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Abstract
𝑠-step Preconditioned Conjugate Gradient (PCG) variants for iter-
atively solving large sparse linear systems reduce the number of
global synchronization points of standard PCG by a factor of O(𝑠).
Despite improving scalability on large-scale parallel computers,
they have worse numerical properties than standard PCG. Choos-
ing a suitable basis type for the 𝑠-step basis matrices is known to
potentially improve numerical stability strongly. The 𝑠-step method
proposed first in the literature was designed to only use the mono-
mial basis. We generalize this method to support arbitrary basis
types, denoting our new method as sPCG.

Moreover, we theoretically and experimentally compare all 𝑠-
step PCG methods. To the best of our knowledge, this is the first
comprehensive comparison in the literature. Our theoretical analy-
sis, strong scaling experiments with a synthetic test problem, and
runtime experiments with real-world problems confirm that our
novel sPCG algorithm achieves higher speedup over standard PCG
than existing 𝑠-step algorithms.

CCS Concepts
•Mathematics of computing→ Solvers; •Computingmethod-
ologies→ Parallel algorithms.

Keywords
Communication-avoiding s-step conjugate gradient algorithms,
extreme-scale parallel computing, numerical stability

1 Introduction
The Preconditioned Conjugate Gradient (PCG) algorithm is an im-
portant Krylov subspace method for solving large sparse linear
systems 𝑨𝒙 = 𝒃 with a sparse symmetric and positive-definite
(SPD) system matrix 𝑨. On large-scale parallel computers, global
collective operations are required in PCG to compute scalar prod-
ucts of distributed dense vectors. These global collectives become
major bottlenecks due to their limited parallel scalability.

To reduce these performance limitations, scalable PCG variants
have been developed: Communication-hiding PCG methods overlap
global communication with local communication and computation
[6, 9, 12, 19], while communication-avoiding 𝑠-step methods reduce
the number of global synchronizations by rearranging PCG so that
𝑠 iterations can be computed without communication [7, 14, 21].

In this paper, we focus on approaches for reducing the communi-
cation cost. Therefore, we do not consider communication-hiding or
pipelined PCGmethods and leave the comparison of 𝑠-step methods
and state-of-the-art pipelined methods for future work.

𝑠-step methods enhance the Krylov subspace by 𝑠 vectors at
once by computing a basis of dimension O(𝑠) in each iteration
for the next 𝑠 steps. The earliest 𝑠-step PCG method proposed by
[7] computes the PCG iterations in blocks of 𝑠 and thus reduces
global communication latency by a factor of O(𝑠). Moreover, local
computations can efficiently utilize BLAS2 and BLAS3, replacing
BLAS1 and BLAS2 required in standard PCG.We denote thismethod
as sPCGmon.

Two 𝑠-step PCG algorithms have been proposed after sPCGmon:
CA-PCG [21] and CA-PCG3 [14]. Both achieve the same global
communication reduction as sPCGmon. However, CA-PCG requires
more preconditioner applications and matrix vector (MV) products
than standard PCG and sPCGmon, making it only suitable for very
simple and cheap preconditioners and very sparse input matrices.
CA-PCG3 on the other hand requires the usage of BLAS1, which
leads to performance drawbacks in the local computations.

Although communication-avoiding PCG methods are mathemat-
ically equivalent to standard PCG, they have different numerical
error propagation, which may slow down or prevent convergence
in practice [1]. When designing algorithms for large-scale parallel
computers, a reduction of communication bottlenecks should also
maintain numerical stability.

CA-PCG3 is based on three-term recurrence relations, which are
known to be numerically less stable than the two-term recurrences
of standard PCG [13]. This 𝑠-step method has been applied in large-
scale simulations, where only a limited value of 𝑠 was possible due
to numerical round-off errors [15, 16].

Several strategies to improve the numerical stability of CA-PCG
[21] have been presented, e.g., in [2, 3, 5]. Some of these ideas might
be applicable to other 𝑠-step methods as well. However, choosing
a basis type different from the monomial basis (e.g., the Newton
or the Chebyshev basis) for generating the 𝑠-step basis matrices is
considered to be the most important strategy to achieve a similar
numerical stability and convergence speed as standard PCG [14].

sPCGmon suffers from poor numerical stability as, unlike CA-
PCG and CA-PCG3, it is formulated such that its 𝑠-step basis ma-
trices can only be computed based on the monomial basis [8, 21].
Because of its advantages over CA-PCG and CA-PCG3 in terms of
performancementioned before, we propose extensions for sPCGmon
that enable the usage of arbitrary basis types and thus improve
numerical stability.

Contributions of this work. We extend sPCGmon [8] for enabling
the usage of arbitrary basis types to improve its numerical stabil-
ity, denoting our novel extended version as sPCG. Moreover, we
provide a theoretical comparison of sPCG and the other two ex-
isting 𝑠-step PCG methods, demonstrating that sPCG is the least
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Algorithm 1 Preconditioned Conjugate Gradient method (PCG)

1: 𝒓 (0) =𝒃 −𝑨𝒙 (0) , 𝒖 (0) =𝑴−1𝒓 (0) , 𝒑 (0) =𝒖 (0)
2: for 𝑖 = 0, 1, ... until convergence do
3: 𝒔 (𝑖 ) = 𝑨𝒑 (𝑖 )

4: 𝛼 (𝑖 ) = 𝒓 (𝑖 )
𝑇
𝒖 (𝑖 )/𝒑 (𝑖 )𝑇 𝒔 (𝑖 )

5: 𝒙 (𝑖+1) = 𝒙 (𝑖 ) + 𝛼 (𝑖 )𝒑 (𝑖 ) ⊲ Approximate solution
6: 𝒓 (𝑖+1) = 𝒓 (𝑖 ) − 𝛼 (𝑖 ) 𝒔 (𝑖 ) ⊲ Unpreconditioned residual
7: 𝒖 (𝑖+1) = 𝑴−1𝒓 (𝑖+1) ⊲ Preconditioned residual
8: 𝛽 (𝑖+1) = 𝒓 (𝑖+1)

𝑇
𝒖 (𝑖+1)/𝒓 (𝑖 )𝑇 𝒖 (𝑖 )

9: 𝒑 (𝑖+1) = 𝒖 (𝑖+1) + 𝛽 (𝑖+1)𝒑 (𝑖 ) ⊲ Search direction
10: end for

expensive. In numerical experiments on the Austrian Scientific
Computing (ASC) infrastructure, we also illustrate experimentally
that sPCG achieves larger speedup over standard PCG than the
other 𝑠-step PCG variants. To the best of our knowledge, this is
the first systematic comparison of different 𝑠-step PCG variants in
terms of numerical stability and sustained performance.

Synopsis. In Section 2, we summarize the existing 𝑠-step PCG
methods sPCGmon [7], CA-PCG [21] and CA-PCG3 [14]. We extend
sPCGmon such that it can be used with arbitrary basis types in
Section 3, proposing our new extended method sPCG. In Section 4,
we provide a theoretical cost analysis for all three 𝑠-step algorithms
and demonstrate that sPCG is superior to the other considered
solvers in terms of computational cost. Section 5 provides an ex-
perimental evaluation of the performance of all the 𝑠-step solvers,
both in terms of numerical stability and runtime performance. We
conclude our work in Section 6.

2 Existing methods
The PCG method iteratively solves a system of linear equations
𝑨𝒙 = 𝒃 for the solution 𝒙 ∈ R𝑛 with the sparse SPD system
matrix 𝑨 ∈ R𝑛×𝑛 and the right-hand side 𝒃 ∈ R𝑛 . A preconditioner
𝑴−1 ∈ R𝑛×𝑛 is used to accelerate convergence. Standard PCG is
shown in Algorithm 1. In the remainder of this section, we review
the 𝑠-step algorithms sPCGmon, CA-PCG and CA-PCG3.

2.1 𝑠-step PCG for monomial basis (sPCGmon)
The 𝑠-step PCG method sPCGmon proposed by [7] computes the
iterations of standard PCG in blocks of 𝑠 , global reduction opera-
tions are only occurring every 𝑠 steps. In each iteration 𝑘 , 𝑠 search
directions are computed. To update the approximate solution, we
compute

𝒙 (𝑘+1) = 𝒙 (𝑘 ) + 𝑷 (𝑘 )𝒂 (𝑘 )

with the search direction matrix 𝑷 (𝑘 ) = [𝒑 (𝑖 ) , . . . ,𝒑 (𝑖+𝑠−1) ] and
the vector 𝒂 (𝑘 ) of length 𝑠 that replaces the coefficients 𝛼 (𝑖 ) , . . . ,
𝛼 (𝑖+𝑠−1) , where the index 𝑖 refers to the respective iteration in stan-
dard PCG, i.e. ⌊𝑖/𝑠⌋ = 𝑘 . To perform 𝑠 steps without communication,
the basis matrices 𝑹 (𝑘 ) = [𝒓 (𝑘 ) ,𝑨𝑴−1𝒓 (𝑘 ) , . . . ,

(
𝑨𝑴−1

)𝑠−1
𝒓 (𝑘 ) ]

and 𝑼 (𝑘 ) = 𝑴−1𝑹 (𝑘 ) are computed. Analogously to PCG, we up-
date the search directions with

𝑷 (𝑘 ) = 𝑼 (𝑘 ) + 𝑷 (𝑘−1)𝑩 (𝑘 ) , (1)

where the matrix 𝑩 (𝑘 ) ∈ R𝑠×𝑠 replaces the coefficients 𝛽 (𝑖 ) in PCG.

Algorithm 2 𝑠-step PCG for the monomial basis (sPCGmon) [7]

1: 𝒓 (0) = 𝒃 −𝑨𝒙 (0) , 𝑷 (0) = 0𝑛,𝑠 ,𝑨𝑷 (0) = 0𝑛,𝑠
2: for 𝑘 = 0, 1, ... until convergence do
3: 𝒖 (𝑘 ) = 𝑴−1𝒓 (𝑘 )

4: 𝑺 (𝑘 ) =
[
𝒓 (𝑘 ) , (𝑨𝑴−1)𝒓 (𝑘 ) , . . . , (𝑨𝑴−1)𝑠 𝒓 (𝑘 )

]
5: 𝑼 (𝑘 ) =

[
𝒖 (𝑘 ) , (𝑴−1𝑨)𝒖 (𝑘 ) , . . . , (𝑴−1𝑨)𝑠−1𝒖 (𝑘 )

]
6: 𝑹 (𝑘 ) = first 𝑠 columns of 𝑺 (𝑘 )
7: 𝑨𝑼 (𝑘 ) = last 𝑠 columns of 𝑺 (𝑘 )
8: 𝒂 (𝑘 ) ,𝑩 (𝑘 ) ← Scalar Work (𝑺 (𝑘 ) , 𝑼 (𝑘 ) , 𝒂 (𝑘−1) )
9: 𝑷 (𝑘 ) = 𝑼 (𝑘 ) + 𝑷 (𝑘−1)𝑩 (𝑘 )
10: 𝑨𝑷 (𝑘 ) = 𝑨𝑼 (𝑘 ) +𝑨𝑷 (𝑘−1)𝑩 (𝑘 )
11: 𝒙 (𝑘+1) = 𝒙 (𝑘 ) + 𝑷 (𝑘 )𝒂 (𝑘 )
12: 𝒓 (𝑘+1) = 𝒓 (𝑘 ) −𝑨𝑷 (𝑘 )𝒂 (𝑘 )
13: end for

The routine “Scalar Work” computes 𝒂 (𝑘 ) and 𝑩 (𝑘 ) and requires
only one global reduction operation. Since it requires the matrix
𝑨𝑼 (𝑘 ) , the 𝑠-step basis matrix 𝑹 (𝑘 ) is enhanced by one additional
vector. This enhanced basis matrix is denoted as 𝑺 (𝑘 ) .

As in [20], we compute the residual 𝒓 (𝑘 ) recursively. This avoids
the additional MV product per 𝑠 steps of the original algorithm in
[7].

𝒓 (𝑘+1) = 𝒃 −𝑨𝒙 (𝑘+1) = 𝒓 (𝑘 ) −𝑨𝑷 (𝑘 )𝒂 (𝑘 ) (2)

The matrix 𝑨𝑷 (𝑘 ) is computed recursively. Multiplying (1) with 𝑨,
we obtain

𝑨𝑷 (𝑘 ) = 𝑨𝑼 (𝑘 ) +𝑨𝑷 (𝑘−1)𝑩 (𝑘 ) .
sPCGmon is outlined in Algorithm 2.

2.2 Communication-avoiding PCG (CA-PCG)
In the communication-avoiding PCG (CA-PCG) method presented
in [21], the vectors of standard PCG are linearly transformed such
that the next 𝑠 steps can be computed in a changed basis without
communication.

CA-PCG divides the loop of PCG into an outer and an inner
loop. The outer loop 𝑘 = 0, 1, . . . iterates until convergence or if a
user-defined maximum number of iterations is reached. Communi-
cation takes place only at the beginning of each outer iteration. The
iterations of the inner loop 𝑗 = 0, . . . , 𝑠 − 1 are performed without
communication.

We denote the unpreconditioned search direction by 𝒒 (𝑖 ) , i.e.
𝒑 (𝑖 ) = 𝑷𝒒 (𝑖 ) . By induction, for 0 ≤ 𝑗 ≤ 𝑠 and 𝑠 ≥ 1,

𝒓 (𝑠𝑘+𝑗 ) , 𝒒 (𝑠𝑘+𝑗 ) ∈ K𝑠+1
(
𝑨𝑴−1, 𝒒 (𝑠𝑘 )

)
+ K𝑠

(
𝑨𝑴−1, 𝒓 (𝑠𝑘 )

)
,

𝒖 (𝑠𝑘+𝑗 ) ,𝒑 (𝑠𝑘+𝑗 ) , 𝒙 (𝑠𝑘+𝑗 ) − 𝒙 (𝑠𝑘 )

∈ K𝑠+1
(
𝑴−1𝑨,𝒑 (𝑠𝑘 )

)
+ K𝑠

(
𝑴−1𝑨, 𝒖 (𝑠𝑘 )

)
.

At the beginning of outer iteration 𝑘 , the 𝑠-step basis matrices
𝒀 (𝑘 ) =

[
𝑸 (𝑘 ) , 𝑹 (𝑘 )

]
and 𝒁 (𝑘 ) = 𝑷𝒀 (𝑘 ) =

[
𝑷 (𝑘 ) , 𝑼 (𝑘 )

]
are com-

puted such that span
(
𝑸 (𝑘 )

)
= K𝑠+1

(
𝑨𝑴−1, 𝒒 (𝑠𝑘 )

)
, span

(
𝑹 (𝑘 )

)
=

K𝑠
(
𝑨𝑴−1, 𝒓 (𝑠𝑘 )

)
, 𝑷 (𝑘 ) = 𝑴−1𝑸 (𝑘 ) and 𝑼 (𝑘 ) = 𝑴−1𝑹 (𝑘 ) . Subse-

quently, the Grammatrix 𝑮 (𝑘 ) = 𝒀 (𝑘 )
𝑇
𝒁 (𝑘 ) of size (2𝑠+1)×(2𝑠+1)
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Algorithm 3 Communication-avoiding PCG (CA-PCG) [21]

1: 𝒓 (0) = 𝒃 −𝑨𝒙 (0) , 𝒖 (0) = 𝑴−1𝒓 (0) , 𝒒 (0) = 𝒓 (0) ,𝒑 (0) = 𝒖 (0)

2: for 𝑘 = 0, 1, ... until convergence do
3: span

(
𝒀 (𝑘 )

)
= K𝑠+1

(
𝑨𝑴−1, 𝒒 (𝑘 )

)
+ K𝑠

(
𝑨𝑴−1, 𝒓 (𝑘 )

)
4: span

(
𝒁 (𝑘 )

)
= K𝑠+1

(
𝑴−1𝑨,𝒑 (𝑘 )

)
+ K𝑠

(
𝑴−1𝑨, 𝒖 (𝑘 )

)
5: 𝑮 (𝑘 ) = 𝒁 (𝑘 )

𝑇
𝒀 (𝑘 )

6: 𝒑 (𝑠𝑘 )
′
=

[
1, 01,2𝑠

]𝑇
, 𝒓 (𝑠𝑘 )

′
=

[
01,𝑠+1, 1, 01,𝑠−1

]𝑇
, 𝒙 (𝑠𝑘 )

′
=[

01,2𝑠+1
]𝑇 (see Alg. 2 in [2])

7: for 𝑗 = 0, 1, ..., 𝑠 − 1 do
8: 𝛼 (𝑠𝑘+𝑗 ) = 𝒓 (𝑠𝑘+𝑗 )

′𝑇
𝑮 (𝑘 ) 𝒓 (𝑠𝑘+𝑗 )

′

𝒑 (𝑠𝑘+𝑗 ) ′
𝑇
𝑮 (𝑘 )𝑩𝒑 (𝑠𝑘+𝑗 ) ′

9: 𝒙 (𝑠𝑘+𝑗+1)
′
= 𝒙 (𝑠𝑘+𝑗 )

′ + 𝛼 (𝑠𝑘+𝑗 )𝒑 (𝑠𝑘+𝑗 ) ′

10: 𝒓 (𝑠𝑘+𝑗+1)
′
= 𝒓 (𝑠𝑘+𝑗 )

′ − 𝛼 (𝑠𝑘+𝑗 )𝑩𝒑 (𝑠𝑘+𝑗 ) ′

11: 𝛽 (𝑠𝑘+𝑗 ) = 𝒓 (𝑠𝑘+𝑗+1)
′𝑇
𝑮 (𝑘 ) 𝒓 (𝑠𝑘+𝑗+1)

′

𝒓 (𝑠𝑘+𝑗 ) ′
𝑇
𝑮 (𝑘 ) 𝒓 (𝑠𝑘+𝑗 ) ′

12: 𝒑 (𝑠𝑘+𝑗+1)
′
= 𝒓 (𝑠𝑘+𝑗+1)

′ + 𝛽 (𝑠𝑘+𝑗 )𝒑 (𝑠𝑘+𝑗 ) ′

13: end for
14:

[
𝒒 (𝑠𝑘+𝑠 ) , 𝒓 (𝑠𝑘+𝑠 )

]
= 𝒀 (𝑘 )

[
𝒑 (𝑠𝑘+𝑠 )

′
, 𝒓 (𝑠𝑘+𝑠 )

′]
15:

[
𝒑 (𝑠𝑘+𝑠 ) , 𝒖 (𝑠𝑘+𝑠 )

]
= 𝒁 (𝑘 )

[
𝒑 (𝑠𝑘+𝑠 )

′
, 𝒓 (𝑠𝑘+𝑠 )

′]
16: 𝒙 (𝑠𝑘+𝑠 ) = 𝒙 (𝑠𝑘 ) + 𝒁 (𝑘 )𝒙 (𝑠𝑘+𝑠 ) ′

17: end for

is computed using a single global reduction operation, which is used
to form the scalars of the 𝑠 inner iterations without communication.

To express the vectors 𝒒 (𝑠𝑘+𝑗 ) , 𝒑 (𝑠𝑘+𝑗 ) , 𝒓 (𝑠𝑘+𝑗 ) , 𝒖 (𝑠𝑘+𝑗 ) and
𝒙 (𝑠𝑘+𝑗 )−𝒙 (𝑠𝑘 ) in the changed basis, we define small vectors𝒑 (𝑠𝑘+𝑗 ) ′,
𝒓 (𝑠𝑘+𝑗 )

′, 𝒙 (𝑠𝑘+𝑗 ) ′ ∈ R2𝑠+1 for 0 ≤ 𝑗 ≤ 𝑠 such that

𝒒 (𝑠𝑘+𝑗 ) = 𝒀 (𝑘 )𝒑 (𝑠𝑘+𝑗 )
′
, 𝒑 (𝑠𝑘+𝑗 ) = 𝒁 (𝑘 )𝒑 (𝑠𝑘+𝑗 )

′
, (3)

𝒓 (𝑠𝑘+𝑗 ) = 𝒀 (𝑘 ) 𝒓 (𝑠𝑘+𝑗 )
′
, 𝒖 (𝑠𝑘+𝑗 ) = 𝒁 (𝑘 ) 𝒓 (𝑠𝑘+𝑗 )

′
, (4)

𝒙 (𝑠𝑘+𝑗 ) = 𝒙 (𝑠𝑘 ) + 𝒁 (𝑘 )𝒙 (𝑠𝑘+𝑗 ) ′ . (5)

In each inner iteration 𝑗 , these small vectors are updated analo-
gously to the recursive update equations in PCG. At the end of each
outer iteration, the vectors in the original basis are regained using
(3) to (5). The MV products are computed in the changed basis using
a “change-of-basis” matrix 𝑩 ∈ R(2𝑠+1)×(2𝑠+1) such that

𝑨𝒁 (𝑘 ) = 𝒀 (𝑘 )𝑩,

with 𝒁 (𝑘 ) =
[
𝑷 (𝑘 ) , 𝑼 (𝑘 )

]
, where 𝑷 (𝑘 ) and 𝑼 (𝑘 ) are the same as

𝑷 (𝑘 ) and 𝑼 (𝑘 ) except their respective last column is a zero vector.
In the inner iterations, we therefore compute the MV products in
the changed basis with 𝑩𝒑 (𝑘,𝑗 )

′ instead of the global MV products
of standard PCG. CA-PCG is outlined in Algorithm 3.

2.3 Matrix Powers Kernel (MPK)
The choice of the basis is the main factor that influences stability
of communication-avoiding Krylov subspace methods [14]. The
Matrix Powers Kernel (MPK) [11] computes the columns of the

basis matrices

𝑽 =
[
𝑃0 (𝑨𝑴−1)𝒘, 𝑃1 (𝑨𝑴−1)𝒘, . . . , 𝑃𝑠 (𝑨𝑴−1)𝒘

]
, (6)

𝑴−1𝑽 =
[
𝑃0 (𝑴−1𝑨)𝒗, 𝑃1 (𝑴−1𝑨)𝒗, . . . , 𝑃𝑠 (𝑴−1𝑨)𝒗

]
, (7)

where 𝒘 and 𝒗 = 𝑴−1𝒘 are vectors of length 𝑛 and 𝑃𝑙 (𝑧) is a
polynomial of degree 𝑙 [2, 4] that satisfies the three-term recurrence

𝑃0 (𝑧) = 1, 𝑃1 (𝑧) = (𝑧 − 𝜃0)𝑃0 (𝑧)/𝛾0,
𝑃𝑙 (𝑧) = ((𝑧 − 𝜃𝑙−1)𝑃𝑙−1 (𝑧) + 𝜇𝑙−2𝑃𝑙−2 (𝑧))/𝛾𝑙−1, 𝑙 ≥ 2.

(8)

When using the monomial basis, the columns of 𝑽 consist of
the first iterations of the Power Iteration, where a start vector is
multiplied with the same matrix multiple times. The iterate of the
Power Iteration converges to the eigenvector corresponding to the
largest eigenvalue. This can lead to severe accuracy loss in 𝑠-step
Krylov subspace methods if 𝑠 > 5. Since the residuals get smaller
in magnitude throughout the iterations, they get vulnerable to
round-off errors. In finite precision, these vectors are not linearly
independent anymore, which causes the algorithm to converge
slower or not at all [21].

The Newton basis uses shifts obtained from estimating eigenval-
ues by computing 𝑠 or 2𝑠 iterations of standard PCG before starting
the actual solver [14, 18]. Another possibility is the Chebyshev
basis, which uses scaled and shifted Chebyshev polynomials. A
detailed description of different basis types can be found in [14].

While sPCGmon [7] can only use the monomial basis, in CA-PCG
the “change-of-basis” matrix 𝑩 enables the algorithm to improve
its numerical stability with other basis types. Define the matrix 𝑩𝑖
of size 𝑖 × (𝑖 − 1) as

𝑩𝑖 =



𝜃0 𝜇0

𝛾0 𝜃1
. . .

𝛾1
. . . 𝜇𝑖−3
. . . 𝜃𝑖−2

𝛾𝑖−2


. (9)

Then the matrix 𝑩 used in CA-PCG is defined as

𝑩 =

[
𝑩𝑠+1 0𝑠+1,1 0𝑠+1,𝑠−1 0𝑠+1,1
0𝑠,𝑠 0𝑠,1 𝑩𝑠 0𝑠,1

]
,

where 0𝑖, 𝑗 denotes a matrix of size 𝑖 × 𝑗 whose entries are all zeros.

2.4 Communication-avoiding PCG3 (CA-PCG3)
The communication-avoiding algorithm CA-PCG3 [14] is based on
the three-term recurrence variant PCG3 [17]. PCG3 does not com-
pute search directions, instead the three-term recurrence relation
between residuals

𝒓 (𝑖+1) = 𝜌 (𝑖 )
(
𝒓 (𝑖 ) − 𝛾 (𝑖 )𝑨𝒖 (𝑖 )

)
+
(
1 − 𝜌 (𝑖 )

)
𝒓 (𝑖−1)

is used to update the residual vectors, with 𝛾 (𝑖 ) and 𝜌 (𝑖 ) being
scalars computed in iteration 𝑖 . The solution vectors are updated
using an analogous recurrence relation.

The communication-avoiding CA-PCG3 computes the basis ma-
trices𝑾 (𝑘 ) and 𝑽 (𝑘 ) = 𝑴−1𝑾 (𝑘 ) at the beginning of outer itera-
tion 𝑘 such that span

(
𝑾 (𝑘 )

)
= K𝑠+1

(
𝑨𝑴−1, 𝒓 (𝑠𝑘 )

)
. The residual
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Algorithm 4 Communication-avoiding PCG3 (CA-PCG3) [14]

1: 𝒓 (−1) = 0𝑛,1, 𝒖 (−1) = 0𝑛,1, 𝒙 (−1) = 0𝑛,1
2: 𝒓 (0) = 𝒃 −𝑨𝒙 (0) , 𝒖 (0) = 𝑷𝒓 (0) , 𝜌 (0) = 1
3: for 𝑘 = 0, 1, ... until convergence do
4: span

(
𝑾 (𝑘 )

)
= K𝑠+1

(
𝑨𝑴−1, 𝒓 (𝑠𝑘 )

)
5: span

(
𝑽 (𝑘 )

)
= K𝑠+1

(
𝑴−1𝑨, 𝒖 (𝑠𝑘 )

)
6: 𝑮 (𝑘 ) =

[
𝑼 (𝑘−1) , 𝑽 (𝑘 )

]𝑇 [
𝑹 (𝑘−1) ,𝑾 (𝑘 )

]
7: for 𝑗 = 0, 1, ..., 𝑠 − 1 do
8: Compute 𝒅 (𝑠𝑘+𝑗 ) and 𝒈 (𝑠𝑘+𝑗 ) according to (10) and (11)
9: 𝜇 (𝑠𝑘+𝑗 ) = 𝒈 (𝑠𝑘+𝑗 )

𝑇
𝑮 (𝑘 )𝒈 (𝑠𝑘+𝑗 ) ⊲ 𝑟 (𝑠𝑘+𝑗 )

𝑇
𝑢 (𝑠𝑘+𝑗 )

10: 𝜈 (𝑠𝑘+𝑗 ) = 𝒈 (𝑠𝑘+𝑗 )
𝑇
𝑮 (𝑘 )𝒅 (𝑠𝑘+𝑗 ) ⊲ 𝑤 (𝑠𝑘+𝑗 )

𝑇
𝑢 (𝑠𝑘+𝑗 )

11: 𝛾 (𝑠𝑘+𝑗 ) = 𝜇 (𝑠𝑘+𝑗 )/𝜈 (𝑠𝑘+𝑗 )
12: 𝒘 (𝑠𝑘+𝑗 ) =

[
𝑹 (𝑘−1) ,𝑾 (𝑘 )

]
𝒅 (𝑠𝑘+𝑗 ) ⊲ 𝑨𝒖 (𝑠𝑘+𝑗 )

13: 𝒗 (𝑠𝑘+𝑗 ) =
[
𝑼 (𝑘−1) , 𝑽 (𝑘 )

]
𝒅 (𝑠𝑘+𝑗 ) ⊲ 𝑷𝑨𝒖 (𝑠𝑘+𝑗 )

14: if 𝑠𝑘 + 𝑗 > 0 then

15: 𝜌 (𝑠𝑘+𝑗 ) =
(
1− 𝛾 (𝑠𝑘+𝑗 )

𝛾 (𝑠𝑘+𝑗−1)
𝜇 (𝑠𝑘+𝑗 )

𝜇 (𝑠𝑘+𝑗−1)
1

𝜌 (𝑠𝑘+𝑗−1)

)−1
16: end if
17: 𝒙 (𝑠𝑘+𝑗+1) = 𝜌 (𝑠𝑘+𝑗 )

(
𝒙 (𝑠𝑘+𝑗 ) + 𝛾 (𝑠𝑘+𝑗 )𝒖 (𝑠𝑘+𝑗 )

)
+
(
1 − 𝜌 (𝑠𝑘+𝑗 )

)
𝒙 (𝑠𝑘+𝑗−1)

18: 𝒓 (𝑠𝑘+𝑗+1) = 𝜌 (𝑠𝑘+𝑗 )
(
𝒓 (𝑠𝑘+𝑗 ) − 𝛾 (𝑠𝑘+𝑗 )𝒘 (𝑠𝑘+𝑗 )

)
+
(
1 − 𝜌 (𝑠𝑘+𝑗 )

)
𝒓 (𝑠𝑘+𝑗−1)

19: 𝒖 (𝑠𝑘+𝑗+1) = 𝜌 (𝑠𝑘+𝑗 )
(
𝒖 (𝑠𝑘+𝑗 ) − 𝛾 (𝑠𝑘+𝑗 )𝒗 (𝑠𝑘+𝑗 )

)
+
(
1 − 𝜌 (𝑠𝑘+𝑗 )

)
𝒖 (𝑠𝑘+𝑗−1)

20: end for
21: end for

matrices 𝑹 (𝑘 ) =
[
𝒓 (𝑠𝑘 ) , . . . , 𝒓 (𝑠𝑘+𝑠−1)

]
and 𝑼 (𝑘 ) = 𝑴−1𝑹 (𝑘 ) store

the residual vectors computed in outer iteration 𝑘 .
In each inner iteration 𝑗 , the vectors 𝒘 (𝑠𝑘+𝑗 ) = 𝑨𝒖 (𝑠𝑘+𝑗 ) and

𝒗 (𝑠𝑘+𝑗 ) = 𝑴−1𝑨𝒖 (𝑠𝑘+𝑗 ) are formed without explicitly computing
the MV products and preconditioner applications using auxiliary
vectors 𝒅 (𝑠𝑘+𝑗 ) ∈ R2𝑠+1 that fulfill the relation

𝑨𝒖 (𝑠𝑘+𝑗 ) =
[
𝑹 (𝑘−1) ,𝑾 (𝑘 )

]
𝒅 (𝑠𝑘+𝑗 ) . (10)

Moreover, auxiliary vectors 𝒈 (𝑠𝑘+𝑗 ) ∈ R2𝑠+1 are formed such that

𝒓 (𝑠𝑘+𝑗 ) =
[
𝑹 (𝑘−1) ,𝑾 (𝑘 )

]
𝒈 (𝑠𝑘+𝑗 ) . (11)

Forming these auxiliary vectors requires a “change-of-basis” matrix
as defined in (9). See [14] for a detailed description on how these
auxiliary vectors are computed.

The Gram matrix 𝑮 (𝑘 ) =
[
𝑹 (𝑘−1) ,𝑾 (𝑘 )

]𝑇 [
𝑼 (𝑘−1) , 𝑽 (𝑘 )

]
∈

R(2𝑠+1)×(2𝑠+1) is computed at the beginning of outer iteration 𝑘 to
compute the scalars of the 𝑠 inner iterations without communica-
tion. CA-PCG3 is outlined in Algorithm 4.

3 sPCG with arbitrary basis types
The basis type chosen for the 𝑠-step basis can significantly influence
the stability of an 𝑠-step algorithm [14]. In this section, we extend
sPCGmon for arbitrary basis types to improve its numerical stability.

In our extended version sPCG, the basis matrices 𝑺 (𝑘 ) and 𝑼 (𝑘 )

are computed with the MPK as shown in (6) and (7) (the last column
of (7) is ommitted as 𝑼 (𝑘 ) only has 𝑠 columns). Consequently, the
matrix 𝑨𝑼 (𝑘 ) does not simply consist of the last 𝑠 columns of
𝑺 (𝑘 ) when not using the monomial basis. Instead, we introduce a
“change-of-basis” matrix similar to the one used in CA-PCG. Define
a matrix 𝑩 = 𝑩𝑠+1 (see (9)) of size (𝑠 + 1) × 𝑠 such that

𝑨𝑼 (𝑘 ) = 𝑺 (𝑘 )𝑩.

The rest of the algorithm remains unchanged except for the
routine “Scalar Work” for computing the global reductions and
𝒂 (𝑘 ) and 𝑩 (𝑘 ) (see line 8 of Algorithm 2). In the following, we
explain this routine in its original form for sPCGmon as well as our
novel extension for arbitrary basis types.

3.1 “Scalar Work” for the monomial basis
Since search directions are 𝑨-orthogonal, 𝑷 (𝑘 )𝑇𝑨𝑷 (𝑘−1) = 0. To
compute 𝑩 (𝑘 ) , we multiply (1) by 𝑷 (𝑘−1)

𝑇
𝑨 and get(

𝑷 (𝑘−1)
𝑇
𝑨𝑷 (𝑘−1)

)
𝑩 (𝑘 ) = −𝑷 (𝑘−1)𝑇𝑨𝑼 (𝑘 ) .

To obtain a relation for computing 𝒂 (𝑘 ) , the recursive relation of
the residual in (2) is multipled by 𝑼 (𝑘 )

𝑇 .(
𝑷 (𝑘 )

𝑇
𝑨𝑼 (𝑘 )

)
𝒂 (𝑘 ) = 𝑹 (𝑘 )

𝑇
𝒖 (𝑘 ) (12)

These small linear systems with problem size 𝑠 are solved locally
on each node for 𝑩 (𝑘 ) respectively 𝒂 (𝑘 ) .

Using the recurrence relation between search direction matrices
in (1) and their 𝑨-orthogonality,

𝑾 (𝑘 ) = 𝑷 (𝑘 )
𝑇
𝑨𝑷 (𝑘 ) = 𝑷 (𝑘 )

𝑇
𝑨𝑼 (𝑘 ) .

“Scalar Work” requires only one global collective for computing
𝑩 (𝑘 ) and 𝒂 (𝑘 ) . Using (1),𝑾 (𝑘 ) can be computed as

𝑾 (𝑘 ) = 𝑷 (𝑘 )
𝑇
𝑨𝑼 (𝑘 ) = 𝑼 (𝑘 )

𝑇
𝑨𝑼 (𝑘 ) + 𝑷 (𝑘−1)𝑇𝑨𝑼 (𝑘 )𝑩 (𝑘 ) ,

whose communication can be executed without having 𝑷 (𝑘 ) avail-
able and thus before computing 𝑩 (𝑘 ) .

The algorithm in [7] computes a vector of moments 𝜇 (𝑘 ) =[
𝒓 (𝑘 )

𝑇
𝒖 (𝑘 ) , 𝒓 (𝑘 )

𝑇
𝑴−1𝑨𝒖 (𝑘 ) , . . . , 𝒓 (𝑘 )

𝑇 (𝑴−1𝑨)2𝑠−1𝒖 (𝑘 )
]
. (13)

With these values, the matrix of moments 𝑼 (𝑘 )𝑇𝑨𝑼 (𝑘 ) as well as
the right-hand side 𝑹 (𝑘 )𝑇 𝒖 (𝑘 ) of (12) are formed. The entries of the
matrix 𝑷 (𝑘−1)

𝑇
𝑨𝑼 (𝑘 ) are computed using a recurrence formula

involving the moments 𝜇 (𝑘 ) and 𝒂 (𝑘−1) of the previous iteration
and thus do not require additional global communication.

3.2 “Scalar Work” for arbitrary basis types
When using arbitrary basis types, 𝑃𝑖 (𝑨𝑴−1)𝑃 𝑗 (𝑨𝑴−1) for 0 ≤
𝑖, 𝑗 ≤ 𝑠 is not necessarily the same as 𝑃𝑖+𝑗 (𝑨𝑴−1). Thus, a vector of
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Algorithm 5 𝑠-step PCG for arbitrary basis types (sPCG)

1: 𝒓 (0) = 𝒃 −𝑨𝒙 (0)
2: 𝑷 (0) = 0,𝑨𝑷 (0) = 0
3: for 𝑘 = 0, 1, ... until convergence do
4: 𝒖 (𝑘 ) = 𝑴−1𝒓 (𝑘 )

5: 𝑺 (𝑘 ) = span{𝒓 (𝑘 ) , (𝑨𝑴−1)𝒓 (𝑘 ) , . . . , (𝑨𝑴−1)𝑠 𝒓 (𝑘 ) }
6: 𝑼 (𝑘 ) = span{𝒖 (𝑘 ) , (𝑴−1𝑨)𝒖 (𝑘 ) , . . . , (𝑴−1𝑨)𝑠−1𝒖 (𝑘 ) }
7: 𝑹 (𝑘 ) = first 𝑠 columns of 𝑺 (𝑘 )
8: 𝑨𝑼 (𝑘 ) = 𝑺 (𝑘 )𝑩
9: 𝒂 (𝑘 ) ,𝑩 (𝑘 ) ← Scalar Work (𝑺 (𝑘 ) , 𝑼 (𝑘 ) , 𝑷 (𝑘−1) , 𝑩)
10: 𝑷 (𝑘 ) = 𝑼 (𝑘 ) + 𝑷 (𝑘−1)𝑩 (𝑘 )
11: 𝑨𝑷 (𝑘 ) = 𝑺 (𝑘 )𝑩 +𝑨𝑷 (𝑘−1)𝑩 (𝑘 )
12: 𝒙 (𝑘+1) = 𝒙 (𝑘 ) + 𝑷 (𝑘 )𝒂 (𝑘 )
13: 𝒓 (𝑘+1) = 𝒓 (𝑘 ) −𝑨𝑷 (𝑘 )𝒂 (𝑘 )
14: end for

Algorithm 6 Scalar Work of sPCG for arbitrary basis types

1: 𝒎 (𝑘 ) = 𝑹 (𝑘 )
𝑇
𝒖 (𝑘 ) ⊲ First column of 𝑼 (𝑘 )𝑇 𝑺 (𝑘 ) (see line 6)

2: if 𝑘 ≠ 0 then
3: 𝑪 (𝑘 ) = −𝑩𝑇 𝑺 (𝑘 )𝑇 𝑷 (𝑘−1) ⊲ −𝑼 (𝑘 )𝑇𝑨𝑷 (𝑘−1)
4: Solve𝑾 (𝑘−1)𝑩 (𝑘 ) = 𝑪 (𝑘 ) for 𝑩 (𝑘 )
5: end if
6: 𝑾 (𝑘 ) = 𝑼 (𝑘 )

𝑇
𝑺 (𝑘 )𝑩 − 𝑪 (𝑘 )𝑩 (𝑘 ) ⊲ 𝑼 (𝑘 )

𝑇
𝑨𝑼 (𝑘 ) − 𝑪 (𝑘 )𝑩 (𝑘 )

7: Solve𝑾 (𝑘 )𝒂 (𝑘 ) = 𝒎 (𝑘 ) for 𝒂 (𝑘 )

moments analogously to 𝜇 (𝑘 ) in (13) is not sufficient for computing
𝑷 (𝑘−1)

𝑇
𝑨𝑼 (𝑘 ) , 𝑹 (𝑘 )𝑇 𝒖 (𝑘 ) and 𝑼 (𝑘 )

𝑇
𝑨𝑼 (𝑘 ) .

For enabling arbitrary basis types, we replace computing the
moments 𝜇 (𝑘 ) with computing 𝑼 (𝑘 )𝑇 𝑺 (𝑘 ) . The first column of this
matrix is 𝑹 (𝑘 )𝑇 𝒖 (𝑘 ) , which we need for (12). As 𝑼 (𝑘 )𝑇 𝑺 (𝑘 )𝑩 =

𝑼 (𝑘 )
𝑇
𝑨𝑼 (𝑘 ) , we can inexpensively compute this matrix of mo-

ments from 𝑼 (𝑘 )
𝑇
𝑺 (𝑘 ) locally on each node.

Similarly, the matrix 𝑷 (𝑘−1)
𝑇
𝑨𝑼 (𝑘 ) = 𝑷 (𝑘−1)

𝑇
𝑺 (𝑘 )𝑩 can inex-

pensively be obtained by computing 𝑷 (𝑘−1)𝑇 𝑺 (𝑘 ) and subsequently
applying 𝑩. The communication for 𝑼 (𝑘 )𝑇 𝑺 (𝑘 ) and 𝑷 (𝑘−1)

𝑇
𝑺 (𝑘 )

can be combined in one global reduction operation.
We show sPCG for abitrary basis types in Algorithm 5 and its cor-

responding “ScalarWork” routine in Algorithm 6. Themodifications
required for using arbitrary basis types are indicated in red. Note
that sPCGwith the monomial basis is not the same as sPCGmon in fi-
nite precision. sPCG computes the matrices 𝑼 (𝑘 )𝑇𝑨𝑼 (𝑘 ) and 𝑪 (𝑘 )

directly, while sPCGmon forms 𝑼 (𝑘 )𝑇𝑨𝑼 (𝑘 ) with the vector of mo-
ments 𝜇 (𝑘 ) and computes the values in 𝑪 (𝑘 ) recursively. Although
mathematically equivalent, our direct computations in sPCG tend
to be slightly more numerically stable than sPCGmon.

4 Theoretical analysis
In this section, we theoretically analyze the performance of the
discussed 𝑠-step PCG solvers. All three 𝑠-step solvers only require
one global reduction operation per 𝑠 steps, i.e., per (outer) iteration.
Therefore, they reduce the number of global collectives by a factor

of 2𝑠 compared to standard PCG. This is done at the expense of
additional computation. We argue that our new version sPCG is
beneficial in this regard compared to the other two 𝑠-step methods.
The computational cost for each algorithm is listed in Table 1.

4.1 Computation of vectors
While CA-PCG computes 2𝑠 − 1 MV products and preconditioner
applications per 𝑠 steps, standard PCG, sPCG and CA-PCG3 only
require 𝑠 of these operations per 𝑠 steps.

In sPCG, updating the search direction matrix 𝑷 (𝑘 ) as well as the
matrix 𝑨𝑷 (𝑘 ) requires O(𝑠2𝑛) floating-point operations (FLOPs)
as 𝑷 (𝑘−1) and 𝑨𝑷 (𝑘−1) are multiplied with the 𝑠 × 𝑠 matrix 𝑩 (𝑘 )

(lines 10 and 11 of Algorithm 5). Contrarily, the cost of recovering
the full vectors from their small counterparts in the changed basis
at the end of an outer CA-PCG iteration is only O(𝑠𝑛) (lines 14, 15
and 16 of Algorithm 3). CA-PCG3 forms the results of the MV
product and preconditioner application in each inner iteration re-
cursively without communication using the 𝑠-step basis matrices
and the residuals of the previous 𝑠 inner iterations, which results in
an O(𝑠2𝑛) cost for 𝑠 steps (lines 12 and 13 of Algorithm 4). More-
over, the residuals and solution vectors in CA-PCG3 are updated
utilizing BLAS1 (lines 17, 18 and 19 of Algorithm 4).

4.2 Cost for using arbitrary basis types
Using arbitrary basis types introduces additional local vector oper-
ations during the MPK. Depending on the basis type, applying the
parameters resulting from the three-term recurrence relation in (8)
introduces at most 3𝑛 additional FLOPs for the first MV product of
one MPK execution (as there is no superdiagonal value in the first
column of (9)), and at most 5𝑛 FLOPs per subsequent MV product.

Otherwise, the usage of arbitrary basis types introduces only
negligible computations with vectors and matrices of dimensions
O(𝑠) respectively O(𝑠) × O(𝑠) in CA-PCG and CA-PCG3. sPCG
must additionally compute 𝑨𝑼 (𝑘 ) = 𝑺 (𝑘 )𝑩. Since 𝑩 is tridiagonal,
its application involves at most (5𝑠 − 2)𝑛 FLOPs (as the first column
of (9) has no superdiagonal value). As sPCGmon only computes 2𝑠
local reductions for the vector of moments, it has slightly less com-
putational cost than sPCG for the monomial basis, which computes
two matrices of size (𝑠 + 1) × 𝑠 .

4.3 Summary
In terms of local vector operations, CA-PCG is the least expensive
solver for 𝑠 ≥ 10. However, it computes more MV products and
preconditioner applications than sPCG and CA-PCG3. Our novel
method sPCG is less expensive than CA-PCG3 in terms of local
vector operations for all 𝑠 and can fully utilize BLAS2/BLAS3 (unlike
CA-PCG3). Our extension for arbitrary basis types introduces only
negligible overhead and makes sPCG an efficient algorithm suitable
for situations where it is important to reduce global synchronization
points.

5 Experimental evaluation
We experimentally evaluate the runtime performance of all consid-
ered 𝑠-step methods and investigate their numerical stability.
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Table 1: Computational cost per 𝑠 steps for each algorithm. Only operations involving vectors and matrix columns of length
𝑛 are considered. Second column: Number of MV products and preconditioner applications. Remaining columns: cost for
different types of local computations per system matrix row (i.e., number of floating point operations (FLOPs) divided by 𝑛).

Algorithm #MV + #prec. appl. Remaining #FLOPs/𝑛 (beyond MV and prec. appl.)
Local reductions Vector/Matrix column computations Total remaining #FLOPs/𝑛

for monomial b. Additional for arb. b. Monomial basis Arbitrary basis

PCG 𝑠 2𝑠 6𝑠 - 8𝑠 -
sPCGmon 𝑠 2𝑠 4𝑠2 + 4𝑠 - 4𝑠2 + 6𝑠 -
sPCG 𝑠 2𝑠 (𝑠 + 1) 4𝑠2 + 4𝑠 10𝑠 − 4 6𝑠2 + 6𝑠 6𝑠2 + 16𝑠 − 4
CA-PCG 2𝑠 − 1 (2𝑠 + 1)2 20𝑠 + 6 10𝑠 − 9 4𝑠2 + 24𝑠 + 7 4𝑠2 + 34𝑠 − 2
CA-PCG3 𝑠 (2𝑠 + 1)2 8𝑠2 + 17𝑠 5𝑠 − 2 12𝑠2 + 21𝑠 + 1 12𝑠2 + 26𝑠 − 1

5.1 Implementation and experimental setup
The algorithms were implemented in C++ using Trilinos 16.0.0 [22]
based on Trilinos’ own PCG implementation. We used OpenMPI
4.1.6 and the GCC compiler 12.2.0 with compiler flag -O3. The com-
putational results presented have been achieved using the Austrian
Scientific Computing (ASC) infrastructure. Matrices of size 𝑛 × 𝑛
are block-row distributed and vectors of length 𝑛 are distributed
accordingly. We chose the right-hand side 𝒃 so that each entry of
the solution 𝒙 has the value 1/

√
𝑛. The start vector 𝒙 (0) is a zero

vector.
We used 128 processes per node. For each execution variant

(different values of 𝑠 , different numbers of nodes), 10 test runs were
executed. We show the median runtimes over these 10 test runs.

We ran experiments with PCG, sPCG, CA-PCG, and CA-PCG3
using a Jacobi or Chebyshev preconditioner. Both precondition-
ers require little or no communication and are thus suitable for
𝑠-step methods. Estimates for the largest and smallest eigenvalues
necessary for the Chebyshev basis type and the Chebyshev precon-
ditioner were computed with a few iterations of standard PCG (not
included in the runtimes).

5.2 Numerical stability
A basis type different from the monomial basis is crucial for con-
vergence [14]. In Table 2, we show results for test matrices from
the SuiteSparse Matrix collection [10] using a Chebyshev precon-
ditioner with degree 3 and 𝑠 = 10, executed on one node (128
processes). The algorithms were terminated once the 2-norm of the
true relative residual (𝒃−𝑨𝒙 (𝑘 ) )/∥𝒃−𝑨𝒙 (0) ∥2 was below 10−9. We
used all SPD test matrices from the SuiteSparse Matrix collection
with a problem size between 100000 and 2000000 that converged
within 10000 iterations of standard PCG. We list the number of
iterations required to achieve the desired accuracy for each solver
considered. The 𝑠-step methods evaluate the convergence criterion
only every 𝑠 steps. We consider less than 20% iteration overhead
or less than 10 extra iterations compared to standard PCG as not
significant. If convergence was not achieved within 12000 iterations,
we considered the instance not to have converged.

CA-PCG converged for 23 out of 40 matrices with the monomial
basis. However, only six of these matrices did not have significant
convergence delay compared to standard PCG. sPCG and CA-PCG3
with the monomial basis converged for only one and two matrices,

respectively. This underlines the necessity for using arbitrary basis
types in 𝑠-step methods.

When using the Chebyshev basis, CA-PCG converged for 35
of the 40 test matrices, with only two of them having significant
convergence delay compared to standard PCG. Thus, ∼ 80% of the
matrices had a similar convergence behavior as for standard PCG.
sPCG and CA-PCG3 converged for 19 and 21 matrices, respectively
(∼ 50%), all of them without significant convergence delay.

Our results indicate that CA-PCG is more stable than sPCG
and CA-PCG3. However, CA-PCG is significantly more expensive
than the other two solvers due to additional MV products and
preconditioner applications. Although sPCG is doing slightly worse
than CA-PCG3 in Table 2, it clearly outperforms CA-PCG and CA-
PCG3 in terms of runtime performance.

5.3 Runtime performance
Columns 2-5 of Table 3 show the performance results of the seven
largest matrices in Table 2 where at least two 𝑠-step methods con-
verged using 𝑠 = 10, the Chebyshev basis and a Chebyshev pre-
conditioner of degree 3. The algorithms were executed on four
nodes (512 processes), the convergence criterion was the reduction
of the 2-norm of the recursively computed residual by a factor of
109. This is less expensive than computing the true residual as in
Table 2. Columns 6-9 show results for the same matrices with the
Chebyshev basis, 𝑠 = 10, but with a Jacobi preconditioner. The
algorithms were terminated once the 𝑴-norm

√︁
𝒓 (𝑖 )𝑇𝑴−1𝒓 (𝑖 ) of

the recursively computed residual had been reduced by a factor of
109. This convergence criterion can be assessed inexpensively as
all considered solvers compute the term under the square root.

We see that sPCG achieves the best speedup in all cases. On
the contrary, CA-PCG3 could not achieve speedup over standard
PCG for two matrices using the Jacobi preconditioner. CA-PCG
did not achieve a speedup for any matrix for both preconditioners.
Note that the main performance drawback of CA-PCG results from
the additional MV products and preconditioner applications. The
results in Table 3 show that CA-PCG cannot even with the very
cheap Jacobi preconditioner reliably achieve the same performance
as standard PCG.

Fig. 1 shows strong scaling results with a 3D-Poisson matrix of
size 256 × 256 × 256 resulting from discretizing Poisson’s equation
with a 7-point stencil. We used 𝑠 = 5, 10, 15, a Jacobi preconditioner
and the Chebyshev basis. We show the speedup of all solver variants



Numerical Properties and Scalability of s-Step Preconditioned Conjugate Gradient Methods

Table 2: All test matrices from the SuiteSparse Matrix col-
lection of size between 100000 and 2000000, where standard
PCG converged within 10000 iterations. Chebyshev precondi-
tioner of degree 3, 𝑠 = 10, one node (128 processes), monomial
(left) and Chebyshev (right) basis. Convergence criterion:
∥(𝑏 − 𝑨𝒙 (𝑘 ) )∥2/∥𝒃 − 𝑨𝒙 (0) ∥2 < 10−9. Hyphen: the algorithm
diverged, the residual stagnated before reaching the desired
accuracy, or convergence was not achieved within 12000 iter-
ations. “M” = 106. Instances with < 20% iteration overhead or
< 𝑠 extra iterations compared to standard PCG are in bold.

Matrix Size NNZ PCG sPCG CA-PCG CA-PCG3

2cubes_s. 0.1M 1.6M 22 -/30 30/30 30/30
therm._TC 0.1M 0.7M 11 30/20 30/20 -/20
shipsec8 0.1M 3.3M 1666 -/- 2150/1960 -/-
ship_003 0.1M 3.8M 1584 -/1590 4590/1590 -/1590
cfd2 0.1M 3.1M 1731 -/1750 1770/1750 -/1750
boneS01 0.1M 5.5M 787 -/790 1750/790 -/790
shipsec1 0.1M 3.6M 909 -/910 910/910 -/910
bmw7st_1 0.1M 7.3M 7243 -/- -/7260 -/7280
Dubcova3 0.1M 3.6M 73 -/80 130/80 170/80
bmwcra_1 0.1M 11M 2183 -/- -/7890 -/-
G2_circuit 0.2M 0.7M 506 -/510 -/510 -/510
shipsec5 0.2M 4.6M 751 -/760 750/760 -/760
therm._dM 0.2M 1.4M 11 -/20 250/20 -/20
pwtk 0.2M 12M 7377 -/- -/- -/-
hood 0.2M 9.9M 1515 -/1520 1840/1520 -/1520
offshore 0.3M 4.2M 178 -/180 210/180 -/180
af_0_k101 0.5M 18M 8891 -/- 11190/8960 -/8960
af_1_k101 0.5M 18M 8359 -/- -/8360 -/8360
af_2_k101 0.5M 18M 9956 -/- -/10000 -/-
af_3_k101 0.5M 18M 8076 -/- -/8110 -/-
af_4_k101 0.5M 18M 9881 -/- 11390/9890 -/9890
af_5_k101 0.5M 18M 9467 -/- -/9470 -/9470
af_shell3 0.5M 18M 993 -/- 1440/1000 -/-
af_shell4 0.5M 18M 993 -/- 1440/1000 -/-
af_shell7 0.5M 18M 991 -/- 1650/1000 -/-
af_shell8 0.5M 18M 991 -/- 1650/1000 -/-
parabolic. 0.5M 18M 540 -/540 660/540 -/-
Fault_639 0.6M 27M 5414 -/- -/- -/-
apache2 0.7M 4.8M 1554 -/1560 -/1560 -/-
Emilia_923 0.9M 40M 4564 -/- -/5200 -/-
audikw_1 0.9M 78M 2520 -/2520 4040/2520 -/2520
ldoor 1.0M 42M 2764 -/2770 -/2770 -/2770
bone010 1.0M 48M 4308 -/- -/- -/-
ecology2 1.0M 5.0M 2345 -/2350 -/2350 -/-
thermal2 1.2M 8.6M 1674 -/- 7960/1680 -/-
Serena 1.4M 64M 570 -/- -/- -/-
Geo_1438 1.4M 60M 545 -/550 790/550 -/550
Hook_1498 1.5M 59M 1817 -/- 7410/2610 -/-
Flan_1565 1.6M 114M 4469 -/- -/- -/-
G3_circuit 1.6M 7.7M 628 -/630 -/630 -/630

with different numbers of nodes over standard PCG executed on
one node, which required 9.34126 seconds until convergence. As

Figure 1: Speedup for a 7-point 3D Poisson matrix of size
256 × 256 × 256 for different numbers of nodes and different
values of 𝑠 over standard PCG executed on one node (128
processes). Chebyshev basis and Jacobi preconditioner. For
each bar group: bar 1: standard PCG, bars 2-4: 𝑠-step methods
with 𝑠 = 5, bars 5-7: 𝑠 = 10, bars 8-10: 𝑠 = 15.

convergence criterion, the algorithms were terminated once the
𝑴-norm

√︁
𝒓 (𝑖 )𝑇𝑴−1𝒓 (𝑖 ) of the recursively computed residual had

been reduced by a factor of 109.
Standard PCG does not scale beyond 32 nodes. While all 𝑠-step

methods continue to scale for higher numbers of nodes, sPCG
performs best and CA-PCG worst. sPCG achieves a better speedup
than standard PCG already with 16 nodes, CA-PCG and CA-PCG3
significantly improve over standard PCG only with 64 and 128
nodes. This is consistent with our theoretical analysis as CA-PCG
must perform more MV products and preconditioner applications,
while CA-PCG3 cannot block the local operations like sPCG, which
can utilize BLAS2/3 instead of BLAS1/2. While performing best in
our numerical stability experiments, CA-PCG is clearly the worst
out of the three methods in terms of runtime performance, even
though the test matrix is very sparse and we used a very cheap
Jacobi preconditioner.

6 Conclusion and future work
We extended the 𝑠-step PCG method sPCGmon presented in [7] to
general basis types beyond the monomial basis. This new algorithm,
denoted as sPCG, has better numerical stability than sPCGmon. We
showed theoretically that sPCG requires fewer local computations
than the other two existing 𝑠-step methods [14, 21], which had
already been formulated for arbitrary basis types, while retaining
the advantage of reducing global communication bottlenecks. In
strong scaling experiments with a synthetic test problem as well
as in runtime experiments with real-world problems, our novel
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Table 3: Performance results (runtimes for standard PCG and speedups of the 𝑠-step methods over standard PCG) for the seven
largest matrices in Table 2, for which at least two 𝑠-step methods converged for the Chebyshev basis. 𝑠 = 10, four nodes (512
processes). Best speedups are in bold. Convergence criterion: 2-norm (columns 2-5) respectively 𝑴-norm (columns 6-9) of the
recursively computed residual has been reduced by a factor of 109. Hyphen: see Table 2.

Matrix Chebyshev preconditioner (degree 3) Jacobi preconditioner
PCG sPCG CA-PCG CA-PCG3 PCG sPCG CA-PCG CA-PCG3

parabolic_fem 0.790s 1.41 0.80 - 0.902s 1.55 0.84 1.19
apache2 1.487s 1.53 0.85 - 1.333s 1.05 0.82 0.87
audikw_1 10.632s 1.31 0.79 1.27 2.200s - 0.77 -
ldoor 11.165s 1.06 0.86 1.04 2.570s - 0.81 -
ecology2 1.465s 1.35 0.81 - 1.605s 1.05 0.56 0.69
Geo_1438 1.304s 1.26 0.71 1.08 0.466s 1.06 0.71 1.02
G3_circuit 0.921s 1.11 0.66 1.01 0.916s 1.63 0.95 1.27

algorithm showed clear performance advantages over the other
two existing 𝑠-step PCG methods.
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