Replay - Automatic Uncovering of Hidden Behaviors From Input
Validation in Mobile Apps

David Schmidt
University of Vienna
Faculty of Computer Science
Christian Doppler Laboratory AsTra
Doctoral School Computer Science
Vienna, Austria
d.schmidt@unvie.ac.at

Abstract

In this work, we replay the paper Automatic Uncovering of Hidden
Behaviors From Input Validation in Mobile Apps [6]. The paper
presents a static analysis that uncovers hidden behavior in Android
apps through input validation logic. While the original analysis,
published in 2020, examined 150,000 apps, we re-execute their
pipeline on 10,331 apps collected in 2023 and 2024, to study how
hidden behavior in Android apps has evolved over the past five
years. Overall, we observe a decline in the prevalence of hidden
behavior. Nevertheless, we also identify backdoors similar to those

originally reported, indicating that such techniques remain present.

ACM Reference Format:

David Schmidt and Sebastian Schrittwieser. 2025. Replay — Automatic
Uncovering of Hidden Behaviors From Input Validation in Mobile Apps.
In Proceedings of the 2025 Workshop on Research on Offensive and Defensive
Techniques in the Context of Man At The End (MATE) Attacks (CheckMATE
’25), October 13-17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3733817.3765609

1 Introduction

We conduct a replay study of INPUTSCOPE [6], a static analysis
designed to automatically uncover hidden behavior in Android
apps by analyzing input validation logic. The original analysis, was
performed before 2020 as the paper was published in May 2020 and
examined a dataset of 150,000 Android apps. We re-executed their
analysis pipeline on a dataset of 10,331 Android apps collected in
2023 and 2024. This replay allows us to answer the question: How
has hidden behavior in Android apps evolved over the past five years?

INPUTSCOPE. INPUTSCOPE operates in two static analysis phases.

In the first phase, it applies taint analysis to identify locations
where Android apps perform string equality checks involving user
input. In this context, user inputs are the taint sources, and string
comparison APIs are the sinks.

In the second phase, INPUTSCOPE executes a Value Set Analysis
(VSA). The analysis begins with a backward trace from the string
comparison with the user-input. This step resolves operations such

This work is licensed under a Creative Commons Attribution 4.0 International License.
CheckMATE °25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1906-6/2025/10

https://doi.org/10.1145/3733817.3765609

Sebastian Schrittwieser
University of Vienna
Faculty of Computer Science
Christian Doppler Laboratory AsTra
Vienna, Austria
sebastian.schrittwieser@univie.ac.at

as string concatenation, which may require recursively tracing mul-
tiple string variables. Once all dependencies are resolved, a forward
simulation reconstructs the string’s value along the execution trace.

Finally, the analysis classifies the reasons behind the discovered
comparisons into one of four categories: (1) Secret access key, a
comparison with a hardcoded value that controls conditional func-
tionality, such as triggering a password reset; (2) Master password, a
comparison involving a hardcoded string that unlocks functionality
universally, while other, regular paths to access remain; (3) Blacklist
secret, an input compared against a list of strings to suppress certain
behaviors, e.g., filtering offensive vocabulary; (4) Secret command,
a set of hardcoded comparisons used to trigger internal features,
such as debug menus or hidden configuration options.

2 Methodology

To replay the original analysis, we used the publicly available
implementation of INPUTScOPE [6]. The code includes the core
components required to detect string comparisons involving user
input and reconstructing the corresponding string values.

Dataset. We based our evaluation on Android apps collected
during a previous study [3, 4]. The dataset comprises 10,331 apps
downloaded from the Google Play Store in 2023. We re-downloaded
the same set in October 2024 and successfully retrieved 8,702 apps.
We refer to these two datasets as 2023 and 2024, respectively.

While the original study analyzed 150,000 apps from Google Play
and alternative marketplaces, we focused exclusively on the Google
Play Store, the most widely used distribution channel for Android
apps, and analyzed a subset of both popular and randomly selected
apps to provide a holistic view of the apps available.

Environment. We executed our analysis on a Debian 12 virtual
machine equipped with 64 GB RAM and a 32-core Intel(R) Xeon(R)
6230 CPU. To improve throughput, we parallelized the execution
using GNU parallel [2], running four concurrent analyses.

3 Evaluation

In this section, we discuss challenges, present our findings, and
compare them to the results reported in the original work.

3.1 Reproducibility Issues

Although the GitHub repository provides the core components
of INPUTScCOPE, including taint analysis and VSA, it omits the
implementation of heuristics used to classify hidden behaviors.
We re-implemented the classification logic in Python based on

https://doi.org/10.1145/3733817.3765609
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3733817.3765609

CheckMATE ’25, October 13-17, 2025, Taipei, Taiwan

Table 1: Results of our replay study. The row Equality checks
refers to the total number of apps in each dataset. All other
values represent the proportion of findings relative to the
number of detected equality checks.

INPUTSCOPE 2023 2024

Apps 150,000 10,331 8,702
Equ. Checks 114,797 (76.53%) 2,702 (33.80%) 2,844 (32.68%)
Backdoors 12,706 (11.07%) 315 (11.66%) 217 (7.63%)
Access Keys 7,584 (6.61%) 237 (8.77%) 166 (5.84%)
Master Pwds 501 (0.44%) 66 (2.44%) 32 (1.13%)
Priv. Cmds 6,013 (5.24%) 43(1.59%) 32(1.13%)
Blacklists 4,601 (4.01%) 116 (4.29%) 65 (2.29%)

descriptions provided in the original paper. However, we cannot
guarantee that we implemented it identically. We integrated Gradle
build scripts into the Java analysis to improve maintainability and
simplify the build process. This modification holds advantages due
to annual updates to the Android ecosystem, which also result in
updates of FlowDroid [1] and Soot [5]. Two component on which
INPUTSCOPE depends.

We provide an updated implementation using FlowDroid version
2.14.1 (released October 2024). The updated code, along with our
re-implementation of the classification heuristics, is available at:
https://github.com/CDL- AsTra/replay-inputscope.

Based on the publication timeline of the original study (May
2020), we infer that their dataset was collected before 2020.

4 Results

We present an overview of the original results and our replay results
on the 2023 and 2024 datasets in Table 1. Compared to the original
study, which detected equality checks in 76.53% of analyzed apps,
our detection rates were notably lower, 33.8% in 2023 and 32.68%
in 2024. As discussed in Section 3.1, changes in recent Android
versions and the evolving app ecosystem may contribute to this
reduced detection rate.

Despite this gap, the relative proportions of detected behaviors
remain comparable. For access keys, we observed similar results:
6.61% in the original study, 8.77% in 2023, and 5.84% in 2024. For
master passwords, our analysis flagged more apps than the original
study, 2.44% in 2023 and 1.13% in 2024, compared to 0.44%. In
contrast, we identified fewer privileged command behaviors: 1.59%
in 2023 and 1.13% in 2024, versus 5.24% originally.

A comparison between the 2023 and 2024 datasets reveals fur-
ther insights. Focusing on apps for which the analysis completed
successfully in both years, we identified 14 master passwords, 20
access keys, and 3 secret commands that appeared only in the 2023
versions. This suggests developers may have removed or refactored
hidden logic over time. In contrast, only a few new hidden behaviors
emerged in 2024. Specifically, 3 master passwords and 2 access keys,
indicating that such practices are not being introduced at scale.

4.1 Case-studies

Similar to the original paper, we manually analyze the findings of
the most popular apps for further insights.

David Schmidt and Sebastian Schrittwieser

Blacklists. Among the 20 most popular apps containing blacklist
behavior, we identified 13 cases filtering special characters such as
< or >, one instance filtering domain names, one filtering offensive
English words, and one applying a phone number prefix filter.
In three cases, the analysis failed to reconstruct the comparison
values, as they were dynamically loaded from shared preferences.
Additionally, one instance was misclassified as a blacklist.

Backdoors. Of the 20 most popular apps flagged for access keys,
master passwords, or secret commands, we confirmed only ten as
true positives. Most false positives originated from benign input
validation logic. However, consistent with the original paper, we
identified a total number of 31 cases where backdoors enable de-
veloper or debugging features, disable advertisements, unlock paid
services, or act as master passwords. Since most backdoors in the
original paper were censored, direct comparison of the discovered
commands is challenging. However, the authors disclosed four
cases without censorship, mentioning that those apps had received
patches. Notably, we rediscovered the same secret commands in
com.th.ringtone.maker. Further, four out of five access keys used
to bypass service payments were censored with the pattern g*xd.
We identified a similar payment bypass with a matching pattern in
a dictionary app with over one million installations. This suggests
that the same access key pattern is still in use.

5 Conclusion

We discovered fewer hidden functionalities compared to the original
study. One reason is the reduced number of detected equality
checks, which may result from changes in Android that would
require updates to the static analysis. However, even within our
own datasets, we observed a slightly positive trend: fewer hidden
behaviors were discovered in the 2024 version compared to 2023.
Nevertheless, we identified backdoors in several popular apps that
closely resemble those reported in the original paper, indicating
that such patterns are still in use.

Acknowledgments

The financial support by the Austrian Federal Ministry of Econ-
omy, Energy and Tourism, the National Foundation for Research,
Technology and Development and the Christian Doppler Research
Association is gratefully acknowledged.

References

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint
Analysis for Android Apps. In 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation.

[2] Free Software Foundation, Inc. [n.d.]. Coreutils - GNU Core Utilities. https://www.
gnu.org/software/coreutils/ Archived at https://archive.ph/9cQ2P.

[3] David Schmidt, Alexander Ponticello, Magdalena Steinbéck, Katharina Krombholz,
and Martina Lindorfer. 2025. Analyzing the i0S Local Network Permission from a
Technical and User Perspective. In 46th IEEE Security & Privacy (S&P).

[4] David Schmidt, Sebastian Schrittwieser, and Edgar Weippl. 2025. Leaky Apps:
Large-scale Analysis of Secrets Distributed in Android and iOS Apps. In 32nd ACM
Conference on Computer and Communications Security (CCS).

[5] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. 2000. Optimizing Java Bytecode Using the Soot Framework:
Is It Feasible?. In 9th Compiler Construction.

[6] Qingchuan Zhao, Chaoshun Zuo, Brendan Dolan-Gavitt, Giancarlo Pellegrino,
and Zhiqiang Lin. 2020. Automatic Uncovering of Hidden Behaviors From Input
Validation in Mobile Apps. In 41st IEEE Security & Privacy (S&P).

https://github.com/CDL-AsTra/replay-inputscope
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://archive.ph/9cQ2P

	Abstract
	1 Introduction
	2 Methodology
	3 Evaluation
	3.1 Reproducibility Issues

	4 Results
	4.1 Case-studies

	5 Conclusion
	Acknowledgments
	References

