serve as primary baselines in numerous studies.
Conversely, CIDS/IDS research is fragmented across differ-
ent clusters, lacking a predominant baseline dataset, which
complicates comparative analysis between methodologies.
Notably, only two IDS methodologies are equipped to iden-
tify log anomalies [80], [60], indicating a distinct deficit
in CIDS/IDS solutions for log data. Studies that created
their own datasets merely as a concept to showcase their
specific method’s performance were excluded from Table 1
and Figure 4.

We further explore the different methodologies cited
in the literature (refer to Figure 5), highlighting a diver-
gence between how LAD and CIDS/IDS publications are
distributed. LAD techniques employ contemporary Natu-
ral Language Processing models, such as transformers and
Large Language Models, in addition to methods based on
graph theory. Conversely, CIDS/IDS approaches tend to
opt for broader deep learning techniques. This pattern is

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 5 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

m|AD = IDS

i I 54%
Unsupervised 1%

[70%

Parser 18%

0%
FNN ag%

I 2o
RNN 1%

I 79
CNN d7og

I, 0%

Transformers 6%

I 429

0%

LLM

I 7
Graph =5,

0%
GAN 12%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 5: Distribution of primary keywords in the literature
related to publications on Log Anomaly Detection (LAD) and
Intrusion Detection Systems (IDS).

largely due to two reasons: first, as mentioned earlier, most
CIDS/IDS research does not center on log datasets, lessening
the demand for NLP methods; second, nonlog datasets are
generally more straightforward, allowing techniques like
Full Neural Networks (FNNs) to achieve strong results. The
methodologies compared are detailed in Tables 2 and 3.

5. Log Anomaly Detection

In the preceding section, we have generally examined
various Anomaly CIDS / IDS systems without diving into
the specific techniques applicable to them. In the upcoming
segment, we will offer a concise introduction to logs and
explore the different strategies employed by multiple Log
Anomaly Detection methods; as documented in the litera-
ture.

5.1. Logs and log events

A log is made up of two main elements: a fixed section
and a variable section. The fixed portion functions as the
template for the log message, while the variable part includes
a set of values that change according to the state of execution.
For example:

log = "Connection to 127.0.0.1 was accepted”. (1)

The process involves separating the logs into two parts,
log = (t,v), where ¢ represents the template and v corre-
sponds to the variable list. In many real-world situations,
templates are not accessible. Consequently, logs are man-
aged as string variables instead of tuples. Several parsers
have been created to address this issue, as noted in the
literature: [31], [19], [72]. These parsers can be described
by Equation 2.

Table 2
Collaborative and Intrusion Detection Systems publications.
Method H Keywords [Architecture [Dataset
FL-LSTM [117] Semi/supervised, RNN Sea
Federated
MCPS FNN [89] || Semi/supervised, | FNN MIMIC
Federated
Multi-Chain AE Unsupervised, CNN Created
[84] Federated
DioT [80] Parser, Unsuper- | RNN Created
vised, Federated
VLSTM [119] Semi/supervised RNN UNSW-NB15
DeepFeed [61] Semi/supervised, CNN, RNN Gas Pipeline
Federated
FIDS [76] Semi/supervised, FNN NSL-KDD
Federated
AMCNN-LSTM Unsupervised, CNN, RNN Space shuttle,
[68] Federated Power demand,
Engine
VAE-LSTM [36] Unsupervised, CNN, RNN Space shuttle,
Federated Respiration,
Gesture, Nyc
taxi, ECG,
Power demand,
Gas Pipeline
FSL-SCNN Unsupervised CNN Created,
[118] UNSW-NB15
HS-TCN [13] Parser, CNN Created
Semi/supervised
FID-GAN [5] Unsupervised FNN, GAN NSL-KDD,
SWaT, WADI
VANET-BiGAN Unsupervised, FNN, GAN KDD99
[92] Federated
Lockedge [94] Semi/supervised, FNN Bot-loT
Federated
FED-IDS [1] Semi/supervised, Transformer TON_IoT, Car-
Federated Hacking
FeLIDS [23] Semi/supervised, CNN, FNN CSE-CIC-
Federated 1DS2018,
MQTset, INSDN
FedLog [60] Parser, CNN HDFS, BGL
Semi/supervised,
Federated
e, (t,v) = parser(log) 2)
Where ¢t = "Connection to <*>was<*>" and v =

[127.0.0.1, accepted]. These approaches produce the most
probable template and assign it an event number, also known
as a log event e. It is important to recognize that the
parsers are not infallible and cannot ensure that (t*, V*) ==
(t, V) where (t*,V™) is the accurate result. For example,
when using one of the common parsing methods, such as
Drain [31], subsequent logs associated with the same initial
template might be mistakenly classified under a different
template and event number:

log; = "The operation was: successful" ,
log, = "The operation was: Exception in line 25,...".

(©)

This occurs because Drain initially segments the logs
based on word count, ensuring that they are not assigned
the same event ID, even if they originate from an identical
template. In this paper, we will not investigate into further
specifics regarding the parsers. Nonetheless, it is essential
to grasp the following attributes before transitioning to Log
Anomaly Detection techniques:

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 6 of 19

Journal Pre-proof

Table 3

Log Anomaly Detection.

Method || Keywords | Architecture | Dataset
DeepLog [20] Parser, Unsuper- | RNN HDFS,
vised Openstack
CNN [70] Parser, RNN HDFS
Semi/supervised
LogAnomaly Parser, Unsuper- RNN HDFS, BGL
[75] vised
LogRobust [116] Parser, RNN HDFS
Semi/supervised
LogTransfer [12] Parser, Unsuper- | RNN HDFS, Hadoop,
vised Created
0C4Seq [98] Parser, Unsuper- | RNN HDFS, BGL,
vised Rubis
LogBert [27] Parser, Unsuper- Transformer HDFS, BGL,
vised Thunderbird
NeuralLog [55] Semi/supervised, | Transformer | HDFS, BGL,
LLM Thuderbird,
Spirit
LogFlash [39] Parser, Unsuper- | - Created
vised, Graph
PLELog [110] Parser, CNN HDFS, BGL
Semi/supervised
DeepTralLog Parser, Unsuper- GNN Created
[113] vised, Graph
LogGD [106] Parser, Transformer, | HDFS, BGL,
Semi/supervised, | GNN Thunderbird,
LLM, Graph Spirit
TransLog [28] Parser, Transformer HDFS, Hadoop,
Semi/supervised Thunderbird
GLAD [63] Parser, Unsuper- Transformer, | BGL, AIT, Cre-
vised, Graph GNN ated
LogGT [97] Parser, Transformer, | HDFS, BGL,
Semi/supervised, | GNN Thunderbird
Graph, LLM
LogBD [67] Parser, Unsuper- CNN, Hadoop, Thun-
vised, LLM Trans- derbird
former
LogSD [107] Parser, CNN HDEFS, BGL,
Semi/supervised Spirit
PreLog [56] Semi/supervised, | Transformer | HDFES, BGL,
LLM Spark
LogPromt [69] Semi/supervised, | Transformer | BGL, Spirit
LLM
SuperLog [38] Semi/supervised, | Transformer | BGL, Spirit
LLM
LogGPT [30] Parser, Unsuper- Transformer HDFS, BGL,
vised, LLM Thunderbird
LogLLaMA Parser, Unsuper- Transformer HDFS, BGL,
[111] vised, LLM Thunderbird
LogTAD [29] Unsupervised RNN BGL, Thunder-
bird
Metalog [114] Paser, Unsuper- | RNN HDFS, BGL,
vised Thunderbird,
Openstack

e Parsers are not flawless; any mistakes they produce
will be transferred to the Log Anomaly Detection
methods that depend on them.

e Parsers such as Drain [31] and Spell [19] are updated
in real time, implying that they undergo continu-
ous modifications. This poses a challenge for Log
Anomaly Detection methods that are updated in a
non-continuous manner, including deep learning tech-

niques.

It should be noted that new parsers that employ LLM tech-
niques are in development and have the potential to signifi-
cantly reduce parsing errors [104], [56].

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

5.2. Methods

After reviewing the different publications relevant to Log
Anomaly CIDS/IDS and LAD, we classified the methods
into three separate groups. In the following parts, we will
describe the different categories using pseudo-codes and
process tables with an example of an anomaly sequence as
aids.

5.2.1. Sequential-wise Log Anomaly Detection

To the best of our knowledge, this category was the first
of its kind in the literature and is still used today (Algorithm
2). The core concept involves converting each log entry into
an event ID according to Equation 2 (Line 5). If an event
was not included in the training set, it is deemed anomalous
(Line 6); otherwise, the events are combined into an event
sequence, which is then processed by a model to determine
if it is a normal sequence (Lines 12-13). Table 4 presents
an example illustrating the various outputs produced at each
step. The first iterations of this method can be traced back
to publications from the previous century [21]. In the realm
of literature; Deeplog [20] is noteworthy as the first deep
learning model in this category, employing an LSTM [34]
with the subsequent formulation:

Loss = —log(Py(e, | e;_1,€;_3, .-

-1 €0))- “

The model P, is trained to forecast the subsequent event in
the sequence based on prior events. A comparable approach
was employed in LogBert [27], which utilized a transformer
[96] with BERT [18] masking loss alongside the Deep
SVDD hypersphere loss [88]:

Loss = —log(Py(ee M |e & M))+ aLsypp, ()
where:

Lsypp = llhprsy —cll*. (6)

Here, M refers to the collection of events that are masked
and meant to be predicted using the observable events.
Meanwhile, / ;g7 denotes the embedding space of a special
token, encapsulating the information of the sequence, and
c is the mean of hp;gr across all sequences within the
training batch. The authors assert that incorporating both
losses improves performance, and the masking loss is more
effective than Equation 4 for handling log data. Similarly
to Equations 4 and 5, various models have been developed.
LogAnomaly [75], for example, expands on the DeepLog
framework with a template2Doc method to improve se-
mantic retrieval. Similarly, LogTransfer [12] is designed to
enable knowledge transfer across different datasets, while
0C4Seq [98] combines two GRUs with SVDD hypersphere
loss. In the realm of CIDS, DIoT [80] utilizes a GRU [14]
instead of an LSTM, and FedLog [60] employs a dual-input
model, applying unique pre-processing techniques for each
input. Furthermore, there are semi-supervised approaches
like PLELog [110], which uses a probabilistic label estima-
tion method, and LogSD [107] that incorporates distillation
techniques with a framework featuring two encoders and a
single decoder.

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 7 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

Algorithm 2 Sequential-wise Log Anomaly Detection
generic pseudo-code.

1: model < load_model()
logs < [logy,log,,..,log,]
event_seq <]
for log in logs do

e, _ < parser(log)
if e € know_events then
return True
end if
event_seq.append(e)
end for
. event_seq < preprocessing(event_seq) >

Events"™! — Rmxm
12: output < model(event_seq) > RM™M — RX0
13: return is_anomaly(output) > R™° — {True, False}

> Machine learning model
> Input log sequence

> e € FEvents

R A A S ol

—_ =
_= o

Table 4
Example of the intermediate outputs of the steps in the
Sequential-wise methods following Algorithm 2.

Step || Sub-Method (optional) | Output
Input H log,, log,, log,
For loop parser(log,) e
parser(log,) 2
parser(log;) e
Event Seq. le), e, e;]
Preprocessing [([e,, es], e3)]
Model [score,]
Is Anomaly [True]

5.2.2. Embedding-wise Log Anomaly Detection
Sequential-wise anomaly detection techniques for logs
are straightforward to implement, but present several chal-

lenges that embedding-based approaches aim to tackle (Pseudo-

code 3). Firstly, Sequential-wise methods neglect the infor-
mation contained within the log messages and heavily rely
on parsers. Moreover, the introduction of new or altered logs
from system updates can dramatically affect the model’s
performance. Studies such as LogRobust [116] seek to
mitigate these shortcomings in anomaly detection. They
achieve this by forgoing the use of event ID numbers and,
instead, utilizing the templates obtained by the parsers (Line
6) as model input. This is accomplished through a word
embedding layer (Line 9) known as FastText [41], which
translates template words into an embedding space. Subse-
quently, a BiILSTM is employed to process the information,
with the primary formulation being:

Loss = —10g(Py(y | Ey(t,) Ep(t_ps - E,(1)) (7)

where:

word €t
E, () = Z idf(word) - FastText,,(word). (8)

word

We refer to E () as the embedding encoder. Table 5 pro-
vides an illustration of the various steps involved in this
approach. Typically, in many studies, this encoder originates
from a pre-existing model with pretrained parameters, and
during training, these parameters @ remain unaltered. Re-
grettably, the majority of the techniques adhering to Algo-
rithm 3 are supervised, which constrains their application as
an IDS element for identifying novel attacks, as indicated in
equation 7. Analogous research like NeuralLog [55] operates
without a parser and encodes logs using a pre-trained Bert
model [18], whereas PreLL.og [56] is a large language model
(LLM) trained on log data, capable of identifying supervised
log anomalies through tailored prompts. Similar prompt-
based LLM methods involve LogPrompt [69] and SuperLog
[38]. Alternatively, some strategies use LLMs integrated
with reinforcement learning for fine-tuning instead of rely-
ing on prompts, as seen in recent examples like LogGPT
[30] and LogLLLaMA [111]. Other approaches that do not
precisely follow this pattern but fit within the same category
include the method widely referenced as "CNN" in the aca-
demic literature [70], which utilizes a trainable embedding
layer alongside a basic CNN framework [57].

An alternative method, LogBD [67], uses domain adap-
tation between a target and a source dataset, integrates a
Bert encoder [18], and is trained without supervision using
SVDD hypersphere loss (Equation 6). It employs adversarial
training, applying gradient reversal [24], to mediate between
the target and source datasets and help the generalization of
the model:

. Funesorccl108(D5(ful B (ROWI+
Lago = mnmaxC g o eallog(l = Dy(fo(E ()]
©

where f, comprises learnable layers appended to the frozen
Bert model Eq,, and Dﬂ denotes a discriminator classifier
responsible for distinguishing between source and target
datasets. The goal of gradient reversal is to confuse the
discriminator, thereby hindering it from discerning the two
distributions. The final objective function of LogBD:

Loss = LSVDD - ALadU' (10)

LogTAD [29] utilizes a comparable technique, replacing
the architecture with an LSTM. In contrast, MetalLog [114]
adopts a meta-learning strategy rather than adversarial train-
ing to achieve domain adaptation.

5.2.3. Graph-wise Log Anomaly Detection

As demonstrated in previous methods, log data can be
addressed using Natural Language Processing (NLP) tech-
niques. In sequentially-wise, each log entry is defined by
its relationship to other logs, independent of the intrinsic
syntax of the log message. In terms of Embedding-wise, it
also incorporates the information within the log message,
with both approaches handling the data as a sequential
chronology of tokens. Nevertheless, NLP problems can also
be modeled as graphs [101]. Consider a series of logs from

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 8 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

Algorithm 3 Embedding-wise Log Anomaly Detection
generic pseudo-code.
1: model < load_model()
2: emb_model < load_emb_model()
model

> Machine learning model
> Embedding

3: logs « [log;,log,,...log,] > Input log sequence
4: event_seq < []

5: for log in logs do

6: _,(t,_) < parser(log) >t € Templates
7: event_seq.append(?)

8: end for

9: emb_seq < emb_model(tokenizer(event_seq)) >

Templates™! — R™M
10: output < model(emb_seq) > R™M — RX0
11: return is_anomaly(output) > R™° — {True, False}

Table 5
Example of the intermediate outputs of the steps in the
Embedding-wise methods following Algorithm 3.

Step H Sub-Method (optional) \ Output
Input H log,, log,, log,
For loop parser(log,) 1
parser(/og,) t,
parser(log;) 15
Event Seq. [t,, t,, 3]
Emb. Model [emb,, emb,, emb;]
Model [score]
Is Anomaly [True]

a deterministic program in which their interdependencies
arise from the execution state. These relationships can be
illustrated as a graph structure, potentially offering a more
sophisticated problem representation. As shown in Figure
6, it is feasible to develop a graph model of a code base
using only the sequence of logs of each run. This graph
does not strictly match the structural layout of the original
code base, but maintains logical consistency (for example,
log3 never precedes /ogl). It is important to note that since
condition_b was consistently false during executions, /og2
is omitted from the graph generated by the logs.

Consider defining graphs as G = (V, E), with V repre-
senting the nodes (each event id is symbolized by a node) and
E representing the edges such that E = {(e,e;)|e;, e, €
V'}. Figure 6 illustrates how logs can be depicted in this man-
ner, enabling the use of graph anomaly detection techniques
for the problem at hand, as detailed in the survey by [71].
The Algorithm 4 presents a standard pseudo-code where
T and E denote the template and event sets, respectively.
This algorithm is analogous to Algorithm 3 but processes
sequences without considering their chronological order by
generating graphs instead (Line 10), an illustration of inter-
mediate outcomes is provided in Table 6. We can categorize
various methods within this class based on their approach to
constructing the initial graph:

Code base

log.info(msg1)
if condition_a:
if condition_b:

log.info(msg2)
else:
log.info(msg3)
else:
log.info(msg4)
log.info(msg5)

log1

Logs records

[log1, log4, log5] |
> flog?. log3. log5]
[log1, log3, log5]

L

A4

I Executions

Graph from logs

Graph from code N
log1
Ifa ﬁ
Ifb
7 ; 7\

log3 log 4

log 4 log2 log3 ~
| | logs

logs

Figure 6: Example of a graph generations and their main
difference between using the code base and the log records.

o FEdge formulation: In LogFlash [39], an edge depicts
the frequency of occurrence of various logs, defined
as G = (V, E, Fg), where F, € R serves as the edge
weights. In particular, this approach updates the graph
dynamically, enabling adaptation to changing system
conditions.

e FEdge-Node formulation: An embedding represen-
tation in the graph can be characterized as G =
(V,E, Fy, Fg), with Fj, € R” serving as embedding
vectors. This formulation is common among the ma-
jority of publications in the field:

— Use logs as embedding nodes: In the study by
[106], the LogGD approach utilizes a Bert [18]
model to encode the templates, thus producing
the embeddings for each node. In a similar vein,
LogGT [97] was created to facilitate transfer
learning between source and target datasets.

— Use logs and traces as embedding nodes: In
DeepTralog [113], the authors construct a graph
from the system’s logs and traces. They adopted
a technique similar to LogRobust [116] to de-
termine the embedding values assigned to each
node. Each word in the log uses the pre-trained
GloVe model [83], and these are subsequently
combined using a weighted sum using TFxIDF.

— Use fields in each log: GLAD [63] builds a
varied graph by employing Sentence-BERT [86]
to generate embeddings for every node, while
using BART [58] to identify fields in each log.

After generating the graphs for various publications, a Graph
Neural Network (GNN) framework is utilized: DeepTraLog

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 9 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

Table 6
Example of the intermediate outputs of the steps in the Graph-
wise methods following Algorithm 4.

Step H Sub-Method (optional) \ Output
Input H log,, log,, log,

For loop parser(log,) & emb _model(t,) | e, emb,
parser(log,) & emb _model(t,) | e,, emb,
parser(log;) & emb _model(t;) | e, emb,

Event Seq. [(ey, emb,), (e,, emb,), (e5, emby)]
Make graph lg]
Model [score]
Is Anomaly [True]
Table 7
Comparison between the different categories.

Type || EventID | Template | Message || Sequential
Sequential-wise Yes No No Yes
Embedding-wise No Yes Maybe Yes

Graph-wise Yes Yes Maybe No

employs GGNN [64], LogGD GTN [91], GLAD GCN [45],
and LogGT HGT [35].

Algorithm 4 Graph-wise Log Anomaly Detection generic
pseudo-code.
1: model < load_model()
2: emb_model < load_emb_model()
model

> Machine learning model
> Embedding

3: logs < [logy,log,, ..,l0g,] > Input log sequence

4: event_seq « []

5: for log in logs do

6: e, (t,_) < parser(log) >(ee E,teT)

7 v < emb_model(tokenizer(?)) BT — RIXm

8: event_seq.append((e, v))

9: end for

10: graph < make_graph(event_seq) >
(e € E,RIxmy 5 G

11: output «— model(graph) > G — R™°

12: return is_anomaly(output) > R"™° — {T'rue, False}

5.2.4. Comparsion Log Anomaly Detection

The LAD approaches can be classified according to the
categories listed before. Table 7 provides a brief overview of
these categories. Sequential-based methods, like DeepLog,
rely solely on the event ID in a sequential arrangement,
whereas embedding-based methods, such as LogRobust,
utilize the template instead of the event ID, sometimes
incorporating the log message, as seen in NeuralLog. Graph-
based techniques typically employ a template or message
in a non-sequential format, often including an Event ID to
distinguish between different nodes within the graph.

6. Log dataset

Datasets such as HDFS and BGL are frequently regarded
as straightforward for detecting log anomalies in academic

studies. Research has shown that heuristic techniques can
achieve precision comparable to deep learning approaches
[50], with F1 scores surpassing 98% in BGL under spe-
cific conditions. These datasets were originally designed
for general anomaly detection, not specifically for intrusion
detection systems (IDS). On the other hand, the ADFA
dataset was specifically created for IDS applications [15].
The study points out that while earlier IDS systems could
identify intrusions through command frequency, they fall
short when dealing with contemporary threats distributed
across multiple traces. This indicates that excelling on stan-
dard datasets does not ensure practical effectiveness. To
keep addressing these challenges, the updated AIT version
2 dataset was developed incorporating various systems and
applications [49]. As the development of new software ar-
chitectures continues, attacks on these systems will evolve
as well. Therefore, it is essential to consistently create up-
dated benchmark datasets. Although these datasets can real-
istically reflect contemporary cybersecurity advancements,
they risk becoming outdated over time.

6.1. Log dataset generation framework

We propose a different strategy to improve the design of
intrusion detection systems (IDSs) by focusing on direct ac-
cess and code manipulation to produce accurately anomalies
from logs. This approach seeks to improve the evaluation of
new methodologies and enrich the understanding of actual
data. We emphasize the importance of accurate data inter-
pretation, making connections to fields such as computer
vision, where examining datasets helps to minimize biases
[10]. The open source framework for generating verification
datasets operates according to the following steps:

1. Each execution of the framework collects the logs
generated by the method via log.info.

2. The templates and logs from the execution processes
the data by segmenting the logs into the following
features: event ID, log level, time difference, message,
and template used. This streamlined structure allows
to generate datasets that can be applied directly to
various Log Anomaly methods without additional pre-
processing.

3. Each dataset embodies a challenge, contains a specific
anomaly, and comprises its own training and testing
data.

4. The method can employ the training data to adjust
the model, though altering hyperparameters is not
permitted.

5. The test data function as a unit tests: if a method
fails to detect the majority of anomalies, it should be
deemed a Fail; otherwise, it is considered a Pass.

An example of this challenge is described in Pseudo-
code 5, which illustrates a script trying to reach a resource.
Under normal circumstances, the script manages to succeed
after several attempts, but under irregular conditions, it does
not succeed (Line 4). If it fails, the final log is msg_2 (Line
6) else msg_4 (Line 13). Logging methods were designed

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 10 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

Project requirements —l

A

Ii System E
development !

N
|i I_Data Gathering—I >I_Model v:]evelopment—| |i

juawdojaAap sal/ SAID

Figure 7: Example of a project of a information and communi-
cation systems with a CIDS/IDS use for based detection. Note
that Step 2 and 3 can be done in parallel.

to allow dynamic adjustments to log messages: adding,
removing, or modifying them without altering the code,
as described in [116]. These methods emulate consistent
software updates with the goal of assessing a technique’s
robustness against various log versions derived from the
training dataset.

Algorithm 5 Challenge pseudo-code.
1: resource < Resource()
2: 1«0
3: logs.info(msg_1)

4: while not resource.init() do

5: if i >= 10 then

6

7

8

9

logs.info(msg_2)
return None

end if
logs.info(msg_3)
10: sleep()
11: i—i+1

12: end while
13: logs.info(msg_4)
14: return resource

At the beginning of a new project, it is typical for
the general information and communication systems to be
developed alongside the CIDS/IDS as shown in Figure 7. A
particularly concerning in this situations is the lack of data
for training models use in the CIDS/IDS. This creates a bot-
tleneck because data collection for training and verification
is only possible with nearly finalized software versions. To
address this, established datasets from existing literature are
used initially, though they may not capture specific features
needed for the project, such as certain log attributes [50].
Our framework helps to improve model verification during
early evaluations, prior to obtaining definitive project data.

6.2. Design challenges

An anomaly is a data point that deviates noticeably from
a given distribution, as mentioned in [11]. We define a chal-
lenge as a function C(NN,as_anomaly), which produces N
data points classified as normal or abnormal. This challenge

will be executed in an unsupervised setting using a model
f(x) that returns true if the data point x is deemed anoma-
lous and False otherwise. Pseudo-code 6 demonstrates the
execution of a challenge C. The process begins with training
the model on Line 2, followed by preparing test sets on Lines
3-4 to determine the final F1 score. Each challenge must
include an anomaly of one of the following types:

e Point Anomalies: occur when a single instance is
considered abnormal relative to the rest.

o Contextual Anomalies: occur when an instance ap-
pears abnormal within a particular context.

e Collective Anomalies: occur when a collection of
instances is considered anomalous compared to the
others.

These anomaly types are based on the work of [11]. As
mentioned earlier, a model that does not identify anoma-
lies is considered inadequate in overcoming the challenges.
Effective reasoning can demonstrate that a model will fail
to meet a specific challenge, thus eliminating the need for
empirical evaluation. However, this logic should not be
reversed; models frequently use shortcuts in the learning
phase [26], potentially leading to outcomes that do not align
with our original expectations.

Algorithm 6 Run challenge C pseudo-code.
1: function RUN_CHALLENGE(N: int)— float
0 <« train(f,C(N, False))
3 normal <« C(N, False)
4 abnormal < C(N,True)
5: return get_f1(f,(normal), fy(abnormal))
6: end function

»

6.3. Implemented challenges

We pinpoint several issues or risks highlighted in pre-
vious publications. These were transformed into challenges
and are defined as standard use cases typically encountered
in regular programs. Although this straightforward method-
ology does not cover all possible issues that an Log Anomaly
CIDS might face, we assert that it sufficiently demonstrates
the framework’s effectiveness, as evidenced in the Results
section. The challenges are grouped into four distinct cate-
gories.

6.3.1. Resource access

A class representing a resource that must be accessed by
the code. This class is tailored to simulate sensor behavior,
where multiple attempts may be required for successful
initialization. Figure 8 illustrates a diagram depicting re-
source challenges 1-3. Green arrows are exclusive to normal
executions, whereas red arrows appear only in abnormal
situations.

e Challenge 1: Should the resource remain undiscov-
ered after various attempts, the loop ends without issu-
ing any confirmation message. A model is capable of

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 11 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

log 1
No Access Yes /_\
» log 3
resource -
log 2 Yes
No 7\
Try again > Iog 4

Figure 8: Diagram of the resource challenges. Note that
challenge 1 does not have log 4.

recognizing this anomaly through two methods: either
by noting the sequence length, as normal sequences
are shorter, or by identifying the missing final event
ID, which signals resource initialization.

e Challenge 2: Should the resource be initialized, the
code will yield an event ID that confirms it; otherwise,
it will provide an event ID indicating an error. A model
formulated to identify event IDs not present in the
training dataset will be successful.

e Challenge 3: Similarly to challenge 2, the sequence
IDs for both abnormal and normal events are indis-
tinguishable, since the logs utilize identical templates.
Consequently, only models that examine the individ-
ual log messages are able to identify anomalies.

6.3.2. Load dependencies

Several dependencies are being loaded sequentially, and
the time distribution between these loads varies between
normal and abnormal scenarios.

e Challenge 4: All dependencies generally require a
similar load time, but in abnormal circumstances, one
of them may take significantly longer.

e Challenge 5: In abnormal cases, the load time of two
dependencies is interchanged.

e Challenge 6: The same as challenge 4, but the time
difference is much smaller.

6.3.3. X-Ray machine

Medical devices often exhibit a well-defined behavior.
In this study, our objective is to evaluate the effectiveness
of anomaly detection techniques in recognizing these states
and identifying operational outliers. Figure 9 illustrates the
appearance of the diagrams for Challenges 7 and 8. Similarly
to Figure 8, the red edges are exclusive to abnormal scenar-
ios, and the green edges denote normal ones.

e Challenge 7: The machine operates in either verifi-
cation or measurement mode, constantly carrying out

Challenge 7

Verification Yes

log 2 ——>* Again "———> log 3

7\
log 1 Chose ‘ No log 6
9 mode No
7\
log 4 >7 Again ~— > 'log 5

Measurement

v

Challenge 8
7\ 7\ Ye

log 1 —> log2 —>7 Again “———> log 3

7\
No log 6
No
> logd4 ——>7 Again > log 5

]

Figure 9: Diagram of the challenges 7 and 8.

tasks associated with the chosen mode. Issues arise
when the machine mistakenly performs functions of
the non-selected mode, which can be identified by log
flag statuses and variations in task completion times.

o Challenge 8: Initially, the machine is required to exe-
cute the verification process before proceeding with
the measurements. However, in cases of anomalous
behavior, the verification steps are bypassed.

6.3.4. Collaborative setting

CIDS introduce several additional complexities that are
not addressed by traditional IDS. For example, a federated
learning approach might encounter challenges in data im-
balance, which can affect its performance. Numerous bench-
marks exist in the literature to assess the efficacy of the
model under such conditions [112]. Consequently, we will
focus on various challenges unique to CIDS that are not
frequently discussed in the literature.

o Challenge 9: The system comprises three clients that
execute identical code. As each client operates its
own parser, the final template of one client’s output
deviates from the others. Models that either bypass the
parser or can adjust the final templates are necessary
to distinguish normal activity from anomalies.

e Challenge 10: Similar to challenge 9, three clients are
executing the same code. However, unlike the others,
one client was compromised prior to the training
phase, generating anomalous data within the training
set. Only models that can isolate the compromised
client will successfully identify these anomalies.

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 12 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

7. Results

In order to demonstrate the practicality of employing
the framework, we utilized DeepLog [20] to address several
challenges. This approach is commonly seen as a standard
in previous log data research. To our knowledge, no official
version of the DeepLog code exists. However, multiple im-
plementations are available, and we selected [103] because
it has a high number of stars on GitHub. To facilitate a
more robust comparison in the discussion of results, we
implemented two heuristic approaches inspired by [50].
These approaches illustrate how straightforward techniques
can outperform a deep learning model in specific instances.
The methods are as detailed below.

e Length + Event: Initially, verify whether an event
has appeared in the training dataset before; next, en-
sure that the sequence length fits within the range of
those in the training sequences. If both conditions are
met, the sequence is deemed nominal; otherwise, it is
treated as an anomaly.

e Time: When the duration of a sequence falls short
of or exceeds the durations present in the training
datasets, it is regarded as an anomaly.

7.1. Experiments Setup

We trained the different methods in all the challenges and
used the default HDFS dataset from the Deeplog repository
as a reference. Some hyperparameters were altered from the
original DeepLog code:

e For all cases: The batch size was adjusted from 2048
down to 100 primarily because the challenge datasets
contain merely 100 cases. Moreover, the Deeplog
implementation allows the test set to be run using
either only the unique event sequences or running
through all event sequences. We decide running all
event sequences.

o Only for challenges: Given the shorter log sequences
and fewer unique events relative to HDFS, we set
the window size to 3 and limited the model output
to 10. In Deeplog’s implementation, a sequence is
flagged as anomalous if the next log event is not within
the model’s top n predictions. Thus, following this
reasoning, we reduce n from 9 to 2.

The study evaluates models using three different test sets,
each consisting of 100 cases, to adequately represent the data
distribution. The goal is to achieve an F1 score of at least
0.7, as identifying all cases as anomalies yields an F1 score
of 0.67. The model was trained three times per challenge
with randomly generated datasets, calculating the average
and standard deviation of the results. The primary aim is
to determine whether various methods pass the challenges,
thus, solely performance metrics are employed. The experi-
ments were repeated with the HDFS dataset on a system with
an Intel Core Ultra 7 165U x14 CPU and 16GB of RAM. We
divided the results into two sections:

Table 8
Simple approach with the results of the test datasets v1.
Dataset || Precision | Recall | F1 | Test
HDFS 0.98 + 0.00 0.84 +0.01 0.90 +0.00 PASS
Challenge 1 1.00 +0.00 1.00 +0.00 1.00 + 0.00 PASS
Challenge 2 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 PASS
Challenge 3 0.00 +0.00 0.00 +0.00 0.00 + 0.00 FAIL
Challenge 4 0.00 +0.00 0.00 +0.00 0.00 + 0.00 FAIL
Challenge 5 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 6 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 7 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 8 1.00 + 0.00 0.38 +£0.04 0.55 +£0.04 FAIL
Table 9
Simple time approach with the results of the test datasets v1.
Dataset || Precision | Recall | F1 | Test
HDFS NaN NaN NaN NaN
Challenge 1 1.00 +0.00 1.00 + 0.00 1.00 + 0.00 PASS
Challenge 2 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 3 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 4 0.86 +0.03 1.00 + 0.00 0.93 +0.02 PASS
Challenge 5 0.39 + 0.04 0.06 +0.02 0.10 + 0.04 FAIL
Challenge 6 0.94 +0.03 0.61 £0.01 0.74 £ 0.02 PASS
Challenge 7 0.00 + 0.00 0.00 = 0.00 0.00 = 0.00 FAIL
Challenge 8 0.00 + 0.00 0.00 +0.00 0.00 + 0.00 FAIL

o (entralized Setup: we run Challenges 1-8 and HDFS
in a centralize set-up.

e Collaborative Setup: The primary objective is to
evaluate how conventional FedAvg [73] addresses the
challenges. Therefore, we concentrate solely on utiliz-
ing Deeplog, executing Challenges 9-10 and HDFS.

7.2. Centralized Setup
We separately present the results achieved in Deeplog as
well as those from the heuristics.

7.2.1. Results with Deeplog

Table 11 displays the results. Furthermore, we applied
the model to test the datasets using a second version of the
challenge code, which is shown in Table 12. The remaining
methodology remains unchanged. Challenges 4, 5, and 6
consistently have the same sequence of log events, differing
only in execution time. As DeepLog does not account for
timing variations in procedures, it inherently failed these
challenges. Further analysis of these outcomes is provided
in the discussion section.

7.2.2. Results with heuristics

The outcomes derived from the Length + Event method
are reported in Table 8, whereas the results associated with
the Time method are displayed in Tables 9 and 10. Due to the
absence of time data in the HDFS dataset utilized for these
experiments, the Time heuristics indicate NaN for this field.

7.3. Collaborative Setup

We adapted the existing Deeplog configuration to oper-
ate in a federated setting utilizing the Flower framework[8].
The weight updating process employed the FedAvg [73]
algorithm, which included three clients, three global rounds,
and three local epochs per round. The hyperparameters of the

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 13 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

Table 10
Simple time approach with the results of the test datasets v2.
Dataset || Precision | Recall | F1 | Test
HDFS NaN NaN NaN NaN
Challenge 1 1.00 +0.00 1.00 +0.00 1.00 +0.00 PASS
Challenge 2 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 3 0.00 +0.00 0.00 +0.00 0.00 +0.00 FAIL
Challenge 4 0.88 +0.00 1.00 +0.00 0.94 +0.00 PASS
Challenge 5 0.50 +0.10 0.08 +0.02 0.14 +0.02 FAIL
Challenge 6 0.98 +0.01 0.60 +0.03 0.74 +0.02 PASS
Challenge 7 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 8 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Table 11

DeeplLog model with the results of the test datasets vl.
Fed. HDFS, Challenge 9 and Challenge 10 are part of the
Collaborative Setup.

Dataset || Precision | Recall | F1 | Test
HDFS 0.96 + 0.00 0.94 +0.01 0.95 + 0.00 PASS
Challenge 1 0.0 +0.00 0.0 +0.00 0.00 + 0.00 FAIL
Challenge 2 0.79 +0.01 1.00 + 0.00 0.88 +0.01 PASS
Challenge 3 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 4 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 5 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 6 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 7 0.87 +0.05 0.84 +0.08 0.86 + 0.06 PASS
Challenge 8 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Fed. HDFS 0.82 +0.01 0.94 +0.01 0.88 +0.02 PASS
Challenge 9 0.67 + 0.00 0.67 +0.00 0.67 + 0.00 FAIL
Challenge 10 0.75 + 0.00 1.00 + 0.00 0.86 + 0.00 PASS
Table 12

DeepLog model with the results of the test datasets v2.
Fed. HDFS, Challenge 9 and Challenge 10 are part of the
Collaborative Setup.

Dataset || Precision | Recall | F1 | Test
HDFS NaN NaN NaN NaN
Challenge 1 0.50 +0.00 1.00 + 0.00 0.67 +0.00 FAIL

Challenge 2 0.50 + 0.00 1.00+0.00 | 0.67 +0.00 FAIL
Challenge 3 0.50 + 0.00 1.00+£0.00 | 0.67 £ 0.00 FAIL
Challenge 4 0.00+0.00 | 0.00+0.00 | 0.00+0.00 FAIL
Challenge 5 0.00+0.00 | 0.00+0.00 | 0.00+0.00 FAIL
Challenge 6 0.00+0.00 | 0.00+0.00 | 0.00+0.00 FAIL
Challenge 7 0.50 + 0.00 1.00 +0.00 | 0.67 +0.00 FAIL
Challenge 8 0.50 + 0.00 1.00 +0.00 | 0.67 +0.00 FAIL

Fed. HDFS NaN NalN NaN NaN
Challenge 9 0.50 + 0.00 1.00 +£0.00 | 0.67 +0.00 FAIL
Challenge 10 0.50 +0.00 1.00+£0.00 | 0.67 +0.00 FAIL

centralized version were maintained, with each client having
equal-sized training datasets. The outcomes are presented in
Tables 11 and 12. We also reevaluated the system’s perfor-
mance using HDFS datasets to verify reliability. Similarly to
[85], the federated configuration showed lower performance;
however, it should be considered that with enhanced opti-
mization, this performance disparity could be minimized.

7.4. Result discussion

Based on the results, while Deeplog achieves strong
performance with HDFS, it struggles with many challenges.
Notably, the small window size of 3 limits the LSTM’s
ability to consider more than three preceding events, thereby
constraining the architecture’s capability. Nevertheless, this
limitation does not fully account for its difficulties with
various challenges. If we maintain the original window

size, the LSTM merely needs to predict the final events in
the sequence, as the sequences are typically short in these
challenges. An approach to addressing this issue with a
larger window size is to incorporate padding at the beginning
of the sequence. This perspective highlights the importance
of using challenges from the beginning of the project, as
illustrated in Figure 7. These discussions contribute to de-
veloping more robust models. By identifying early on which
challenges may pose difficulties for the model, we can adapt
or alleviate the risks in the project’s initial phases. We will
evaluate the results of each challenge individually.

e Resource access (Challenges 1-2): In Challenge 1,
abnormal sequences significantly exceed the nominal
ones in length. This is identified by counting the
number of events per sequence, as done in the Length
+ Events approach, or by measuring the total duration
of the sequence as in the Time method. However,
Deeplog struggles to detect these anomalies. This
is primarily because its LSTM-based internal states
focus solely on predicting the next event, neglecting
the overall sequence structure. It performs better in
spotting anomalous events in Challenge 2, but the
Length + Events strategy still achieves a higher F1
score.

e Resource access (Challenge 3): A key feature of Chal-
lenge 3 is the variability in log entries. In a normal
situation, the log concludes with "Errors found None,"
whereas, in an abnormal situation, it reads, "Errors
found [’Exception: something unexpected has hap-
pened, please reboot’]." Despite this, both scenarios
share the template "Errors found <*>" resulting in
identical event IDs. Additionally, there are no tempo-
ral or spatial variances that could aid in the detection.
This challenge emphasizes the necessity of examining
the variables within the logs, as sequential methods
prove insufficient. None of the considered methods
effectively address this challenge.

e Load Dependencies (Challenges 4-6): The effective-
ness hinges on evaluating the timing of the sequences,
rendering the Time heuristic the only viable option.
However, it falls short in Challenge 5 because it does
not consider the time needed to perform each event
tuple.

o X-Ray Machine (Challenges 7-8): It is essential to
correlate events, a task that heuristics cannot perform.
DeepLog utilizes an LSTM, which simplifies this task
as long as the layer does not exploit a shortcut. By
examining the internal architecture of the layer [34],
we hypothesize that its behavior in this challenge is
influenced by the presence of the forget gate, allowing
it to disregard previous inputs. When the model fo-
cuses solely on the most recent event ID, it recognizes
that if it detects a measurement log, subsequent logs
should be of the same type, and vice versa (Figure 9).
This approach succeeds in Challenge 7, but fails in

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 14 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

Challenge 8; if a significant portion of the sequence
is suddenly skipped, the LSTM will not detect it. The
creation of Challenge 8, aimed at causing Deeplog to
fail, was develop inspired by the experiments detailed
in [26].

o Collaborative setting (Challenges 9-10): The anoma-
lies are quite simple to understand. The major chal-
lenges originate in the federated process itself. Deeplog
does not succeed in Challenge 9 because templates
from different clients are not validated during training.
This problem could be addressed by adjusting the
training script. Nevertheless, Challenge 10 is success-
ful because FedAvg efficiently removes anomalous
instances from the training data. It is crucial to point
out that although FedAvg can address Challenge 10,
it does not demonstrate its capability to handle more
intricate attacks such as [6], [105] and [7].

8. Discussion

We structured our discoveries around three primary re-
search questions, which were addressed in various sections
of this publication. In this section, we will offer research
answers (RA) to these research questions based on earlier
observations.

RQ1: What methods and baselines are used in the
literature for Anomaly CIDS?

RA1: In the literature discussion section, we demon-
strate that not all Anomaly CIDS primarily rely on logs to
identify system abnormalities. By examining the baseline
datasets used for the evaluation (as shown in Table 1), we
can identify the type of input domain involved. Interest-
ingly, using Log Anomaly CIDS is relatively uncommon,
prompting us to also consider similar LAD techniques to
enhance sample distribution. Based on our research, we
determine that the most commonly used baseline datasets
for Log Anomaly CIDS and comparable methods are HDFS
and BGL.

When analyzing the methods used, it is essential to
divide them into two categories. Firstly, under the collabora-
tive framework, as detailed in the section Anomaly CIDS, we
explore different strategies for node division: Centralized,
Decentralized, and Distributed CIDS. In addition, the liter-
ature indicates that the most common method of updating
the local models of the nodes within CIDS is federated
learning, with Fed Avg being the most widely used technique,
although other methods are also identified. In the subsequent
category, which concentrates on the algorithm specific to
Log Anomaly Detection, various architectures are shown in
Figure 5. However, recent developments are more effectively
depicted in Figure 1, which emphasizes the increasing adop-
tion of LLM and graph-based methods in contemporary Log
Anomaly Detection techniques.

RQ2: How can we categorize the different Log Anomaly

CIDS and other Log Anomaly approaches?

RAZ2: Earlier works, as noted in the Related Work sec-
tion, categorizes approaches based on the overarching ar-
chitecture employed, such as CNN, RNN, or Transformers.
Although this classification may be informative, we contend
that it is not the most insightful point of view. In our study,
we shift the focus by categorizing based on the manner in
which data is processed and the objective function utilized
to optimize the models. By examining these characteristics,
we have established three principal categories:

o Sequential-wise: Each log sequence undergoes a trans-
formation into an event ID, and the model is opti-
mized by attempting to forecast the subsequent or
masked event in a sequence. This method is rela-
tively straightforward and requires less computational
power. Nonetheless, merely using event IDs leads to
a significant loss of log message information. Addi-
tionally, there is substantial reliance on how logs are
parsed, making this method susceptible to alterations
in logs following future code updates.

o Embedding-wise: An embedding encoder is employed
to analyze the logs, as opposed to relying solely on the
event ID numbers. These techniques were developed
to address the limitations associated with Sequential-
wise methods. However, the majority of methods in
this category are supervised, which poses challenges
for their application in zero-day attacks.

e Graph-wise: Function similarly to the Embedding-
wise approach, but instead of arranging the logs se-
quentially by chronological order, they are connected
as a graph. This technique often involves greater com-
plexity and necessitates additional steps compared to
other methods.

RQ3: To what extent can we improve the reliability
of Log Anomaly CIDS?

RA3: Creating Log Anomaly CIDS necessitates con-
sidering several elements, such as strategies for anomaly
detection and enhancements to local models. Although fed-
erated learning is used to prevent the sharing of sensitive
data between nodes, it generally achieves lower results than
centralized training. Often, initial CIDS designs do not in-
clude specific training and testing datasets, leading to a
dependence on benchmark datasets that might not ensure
optimal deployment performance. This paper introduces an
open framework for early evaluation, allowing the thorough
testing of models against various challenges to identify vul-
nerabilities and improve robustness. The framework effec-
tively identifies the shortcomings in current methods, such
as DeepLog. Although this framework proposal and appli-
cation do not directly provide an answer to RQ3, we believe
it represents progress towards developing more reliable Log
Anomaly CIDS.

8.1. Threats to validity
We conducted an empirical assessment of the proposed
framework, concentrating on Deeplog due to its prominence

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 15 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

as a standard benchmark in the field. Since the framework
is offered as a proof of concept, only a limited evaluation
was performed. We recognize that the absence of additional
models and the limited number of challenges pose a threat
to validity. A more comprehensive empirical analysis will be
carried out in future research.

9. Conclusion

This research seeks to provide a comprehensive sum-
mary of Log Anomaly CIDS, emphasizing its main char-
acteristics, prevailing trends, and obstacles. Furthermore,
we have created a novel open-source framework to aid the
progress of these systems. Our findings are supported by
numerous recent studies on this subject, demonstrating that
only a small number of Anomaly CIDS rely on logs for
anomaly detection. We examine and classify multiple LAD
techniques and offer tools to enhance the robustness of these
systems. We hope that our work will aid the research and
development of upcoming Log Anomaly CIDS.

In future work, our main aim is to further refine the dis-
tinct challenges of the framework. We plan to achieve this by
developing a more precise methodology to identify a broader
spectrum of anomalies and risks that Log Anomaly CIDS
might face. In addition, we intend to introduce challenges on
the same subject with varying levels of difficulty to enhance
model comparison. Finally, we will incorporate multiple
baseline datasets to establish a unified testing framework.
Additionally, we aim to investigate alternative metrics for
CIDS, such as memory or energy usage, and assess any
potential risks these methods might face in real world sce-
narios.

Declaration of interests

The authors declare the following financial interests/personal

relationships which may be considered as potential compet-
ing interests:

Andre Garcia Gomez reports financial support was pro-
vided by European Union. Andre Garcia Gomez reports
financial support was provided by European Defence Fund.
Andre Garcia Gomez reports financial support was provided
by Austrian Research Promotion Agency. If there are other
authors, they declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgment

Funded by the European Union under the European
Defence Fund (GA no. 101121403 - NEWSROOM and GA
no. 101121414 - LATACC). Views and opinions expressed
are however those of the author(s) only and do not neces-
sarily reflect those of the European Union or the European
Commission. Neither the European Union nor the granting
authority can be held responsible for them. This work is co-
funded by the Austrian FFG Kiras project ASOC (GA no.
FO999905301).

Declaration of generative AI and Al-assisted
technologies in the writing process

During the preparation of this work the author(s) used
the Writefull Overleaf extension [100] to improve readabil-
ity. After using this tool/service, the author(s) reviewed and
edited the content as needed and take(s) full responsibility
for the content of the published article.

References

[1] Abdel-Basset, M., Moustafa, N., et al., 2021. Federated intrusion
detection in blockchain-based smart transportation systems. Trans-
actions on Intelligent Transportation Systems 23, 2523-2537.

[2] Alsaedi, A., Moustafa, N., et al., 2020. Ton_iot telemetry dataset:
A new generation dataset of iot and iiot for data-driven intrusion
detection systems. leee Access 8, 165130-165150.

[3] Amza, Chanda, Cox, Elnikety, et al., 2002. Specification and
implementation of dynamic web site benchmarks, in: International
workshop on workload characterization, IEEE. pp. 3—13.

[4] Angel, N.A., et al., 2021. Recent advances in evolving computing
paradigms: Cloud, edge, and fog technologies. Sensors 22, 196.

[5] de Araujo-Filho, P.F., et al., 2020. Intrusion detection for cyber—
physical systems using generative adversarial networks in fog envi-
ronment. Internet of Things Journal 8, 6247-6256.

[6] Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V., 2020.
How to backdoor federated learning, in: International conference on
artificial intelligence and statistics, PMLR. pp. 2938-2948.

[7]1 Baruch, G., Baruch, M., Goldberg, Y., 2019. A little is enough:
Circumventing defenses for distributed learning. Advances in Neural
Information Processing Systems 32.

[8] Beutel, D.J., et al., 2020. Flower: A friendly federated learning
research framework. arXiv preprint arXiv:2007.14390 .

[9] Campos, E.-M., Saura, PF.,, et al., 2022. Evaluating federated
learning for intrusion detection in internet of things: Review and
challenges. Computer Networks 203, 108661.

[10] Chakraborty, R., Wang, Y., Gao, J., Zheng, R., Zhang, C., De la
Torre, F., 2024. Visual data diagnosis and debiasing with concept
graphs. arXiv preprint arXiv:2409.18055 .

[11] Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly detection: A
survey. Computing surveys 41, 1-58.

[12] Chen, R., et al., 2020. Logtransfer: Cross-system log anomaly
detection for software systems with transfer learning, in: 31st Int.
Symposium on Software Reliability Engineering, IEEE. pp. 37—47.

[13] Cheng, Y., et al., 2020. Leveraging semisupervised hierarchical
stacking temporal convolutional network for anomaly detection in
iot communication. Internet of Things Journal 8, 144—-155.

[14] Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical
evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 .

[15] Creech, G., Hu, J., 2013. Generation of a new ids test dataset:
Time to retire the kdd collection, in: Wireless communications and
networking conference (WCNC), IEEE. pp. 4487-4492.

[16] CrowdStrike, 2025. Global threat report. https://www.crowdstrike.
com/en-us/global-threat-report/.

[17] Debnath, B., Solaimani, M., et al., 2018. Loglens: A real-time
log analysis system, in: 38th international conference on distributed
computing systems, IEEE. pp. 1052-1062.

[18] Devlin, J., 2018. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. preprint arXiv:1810.04805 .

[19] Du, M., et al., 2016. Spell: Streaming parsing of system event logs,
in: 16th International Conf. on Data Mining, IEEE. pp. 859-864.

[20] Du, M., Li, F., Zheng, G., Srikumar, V., 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,
in: Proceedings of the ACM SIGSAC conference on computer and
communications security, pp. 1285-1298.

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 16 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A., 1996.
A sense of self for unix processes, in: Proceedings 1996 IEEE
symposium on security and privacy, IEEE. pp. 120-128.

Frankle, J., et al., 2018. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint arXiv:1803.03635 .
Friha, O., Ferrag, M.A,, et al., 2022. Felids: Federated learning-
based intrusion detection system for agricultural internet of things.
Journal of Parallel and Distributed Computing 165, 17-31.

Ganin, Y., Ustinova, E., et al., 2016. Domain-adversarial training of
neural networks. Journal of machine learning research 17, 1-35.
Garcia, A., 2025. log-gym. https://github.com/ait-aecid/log-gym.
Geirhos, R., Jacobsen, J.H., et al., 2020. Shortcut learning in deep
neural networks. Nature Machine Intelligence 2, 665-673.

Guo, H., et al., 2021. Logbert: Log anomaly detection via bert, in:
International joint conference on neural networks, IEEE. pp. 1-8.
Guo, H., Lin, X, et al., 2021. Translog: A unified transformer-
based framework for log anomaly detection. arXiv preprint
arXiv:2201.00016 .

Han, X., Yuan, S., 2021. Unsupervised cross-system log anomaly
detection via domain adaptation, in: Proceedings of the 30th ACM
int. conf. on inf. & knowledge management, pp. 3068-3072.

Han, X., Yuan, S., Trabelsi, M., 2023. Loggpt: Log anomaly
detection via gpt, in: 2023 IEEE International Conference on Big
Data (BigData), IEEE. pp. 1117-1122.

He, P., Zhu, J., Zheng, Z., Lyu, M.R., 2017. Drain: An online log
parsing approach with fixed depth tree, in: International conference
on web services, IEEE. pp. 33—40.

He, S., etal., 2020. Loghub: A large collection of system log datasets
towards automated log analytics. arXiv e-prints , arXiv—2008.
Himler, P, et al., 2024. Anomaly detection in log-event sequences:
A federated deep learning approach and open challenges. ML with
Applications 16, 100554.

Hochreiter, S., 1997. Long short-term memory. Neural Comp. MIT-
Press .

Hu, Z., Dong, Y., Wang, K., Sun, Y., 2020. Heterogeneous graph
transformer, in: Web conference, pp. 2704-2710.

Huong, T.T., Bac, T.P, et al., 2021. Detecting cyberattacks using
anomaly detection in industrial control systems: A federated learning
approach. Computers in Industry 132, 103509.

Inam, M.A., Chen, Y., Goyal, A., et al., 2023. Sok: History is a vast
early warning system: Auditing the provenance of system intrusions,
in: Symposium on Security and Privacy, IEEE. pp. 2620-2638.

Ji, Y., Liu, Y., Yao, F., He, M., Tao, S., Zhao, X., Chang, S., Yang,
X.,Meng, W, Xie, Y., et al., 2024. Adapting large language models
to log analysis with interpretable domain knowledge. arXiv preprint
arXiv:2412.01377 .

Jia, T., Wu, Y., Hou, C., Li, Y.. 2021. Logflash: Real-time streaming
anomaly detection and diagnosis from system logs for large-scale
software systems, in: 32nd International Symposium on Software
Reliability Engineering. IEEE. pp. 80-90.

Johnson, A.E., Pollard, T.J., et al., 2016. Mimic-iii, a freely accessi-
ble critical care database. Scientific data 3, 1-9.

Joulin, A., 2016. Fasttext. zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651 .

Keogh, E., Lin, J., Fu, A., 2005. Hot sax: Efficiently finding the most
unusual time series subsequence, in: Fifth International Conference
on Data Mining, IEE. pp. 8—pp.

Kephart, J.O., Chess, D.M., 2003. The vision of autonomic comput-
ing. Computer 36, 41-50.

Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J., 2019.
Survey of intrusion detection systems: techniques, datasets and
challenges. Cybersecurity 2, 1-22.

Kipf, T.N., Welling, M., 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 .
Kundu, A., Yu, P, Wynter, L., Lim, S.H., 2022. Robustness
and personalization in federated learning: A unified approach via
regularization, in: International Conference on Edge Computing and
Communications, IEEE. pp. 1-11.

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

itrust labs, . itrust labs datasets. https://itrust.sutd.edu.sg/
itrust-labs_datasets/dataset_info/. Accessed: 2024-11-26.
Landauer, M., Onder, S., Skopik, F., Wurzenberger, M., 2023a. Deep
learning for anomaly detection in log data: A survey. Machine
Learning with Applications 12, 100470.

Landauer, M., Skopik, F., et al., 2022a. Maintainable log datasets
for evaluation of intrusion detection systems. Transactions on
Dependable and Secure Computing 20, 3466—3482.

Landauer, M., Skopik, F., Wurzenberger, M., 2024. A critical review
of common log data sets used for evaluation of sequence-based
anomaly detection techniques. Software Engineering 1, 1354-1375.
Landauer, M., Skopik, F., Wurzenberger, M., Hotwagner, W.,
Rauber, A., 2020a. Have it your way: Generating customized log
datasets with a model-driven simulation testbed. Transactions on
Reliability 70, 402-415.

Landauer, M., Skopik, F., Wurzenberger, M., Rauber, A., 2020b.
System log clustering approaches for cyber security applications: A
survey. Computers & Security 92, 101739.

Landauer, M., Skopik, F., Wurzenberger, M., Rauber, A., 2022b.
Dealing with security alert flooding: using machine learning for
domain-independent alert aggregation. Transactions on Privacy and
Security 25, 1-36.

Landauer, M., Wurzenberger, M., Skopik, F., Hotwagner, W., Hold,
G., 2023b. Aminer: A modular log data analysis pipeline for
anomaly-based intrusion detection. Digital Threats: Research and
Practice 4, 1-16.

Le. V.H., Zhang, H., 2021. Log-based anomaly detection without
log parsing, in: International Conference on Automated Software
Engineering (ASE), IEEE. pp. 492-504.

Le, V.H., Zhang, H., 2024. Prelog: A pre-trained model for log
analytics. Management of Data 2, 1-28.

LeCun, Y., Boser, B., et al., 1989. Handwritten digit recognition
with a back-propagation network. Advances in neural information
processing systems 2.

Lewis, M., 2019. Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461 .

Li, A, Sun, J., Wang, B, et al., 2020a. Lotteryfl: Personalized
and communication-efficient federated learning with lottery ticket
hypothesis on non-iid datasets. arXiv preprint arXiv:2008.03371 .
Li, B., Ma, S., Deng, R., et al., 2022. Federated anomaly detection
on system logs for the internet of things: A customizable and
communication-efficient approach. Transactions on Network and
Service Management 19, 1705-1716.

Li, B., Wu, Y., etal., 2020b. Deepfed: Federated deep learning for in-
trusion detection in industrial cyber—physical systems. Transactions
on Industrial Informatics 17, 5615-5624.

Li, X., Huang, K., Yang, W., et al., 2019. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189 .

Li, Y., Liu, Y., Wang, H., Chen, Z., Cheng, W., Chen, Y., Yu, W.,
Chen, H., Liu, C., 2023. Glad: Content-aware dynamic graphs for
log anomaly detection, in: 2023 IEEE International Conference on
Knowledge Graph (ICKG), IEEE. pp. 9-18.

Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R., 2015. Gated graph
sequence neural networks. arXiv preprint arXiv:1511.05493 .

Liao, HJ., Lin, CH.R., Lin, Y.C., Tung, K.Y., 2013. Intrusion
detection system: A comprehensive review. Journal of Network and
Computer Applications 36, 16-24.

Lin, Q., Zhang, H., Lou, J.G., Zhang, Y., Chen, X., 2016. Log
clustering based problem identification for online service systems,
in: Proceedings of the 38th International Conference on Software
Engineering Companion, pp. 102-111.

Liu, S., Deng, L., Xu, H., Wang, W., 2023. Logbd: A log anomaly de-
tection method based on pretrained models and domain adaptation.
Applied Sciences 13, 7739.

Liu, Y., et al., 2020. Deep anomaly detection for time-series data
in industrial iot: A communication-efficient on-device federated
learning approach. Internet of Things Journal 8, 6348-6358.

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 17 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Liu, Y., et al., 2024. Interpretable online log analysis using large
language models with prompt strategies, in: Proceedings of the 32nd
IEEE/ACM Int. Conf. on Program Comprehension, pp. 35-46.

Lu, S., et al., 2018. Detecting anomaly in big data system logs using
convolutional neural network, in: 16th Intl. Conf. on Dependable,
Autonomic and Secure Comp., 16th Intl. Conf. on Pervasive Intell.
and Comp., 4th Intl Conf. on Big Data Intell. and Comp. and Cyber
Science and Tech. Congress, IEEE. pp. 151-158.

Ma, X., Wu, J., Xue, S., et al., 2021. A comprehensive survey
on graph anomaly detection with deep learning. Transactions on
Knowledge and Data Engineering 35, 12012-12038.

Makanju, A., Zincir-Heywood, A.N., Milios, E.E., 2011. A
lightweight algorithm for message type extraction in system appli-
cation logs. Transactions on Knowledge and Data Engineering 24,
1921-1936.

McMahan, H.B., et al., 2016. Federated learning of deep networks
using model averaging. arXiv preprint arXiv:1602.05629 2.
Meena, G., Choudhary, R.R., 2017. A review paper on ids classifi-
cation using kdd 99 and nsl kdd dataset in weka, in: 2017 Interna-
tional Conference on Computer, Communications and Electronics
(Comptelix), pp. 553-558. doi:10.1109/COMPTELIX.2017.8004032.
Meng, W., Liu, Y., Zhu, Y., et al., 2019. Loganomaly: Unsupervised
detection of sequential and quantitative anomalies in unstructured
logs., in: IICAL, pp. 4739-4745.

Mirzaee, P.H., et al., 2021. Fids: A federated intrusion detection
system for 5g smart metering network, in: International Conference
on Mobility, Sensing and Networking, IEEE. pp. 215-222.

Morris, T., Gao, W., 2014. Industrial control system traffic data sets
for intrusion detection research, in: Critical Infra. Prot. VIII: 8th IFIP
WG 11.10 Inter. Conf., ICCIP, Arlington, VA, USA, March 17-19,
2014, Revised Selected Papers 8, Springer. pp. 65-78.

Moustafa, N., 2019. The bot-iot dataset. URL: https://dx.doi.org/
10.21227/r7v2-x988, doi:10.21227/r7v2-x988.

Moustafa, N., Slay, J., 2016. The evaluation of network anomaly
detection systems: Statistical analysis of the unsw-nbl5 data set
and the comparison with the kdd99 data set. Information Security
Journal: A Global Perspective 25, 18-31.

Nguyen, T.D., Marchal, S., et al., 2019. Diot: A federated self-
learning anomaly detection system for iot, in: 39th International
conference on distributed computing systems, IEEE. pp. 756-767.
NYC, . Taxi and limousine comision dataset. https://www1.nyc.gov/
site/tlc/about/tlc-trip-record-data.page. Accessed: 2024-11-27.
Oliner, A., Stearley, J., 2007. What supercomputers say: A study of
five system logs, in: 37th IFIP international conference on depend-
able systems and networks (DSN’07), IEEE. pp. 575-584.
Pennington, J., Socher, R., Manning, C.D., 2014. Glove: Global vec-
tors for word representation, in: Conference on empirical methods in
natural language processing, pp. 1532—1543.

Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J.,
Joosen, W., Ilie-Zudor, E., 2018. Chained anomaly detection models
for federated learning: An intrusion detection case study. Applied
Sciences 8, 2663.

Rahman, S.A., Tout, H., et al., 2020. Internet of things intrusion
detection: Centralized, on-device, or federated learning? Network
34,310-317.

Reimers, N., 2019. Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:1908.10084 .

Revathi, S., Malathi, A., 2013. A detailed analysis on nsl-kdd
dataset using various machine learning techniques for intrusion
detection. International Journal of Engineering Research & Tech-
nology (IJERT) 2, 1848-1853.

Ruff, L., Vandermeulen, R., Goernitz, N., et al., 2018. Deep one-
class classification, in: International conference on machine learn-
ing, PMLR. pp. 4393-4402.

Schneble, W., Thamilarasu, G., 2019. Attack detection using feder-
ated learning in medical cyber-physical systems, in: Proc. 28th Int.
Conf. Comput. Commun. Netw., pp. 1-8.

[90]

[91]

[92]

(93]

[94]

[95]

[96]

(971

(98]

[99]

[100]
[101]

[102]

[103]
[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]

Schonlau, M., DuMouchel, W., et al., 2001. Computer intrusion:
Detecting masquerades. Statistical science , 58-74.

Shi, Y., Huang, Z., et al., 2020. Masked label prediction: Unified
message passing model for semi-supervised classification. arXiv
preprint arXiv:2009.03509 .

Shu, J., Zhou, L., Zhang, W., et al., 2020. Collaborative intrusion de-
tection for vanets: A deep learning-based distributed sdn approach.
Transactions on Intelligent Transportation Systems 22, 4519-4530.
Song, H.M., Woo, J., Kim, H.K., 2020. In-vehicle network intru-
sion detection using deep convolutional neural network. Vehicular
Communications 21, 100198.

Thu Huong, T, et al., 2020. Lockedge: Low-complexity cyberattack
detection in iot edge computing. arXiv e-prints , arXiv—2011.
Vasilomanolakis, E., Karuppayah, S., Miihlhduser, M., Fischer, M.,
2015. Taxonomy and survey of collaborative intrusion detection.
Computing surveys 47, 1-33.

Vaswani, A., 2017. Attention is all you need. Advances in Neural
Information Processing Systems .

Wang, P., Zhang, X., Cao, Z., Xu, W,, Li, W., 2024. Loggt: Cross-
system log anomaly detection via heterogeneous graph feature and
transfer learning. Expert Systems with Applications 251, 124082.
Wang, Z., Chen, Z., Ni, J., et al., 2021. Multi-scale one-class recur-
rent neural networks for discrete event sequence anomaly detection,
in: Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pp. 3726-3734.

Wardana, A.A., Sukarno, P., 2024. Taxonomy and survey of
collaborative intrusion detection system using federated learning.
Computing Surveys .

WriteFull, . Writefull. https://www.writefull.com/.

Wu, L., Chen, Y., Shen, K, et al., 2023. Graph neural networks for
natural language processing: A survey. Foundations and Trends® in
Machine Learning 16, 119-328.

Wu, Y.S,, et al., 2003. Collaborative intrusion detection system
(cids): a framework for accurate and efficient ids, in: 19th Annual
Comp. Security Applications Conference., IEEE. pp. 234-244.
wuyifan18, 2023. Deeplog. https://github.com/wuyifan18/DeeplLog/
tree/master.

Xiao, Y., Le, V.H., Zhang, H., 2024. Stronger, faster, and cheaper
log parsing with llms. arXiv preprint arXiv:2406.06156 .

Xie, C., Koyejo, O., Gupta, 1., 2020. Fall of empires: Breaking
byzantine-tolerant sgd by inner product manipulation, in: Uncer-
tainty in Artificial Intelligence, PMLR. pp. 261-270.

Xie, Y., et al., 2022. Loggd: Detecting anomalies from system logs
with graph neural networks, in: 22nd International conference on
software quality, reliability and security, IEEE. pp. 299-310.

Xie, Y., Zhang, H., Babar, M.A., 2024. Logsd: Detecting anomalies
from system logs through self-supervised learning and frequency-
based masking. Software Engineering 1, 2098-2120.

Xu, R., et al., . Dual defense: Enhancing privacy and mitigating
poisoning attacks in federated learning, in: The Thirty-eighth Annual
Conference on Neural Information Processing Systems.

Xu, W., et al., 2008. Mining console logs for large-scale system
problem detection. SysML 8, 4-4.

Yang, L., Chen, J., et al., 2021. Semi-supervised log-based anomaly
detection via probabilistic label estimation, in: 43rd International
Conference on Software Engineering (ICSE), IEEE. pp. 1448-1460.
Yang, Z., Harris, 1.G., 2025. Logllama: Transformer-based log
anomaly detection with llama. arXiv preprint arXiv:2503.14849 .
Zeng, D., Liang, S., Hu, X., et al., 2021. Fedlab: A flexible federated
learning framework. arXiv preprint arXiv:2107.11621 .

Zhang, C., et al., 2022. Deeptralog: Trace-log combined microser-
vice anomaly detection through graph-based deep learning, in: Int.
conference on software engineering, pp. 623—-634.

Zhang, C., Jia, T., Shen, G., Zhu, P, Li, Y., 2024. Metalog:
Generalizable cross-system anomaly detection from logs with meta-
learning, in: Proceedings of the IEEE/ACM 46th International Con-
ference on Software Engineering, pp. 1-12.

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 18 of 19

Journal Pre-proof

Collaborative Anomaly Detection in Log Data: Comparative Analysis and Evaluation Framework

[115]

[116]

[117]

[118]

[119]

[120]

Zhang, C., Xie, Y., Bai, H., et al., 2021. A survey on federated
learning. Knowledge-Based Systems 216, 106775.

Zhang, X., et al., 2019. Robust log-based anomaly detection on un-
stable log data, in: Joint meeting on European soft. engi. conference
and symposium on the foundations of soft. engi., pp. 807-817.
Zhao, R., Yin, Y., Shi, Y., Xue, Z., 2020. Intelligent intrusion
detection based on federated learning aided long short-term memory.
Physical Communication 42, 101157.

Zhou, X., et al., 2020. Siamese neural network based few-shot
learning for anomaly detection in industrial cyber-physical systems.
Transactions on Industrial Informatics 17, 5790-5798.

Zhou, X., Hu, Y., Liang, W., Ma, J., Jin, Q., 2020. Variational Istm
enhanced anomaly detection for industrial big data. Transactions on
Industrial Informatics 17, 3469-3477.

Zhu, J., et al., 2023. Loghub: A large collection of system log
datasets for ai-driven log analytics, in: 34th Int. Symposium on
Software Reliability Engineering (ISSRE), IEEE. pp. 355-366.

André Garcia Gémez joined the Austrian Institute
of Technology in 2024 and is currently employed
as a PhD candidate in the Cyber Security Research
Group. His main research interests are anomaly
detection, machine learning, log data analysis, and
data science. André received his master’s degree in
Artificial Intelligence in 2021 from the Universita
della Svizzera italiana.

Dr. Max Landauer joined the Austrian Institute of
Technology in 2017 and is currently employed as
a Senior Scientist in the Cyber Security Research
Group. His main research interests are anomaly

. detection, cyber threat intelligence, log data anal-

ysis, and cyber security testbeds. Max obtained
his master’s degree in Computer Science in 2018
and finished his PhD studies in 2022 at the Vienna
University of Technology.

Dr. Markus Wurzenberger is a Senior Scientist and
Project Manager at the Austrian Institute of Tech-
nology. Since 2014 he is part of the Cyber Security
Research Group of AIT’s Center for Digital Safety
and Security. His main research interests are log
data analysis with focus on anomaly detection and
cyber threat intelligence (CTI). Markus obtained a

i PhD in computer science in 2021. In 2015 Markus

obtained his master’s degree in Technical Mathe-
matics at the Vienna University of Technology.

Dr. Dr. Florian Skopik is Head of the Cyber Secu-
rity Research Program at the Austrian Institute of
Technology (AIT) with a team comprising around
30 people. He spent 10+ years in cyber security
research, before, and partly in parallel, another
15 years in software development. Nowadays, he
coordinates national and large-scale international
research projects, as well as the overall research di-
rection of the team. His main interests are centered
on critical infrastructure protection, smart grid se-
curity, and national cyber security and defense.

Edgar Weippl is research director of SBA Research
and full professor at the University of Vienna.
Edgar’s research focuses on blockchain and dis-
tributed ledger technologies and security of pro-
duction systems engineering. Edgar is member of
the editorial board of Computers & Security and
associate editor of IEE Transactions on Informa-
tion Forensics and Security. He is Austria’s rep-
resentative at IFIP TC 11: Security and Privacy
Protection in Information Processing Systems. He
was General Chair of SACMAT 2015, PC Chair of
Esorics 2015, General Chair of ACM CCS 2016,
PC Chair of ACM SACMAT 2017, General Chair
Euro S&P 2021 and 2024.

A.G. Gémez et al.: Preprint submitted to Elsevier

Page 19 of 19

