
Using Guided Community Detection to Improve
Existing Microservice Designs

Patric Genfer1,2 and Uwe Zdun1

1 Research Group Software Architecture, Faculty of Computer Science,
University of Vienna, Vienna, Austria

{patric.genfer|uwe.zdun}@univie.ac.at
2 UniVie Doctoral School Computer Science DoCS,

University of Vienna, Vienna, Austria

Abstract. Breaking monolithic applications into microservices is well
studied, but the redesign efforts often stop after the initial decomposi-
tion. However, microservice architectures evolve, and changing require-
ments demand ongoing effort to optimize and reduce the interservice
communication to provide the best possible performance. Nevertheless,
redesigning an existing system is challenging due to established domain
or functional boundaries that limit flexibility. To address this issue, we
present a novel approach for refining existing microservice architectures
to reduce communication overhead while preserving original domain and
data access constraints. Our method applies a community detection al-
gorithm, guided by forces derived from domain boundaries, data con-
sistency, and functional separation, to identify optimal service clusters.
By running our algorithm with varying input scenarios, we generate a
Pareto front of system redesign alternatives, evaluated on architectural
metrics. In a case study using a large microservice reference system, our
approach reduced interservice calls by 20% while keeping all constraints
and up to 50% when partially easing some service boundaries. The ap-
proach is easily configurable and adaptable, offering a practical tool for
evolving microservice architectures.

Keywords: Microservices · Leiden community detection · APIs

1 Introduction

One goal of microservice architectures is to split formerly large monolithic ap-
plications into smaller, easier-to-handle services, where each service is only re-
sponsible for a single aspect of the business domain [1, 2]. Various strategies
for identifying the optimal service granularity have been proposed, like defining
service boundaries based on domain concepts [3], or on functional decomposi-
tion [2, 4]. However, most of these approaches focus only on creating an initial
design [3], without adequately addressing the fact that a microservice system is
an evolving structure that must adapt to new requirements and features. Also,
initially defined domain boundaries can often be subjective and need further
adjustment as the problem domain is better understood or new use cases are
identified and implemented [5]. These conceptual mismatches can even trans-
late into practical inefficiencies when domain boundaries are not well aligned



2 P. Genfer and U. Zdun

with physical ones, leading to high network traffic and poor performance [6].
Nevertheless, these originally defined boundaries play an important role in the
microservice design, as they express important domain knowledge necessary to
understand the system. Breaking up these restraints to achieve better network
performance would ignore all this distilled knowledge. Thus, any system redesign
that aims to preserve the characteristics of the original architecture must care-
fully account for these boundaries, making the design process challenging.

To address this challenge, we present a novel approach for redesigning exist-
ing microservice systems to improve service granularity and reduce inter-service
network calls. Our method accounts for key factors such as domain boundaries,
data access restrictions, and functional partitioning. We apply a graph-based
community detection algorithm to model API operations and guide partition-
ing by incorporating these forces through varying edge weights. By permuting
the weight assignments, we generate hundreds of architectural alternatives with
different levels of granularity. We assess the resulting solutions based on a selec-
tion of architectural metrics and runtime scenarios we collected using end-to-end
(E2E) test cases [7]. Due to conflicting metrics, we derive a Pareto front to high-
light optimal trade-offs, allowing architects to select the most suitable solution.
Demonstrating our approach on a larger-scale microservice reference architec-
ture revealed that even with the most conservative approach, i.e., keeping all
existing system constraints in place, we could reduce the overall amount of in-
terservice calls by 20%. Choosing a more progressive redesign, where more APIs
are moved from their original domain into new clusters, reduced the network
calls even further by up to 50%.

Thanks to its flexible configuration, our approach can be easily applied to
other microservice systems and tailored to specific use cases3 Architects can also
add custom guiding forces with minimal effort.

With our research, we aim to answer the following research questions:

RQ1 How can we reduce interservice calls in microservices while preserving
architectural boundaries?
Community detection algorithms form well-partitioned graphs but often
ignore domain and architectural boundaries. We show how to guide these
algorithms to respect such boundaries.

RQ2 How can we evaluate the quality of our architectural solutions?
Our multi-objective approach produces hundreds of design variants. We
compute a Pareto front based on selected architectural metrics to identify
the most suitable ones.

The paper is structured as follows: Section 2 reviews related work. Section 3
presents the use of community detection in microservice networks and its chal-
lenges. It introduces the granularity forces we use to guide the community de-
tection process. Section 4 outlines the metrics for evaluating our architectural

3 For reproducibility, we offer our study’s whole source code and data in a data set
published on Zenodo: https://zenodo.org/records/15833788.



Improve Existing Microservice Designs 3

redesigns. Section 5 presents a case study on a mid-scale reference system. Sec-
tion 6 discusses results and limitations, followed by threats to validity in Sec-
tion 7. Section 8 concludes our work and suggests future directions.

2 Related Work

While several studies focus on splitting monolith applications into microservices,
relatively few investigate how an existing microservice system could be optimized
by reorganizing its APIs between the services [3].

One such study is the work of Mendonça Filho and Mendonça [8], which
investigates the impact of service granularity on the performance of microser-
vice systems. They use the Service Weaver framework to deploy a microservice
architecture on different virtual machines using varying granularity levels. Their
study shows that the chosen service granularity significantly impacts the overall
system’s performance, and choosing the right level of granularity should be an
informed decision, as it can have far-reaching effects on the system.

Homay et al. [9] introduced a decomposition method based on service granu-
larity cost analysis to analyze whether decomposing a service provides a timely
benefit compared to a larger system. Their approach requires collecting detailed
runtime data, which was unavailable in our experimental setup. Gysel et al. de-
veloped Service Cutter, a tool that operates on different input data like domain
models, ER diagrams, and use cases and applies clustering algorithms to gen-
erate decomposition models [10]. While they aim to create optimal decomposed
services, we focus on reducing network traffic in existing microservice systems.

A study that uses community algorithms for splitting up microservice systems
is the work of Rahmanian et al. [11]: They investigate how an existing system
could be distributed between cloud and edge resources to avoid communica-
tion bottlenecks. Our research follows their approach to applying a community
detection algorithm on an existing microservice architecture, but while they dis-
tribute complete services between communities, our method redesigns services
by reorganizing their APIs.

Gaidels and Kirikova [12] also use the Leiden algorithm but follow a different
approach: They form domains by grouping services into larger communities.

Another study that uses community algorithms and social network analysis
to identify patterns in microservice communication is the work of Khodabandeh
et al. [13]. They use call graphs from a large microservice runtime dataset to
categorize services into communities and identify potential bottlenecks in service
communication. In contrast to our work, they group services into new clusters,
while we group individual APIs into new services.

Regarding the use of a Pareto front to find the best solutions in a multi-
objective problem space, our work follows a similar approach to the research of
Kinoshita and Kanuka [14]. They define several policies to evaluate the quality
of their decomposition model and use reference lines to find optimal Pareto
solutions. While their policies and violations align with our concept of granularity
forces, the metrics we use for assessing our solutions consider both statically



4 P. Genfer and U. Zdun

extracted communication paths and runtime information collected through E2E
tests. Also, similar to other research mentioned in this section, they focus more
on transforming existing monoliths into microservices, while we concentrate on
improving the communication structure of existing services.

3 Using Community Detection to Optimize Existing
Microservice Designs

3.1 Background

Large networks often contain substructures of nodes that are more densely con-
nected with their neighbors than other nodes. Identifying these communities can
help uncover communication patterns, detect dependencies, or resource distri-
butions within the network. However, these structures are often implicit and
hidden in the overall network layout and, hence, not easily discoverable. Com-
munity detection algorithms are a way of identifying such clusters inside large
networks by finding an optimal partitioning of a network graph so that there is a
high density of connections between the nodes inside a community, compared to
a lower connection density between nodes of different groups [15]. A benchmark
for measuring the quality of a community partitioning is the modularity score,
expressed by the following formula [16]:

H =
1

2m

∑
c

(
ec − γ

K2
c

2m

)
(1)

Here, ec is the number of edges within a community, whereas Kc is the
sum of the degrees of all nodes in the given community c. These two terms are
inversely related: To achieve a high modularity score H, we must maximize ec
while keeping Kc small, i.e., for reaching a large ec, our partition should ideally
have a large community that contains most of, if not all, edges. However, to
minimize Kc, our partition should consist of many small communities with only
a few nodes. Accordingly, reaching a good modularity score, i.e., a value close
to 1, requires both terms to be balanced.

Several heuristic algorithms for optimizing modularity exist, with the Lou-
vain [17] and the Leiden [16] algorithms being two of the most popular. We
chose the latter for our research, as it is more efficient and avoids poorly con-
nected communities [16]. The algorithm follows an iterative approach, creating
a partition during its first step and refining this initial solution by moving nodes
between communities until it reaches a partitioning that can not be optimized
further. It then aggregates the communities of the refined partition to build
new communities. From there, it reruns the procedure of moving nodes between
communities until the solution cannot be further improved [16].

3.2 Graph-Based Microservice Modeling

Interestingly, the concept of modularity maps also very well with two major
design principles of microservice architectures: Cohesion and Coupling : The goal



Improve Existing Microservice Designs 5

of a good microservice design is to reach highly cohesive functionality within a
service, while at the same time having a low coupling, i.e., a low number of
connections between services [1, 18].

Accordingly, if we model a microservice system as a directed graph G =
(V,E), with V representing all public API operations in the system and E a
pairwise set of vertices {v1, v2} indicating a cross-service network call from API
v1 to API v2, we can further interpret all services of the system as a partitioning
of communities C = {c1, ..., cn}, where each community c contains all APIs that
are part of that service. Figure 1 shows an example of such a graph constructed
from a subset of the train-ticket microservice benchmark system4, which we also
use later for our case study.

Travel
Service

getTripsByRouteId

getTripAllDetailInfo

queryInfo

getRouteByTripId

getCheapestRoutes

getMinStopStations

getQuickestRoutes Route Plan
Service

adminQueryAll

Seat
Service

getLeftTicketOfInterval

Train
 Service

retrieveByName

getTrainTypeByTripId

Fig. 1. Model of a microservice system. Each service represents a community of API
operations. Connections between communities show network calls between APIs.

Since every edge {vi, vj} stands for an actual network call between two APIs,
having many edges can result in performance costs due to network latency, mak-
ing the system also more vulnerable to network faults [19]. Finding a partitioning
where both endpoints of an edge are within the same community would thus con-
vert the network call to an in-memory method invocation, making it faster and
more robust. Applying the Leiden algorithm to our example creates a much bet-
ter partitioning with significantly fewer links between communities and highly
connected APIs within the same community (see Figure 2). A microservice sys-
tem modeled after such a graph would be much less susceptible to network issues,
making the communication faster and more secure [20].

However, the graph we initially constructed has a huge drawback. While it
correctly reassembles the connections between APIs, it does not model the rela-
tions between an API and its service. Consequently, the Leiden algorithm creates
a partitioning that eradicates all former service boundaries. See, for instance, the
blue API operations in Figure 2: In our initial setup, they were all part of the
Travel domain and most likely shared implementation details and data struc-
tures, but now they are scattered throughout the system. The same happened

4 https://github.com/FudanSELab/train-ticket



6 P. Genfer and U. Zdun

queryInfo

getMinStopStations

getTrainTypeByTripId

getCheapestRoutes

getRouteByTripId

getLeftTicketOfInterval

adminQueryAll

getTripAllDetailInfo

getTripsByRouteId

retrieveByName

getQuickestRoutes

Fig. 2. Applying the Leiden community detection algorithm on our microservice system
creates an optimal partition regarding cohesion and coupling—however, it also destroys
former domain and implementation boundaries, making the solution very impractical.

with the Route Plan Service APIs, which are now split between two services.
Reshaping our service architecture destroyed all the information and knowledge
expressed by the relationship between APIs and their services.

3.3 Guiding Community Detection with Granularity Forces

To advise the Leiden algorithm to consider an API’s semantic relations to its
service, we must enrich our graph with this additional knowledge. We identified
four key factors that form these relations: Domain Boundaries, Data Access Con-
straints, Functionality-Based Partitioning, and Interservice Communication. We
call these factors Granularity forces, as they directly affect a service’s granularity.

1. Domain Boundaries represent an essential force as they often define the
conceptual perimeter of a service [19] and its APIs. To model this force, we
add a semantic node representing the domain concept to each service and
connect it to its APIs. We further add the weight wd to represent the new
relation’s strength. Since our reference architecture was initially decomposed
by domains, each service maps exactly to one domain node.

2. To enforce Data Access Constraints, we add another semantic node for
each data store, linking it to APIs that read or write to it. The weight wp

(persistence) indicates the strength of the connection.
3. In addition to domain concepts, services can be structured around specific

use cases. To capture this Functionality-Based Partitioning, we create
one node per test case and connect it to each API called during E2E tests.
We assign the weight wu (use case) to express the relation between an API
and its use case. We used runtime data from E2E tests [7] to connect APIs
to their use cases.

4. For Interservice Communication, which the graph already represents,
we enrich the existing edges by adding a communication weight wc.



Improve Existing Microservice Designs 7

Incorporating these forces into our existing model leads to an enriched graph,
depicted in Figure 3, where we added additional nodes for domain concepts and
data storage. We omitted use-case-related forces for now to improve clarity, but
considered them in our case study later.

queryInfo

getRouteByTripId

getMinStopStations

getQuickestRoutes

adminQueryAll

getLeftTicketOfInterval

retrieveByName
getTrainTypeByTripId

wc
wd

Seat

Train

Route
Plan

getCheapestRoutes

Travel
getTripsByRouteId

getTripAllDetailInfo

Trip
Repositorywc

wc

wc

wc

wc

wc

wc

wc
wd

wd

wd

wd

wd

wd

wd

wd

wp

wp

wp

wp

Fig. 3. All services contain additional nodes to increase the cohesion between their
APIs. While all three services have an additional domain concept node, the Travel
Service also has a data repository node linked to the APIs that need database access.

The Leiden algorithm characterizes edges with higher weights as stronger
relations and places them more likely inside the same community5. Accordingly,
adjusting each force weight allows us to steer the community detection. However,
manually assigning weights can be cumbersome, especially for larger graphs.
Instead, we implemented a process to generate permutated weight assignments
automatically and use them as input vectors for the Leiden algorithm to create
a large set of different partitionings. To further automate the process, we defined
a set of architectural metrics to validate the generated solutions.

4 Metrics

To assess the quality and suitability of our generated solution, we defined a set
of architectural metrics derived from our microservice graph and the granularity
forces we introduced before. Our first metric, the NetworkCallRatio calculates
the ratio of all API invocations over the network compared to the total amount
of API calls.

NCR =

∣∣∣{ {vi, vj} ∈ E : cluster(vi) ̸= cluster(vj)
}∣∣∣∣∣∣{ {vi, vj} ∈ E

}∣∣∣ (2)

In the unchanged setup, where all APIs are placed in their initial services
and communication happens only between APIs of different services, this value
is exactly 1. However, this value should be lower in a more optimized community

5 https://igraph.org/r/doc/cluster_leiden.html



8 P. Genfer and U. Zdun

partitioning, indicating that formerly separated APIs were moved into the same
service to reduce network traffic. Reaching a low value for this metric is one of
the main goals of our approach.

The DomainMovementRatio metric describes how many APIs moved out of
their initial domain context due to our system redesign. For this, we compare
the number of edges connecting APIs with their domain node with the number
of domain edges connecting APIs in different clusters. Note that Ed contains all
semantic edges between an API operation and a domain node.

DMR =

∣∣∣{ {vi, vj} ∈ Ed : cluster(vi) ̸= cluster(vj)
}∣∣∣∣∣∣{ {vi, vj} ∈ Ed

}∣∣∣ (3)

Since in our original graph, all APIs are grouped within their original domain
context, this value will be 0. However, after the APIs are reorganized into new
communities, an existing API may be moved out of its previous domain and into
a new domain. Still, our goal is to keep this value as low as possible.

Analog to DMR, we define the DataAccessViolationRatio as a metric that
calculates the number of cross-service database calls compared to the total num-
ber of database calls (with Ep containing all edges between an API and a per-
sistence storage). Again, this number should be close to zero, as sharing data
stores between services should best be avoided.

DAVR =

∣∣∣{ {vi, vj} ∈ Ep : cluster(vi) ̸= cluster(vj)
}∣∣∣∣∣∣{ {vi, vj} ∈ Ep

}∣∣∣ (4)

Figure 4 gives an illustration of these three metrics. After reorganizing our
small microservice setup introduced earlier with the Leiden algorithm, we see
that the new partitioning significantly reduced the inter-service calls (the thick
directed arrows) from ten to four invocations. However, it also moved three APIs
into a new service, breaking former domain boundaries (the blue dotted lines),
resulting in a worse DMR score. One of these APIs is now even dislocated from
its local data store, resulting in a higher DAVR value.

Our final metric, the TestcaseNetworkcallRatio, combines runtime data from
E2E tests with the static API structure extracted from source code. Figure 5
illustrates how the metric is composed. We identify all APIs of each test case,
including indirect API-to-API calls. By matching these with our static commu-
nication model, we reconstruct the full API call paths (colored arrows in the
diagram) and count the network calls required to complete each test case. We
then computed an average network call count across all tests, compared with the
average number of API calls per test. A lower value indicates that our commu-
nity detection algorithm has grouped the test-case-related APIs into a dedicated
service, making the execution more efficient.

Finding a single solution that optimizes all metrics is unlikely, as they often
conflict. For example, minimizing network calls (NCR) may move APIs into other
services, leading to domain boundary violations and increased DMR. However, a
naive fix like merging all APIs into one service would result in a low modularity
score and, therefore, already be ruled out by the Leiden algorithm. Instead, our



Improve Existing Microservice Designs 9

getRouteByTripId

getQuickestRoutes

adminQueryAll

getLeftTicketOfInterval

retrieveByName getTrainTypeByTripId

Seat

Train

Route
Plan

Travel

getTripsByRouteId

getTripAllDetailInfo

Trip
Repository

queryInfo

getCheapestRoutes

getMinStopStationscross-service data acess
cross-service domain boundary

cross-service (network) API call
semantic relation (domain, data access)
inner-service (in-memory) API call

Fig. 4. Example of a reorganized microservice system. While the number of network
connections could be reduced, the new partitioning also dislocated some APIs out of
their domain boundaries and introduced a cross-service data-access call.

approach constructs a Pareto front of solutions where no metric can be improved
without worsening another. Architects can then select the most appropriate de-
sign based on their priorities and the constraints of their use case.

Test
Case 1

Test
Case 2

Fig. 5. The TNR metric expresses how many API network calls (the colored thick
lines) are necessary to successfully process a given test task. Merging several of those
APIs (the blue or red dots) into dedicated clusters could improve the execution time
per test case, as fewer network calls would be necessary.

5 Case Study

5.1 Architectural Model Reconstruction

We assessed our community guiding process on the Train Ticket microservice
benchmark application6, a mid-size system with more than 30 microservices and

6 https://github.com/FudanSELab/train-ticket



10 P. Genfer and U. Zdun

large enough to represent real-world applications [21]. Since isolated nodes do
not impact the modularity score of a graph [22], we considered only services
with at least one API operation that is either the source or the target of a cross-
network call. We also ignored calls from incoming clients, such as from the user
interface. We followed a three-stage transformation process to generate the re-
sulting community graphs. In the first step, we used source code detectors [23],
a lightweight Python-based parser technique, to reconstruct a component-based
architectural model from Train Ticket’s code artifacts (see Figure 6). In the
next step, we converted the component model into an igraph-compatible net-
work structure using the corresponding Python interface7. This transformation
was necessary to use the graph algorithms available for this package, including a
Python implementation of the Leiden algorithm8, which we used in the last step
to convert our graph in various community partitions by running the algorithm
with different weights assignments. We also varied the maximum size of commu-
nities generated by the algorithm between two and eight APIs per cluster to see
how different service granularities would affect the solutions.

@RestController
public class TravelController {

  @PutMapping()
  public HttpEntity getTravels(...) {
   var url = ...
   var re = restTemplate.exchange(url);
   return result;
  }
}

SpringRestController
Detector

API-Operation
Detector

Remote API Call
Detector

AdminTravelService

Train-Ticket

TrainService

getTravels getTrainType

TravelController TrainController

Detectors look for
predefined patterns
in code.

If a pattern is found,
the detector generates a
corresponding element.

After all elements are
created, service inter-
connections are
 established.

Code Artifact Source Code Detector Architectural Model

Fig. 6. We used Source Code Detectors to parse the underlying microservice code base
and reconstruct an architectural model of the system. Those detectors are lightweight
parsers that look only for specific patterns in code and, if found, create the correspond-
ing model elements [23].

5.2 Detecting Communities in a Mid-size Microservice Application

For the case study, we picked 39 backend services we considered relevant for
business and domain operations and ignored infrastructure services and those
related to user interaction, resulting in 133 cross-service network API operation
calls. Although our detectors could also track asynchronous connections, most
of these calls were synchronous HTTP REST API invocations.

For later comparison, we created a graph representing the original partition-
ing by assigning each node to its initial service cluster and running the Leiden

7 https://python.igraph.org/en/stable
8 https://leidenalg.readthedocs.io/en/stable/intro.html



Improve Existing Microservice Designs 11

algorithm with zero iterations (Figure 7). Larger dots represent domain con-
cepts, repositories, or use cases, while smaller dots show API operations. API
operation labels have been omitted for clarity.

Fig. 7. The original microservice architecture drawn as a community graph. Each clus-
ter represents a service, with the smaller dots inside each cluster being the API oper-
ations belonging to that service. Our graph shows only the APIs that are part of an
invocation chain with more than one network call.

We generated permuting input assignments with weight values between 0 and
5 and, for each, ran the Leiden algorithm with infinite iterations and varying
community size limits (2–10). Due to inherent randomness [16], results may
slightly vary between runs. Our setup produced 2048 solutions, each based on
a unique input vector and community size. To reduce the solution space, we
computed a Pareto front9, which aims to minimize all the metrics described in
Section 4). The calculated front consists of 108 solutions, each representing an
optimal result that cannot be further improved.

Table 1 highlights selected solutions, each excelling in a specific metric. While
the Pareto front was based on our metrics NCR, DMR, DAVR, and TNR, we
also list the number of services and average APIs per service for comparison.
For reference, the original configuration is included, which, as expected, scores
well in DMR and DAVR due to preserving the original service boundaries but
poorly in NCR and TNR due to many small services. We also show a Brute-
Force solution (with input vector wc : 1, wd : 0, wp : 0, wu : 0) that optimizes for
connectivity and ignores all other semantic links, causing efficient networking

9 By using the paretoset Python package https://pypi.org/project/paretoset/



12 P. Genfer and U. Zdun

performance but very poor domain and data cohesion. The remaining entries
are Pareto-optimal, offering the best trade-offs per focus. Among them, Solution
695 stands out as a balanced alternative: While it does not achieve the best result
in any single metric, it consistently performs well across all of them, making it
the least-worst option overall.

Table 1. Selected redesigns and their performance based on architectural metrics
(lower is better). The brute-force partition, generated by the Leiden algorithm with-
out considering any semantic nodes, is network-efficient but ignores domain and data
boundaries. The other, Pareto-efficient solutions offer a better balance, improving net-
work efficiency while preserving key constraints.

Solution # services NCR DMR DAVR TNR
APIs/
service

original
setup

44 1.0 0.0 0.0 1.0 2.83

brute
force

65 0.17 1.0 1.0 0.02 6.19

391 11 0.33 0.53 0.55 0.23 9

1031 12 0.78 0.06 0.05 0.95 8.25

22 11 0.58 0.34 0.0 0.65 9

903 10 0.37 0.48 0.40 0.22 9.90

695 10 0.56 0.31 0.10 0.56 10

Another observation is that although we used varying community sizes, the
best results always have relatively large services with nine or more APIs per
service, which is already considered an upper limit [18], but may well depend
on the actual implementation complexity of each API, which we did not measure.

Which solution an architect may finally pick depends on their objectives. If
improving the network throughput is the primary goal, Solution 391 provides
the most benefits but requires a more substantial system redesign, as it dislo-
cates many APIs from their domain and data store. Solution 903 is similar, but
reduces the network connections for the selected use cases even further. Solution
1031 is the partitioning that violates the least boundaries, but still improves
the network performance by roughly 20%. We would thus consider it a conser-
vative solution that still provides good benefits. However, assuming the domain-
and data constraints are lessened slightly further, Solution 695 (Figure 8) may
give an even better tradeoff, as it reduces the network calls by almost half while
violating only a few domain and data boundaries. But still, an architect or do-
main expert must determine whether these violations are acceptable or need
additional measures, like splitting up the data store.



Improve Existing Microservice Designs 13

Fig. 8. Solution 695 is a good tradeoff between reducing network communication and
keeping domain and data boundaries. Orange arrows indicate API operations moved
away from their original domain, while red arrows indicate APIs that make cross-service
database calls.

6 Discussion

Addressing our first research question RQ1, we could show that providing com-
munity detection algorithms like Leiden with additional guidance creates a better
decoupled service graph while still keeping conceptual boundaries.

We thus identified four essential forces that affect a service’s granularity and
steer the community detection process: Domain boundaries, access to local data
storage, use-case or feature-based functionality, and interconnectivity. Each of
these forces plays a vital role in deciding which service an API should belong to.
However, other forces may also affect service granularity. For instance, according
to Conway’s law, team organization could be a heavy driving force for service
boundaries. Tracking these forces could be part of further research.

To assess the quality of our approach (RQ2), we defined four architectural
metrics to track and evaluate the changes our process applies to the original
architecture. Since these metrics present multi-objective goals, we calculated a
Pareto front that contains only solutions that cannot be further improved with-
out degrading at least one objective. Depending on how much domain or data
boundary violations are tolerable, our solutions may reduce network connections
between services by up to 50% or even more. Nevertheless, implementing such
a reorganized microservice system would require architectural decisions, e.g.,
handling API calls to databases in another service or sharing implementation
between APIs that are now in different services. While we can point architects



14 P. Genfer and U. Zdun

to the locations of the violations, they have to adapt the system manually. Pro-
viding additional guidance here would be an interesting extension of our work.

7 Threats to Validity

Internal Validity: If system chosen for our study does not represent the broader
population of APIs and microservices, our results may be biased. To counteract
this, we chose a reference system that conforms to common microservice best
practices and is well-established among researchers. Also, other factors than the
ones we mentioned could influence the community detection process.
Construct Validity: Regarding construct validity, we consider whether our
model accurately represents the microservice system and if our forces properly
generalize the factors shaping its architecture. Concerning the first case, our de-
composition technology is well-established and has been applied successfully in
several studies [23]. We also incorporated manual verification steps and traced
the generated elements back to their code base. The identified granularity forces
are based on extensive literature research and our experience with previous mi-
croservice systems. Still, they cover only a subset of influencing factors, and
many others may exist.
External Validity: We chose a considerably large-scale and widely accepted
reference system to show that our method would also be suitable for larger
real-world applications. Thanks to the possibility of choosing individual weight
assignments, our community detection analysis can easily be adapted to specific
scenarios. Architects may adjust certain weights to their needs.

8 Conclusions and Future Directions

This work introduces a new approach using guided community detection to re-
duce interservice connections in existing microservice architectures. While apply-
ing these algorithms without modifications may reduce cross-service calls, they
often create communities that do not align well with actual service boundaries,
resulting in API operations scattered across various services. To address this,
we identified granularity forces influencing the relationship between an API and
its service. We used them in an automated approach to guide the community
detection process to create more accurate partitionings. These forces include
architectural concepts like domain boundaries, data store access, and runtime
information from test cases. While we provide the best-found solution for every
force through calculating a Pareto front, architects can fine-tune our approach
by adjusting the weights individually. Our case study showed that our approach
leads to partitionings with reduced interservice communication while respecting
service boundaries and constraints, providing practical guidance for designing
systems that can perform better, are less complex, and are easier to maintain
due to less coupling. This research is still in its early stages. In our upcom-
ing studies, we plan to incorporate other aspects, like a service’s implementation
complexity or the frequency of API calls, into our model to improve the guidance
provided by our algorithm.



Improve Existing Microservice Designs 15

Acknowledgments: This work was supported by: FWF (Austrian Science Fund)
projects API-ACE: I 4268 and IAC2: I 4731-N.

Bibliography

[1] T. Engel, M. Langermeier, B. Bauer, and A. Hofmann, “Evaluation of microservice architec-
tures: A metric and tool-based approach,” in Information Systems in the Big Data Era: CAiSE
Forum 2018, Tallinn, Estonia, June 11-15, 2018, Proceedings 30. Springer, 2018, pp. 74–89.

[2] M. Ahmadvand and A. Ibrahim, “Requirements reconciliation for scalable and secure microser-
vice (de) composition,” in 2016 IEEE 24th International Requirements Engineering Confer-
ence Workshops (REW). IEEE, 2016, pp. 68–73.

[3] F. H. Vera-Rivera, C. Gaona, and H. Astudillo, “Defining and measuring microservice granu-
larity—a literature overview,” PeerJ Computer Science, 2021.

[4] D. Bajaj, A. Goel, and S. C. Gupta, “Greenmicro: identifying microservices from use cases in
greenfield development,” IEEE Access, pp. 67 008–67 018, 2022.

[5] N. Ford, M. Richards, P. Sadalage, and Z. Dehghani, Software Architecture: The Hard Parts.
” O’Reilly Media, Inc.”, 2021.

[6] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition and its granularity problem: A
systematic mapping study,” Software: Practice and Experience, vol. 50, no. 9, pp. 1651–1681,
2020.

[7] A. S. Abdelfattah, T. Cerny, J. Y. Salazar, A. Lehman, J. Hunter, A. Bickham, and D. Taibi,
“End-to-end test coverage metrics in microservice systems: An automated approach,” in Euro-
pean Conference on Service-Oriented and Cloud Computing. Springer, 2023, pp. 35–51.

[8] R. C. Mendonça Filho and N. C. Mendonça, “Performance impact of microservice granularity
decisions: An empirical evaluation using the service weaver framework,” in European Confer-
ence on Software Architecture. Springer, 2024.

[9] A. Homay, A. Zoitl, M. de Sousa, M. Wollschlaeger, and C. Chrysoulas, “Granularity cost
analysis for function block as a service,” in 2019 IEEE 17th international conference on
industrial informatics (INDIN), vol. 1. IEEE, 2019, pp. 1199–1204.

[10] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service cutter: A systematic ap-
proach to service decomposition,” in European Conference on Service-Oriented and Cloud
Computing. Springer, 2016, pp. 185–200.

[11] A. Rahmanian, A. Ali-Eldin, B. Skubic, and E. Elmroth, “Microsplit: Efficient splitting of mi-
croservices on edge clouds,” in 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC).
IEEE, 2022, pp. 252–264.

[12] E. Gaidels and M. Kirikova, “Service dependency graph analysis in microservice architecture,”
in Perspectives in Business Informatics Research: 19th International Conference on Business
Informatics Research, BIR 2020, Vienna, Austria, September 21–23, 2020, Proceedings 19.
Springer, 2020, pp. 128–139.

[13] G. Khodabandeh, A. Ezaz, and N. Ezzati-Jivan, “Network analysis of microservices: A case
study on alibaba production clusters,” in Companion of the 15th ACM/SPEC International
Conference on Performance Engineering, 2024.

[14] T. Kinoshita and H. Kanuka, “Enhancing automated microservice decomposition via multi-
objective optimization,” IEEE Access, 2024.

[15] M. E. Newman and M. Girvan, “Finding and evaluating community structure in networks,”
Physical review E, vol. 69, no. 2, p. 026113, 2004.

[16] V. Traag, L. Waltman, and N. Van Eck, “From louvain to leiden: guaranteeing well-connected
communities. sci. rep. 9, 5233,” 2019.

[17] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities
in large networks,” Journal of statistical mechanics: theory and experiment, vol. 2008, no. 10,
p. P10008, 2008.

[18] O. Al-Debagy and P. Martinek, “A metrics framework for evaluating microservices architecture
designs,” Journal of Web Engineering, vol. 19, pp. 341–370, 2020.

[19] S. Newman, Building microservices: designing fine-grained systems. ” O’Reilly Media, Inc.”,
2021.

[20] D. Shadija, M. Rezai, and R. Hill, “Microservices: granularity vs. performance,” in Companion
Proceedings of the10th international conference on utility and cloud computing, 2017, pp.
215–220.

[21] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao, “Benchmarking microservice
systems for software engineering research,” in Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, ser. ICSE ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 323–324. [Online]. Available:
https://doi.org/10.1145/3183440.3194991

[22] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wagner, “On
modularity-np-completeness and beyond,” ITI Wagner, Faculty of Informatics, Universität
Karlsruhe (TH), Tech. Rep, vol. 19, p. 2006, 2006.

[23] P. Genfer and U. Zdun, “Exploring architectural evolution in microservice systems using repos-
itory mining techniques and static code analysis,” in European Conference on Software Ar-
chitecture. Springer, 2024, pp. 157–173.


