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—— Abstract

Given a directed graph G, a transitive reduction G* of G (first studied by Aho, Garey, Ullman
[SICOMP 72]) is a minimal subgraph of G that preserves the reachability relation between every
two vertices in G.

In this paper, we study the computational complexity of transitive reduction in the dynamic
setting. We obtain the first fully dynamic algorithms for maintaining a transitive reduction of a
general directed graph undergoing updates such as edge insertions or deletions. Our first algorithm
achieves O(m + nlogn) amortized update time, which is near-optimal for sparse directed graphs,
and can even support extended update operations such as inserting a set of edges all incident to
the same vertex, or deleting an arbitrary set of edges. Our second algorithm relies on fast matrix
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multiplication and achieves O(m +n worst-case update time.
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1 Introduction

Graph sparsification is a technique that reduces the size of a graph by replacing it with a
smaller graph while preserving a property of interest. The resulting graph, often called a
sparsifier, ensures that the property of interest holds if and only if it holds for the original
graph. Sparsifiers have numerous applications, such as reducing storage needs, saving
bandwidth, and speeding up algorithms by using them as a preprocessing step. Sparsification
has been extensively studied for various basic problems in both undirected and directed
graphs [4, 5, 8, 16, 50, 49]. In this paper, we focus on maintaining a sparsifier for the notion
of transitive closure in dynamic directed graphs.

Computing the transitive closure of a directed graph (digraph) is one of the most basic
problems in algorithmic graph theory. Given a graph G = (V, E) with n vertices and m
edges, the problem asks to compute for every pair of vertices s,t on whether t is reachable
from s in G. The efficient computation of the transitive closure of a digraph has received
much attention over the past decades. In dense graphs, due to the problem being equivalent
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to Boolean Matrix Multiplication, the best known efficient algorithm runs in O(n*) time,
where w < 2.371552 [51, 19, 54, 55]. In sparse graphs, transitive closure can be trivially
computed in O(nm) time!.

In their seminal work, Aho, Garey, and Ullman [4] introduced the notion of transitive
reduction; a transitive reduction of a digraph G is a digraph G* on V with fewest possible
edges that preserves the reachability information between every two vertices in G. Transitive
reduction can be thought of as a sparsifier for transitive closure.

While the transitive reduction is known to be uniquely defined for a directed acyclic
graph (DAGs), it may not be unique for general graphs due to the existence of strongly
connected components (SCCs). For each SCC S there may exist multiple smallest graphs on
S that preserve reachability among its vertices. One example of such a graph is a directed
cycle on the vertices of S. Significantly, [4] showed that computing the transitive reduction
of a directed graph requires asymptotically the same time as computing its transitive closure.

It is important to note that a transitive reduction with an asymptotically smaller size
than the graph itself is not guaranteed to exist even if we allow introducing auxiliary vertices:
indeed, any bipartite digraph G with n vertices on both sides equals its transitive closure
and one needs at least n? bits to uniquely encode such a digraph. This is in contrast to e.g.,
equivalence relations such as strong connectivity where sparsification all the way down to
linear size is possible.

In a DAG G, the same unique transitive reduction G* could be equivalently defined as
the (inclusion-wise) minimal subgraph of G preserving the reachability relation [4]. In some
applications, having a sparsifier that remains a subgraph of the original graph might be
desirable. Unfortunately, in the presence of cycles, if we insist on G* being a subgraph of a G,
then computing such a subgraph G* of minimum possible size is NP-hard?. However, if we
redefine G to be simply an inclusion-wise minimal subgraph of G preserving its reachability,
computing it becomes tractable again®, as a minimal strongly connected subgraph of a
strongly connected graph can be computed in near-linear time [25, 27]. Throughout this
paper, for our convenience, we will adopt this minimal subgraph-based definition of a transitive
reduction G* of a general digraph. At the same time, we stress that all our algorithms can
also be applied to the original “minimum-size” definition [4] of G* after an easy adaptation
of the way reachability inside SCCs is handled.

The transitive reduction of a digraph finds applications across a multitude of domains
such as the reconstruction of biological networks [13, 26] and other types of networks
(e.g., [40, 34, 3]), in code analysis and debugging [57, 38], network analysis and visualization
for social networks [21, 17], signature verification [29], serving reachability queries in database
systems [31], large-scale parallel machine rescheduling problems [36], and many more. In
some of these applications (e.g., [13, 26]), identifying and eliminating edges redundant from
the point of view of reachability* is more critical than reducing the size of the graph and,
consequently, the space required to store it.

In certain applications, one might need to compute the transitive reduction of dynamically
evolving graphs, where nodes and edges are being inserted and deleted from the graph and
the objective is to efficiently update the transitive reduction after every update. The naive
way to do that is to recompute it from scratch after every update, which has total update

Interestingly, shaving a logarithmic factor is possible here [15].

G has a Hamiltonian cycle iff G* is a cycle consisting of all vertices of G

In fact, an inclusion-wise minimal transitive reduction can have at most n more edges than the
minimum-size transitive reduction, hence the former is a 2-approximation of the latter in terms of size.
i.e. that can be removed from the graph without affecting the transitive closure.
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time O (m - min(n“, nm)), or in other words, the algorithm has O (min(n®,nm)) amortized
update time. This is computationally very expensive, though. It is interesting to ask whether
a more efficient approach is possible.

The concept of dynamically maintaining the sparsifier of a graph is not new. Sparsifiers
for many graph properties have been studied in the dynamic setting, where the objective is
to dynamically maintain a sparse certificate as edges or vertices are being inserted and/or
deleted to/from the underlying dynamic graph. To the best of our knowledge, apart from
transitive reduction, other studies have mainly focused on sparsifiers for dynamic undirected
graphs.

In this paper, we study fully dynamic sparsifiers for reachability; that is, for one of the
most basic notions in directed graphs. In particular, we continue the line of work initiated by
La Poutré and van Leeuwen [41] who were the first to study the maintenance of the transitive
reduction in the partially dynamic setting, over 30 years ago. They presented an incremental
algorithm with total update time O(mn), and a decremental algorithm with total update
time that is O(m?) for general graphs, and O(mn) for DAGs.

1.1 Our results

We introduce the first fully dynamic data structures designed for maintaining the transitive
reduction in digraphs. These data structures are tailored for both DAGs and general digraphs,
and are categorized based on whether they offer worst-case or amortized guarantees on the
update time.

Amortized times for handling updates

Our first contribution is two fully dynamic data structures for maintaining the transitive
reduction of DAGs and general digraphs, each achieving roughly linear amortized update
time on the number of edges. Both data structures are combinatorial and deterministic, with
their exact guarantees summarized in the theorems below.

» Theorem 1.1. Let G be an initially empty graph that is guaranteed to remain acyclic
throughout any sequence of edge insertions and deletions. Then, there is a fully dynamic
deterministic data structure that maintains the transitive reduction Gt of G undergoing a
sequence of edge insertions centered around a vertex or arbitrary edge deletions in O(m)
amortized update time, where m is the current number of edges in the graph.

For general sparse digraphs, we obtain a much more involved data structure, where we
pay an additional logarithmic factor in the update time.

» Theorem 1.2. Given an initially empty general digraph G, there is a fully dynamic
deterministic data structure that supports edge insertions centered around a vertex and
arbitrary edge deletions, and maintains a transitive reduction Gt of G in O(m + nlogn)
amortized update time, where m is the current number of edges in the graph.

In fact, the data structures from Theorems 1.1 and 1.2 support more general update
operations: 1) insertions of a set of any number of edges, all incident to the same single
vertex, and 2) the deletion of an arbitrary set of edges from the graph. Note that these
extended update operations are more powerful compared to the single edge insertions and
deletions supported by more traditional dynamic data structures. For further details, we
refer the reader to Section 5 and the full version of the paper.

92:3
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For sparse digraphs, our dynamic algorithms supporting insertions in O(m + nlogn) =
O(nlogn) are almost optimal, up to a logn factor. This is because a polynomially faster
dynamic algorithm would lead to an improvement in the running time of the best-known
static O(n?) algorithm for computing the transitive reduction of a sparse graph, which would
constitute a major breakthrough.

Observe that within O(m) amortized time spent on updating the data structure, one can
explicitly list each edge of the maintained transitive reduction which is guaranteed to have at
most m edges. This is why Theorems 1.1 and 1.2 do not come with separate query bounds.

Worst-case times for handling updates

Our second contribution is another pair of fully dynamic data structures that maintain the
transitive reduction of DAGs and general digraphs. These data structures achieve worst-case
update time (on the number of nodes) for vertex updates and sub-quadratic worst-case
update time for edge updates. This is as opposed to Theorems 1.1 and 1.2, where the
worst-case cost of a single update can be as much as O(nm) = O(n?).

Both data structures rely on fast matrix multiplication and are randomized, with their
exact guarantee summarized in the theorem below.

» Theorem 1.3. Let G be a graph that is guaranteed to remain acyclic throughout any
sequence of updates. Then, there are randomized Monte Carlo data structures for maintaining
the transitive reduction Gt of G

in O(n?) worst-case update time for verter updates, and

in O(n'-5?8 + m) worst-case update time for edge updates.
Both data structures output a correct transitive reduction with high probability. They can be
initialized in O(n®) time.

For general digraphs, the runtime guarantees for vertex updates remain the same, whereas
for edge updates, we incur a slightly slower sub-quadratic update time.

» Theorem 1.4. Given a general digraph G, there are randomized Monte Carlo data structures
for maintaining the transitive reduction Gt of G

in O(n?) worst-case update time for verter updates, and

in O(n'"% 4+ m) worst-case update time for edge updates.
Both data structures output a correct transitive reduction with high probability. They can be
ingtialized in O(n®) time.

All our data structures require O(n?) space, similarly to the partially dynamic data
structures proposed by [41]. Going beyond the quadratic barrier in space complexity is
known to be a very challenging task in data structures for all-pairs reachability. For example,
to the best of our knowledge, it is not even known whether there exists a static data structure
with O(n?7¢) space and answering arbitrary-pair reachability queries in O(m!~€) time.
Finally, recall that in certain applications eliminating redundant edges in a time-efficient
manner is vital, and quadratic space is not a bottleneck.

1.2 Related work

Due to their wide set of applications, sparsification techniques have been studied for many
problems in both undirected and directed graphs. For undirected graphs, some notable
examples include sparsification for k-connectivity [27, 37], shortest paths [5, 39, 7], cut
sparsifiers [8, 9, 23], spectral sparsifiers [49, 50], and many more. For directed graphs,
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applications of sparsification have been studied for reachability [4], strong connectivity
[27, 56], shortest paths [32, 43|, k-connectivity [24, 35, 16], cut sparsifiers [14], spectral
sparsifiers for Eulerian digraphs [18, 46], and many more.

There is also a large body of literature on maintaining graph sparsifiers on dynamic
undirected graphs. Examples of this body of work includes dynamic sparsifiers for connectivity

[28], shortest paths [6, 22, 10], cut and spectral sparsifiers [2, 12], and k-edge-connectivity [1].

1.3 Organization

In Section 2, we set up some notation. Section 3 provides a technical overview of our
algorithms for both DAGs and general graphs. We then present the simpler data structures
for DAGs in Sections 4 and 5. Due to space constraints, the detailed description of our data
structures for general graphs, together with some proofs, is deferred to the appendix.

2 Preliminaries

In this section, we introduce some notation and review key results on transitive reduction in
directed graphs, which will be useful throughout the paper.

Graph Theory

Let G = (V, E) be a directed, unweighted, and loop-less graph where |V| = n and |E| =
m. For each edge xy, we call y an out-neighbor of x, and x an in-neighbor of y. A
path is defined as a sequence of vertices P = (vq,vs,...,v;) where v;v,11 € E for each

i € [k —1]. We call v; and vi as the first vertex and the last vertex of P, respectively.

The length of a path P, |P|, is the number of its edges. For two (possibly empty) paths

P = (uy,ug,...,ux) and Q = (v1,vs,...,v;), where up = vy, the concatenation of P and @
is the path obtained by identifying the last vertex of P with the first vertex of Q. i.e. the
path (uj,ug,...,up = v1,v2,...,v;). A cycle is a path whose first and last vertices are the

same, i.e., v; = vg. We say that G is a directed acyclic graph (DAG) if G does not have any
cycle. We say there is a path u — v from u to v (or u can reach v) if there exists a path
P = (v1,va,...,v) with v; = v and vy = v.

A graph H is called a subgraph of G if H can be obtained from G by deleting (possibly
empty) subsets of vertices and edges of G. For a set U C F, we define G\ U as the subgraph
of G obtained by deleting edges in U from G. We also define G \ uv = G \ {uv}.

Transitive Reduction

A transitive reduction of a graph G = (V, E) is a graph G* = (V, E) with the fewest possible
edges that preserves the reachability information between every two vertices in G. i.e., for
arbitrary vertices u,v € V, there is a v — v path in G iff there is a u — v path in G%. Note
that G* may not be unique and might not necessarily be a subgraph of G.

For a DAG G, G has a unique transitive reduction G* [4]. They presented an algorithm
to compute G* by identifying and eliminating the redundant edges. We say that edge zy € E
is redundant if there is a directed path x — y in G \ zy.

» Theorem 2.1 ([4]). Every DAG G has a unique transitive reduction G* that is a subgraph
of G and is computed by eliminating all redundant edges of G.

92:5
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For a general graph G, a transitive reduction G* can be obtained by replacing every
strongly connected component (SCC) in G with a cycle and removing the redundant inter-
SCC edges one-by-one [4]. But if we insist on G* being a subgraph of G, then finding G*
is NP-hard since G has a Hamiltonian cycle iff G? is a cycle consisting of all vertices of
G. To overcome this theoretical obstacle, we consider a minimal transitive reduction G* of
G. Given a graph G, we call Gt a minimal transitive reduction of G if removing any edge
from the subgraph G?* results in G* no longer being a transitive reduction of G. For the rest
of this paper, we assume G' is a subgraph of G. At the same time, we once again stress
this is merely for convenience and all our algorithms can be easily adapted to maintain the
minimum-size reachability preserver with SCCs replaced with cycles.

3 Technical overview

Dynamic transitive closure has been extensively studied, with efficient combinatorial [42, 45]
and algebraic [53, 47] data structures known. As mentioned before, computing transitive
reduction is closely related to computing the transitive closure [4]. This is why, in this
work, we adopt the general approach of reusing some of the technical ideas developed in
the prior literature on dynamic transitive closure. The main challenge lies in our goal to
achieve near-linear update time in the number of edges m and constant query time, or explicit
maintenance of the transitive reduction. Existing dynamic transitive closure data structures
such as those in [42, 47] have either O(n?) update time and O(1) arbitrary-pair query time
(which is optimal if the reachability matrix is to be maintained explicitly), or polynomial
query time [53, 45, 47].

To maintain the transitive reduction, we do not need to support arbitrary reachability
queries. Instead, we focus on maintaining specific reachability information between m pairs of
vertices connected by an edge. This reachability information, however, is more sophisticated
than in the case of transitive closure.

3.1 DAGs

Let us first consider the simpler case when G is a DAG. Recall (Theorem 2.1) that the
problem boils down to identifying redundant edges. To test the redundancy of an edge uwv,
we need to maintain information on whether a « — v path exists in the graph G \ uv.

3.1.1 A reduction to the transitive closure problem

In acyclic graphs, a reduction resembling that of [4] (see Lemma 4.1) carries quite well to
the fully dynamic setting. Roughly speaking, one can set up a graph G’ with two additional
copies of every vertex and edge, so that for all u,v € V, paths u” — v” between the respective
second-copy vertices u”,v” in G’ correspond precisely to indirect paths u — v in G, i.e.,
u — v paths avoiding the edge uv. Clearly, an edge xy is redundant if indirect  — y paths
exist. As a result, one can obtain a dynamic transitive reduction data structure by setting
up a dynamic transitive closure data structure on G and issuing m reachability queries after
each update. The reduction immediately implies an O(n?) worst-case update bound (Monte
Carlo randomized) and O(n?) amortized update bound (deterministic) for the problem in
the acyclic case via [42, 47], even in the case of vertex updates. This is optimal for dense
acyclic graphs, at least if one is interested in maintaining the reduction explicitly.?

® Indeed, consider a graph G = (Vi UVa U {s,t}, E) with E = (V1 x Va) U{vs:v € Vi} U {tv : v € Va},
where n = |Vi| = |V2|. No edges in this acyclic graph are redundant. However, adding the edge st
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The reduction works best if the transitive closure data structure can maintain some
(mostly fixed) m reachability pairs Y C V x V of interest more efficiently than via issuing m
reachability queries. In our use case, the reachability pairs Y correspond to the edges of the
graph, so an update of G can only change Y by one pair in the case of single-edge updates,
and by n pairs sharing a single vertex in the case of vertex updates to G. Some algebraic
dynamic reachability data structures based on dynamic matrix inverse [47, 48] come with
such a functionality out of the box. By applying these data structures on top of the reduction,
one can obtain an O(n'*?® + m) worst-case bound for updating the transitive reduction
of an acyclic digraph (see Theorem 6.4 for details). Interestingly, the n**?® term (where
the exponent depends on the current matrix multiplication exponent [55] and simplifies to
nt® if w = 2) typically emerges in connection with single-source reachability problems, and
O(n'528) is indeed conjectured optimal for fully dynamic single-source reachability [53]. One
could say that our algebraic transitive reduction data structure for DAGs meets a fairly
natural barrier.

3.1.2 A combinatorial data structure with amortized linear update time
bound

The algebraic reachability data structures provide worst-case guarantees but are more suitable
for denser graphs. In particular, they never achieve near-linear in n update bounds, even when
applied to sparse graphs. On the other hand, some combinatorial fully dynamic reachability
data structures, such as [44], do achieve near-linear in n update bound. However, these
update bound guarantees (1) are only amortized, and (2) come with a non-trivial polynomial
query procedure that does not inherently support maintaining a set Y of reachability pairs
of interest. This is why relying on the reduction (Lemma 4.1) does not immediately improve
the update bound for sparse graphs. Instead, we design a data structure tailored specifically
to maintain the transitive reduction of a DAG (Theorem 1.1). We later extend it to general
graphs, ultimately obtaining Theorem 1.2.

First of all, we prove that given a source vertex s of a DAG G, one can efficiently maintain,
subject to edge deletions, whether an indirect s — ¢ path exists in G for every outgoing
edge st € F (Lemma 5.1). This “indirect paths” data structure is based on extending the
decremental single-source reachability data structure of [30], which is a classical combinatorial
data structure with an optimal O(m) total update time.

Equipped with the above, we apply the strategy used in the reachability data structures
of [44, 45]: every time an insertion of edges centered at a vertex z issued, we build a new
decremental single-source indirect paths data structure D, “rooted” at z and initialized with
the current snapshot of G. Such a data structure will not accept any further insertions,
so the future insertions to G are effectively ignored by D,. Intuitively, the responsibility
of D, is to handle (i.e., test the indirectness of) paths in the current graph G whose most
recently updated vertex is 2.5 This way, handling each path in G is delegated to precisely one
maintained decremental indirect paths data structure rooted at a single vertex.

Compared to the data structures of [44, 45], an additional layer of global bookkeeping is

used to aggregate the counts of alternative paths from the individual data structures D,.

That is, for an arbitrary z € V', D, contributes to the counter iff it contains an alternative

makes all n? edges V1 x Vi redundant. Adding and removing st back and forth causes ©(n?) amortized
change in the transitive reduction.

In the transitive closure data structures [44, 45], the concrete goal of an analogous data structure rooted
at z is to efficiently query for the existence of a path x — y, where z is the most recent updated vertex
along the path.

92:7
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path. Using this technique, if the count is zero for some edge uv, then uv is not redundant.
This allows constant-time redundancy queries, or, more generally, explicitly maintaining the
set of edges in the transitive reduction.

We prove that all actions we perform can be charged to the O(m) initialization time of
the decremental data structures D,. Since, upon each insert update (incident to the same
vertex), we (re)initialize only one data structure D, the amortized update time of the data
structure is O(m).

3.2 General graphs

For maintaining a transitive reduction of a general directed graph, the black-box reduction to
fully dynamic transitive closure (Lemma 4.1) breaks. A natural idea to consider is to apply it
to the acyclic condensation of G obtained by contracting the strongly connected components
(SCCs). However, a single edge update to G might change the SCCs structure of G rather
dramatically.” This, in turn, could enforce many single-edge updates to the condensation,
not necessarily centered around a single vertex. Using a dynamic transitive closure data
structure (accepting edge updates) for maintaining the condensation in a black-box manner
would then be prohibitive: all the known fully dynamic transitive closure data structures
have rather costly update procedures, which are at least linear in n. Consequently, handling
the (evolving) SCCs in a specialized non-black-box manner seems inevitable here.

Nevertheless, using the condensation of G may still be useful. First, since we are aiming for
near-linear (in m) update time anyway (recall that O(m!~¢) update time is likely impossible),
the O(n)-edge transitive reductions of the individual SCCs can be recomputed from scratch.
This is possible since a minimal strongly connected subgraph of a strongly connected graph
can be computed in O(m + nlogn) time [25].

The above allows us to focus on detecting the redundant inter-SCC' edges xy, that is,
edges connecting two different SCCs X,Y of G. The edge zy can be redundant for two
reasons. First, if there exists an indirect X — Y path in the condensation of G, then zy is
redundant by the arguments we have used for DAGs. Second, if there are other parallel edges
T1Y1,-- -, Ty such that x; € X and y; € Y. In the latter case, if there is no indirect path
X — Y, then clearly the transitive reduction contains precisely one of xy, z1y1, - .., Txyk. In
other words, all these edges but one (not necessarily xy) are redundant.

3.2.1 Extending the combinatorial data structure

Extending the data structure for DAGs to support SCCs involves addressing some technical
challenges. The decremental indirect path data structures need to be generalized to support
detecting indirect paths in the condensation. The approach of [30] breaks for general graphs,
though. One solution here would be to adapt the near-linear decremental single-source
reachability for general graphs [11]. However, that data structure is randomized, slower
by a few log factors, and much more complex. Instead, as in [44, 45], we take advantage
of the fact that we always maintain n decremental indirect paths data structures on a
nested family of snapshots of G. This allows us to apply an algorithm from [45] to compute
how the SCCs decompose as a result of deleting some edges in all the snapshots at once,
in O(m + nlogn) time. Since the SCCs in snapshots decompose due to deletions, the
condensations are not completely decremental in the usual sense: some intra-SCC edges may

7 For example, a single vertex of the condensation may break into n vertices forming a path (consider
removing a single edge of an induced cycle).
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turn into inter-SCC edges and thus are added to the condensation. Similarly, the groups of
parallel inter-SCC edges may split, and some edges that have previously been parallel may
lose this status. Nevertheless, we show that all these problems can be efficiently addressed
within the amortized bound of O(m + nlogn) which matches that of the fully dynamic
reachability data structure of [45]. Similarly as in DAGs, one needs to check O(1) counters
and flags to test whether some edge of G is redundant or not; this takes O(1) time. The
details can be found in the full version of the paper.

3.2.2 Inter-SCC edges in algebraic data structures for general graphs

As indicated previously, operating on the condensation turns out to be very hard when
using the dynamic matrix inverse machinery [53, 47]. Intuitively, this is because these data
structures model edge updates as entry changes in the adjacency matrix, and this is all the
dynamic matrix inverse can accept. It seems that if we wanted an algebraic data structure
to maintain the condensation, we would need to update it explicitly by issuing edge updates.
Recall that there could be ©(n) such edge updates to the condensation per single-edge
update issued to G, even if G is sparse. This is prohibitive, especially since any updates to a
dynamic matrix inverse data structure take time superlinear in n.

To deal with these problems, we refrain from maintaining the condensation. Instead, we
prove an algebraic characterization of the redundancy of a group of parallel inter-SCC edges
F = {ujvy,...,urvg} connecting two distinct SCCs R, T of G. Specifically, we prove that
if A(G) is the symbolic adjacency matriz [47] (i.e., a variant of the adjacency matrix with
each 1 corresponding to an edge wv is replaced with an independent indeterminate x, ),
then in order to test whether F' is redundant it is enough to verify a certain polynomial
identity (see the full version of the paper) on some k + 1 elements of the inverse (A(G))~*
whose elements are degree < n multivariate polynomials. Consequently, through all groups F'
of parallel inter-SCC edges in G, we obtain that O(n +m) elements of the inverse have to be
inspected to deduce which inter-SCC edges are redundant.

By a standard argument involving the Schwartz-Zippel lemma, in the implementation,
we do not actually need to operate on polynomials (which may contain an exponential
number of terms of degree < n). Instead, for high-probability correctness it is enough to test
which of the aforementioned identities hold for some random variable substitution from a
sufficiently large prime field Z/pZ where p = ©(poly (n)). Since the inverse of a matrix can
be maintained explicitly in O(n?) worst-case time subject to row or column updates, this
yields a transitive reduction data structure with O(n?) worst-case bound per vertex update
(see the full version of the paper).

Obtaining a better worst-case bound for sparser graphs in the single-edge update setting is
more challenging. Unfortunately, the elements of the inverse used for testing the redundancy
of a group F of parallel intra-SCC edges do not quite correspond to the individual edges of F;
they also depend, to some extent, on the global structure of G. Specifically, the aforementioned
identity associated with F involves elements (r,u1), ..., (r,ug), (v1,t),..., (vg, t), and (r,?)
of the inverse, where r, ¢ are arbitrarily chosen roots of the SCCs R and T, respectively.

Dynamic inverse data structures with subquadratic update time [53, 47] (handling single-
element matrix updates) generally do not allow accessing arbitrary query elements of the
maintained inverse in constant time; this costs at least ©(n%®) time. They can, however,
provide constant-time access to a specified subset of interest Y C V x V of its entries, at
the additive cost O(]Y|) in the update bound. Ideally, we would like Y to contain all the
O(m + n) elements involved in identities to be checked. However, the mapping of vertices V
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to the roots of their respective SCCs may quickly become invalid due to adversarial edge
updates causing SCC splits and merges. Adding new entries to Y is costly, though: e.g.,
inserting n new elements takes Q(n'-%) time.

We nevertheless deal with the outlined problem by applying the hitting set argument [52]
along with a heavy-light SCC distinction. For a parameter § € (0, 1), we call an SCC heavy if
it has ©(n?) vertices, and light otherwise. We make sure that at all times our set of interest
Y in the dynamic inverse data structure contains
1. the edges F,

2. a sample (S x V) U (V x S) of rows and columns for a random subset S (sampled once)

of size ©(n'~?logn), and

3. all O(n'*?) pairs (u,v) such that u and v are both in the same light SCC.

This guarantees that the set Y allows for testing all the required identities in O(n + m)
time, has size ON(TLH‘S +n27% + m) and evolves by O(n'*?) elements per single-edge update,
all aligned in O(n) small square submatrices. For an optimized choice of 4, the worst-case
update time of the data structure is O(n!*® +m), i.e., slightly worse than we have achieved
for DAGs.

It is an interesting problem whether the transitive reduction of a general directed graph
can be maintained within the natural O(n!5?® + m) worst-case bound per update. The
details can be found in the full version of the paper.

4 Reductions

In this section, we provide a reduction from fully dynamic transitive reduction to fully
dynamic transitive closure on DAGs.

» Lemma 4.1. Let G = (V,E) be a fully dynamic digraph that is always acyclic. Let
Y ={(xs,y:):i=1,...,k} CV x V. Suppose there exists a data structure maintaining
whether paths x; — y; exist in G fori=1,...,k subject to either:
fully dynamic single-edge updates to G and single-element updates to 'Y,
fully dynamic single-vertex updates to G (i.e. changing any number of edges incident to
a single vertex v) and single-vertex updates to 'Y (i.e., for some v € V, inserting/deleting
from'Y any number of pairs (z,y) satisfying v € {z,y}).
Let T'(n,m, k) be the (amortized) update time of the assumed data structure.
Then, there exists a fully dynamic transitive reduction data structure supporting the
respective type of updates to G with O(T (n, m,m)) amortized update time.

Proof. Let V! ={v':v € V} and V" = {v" : v € V'} be two copies of the vertex set V. Let
E' ={w':uwv € E} and E” = {u/v" : uwv € E}. Consider the graph

G =(VuvV'uv" EUE UE").

Note that a single-edge (resp., single-vertex) update to G can be translated to three updates
of the respective type issued to G’.

Let us now show that an edge xy € E is redundant in G if and only if there is a path
z — 3" in G'. Since G is a DAG, if zy is redundant, there exists an x — y path in G with
at least two edges, say @ - wz - zy, where Q = x — w (possibly w = x). By the construction
of G', w2, 2'y" € E(G'), and @ C G C G'. As a result, z can reach y” in G’. Now suppose
that there is a path from x to 3" in G’. By the construction of G’, such a path is of the form
Q- wz' - 2'y" (where Q@ C G) since V" has incoming edges only from V', and V' U V" has
incoming edges only from V. The x — y path @ - wz - zy C G has at least two edges and
x # z (by acyclicity), so zy is indeed a redundant edge.
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It follows that the set of redundant edges of G can be maintained using a dynamic
transitive closure data structure set up on the graph G’ with the set Y (of size k = m) equal
to {uv” : wv € E}. To handle a single-edge update to G, we need to issue three single-edge
updates to the data structure maintaining G’, and also issue a single-element update to the
set Y. Analogously for vertex updates: an update centered at v causes an update to Y such
that all inserted/removed elements have one of its coordinates equal to v or v”. <

5 Combinatorial Dynamic Transitive Reduction on DAGs

In this section, we explain a data structure for maintaining the transitive reduction of a
DAG @G, as summarized in Theorem 1.1 below. The data structure supports extended update
operations, i.e., it allows the deletion of an arbitrary set of edges Fqe or the insertion of
some edges F, incident to a vertex u, known as the center of the insertion.

The data structure for general graphs is explained in the full version of the paper.

» Theorem 1.1. Let G be an initially empty graph that is guaranteed to remain acyclic
throughout any sequence of edge insertions and deletions. Then, there is a fully dynamic
deterministic data structure that maintains the transitive reduction G* of G undergoing a
sequence of edge insertions centered around a vertex or arbitrary edge deletions in O(m)
amortized update time, where m is the current number of edges in the graph.

The data structure uses a straightforward idea to maintain G!: an edge xy does not
belong to G! if y has an in-neighbor 2z # z reachable from x. Thus, one can maintain G*
by maintaining the reachability information for each vertex w € V', but naively maintaining
them results in O(mn) amortized update time for the data structure.

To improve the amortized update time to O(m), we maintain the reachability information
on a subgraph G* = (V, E*) for every vertex u € V defined as the snapshot of G taken after
the last insertion E, centered around w (if such an insertion occurred). The reachability
information are defined as follows: Desc" is the set of vertices reachable from u in G* and
Anc" is the set of vertices that can reach w in G*.

Note that subsequent edge insertions centered around vertices different from u do not
change G*. However, edges that are subsequently deleted from G are also deleted from G*,
ensuring that at each step, E* C E. Therefore, G* undergoes only edge deletions while we
decrementally maintain Desc* and Anc" until an insertion F,, centered around u happens
and we reinitialize G*.

To decrementally maintain Desc” and Anc*, our data structure uses an extended version
of the decremental data structure of Italiano [30], summarized in the lemma below. See the
full version of the paper for a detailed discussion.

» Lemma 5.1. Given a DAG G = (V, E) initialized with the set Desc” of vertices reachable
from a root vertex r and the set Anc” of vertices that can reach r, there is a decremental
data structure undergoing arbitrary edge deletions at each update that maintains Desc” and
Anc” in O(1) amortized update time.

Additionally, the data structure maintains the sets D™ and A" of vertices removed from
Desc” and Anc”, resp., due to the last update and supports the following operations in O(1)
time:

IN(y): Return True if y # r and y has an in-neighbor from Desc” \r, and False otherwise.

Out(x): Return True if © # r and x has an out-neighbor to Anc” \ r, and False

otherwise.
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The lemma below shows how maintaining Desc* and Anc* will be useful in maintaining
G*. Recall that an edge zy € E is redundant if there exists a z — y path in G \ zy.

» Lemma 5.2. FEdge zy is redundant in G iff one of the following holds.
1. There is a vertex z ¢ {x,y} such that x € Anc® and y € Desc® in G*.
2. Vertex y has an in-neighbor z € Desc” \ x in G*.
3. Vertex x has an out-neighbor z € AncY \ y in GY.

Proof. We first show the “if” direction. Suppose that xy is redundant in G. Since G is a
DAG, and by the definition of redundant edges, there exists a directed path P from z to y
in G\ xy whose length is at least two. Let ¢ be a vertex on P that has been a center of an
insertion most recently. This insert operation constructed sets Desc® and Anc®. At the time
of this insertion, all the edges of the path P were already present in the graph, and thus P
exists in the graph G°. Now, if ¢ ¢ {z,y}, then P is a concatenation of subpaths  — ¢ and
¢ — y in G¢, or equivalently, Item (1) holds. If ¢ = z, then Item (2) holds, and if ¢ = y, then
Item (3) holds.

For the “only-if” direction, we only prove Item (2); items (1) and (3) can be shown
similarly. To prove Item (2), let us assume that y has an in-neighbor z € Desc® \ = in G*.
Our goal is to show that zy is redundant in G. To this end, since z ¢ {z,y} and G* is a
DAG, there exists a path P from x to y in G* that is a concatenation of the subpath z — z
and the edge zy. Note that P has length at least two and does not contain the edge xy. Since
E* C E, P is also a path from x to y in G \ zy, which in turn implies that zy is redundant
in G. <

To incorporate Lemma 5.2 in our data structure, we define c(xy) and t(zy) for every edge
zy € E as follows:

The counter c(zy) stores the number of vertices z ¢ {x,y} such that xy € E?*, x € Anc?,

and y € Desc® in G*.

The binary value t(zy) is set to 1 if either y has an in-neighbor z € Desc® \ z in G* or x

has an out-neighbor z € Anc¥ \ y in GY, and is set to 0 otherwise.

Note that for a redundant edge xy in G, a vertex z contributes towards c(zy) iff zy € E*.
If no such z exists, then xy has become redundant due to the last insertion being centered
around z or y, which in turn implies t(xy) = 1. Combining these two facts, we conclude the
following invariant.

» Invariant 5.1. An edge zy € E belongs to the transitive reduction Gt iff c(xy) = 0 and
t(zy) = 0.

In the rest of the section, we show how to efficiently maintain c(xy) and t(xy) for every
zy € E.

5.1 Edge insertions

After the insertion of F, centered around u, the data structure updates G*, while leaving
every other graph GV is unchanged.

We simply use a graph search algorithm to recompute Desc" and Anc", and the sets C*
and B" of the new vertices added to Desc® and Anc", respectively, due to the insertion of
E,.

To maintain c¢(zy) for an edge xy € E, we only need to examine the contribution of u in
c(zy) as only G* has changed. By definition, every edge xy touching u, i.e., with z = u or
y = u, does not contribute in ¢(xy). Note that E* consists of the edges before the update
and the newly added edges, which leads to distinguishing the following cases.
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1. Suppose that xy is not touching v and has already existed in E* before the update. Then,
c(ay) will increase by one only if the update makes x to reach y through w. i.e., there is
no path x — u — y before the update (z ¢ Anc* \ B* or y ¢ Desc" \ C*), but there is at
least one afterwards (i.e., x € Anc* and y € Desc").

2. Suppose that zy is not touching u and has added to E" after the update. Since this is
the first time we examine the contribution of u towards ¢(xy), we increment ¢(xy) by one
if x can reach y through u (i.e., z € Anc* and y € Desc*).

We now maintain t(zy) for an edge zy € E. By definition, t(xy) could be affected only if
2y touches u. Since G* undergoes edge insertions, t(xy) can only change from 0 to 1. For
every edge zy € E touching u, we set t(zy) < 1 if one of the following happen:

2z = u and y has an in-neighbor z # u in G* reachable from u (i.e., if IN(y) reports True),

or

y = u and x has an out-neighbor z # v in G* that can reach y (i.e., if OUT(y) reports

True).

Note that both cases above try to insure the existence of a path * — 2z — y when x = u or
Y = U.

» Lemma 5.3. After each insertion, the data structure maintains the transitive reduction
G of G in O(m) worst-case time, where m is the number of edges in the current graph G.

Proof. Suppose that the insertion of edges F, has happened centered around u.

Correctness. By construction, all possible scenarios for the edge xy are covered and the
values ¢(zy) and t(zy) are correctly maintained after each insert update with respect to G*
for every edge xy € F. Since G is the only graph changing during the update, it follows
that c(zy) and t(xy) are correctly maintained with respect to G, v € V. The correctness
immediately follows from Invariant 5.1 and Lemma 5.2.

Update time. The update time is dominated by (i) the time required to initialize the data
structure of Lemma 5.1 for G¥, and (ii) the time required to maintain c(xy) and t(zy) for
every edge zy € E. By Lemma 5.1, the time for (i) is at most O(m). To bound the time for
(ii), note that c(zy) for any edge zy € E can be updated in O(1) time as we only inspect the
contribution of u towards c(zy) as discussed before. Lemma 5.1 guarantees that each IN(-) or
OuT(-) is supported in time O(1), which in turn implies that t(zy) can be updated in O(1)
time. As there are at most m edges in G, maintaining c(-) and t(-) takes at most O(m). <«

5.2 Edge deletions

After the deletion of Eye, the data structure passes the deletion to every G*, u € V. Let D
and A" denote the sets of vertices removed from Desc* and Anc", resp., due to the deletion
of Edel-

We decrementally maintain Desc* and Anc¥, and the sets D* and A" using the data
structure of Lemma 5.1, which is initialized last time G* was rebuilt due to an insertion
centered around wu.

To maintain c(zy) for any edge zy € E, we need to cancel out every vertex z ¢ {z,y}
that contained a path x — z — y in G* before the update but no longer has one. i.e.,
x € Anc® U A% and y € Desc® UD? in G* and either x € A* or y € D*. This suggests that it
suffices to subtract c¢(zy) by one if « and y fall into one of the following disjoint cases.

1. x € A* and y € Desc?, or
2. z € A* and y € D*, or
3. x € Anc? and y € D*.

92:13

ICALP 2025



92:14

Fully Dynamic Algorithms for Transitive Reduction

For cases (1) and (2) where x € A?, we can afford to inspect every outgoing edge zy € E*
of x with y # z, and subtract c(zy) by one if y € Desc® UD?. For case (3) where y € D*, we
inspect every incoming edge zy € E* of y with x # z, and subtract c(zy) by one if 2 € Anc?.

To maintain t(xy) for an edge xy € E, we only need to inspect the updated graphs G*
and GY. Note that since the graphs are decremental, t(zy) can only change from 1 to 0. we
check whether there is no path z — z — y in G® and GY passing through a vertex z ¢ {z,y}
by utilizing the data structure of Lemma 5.1: if both IN(y) and OUT(z) return False, we
set t(zy) « 0.

» Lemma 5.4. After each deletion, the data structure maintains the transitive reduction G*
of G in O(m) amortized time, where m is the number of edges in the current graph G.

Proof. Suppose that a deletion of edges E4e has happened.

Correctness. Similar to handling edge insertions. The correctness follows from Lemma 5.2
and the observation that the values c(zy) and t(xy) for every edge zy € E are maintained
correctly.

Update time. The update time is dominated by (i) the time required to decrementally
maintain the data structures of Lemma 5.1 for G¥, v € V, and (ii) the time required to
update the values c(zy) and t(zy) for every edge zy € E.

By Lemma 5.1, it follows that the total time required to maintain (i) over a sequence of
m edge deletions is bounded by O(m) for each graph. Therefore, it takes O(n) amortized
time to decrementally maintain all graphs.

To bound (ii), we first examine the total time required to maintain c(zy) over a sequence
of m edge deletions in a single graph G*. Note that in G?, every vertex u € V is inspected
at most twice since it is deleted at most once from each set Desc® or Anc®. During the
inspection of u in G?, the data structure examines each incoming or outgoing edge e of
u in O(1) time, and updates c(e) if necessary. As explained before, the value c(e) for a
single edge e can be updated in O(1) time. Thus, in G#, the time required for maintaining
c(xy) for every zy € E* is bounded by O (3, cp- deg(u) + >, c = deg(u)) , where D* and
A~ are the vertices that no longer belong to Desc* and Anc?, respectively, due to the deletion
of F4q. Note that, during a sequence of m edge deletions, sets D? and A* partition the
vertices of G#, and so the total time for maintaining c(zy), xy € E#, in G* is bounded by
O (X, cv deg(u) + 3 ,cv deg(u)) = O (m). We conclude that maintaining c(zy), zy € E,
in all graphs G* takes O(n) amortized time.

Lemma 5.1 guarantees that each in-neighbor or out-neighbor query can also be supported
in O(1) time, which in turn implies that t(xy) for a an edge xy € E can be updated in O(1)
time. As there are at most m edges in the current graph G, updating t(xzy) for all zy € E
costs O(m) after each delete operation. Since the number of delete operations is bounded by
the number of edges that appeared in G, we conclude that the total cost to maintain t(xy)
for all zy € E over all edge deletions is O(m?), which bounds (ii).

Combining the bounds we obtained for (i) and (ii), we conclude that edge deletions can
be supported in O(m) amortized update time. |

5.3 Space complexity

It remains to discuss the space complexity of the data structure. Note that explicitly storing
all graphs would require ©(n? + nm) space. In the rest of this section, we sketch how to
decrease the space to O(n?) using a similar approach in [45].
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For every edge zy € F, we define a timestamp time(zy), attached to xy, denoting its time
of insertion into G. We maintain a single explicit adjacency list representation of G, so that

the outgoing incident edges E[v] of each v are stored in increasing order by their timestamps.

This adjacency list is shared by all the snapshots, and is easily maintained when edges of G
are inserted or removed: insertions can only happen at the end of these lists, and deletions
can be handled using pointers into this adjacency list.

Let time(v) denote the last time an insertion centered at v happened. Let us order the
vertices V' = {v1,...,v,} so that time(v;) < time(v;) for all ¢ < j, i.e., from the least to
most recently updated. By the definition of snapshots, we have

G CG”C...CGE"=G.

Note that for each 4, the edges of GV that are not in GV~! are all incident to v; and
have timestamps larger than timestamps of the edges in GVi-t. As a result, one could obtain
the adjacency list representation of GV* by taking the respective adjacency list of G and
truncating all the individual lists E[v] at the last edge e with time(e) < time(v;). This
idea gives rise to a virtual adjacency list of G¥#, which requires only storing time(v;) to be
accessed. One can thus process GV by using the global adjacency list for G and ensuring to

never iterate through the “suffix” edges in E[v] that have timestamps larger than time(v;).

Using the timestamps, it is also easy to notify the required individual snapshots when an
edge deletion in G affects them.

Since all the auxiliary data structures for individual snapshots apart from their adjacency
lists used O(n) space, this optimization decreases space to O(n?).

6 Algebraic Dynamic Transitive Reduction on DAGs

In this section we give algebraic dynamic algorithms for transitive reduction in DAGs (for
general digraphs, see the full version of the paper). We reduce the problem to maintaining
the inverse of a matrix associated with G and (in the general case) testing some identities
involving the elements of the matrix.

We will need the following results on dynamic matrix inverse maintenance.

» Theorem 6.1. [47] Let A be an n x n matriz over a field F that is invertible at all times.
There is a data structure maintaining A~ explicitly subject to row or column updates issued
to A in O(n?) worst-case update time. The data structure is initialized in O(n®) time and
uses O(n?) space.

» Theorem 6.2. [47, 48] Let A be an n x n matriz over o field F that is invertible at
all times, a € (0,1), and Y be a (dynamic) subset of [n]2. There is a data structure
maintaining A~ subject to single-element updates to A that maintains AZ_J1 forall (i,5) €Y
in O(nvMa=a 1 plte 1Y) worst-case time per update. The data structure additionally
supports:

1. square submatriz queries A~'[I,I], for I C [n], |I| = n® in O(n
i_’jl, adding or removing (i,7) from Y, in O(1) time.

The data structure can be initialized in O(n“) time and uses O(n?) space.

w(8:0.0)) time,

2. given A

Above, w(p, ¢, ) denotes the exponent such that multiplying n? x n? and n? x n” matrices
over F requires O(n®®%7) field operations. Moreover w := w(1,1,1).

For DAGs, efficient algebraic fully dynamic transitive reduction algorithms follow from
Theorems 6.1 and 6.2 rather easily by applying the reduction of Lemma 4.1. To show that,
we now recall how the algebraic dynamic transitive closure data structures for DAGs [20, 33]
are obtained.
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Identify V with [n]. Let A(G) be the standard adjacency matrix of G = (V, E), that is,
for any u,v € V, A(G)y, =1 iff uv € E, and A(G),,» = 0 otherwise. It is well-known that
the powers of A encode the numbers of walks between specific endpoints in G. That is, for
any u,v € V and k > 0, A(G)Z,v equals the number of u — v k-edge walks in G. In DAGs,
all walks are actually paths. Moreover, we have the following property:

» Lemma 6.3. If G is a DAG, then the matriz I — A(G) is invertible. Moreover, (I—A(G)),},
equals the number of paths from u — v in G.

Proof. Put A := A(G). If G is a DAG, then A™ is a zero matrix since every n-edge walk has
to contain a cycle. From that it follows that (I — A)(I+ A+ ...+ A" 1) =1, ie., Z?;OI Al
is the inverse of I — A. On the other hand, the former matrix clearly encodes path counts of
all the possible lengths 0,1,...,7n — 1 in G. <

By the above lemma, to check whether a path u — v exists in a DAG G, it is enough to test
whether (I — A(G)), 3, # 0. This reduces dynamic transitive closure on G'to maintaining the
inverse of I — A(G) dynamically. There are two potential problems, though: (1) (unbounded)
integers do not form a field (and Theorems 6.1 and 6.2 are stated for a field), (2) the path
counts in G may be very large integers of up to ©(n) bits, which could lead to an 5(71) bound
for performing arithmetic operations while maintaining the path counts. A standard way to
address both problems (with high probability 1 — 1/ poly (n)) is to perform all the counting
modulo a sufficiently large random prime number p polynomial in n (see, e.g., [33, Section 3.4]
for an analysis). Working over Z/pZ solves both problems as arithmetic operations modulo
p can be performed in O(1) time on the word RAM.

» Theorem 6.4. Let G be a fully dynamic DAG. The transitive reduction of G can be
maintained:

1. in O(n?) worst-case time per update if vertex updates are allowed,

2. in O(n*5% + m) worst-case time per update if only single-edge updates are supported.
Both data structures are Monte Carlo randomized and give correct outputs with high probability.
They can be initialized in O(n*) time and use O(n?) space.

Proof. Lemma 4.1 reduces maintaining the set of redundant edges of G to a dynamic transitive
closure data structure maintaining reachability for O(m) pairs Y C A x A, supporting either:
1. vertex-centered updates to both the underlying graph and the set Y, or

2. single-edge updates to the underlying graph and single-element updates to Y.

By our discussion, the former data structure can be obtained by applying Theorem 6.1 to
the matrix I — A(G). This way, for vertex updates, one obtains O(n?) worst-case update
time immediately.

The latter data structure is obtained by applying Theorem 6.2 with a ~ 0.528 that
satisfies w(1,a,1) = 1 4 2a to the matrix I — A(G). Then, a single-edge update is handled
in O(n'*® 4+ m) time. Note that inserting a new element to Y in Theorem 6.2 requires
computing the corresponding element of the inverse. This requires O(n<(©:*9) = O(n®)
extra time and is negligible compared to the O(n'*®) cost of the element update. |
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