Leaky Apps: Large-scale Analysis of Secrets Distributed in
Android and iOS Apps

David Schmidt
University of Vienna
Faculty of Computer Science
Doctoral School Computer Science
Christian Doppler Laboratory AsTra
Vienna, Austria
d.schmidt@unvie.ac.at

Abstract

Mobile apps store various types of secrets to support their func-
tionalities. These include API keys, and cryptographic material to
authenticate users and access backend services. Once distributed,
attackers can reverse-engineer the apps, and these secrets become
accessible, posing risks such as data leaks, and service abuse.

In this paper, we conduct a large-scale analysis of 10,331 Android
and i0S apps to study how secrets are embedded in mobile apps. Our
methodology involves extracting and validating credentials from
app bundles and comparing the types and frequency of embedded
secrets across Android and i0S to identify systematic differences
between the two ecosystems. To assess temporal dynamics, we
re-analyze apps released in 2023 after their updates in 2024.

Our findings show that apps not only leak secrets required for
functionality but also unintentionally include sensitive information
like markdown documentation, and dependency management files.

We discovered 416 functional credentials across 65 services,
including 13 Git credentials that grant access to 218 public and 2,440
private repositories. Our analysis reveals that iOS apps are more
likely to expose secrets, although information leaks exist in both
Android and iOS apps. Finally, we show that even if developers
remove embedded credentials in later versions, they frequently
forget to revoke them, leaving the credentials exploitable.

CCS Concepts

« Security and privacy — Software and application security.

Keywords

Mobile app security; static analysis; app measurements.

ACM Reference Format:

David Schmidt, Sebastian Schrittwieser, and Edgar Weippl. 2025. Leaky
Apps: Large-scale Analysis of Secrets Distributed in Android and iOS
Apps. In Proceedings of the 2025 ACM SIGSAC Conference on Computer
and Communications Security (CCS °25), October 13—17, 2025, Taipei, Taiwan.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3765
033

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765033

Sebastian Schrittwieser
University of Vienna
Faculty of Computer Science
Christian Doppler Laboratory AsTra
Vienna, Austria
sebastian.schrittwieser@univie.ac.at

Edgar Weippl
University of Vienna
Faculty of Computer Science
Vienna, Austria
edgar.weippl@univie.ac.at

1 Introduction

Smartphone apps have become essential in daily life, with approxi-
mately 6.9 billion smartphone users worldwide depending on over
8.9 million apps in 2023 [44]. These apps handle our communica-
tions, finances, social interactions, and personal health data, deeply
integrating themselves into both our personal and professional
lives. However, this widespread reliance creates significant security
risks, particularly when it comes to protecting sensitive information
embedded within apps. Security researchers recently uncovered
that 13 widely-used mobile apps, some downloaded millions of
times, exposed sensitive cloud credentials [43]. These credentials
can enable attackers to manipulate or steal user data, potentially
resulting in severe privacy breaches.

The issue arises because developers embed sensitive data, such
as API tokens and authentication credentials, directly into the app’s
code. While some of these secrets are intentionally included for
necessary functionality, developers also include sensitive informa-
tion inadvertently due to oversight or rushed development cycles.
An illustrative example is Snapchat, which unintentionally leaked
portions of its source code through its iOS app [17]. Once an app
reaches users’ devices, its embedded secrets become vulnerable
to extraction through reverse engineering, often referred to as a
Man-At-The-End (MATE) threat model [24].

Given the scale of mobile app usage globally, the impact of
compromised app secrets is substantial. This threat is underscored
by its inclusion in the OWASP Mobile Top 10 of 2024, which ranks
Improper Credential Usage as the highest security risk [71].

In the past, researchers studied the exposure of secrets in public
code repositories. Meli et al. [57] performed a large-scale longi-
tudinal analysis on secrets in GitHub repositories using regular
expression-based pattern matching. Jungwirth et al. [50] analyzed
secrets in dotfiles, which are often used as configuration files and
hidden by default in most Operating Systems (OSes). Jin et al. [49]
scanned GitHub for Internet of Things (IoT) cloud policies to iden-
tify misconfigured cloud services. Further, several popular rule-
based analyses, such as Gitleaks[37] and TruffleHog [96], help to
detect potential leaks of secrets in code repositories.

Investigating secrets in mobile apps differs from examining code
repositories, primarily because repositories are explicitly intended
for sharing code, making developers potentially more cautious
about exposing secrets than in apps. Additionally, repositories
contain source code, whereas mobile apps distribute app bundles
containing compiled code, making secrets less immediately visible.

https://doi.org/10.1145/3719027.3765033
https://doi.org/10.1145/3719027.3765033
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765033

CCS 25, October 13-17, 2025, Taipei, Taiwan

Still, the situation of secrets in mobile apps is under-explored.
Earlier research primarily examined the leakage of Personally Iden-
tifiable Information (PII) from mobile apps [20, 67, 82, 81] or tar-
geted specific types of secrets in the app’s executed code [105,
107, 58]. Zhou et al. [105] employed static data flow analysis to
detect AWS and email credentials in Android apps. Zuo et al. [107]
proposed LeakScope, an Android app analysis methodology based
on string Value Set Analysis (VSA) to identify wrongly configured
AWS, Google, and Microsoft cloud credentials. Mendoza et al. [58]
extracted app-to-web communication to detect vulnerabilities like
web API hijacking. However, these works did not consider the
wide range of potentially shared information in mobile apps or
information unintentionally included in app bundles.

Our study differs from prior research in three important as-
pects: (1) We do not limit our analysis to the app’s executable code.
Snapchat previously leaked source code by accidentally packaging
it with the iOS app bundle. Such unintentionally included data
might hold secrets undetectable through code analysis methods.
(2) Android is not the only widely used mobile OS. Despite iOS
having a 58% market share in the US [45], large-scale studies of
secret exposure within i0OS apps remain notably absent in the
literature. (3) Earlier studies typically provided only a snapshot,
lacking an understanding of how secrets evolve over time, for
example, whether developers later remove or revoke them.

To get a complete picture, we first study the content of app
bundles, addressing RQ1: What files do mobile apps contain?. Those
can range from binaries and configuration files to unintentionally
included items, like build scripts.

After understanding what files developers distribute in their apps,
we focus specifically on their contents. We use a regular expression-
based detection approach, similar to those successfully used to
identify secrets in code repositories. Through this, we answer RQ2:
What secrets do developers distribute in mobile apps?

Next, we investigate platform-specific differences by performing
a large-scale, comparative analysis across 10,331 Android and i0OS
apps. This allows us to answer RQ3: How does the situation differ
between Android and iOS apps?

Developer responses significantly affect the security impact
when secrets become public. Effective responses include revoking
compromised tokens and releasing updates. To understand how
developers handle such exposures over time, we updated our origi-
nal 2023 dataset in 2024 and investigate RQ4: How did the situation
change between 2023 and 2024?

In summary, we make the following key contributions:

o We performed a comprehensive analysis of files distributed
within 10,331 Android and iOS apps, and were able to show
that developers share sensitive information, e.g., dependency
files, and documentation, by accident in the apps;

o We identified 416 valid credentials across 65 services, includ-
ing highly critical findings such as 13 valid Git credentials;

o To the best of our knowledge, we conducted the first large-
scale analysis, specifically examining secrets in both Android
and iOS apps. Our results underscore the importance of
studying apps on both platforms, as we frequently identified
issues exclusive to one platform;

David Schmidt, Sebastian Schrittwieser, and Edgar Weippl

e We were able to highlight that even after developers remove
credentials from apps, they often neglect to revoke them,
leaving these credentials exposed to misuse.

Artifacts. We publish our code and analysis artifacts to make our
study reproducible and to enable future work: https://github.com/
CDL-AsTra/leaky_apps.

2 Threat Model, Secret Definition, and
Mitigation

Threat Model. Attackers may analyze downloaded apps to extract
embedded secrets in a MATE attack scenario. Once an app contain-
ing secrets is published, developers must assume that attackers
can discover them. Malicious actors might download and analyze a
vulnerable version while it is available. Further, older app versions
remain accessible through third-party stores [6, 7], the Androzoo
dataset [3], or even directly from the Google Play Store [10] or
Apple App Store [2].

Secret Definition. In our paper, we consider following informa-
tion as secret: (1) Information whose exposure might result in
financial loss for app creators, e.g., API tokens with usage-based
billing or proprietary source code; (2) Information compromising
user privacy, e.g., tokens granting access to online databases; (3)
Information exploitable by attackers to target users or develop-
ers, like documentation containing internal URLs useful for social
engineering.

Mitigation. Our research aims to identify and responsibly dis-
close secrets found in apps. We also aim to provide insights that
help developers detect security issues before publishing their apps.

When developers include tokens in apps, they must consider
that attackers might extract them. Thus, tokens should have access
strictly limited to the required scope. Further, app developers should
monitor tokens closely and react immediately to any misuse, such
as unintended use of Google Map tokens that could lead to costs
due to pay-per-use charges.

If secrets are exposed or misused, developers should revoke them
promptly and assess whether more secure alternatives to embed-
ding them in their apps exist. They should review the scope of the
credentials and investigate previous activities to detect malicious
usage. Developers must also have an update strategy prepared
beforehand, as without proper planning, revoking credentials could
disrupt older app versions.

Applying code obfuscation might make discovering secrets more
difficult, but it does not prevent manual analysis. Therefore, devel-
opers should never rely solely on obfuscation to protect sensitive
data, especially when exposure could cause significant harm.

3 Methodology

We designed a static analysis methodology for large-scale analysis
of Android and iOS apps to gain insights into the files and data they
distribute. Figure 1 provides a high-level overview of our approach.

https://github.com/CDL-AsTra/leaky_apps
https://github.com/CDL-AsTra/leaky_apps

Leaky Apps: Large-scale Analysis of Secrets Distributed in Android and iOS Apps

Cross-platform Large-scale Verification &
Dataset Analysis Disclosure
A Metadata
Q) 2024 . Secret
D :> & Extraction :> Q Vaidation
"32023 @) Reference
N Detection)
Responsible
y FEISCT Disclosure
Matching

Figure 1: Overview of our methodology. We performed a
large-scale analysis of 10,331 Android and iOS apps, collected
twice, once in 2023 and in 2024. We validated the identified
credentials and automatically disclosed them responsibly.

3.1 Large-scale Analysis

Our analysis pipeline includes three components written in Python:
(1) file metadata extraction, (2) file reference detection, and (3) secret
extraction using regular expressions.

Metadata Extraction. To study the contents of Android and iOS
apps, we extract data from APK (Android) and IPA (iOS) files, both
of which are bundled as archives [75]. This allows for a unified
processing approach across both platforms. We also analyze split
APK files, which Android uses to package language resources,
screen densities, and native libraries [5]. We process them the same
way as the main APK.

For each file within an app, we store its size, name, file path, suffix,
and MIME type. This metadata supports downstream analyses, such
as identifying files that may have been included unintentionally.

Reference Detection. We identify filenames referenced within
other files to infer their potential use in the app. When a filename
appears in other files, e.g., the app’s binary, it typically indicates the
file is accessed at runtime. This allows us to estimate how different
files are used based on these references.

To streamline this analysis step, we exclude media files and
general configuration files such as manifests or UI layouts since
their usage is implicitly managed by the OS.

Pattern Matching. Pattern matching offers two key advantages
over other approaches. First, it allows a unified methodology across

Android and iOS, facilitating direct comparison across platforms.

Second, it enables the detection of secrets in files not actively used
by the app, as well as those written in other programming languages
such as JavaScript (JS) or code from cross-platform frameworks.
We use TruffleHog [96] to detect secrets, adapting it from its
original purpose of scanning code repositories. After reviewing its
detection patterns, we extended TruffleHog with seven additional

rules sourced from Gitleaks [37] to enhance its detection coverage.
We include the complete list of rules as part of our artifact [89].

To improve efficiency, we separated secret verification from the
initial detection process. This prevents repeated and unnecessary
validation requests when the same secret appears across multiple
apps. The decoupled approach allows us to pre-filter results before
verification, as detailed in Section 3.2.1.

As a preprocessing step to pattern matching, we run strings [35]
on all non-text files to extract printable strings. For Android apps,
we additionally use JADX [36], a decompiler that converts DEX

CCS 25, October 13-17, 2025, Taipei, Taiwan

bytecode into Java source code, which aligns more closely with
code found in public repositories.

3.2 Verification and Disclosure

3.2.1 Secret Validation. We developed our analysis methodology
with attention to ethical standards and responsible disclosure prac-
tices. Validating detected secrets is necessary to avoid False Positive
(FP) reports that could cause unnecessary effort for developers.
Remote validation introduces the risk of incurring costs if a service
charges per request. However, since we issue only one request per
token and most services bill by volume, we considered the practical
risk to be low. Further, it aligns with validation strategies done by
related work of secret detection [29, 107].

We further reduce requests by eliminating FPs before remote
validation through rule-based heuristics. We discard results if a
single detection rule flags 15 or more potential secrets in one file.
This threshold is based on our observation that some rules may
match unrelated patterns, such as hash values. We determined this
cutoff empirically and discuss the link between detection frequency
and actual credentials in Section 5.1.

We only perform remote validation after this filtering step. We
selected endpoints that return distinct status codes depending on
token validity, see [89] for the list of services. All validation requests
do not alter data on remote servers. Further, we do not retain any
response content. Only status codes and error messages are used
to assess whether a credential is valid.

3.2.2 Responsible Disclosure. We responsibly disclosed all findings
by contacting developer email addresses listed on the Google Play
Store, which we retrieved along with app packages. For reporting
of findings in iOS apps, we also used the corresponding Google Play
developer addresses as the Apple App Store did not offer explicit
developer contact information until February 2025 (we disclosed
our findings in January 2025), and our dataset links each iOS app
to a matching Android version, see Section 3.3.

For each finding category, we used a template message to ensure
clarity and consistency. These templates include a description of
the issue and proposed mitigation steps (see Appendix A for an ex-
ample). When a finding affected both the Android and iOS versions
of the same app, we combined the results into one report. However,
we did not merge findings across different apps, even if they were
linked to the same developer account. All reports were sent via our
university’s mail server.

3.3 Cross-platform Dataset

To study both Android and iOS apps at scale, we used an updated
version of the cross-platform dataset introduced by Schmidt et
al. [86]. Their dataset includes both popular and randomly chosen
apps. Using the matching method of Steinbock et al. [94], and
the Google migration API, they identified 10,862 iOS apps with
corresponding Android versions.

Since our analysis requires decrypted iOS apps and the original
dataset included encrypted versions, we used frida [4] to decrypt
their dataset. We executed frida on an iPhone 8 running iOS 16,
which we had jailbroken with paleraln [72]. This step reduced the
usable set of iOS apps to 10,331 as decryption failed due to anti-
debugging protections [83, 106] and iOS version mismatch. We refer

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 1: File categories found in mobile apps. We categorized
files based on their suffix. The File columns show the number
of files per category, while the App columns indicate the
number of apps containing at least one file of the category.
Note that, although every app requires a binary, the relative
number is below 100%, as our analysis failed for 31 Android
and 5 iOS apps due to corrupted archives.

lﬁl ‘

File App File App

cryptography 10,770 1,801 (17.43%) 12,098 2,293 (22.20%

ai model 3293 755(7.31%) 2,772 491 (4.75%)
archive 17,634 7,977 (77.21%) 20,395 1,767 (17.11%)
audio 196,420 9,710 (93.99%) 219,218 5,309 (51.39%)
backup 9,333 67 (0.65%) 7,294 46 (0.45%)
binary 3,194,424 10,300 (99.70%) 965,111 10,326 (99.96%)
code 171,413 2,989 (28.93%) 238,994 2,574 (24.92%)
config 10,969,802 10,300 (99.70%) 2,905,998 10,326 (99.96%)
)
database 46,120 4,922 (47.64%) 161,343 4,803 (46.50%)
game 220,644 3,484 (33.72%) 292,021 3,456 (33.46%)
image 7,927,423 10,297 (99.67%) 3,138,408 10,319 (99.89%)
split 87,939 1,066 (10.32%)
spreadsheet 26,208 347 (3.36%) 11,311 372 (3.60%)
system 494,928 10,249 (99.21%) 2,145,176 10,326 (99.96%)
text 258,319 7,631 (73.87%) 178,725 5,683 (55.01%)
video 68,333 2,734 (26.46%) 70,015 1,992 (19.28%)
web 281,587 7,004 (67.80%) 247,478 6,724 (65.09%)
other 751,212 8,628 (83.51%) 690,166 3,333 (32.26%)

to this set of apps as 2023 dataset, as the apps were downloaded
from the Play Store and App Store in 2023.

To capture how the inclusion of secrets in mobile apps evolves
over time, we re-downloaded the latest app versions from the
dataset in October 2024 from the official stores. Of the original
set, 8,702 Android apps and 9,212 iOS apps were still available. We
refer to the updated version as 2024 dataset.

3.4 Data Analysis

Significance Test. To measure the significance of differences be-
tween Android and iOS versions of the same app, as well as dif-
ferences between app versions from 2023 and 2024, we perform
dependent t-tests and calculate effect sizes using Cohen’s d. For t-
tests comparing 2023 and 2024, we include only apps that remained
available in 2024. For all statistical tests, we define the null hypoth-
esis Hy as “There is no difference between the two groups”, and the
alternative hypothesis Hy as “There is a difference”. We reject Hy
when the resulting p-value is below the significance level of 0.05.

Case Studies. We select case studies manually based on factors
such as the app’s relevance, revealing names, e.g., file or directory.

4 App Content

All numbers in this section refer to the 2023 dataset, which was
chosen for better comparison due to its equal number of Android

David Schmidt, Sebastian Schrittwieser, and Edgar Weippl

and 10S apps. We provide insights into the changes between the
datasets from 2023 and 2024 in Section 7.

To understand what types of files apps contain, we categorized
files based on their suffix, see Table 1. We derived these categories
by merging two existing GitHub projects [28, 26] and manually re-
viewing the 500 most frequently used suffixes that had not yet been
categorized. In total, we mapped 876 suffixes to 17 file categories.

As expected, all successfully analyzed apps contained binary
code, configuration files, and system files. The overall percentage
is slightly lower than 100% due to analysis failures in 31 Android
and five iOS apps caused by corrupted app bundles.

In the following, we report on file types that are typically not
bundled with Android or iOS apps but still appeared in our analysis.

4.1 Binaries

4.1.1 Windows. We found .exe and .d11 binary suffixes, which
are typically associated with Windows, in 321 Android and 228
i0S apps. Manual analysis showed that 266 of these apps were
built using Microsoft’s cross-platform framework Xamarin [62].
These Windows-related files contain Ahead-of-time (AOT) and
Just-in-time (JIT) compiled code designed for execution on mobile
devices [60, 61]. Similarly, we discovered . aspx files in 1,450 An-
droid apps (14.04%) and one iOS app. All occurrences on Android
were linked to the Mono project [64], which is designed for cross-
platform development and also used by Xamarin [60].

In other cases, the binaries came from cross-platform libraries
and included Windows executables alongside the mobile versions.

4.1.2 Android and Java on iOS. We found . apk, .dex, and . jar
files not only in Android apps but also in 57 iOS apps (0.55%). None
of these are directly executable on iOS [19]. Of these apps, 43 used
MobiVM [63], a framework that allows Java-based development
for i0S via AOT compilation. Among the remaining 14, we found
.dex and . jar files added by libraries in 11 apps. In two apps, the
included . apk files contained animation assets rather than compiled
code. The last app included a gradle-wrapper. jar file.

We also searched in Android apps for files with the MIME type
x-mach-binary, which typically indicates binaries for Apple plat-
forms. We found them in 196 Android apps (1.90%). Libraries in-
cluded these files to run on multiple OSes.

Case Study: PayPal Business. The PayPal business iOS app [73]
contained the gradle-wrapper.jar file belonging to a project
that used gradle to generate Java code files with default values.
Comments hinted that they also used the resulting code files to
generate Swift files for iOS.

The project also contained URLs of their internal Git and artifac-
tory. Additionally, it revealed a bug-tracking URL. Attackers could
use that information for targeted social engineering attacks.

4.2 Source Code and Scripts

4.2.1 App Code. We found source code files in 28.93% of Android
and 24.92% of iOS apps. However, not all code files are equally
relevant. We distinguished between potential app code, e.g., Java,
Kotlin, Swift, or C++, and scripts, e.g., Python or Shell. To focus
on developer-authored code rather than libraries, we excluded files
appearing in more than two apps. We chose this threshold because

Leaky Apps: Large-scale Analysis of Secrets Distributed in Android and iOS Apps

our dataset contains both Android and iOS versions. Further, we
only considered code from programming languages with at least
ten files per app. We empirically determined this threshold after
observing that apps with fewer files generally include them as com-
ponents of libraries or package management systems. For instance,
we found apps containing Package. swift, which we separately
discuss in Section 4.2.3.

We found code files meeting our criteria in 73 Android (0.71%)
and 34 iOS apps (0.33%). Java source files were the most common
on Android, appearing in 63 Android apps (0.61%). Additionally,
one iOS app (0.01%) also contained Java code files. On iOS, Swift
files were most prevalent, found in 23 apps (0.22%).

Case Study: Audible. In the Audible app [9], we found Swift code
labeled AlexaKit, used to integrate Amazon Alexa. Notably, it
included debugging code that sent error logs to two email addresses.
This code was removed in the version we downloaded in 2024.

Case Study: Banking App. The i0S banking app of Raiffeisen
Romania [79] included 152 Swift files containing the code of app
features. This exposed code could aid in reverse engineering and
increase the risk of targeted social engineering attacks, as files
included developer names in their header comments.

4.2.2 Scripts. We separated web related scripts, e.g., JavaScript
or TypeScript, as these are commonly used in mobile apps to
render content via WebViews or similar components. Beer et al. [14]
reported that 80% of Android apps use Custom Tabs, another form
of in-app browsing. We found web-related files in 7,004 Android
(67.80%) and 6,724 iOS apps (65.09%). The numbers may be lower
than expected because apps can load web resources directly from
the Internet without bundling them in the app package.

Lua, Python, and Shell Scripts. We found scripts in 144 Android
(1.39%) and 294 iOS apps (2.85%). The most common scripts were
shell scripts, which we discovered in 40 Android (0.39%) and 158
i0S apps (1.53%), followed by Lua scripts in 70 Android (0.68%) and
91 iOS apps (0.88%), and Python scripts in 24 Android (0.23%) and
50 i0S apps (0.48%).

Developers often use shell scripts during development and some-
times forget to remove them before release. For example, we found
build scripts in the iOS versions of the iRobot [48] and Microsoft
Whiteboard [59] apps. These scripts did not contain credentials, as
they loaded secrets via environment variables, a best practice to
prevent leaks in code repositories [12]. As these cases show, this
approach also helps prevent secret exposure in mobile apps. Unlike
public code repositories, where code is shared intentionally, these
script leaks likely happened unintentionally.

We found similar cases involving Python scripts. For instance,
the Android version of the Expedia app [30] included github_-
utils.py, used for opening pull requests, and to retrieve domain
information fetch_site_configs.py.

On iOS, the Firefox app [66] bundled a SyncIntegrationTests di-
rectory containing six Python test scripts. The game JellyBlast [97]
included Python scripts used to enable debug features for users.

Unlike Python and shell scripts, Lua scripts are often part of the
app’s core code, as they are used by mobile development libraries
such as MoonSharp for Unity [65] and Corona SDK [22]. In addition

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 2: Number of dependency management files in our
dataset. We summarized all file types that occurred in fewer
than 25 apps and label them as Other. The number of findings
in 2024 is related to the reduced number of 8,702 available
Android and 9,212 iOS apps. We uploaded the full table [88].

2023 2024
] €] 4
C/C++/C 7(0.07%) 91 (0.88%) 5 (0.06%) 69 (0.75%)

CMakeLists.txt 3 (0.03%) 56 (0.54%) 2 (0.02%) 43 (0.47%)

Other 4(0.04%) 40(0.39%) 3 (0.03%) 32 (0.35%)
Dart 12 (0.12%) 9(0.09%) 16 (0.18%) 18 (0.20%)
Go 3 (0.03%) 3 (0.03%)
Java 233 (2.26%) 7 (0.07%) 172 (1.98%) 6 (0.07%)

build.gradle 4(0.04%) 6(0.06%) 2(0.02%) 6 (0.07%)

pom.xml 229 (2.22%) 1(0.01%) 169 (1.94%)

Other 1(0.01%) 1(0.01%) 3 (0.03%)
Python 3(0.03%) 4(0.04%) 2(0.02%) 7 (0.08%)
Ruby 6 (0.06%) 13(0.13%) 5 (0.06%) 12 (0.13%)
Swift 3(0.03%) 256 (2.48%) 4 (0.05%) 263 (2.85%)

Package.swift 3(0.03%) 28 (0.27%) 4(0.05%) 52 (0.56%)

Podfile 92 (0.89%) 78 (0.85%)

* podspec 110 (1.06%) 100 (1.09%)

Other 48 (0.46%) 28 (0.30%)
Web 121 (1.17%) 336 (3.25%) 117 (1.34%) 234 (2.54%)

bower.json 50 (0.48%) 55 (0.53%) 40 (0.46%) 43 (0.47%)

package.json 107 (1.04%) 320 (3.10%) 104 (1.20%) 222 (2.41%)

package- 21(0.20%) 25 (0.24%) 16 (0.18%) 24 (0.26%)
lock.json

Other 20 (0.19%) 22 (0.21%) 19 (0.22%) 18 (0.20%)
Total 372 (3.60%) 697 (6.75%) 310 (3.56%) 588 (6.38%)

to previously reported Lua usage, we found compiled Lua scripts
in 174 apps, 80 Android apps (0.77%) and 94 iOS apps (0.91%).

The role of these scripts becomes clearer when comparing their
presence across platforms. Of the 181 apps that included shell scripts
on at least one platform, only 17 (9.39%) had them on both. For
Python, 63 apps included scripts on at least one platform, but only
11 (17.46%) did so on both. In contrast, 51 apps (46.36%) included Lua
scripts on both platforms, and 71 apps (68.93%) had compiled Lua
scripts on both. This pattern indicates that, typically, Lua scripts
are intentionally included as part of the app’s functionality, while
Python and shell scripts are more likely to have been bundled
unintentionally during development.

4.2.3 Dependency Management. We found dependency manage-
ment files in 372 Android apps (3.6%) and 697 iOS apps (6.75%). An
overview of these results is shown in Table 2.

These files can reveal the specific versions of libraries used, which
helps attackers identify outdated components with known vulner-
abilities [27, 76]. They may also reference internal repositories. If
these references are misconfigured, they can enable dependency
confusion attacks in which an attacker publishes a package with
the same name to a public repository, such as NPM [70]. If the
dependency manager prioritizes public sources, it may fetch the

CCS 25, October 13-17, 2025, Taipei, Taiwan

malicious package instead of the intended internal one. This can
lead to remote code execution as the attacker is able to include a
pre-installation script in the package [15].

CocoaPods. CocoaPods [18] is a popular dependency manage-
ment system for Swift and Objective-C [85]. In our analysis, we
identified three file types that disclose dependency details: Podfile
files appeared in 92 apps (0.89%), Podfile.lock in 24 apps (0.23%),
and “podspec files in 110 apps (1.06%). The Podfile defines which
libraries (pods) the app uses, their versions, and the repositories
from which they should be fetched. During installation, CocoaPods
generates a Podfile.lock to store the exact versions used, ensuring
consistent builds. The .podspec files describe individual libraries,
specifying their name, version, source, and dependencies.

To assess the risk of dependency confusion attacks, we checked
whether pod names used in analyzed apps were unclaimed in the
public CocoaPods repository. We found that 81 iOS apps (0.78%) ref-
erenced at least one of 97 available pod names. Attackers could reg-
ister them, enabling the execution of malicious code on developer
devices or build servers when installing or updating dependencies.

Carthage and SwiftPM. Carthage [16] and SwiftPM [95] are
alternative package managers for Swift and Objective-C. Unlike Co-
coaPods, they do not rely on a central dependency repository which
makes them immune to dependency confusion attacks. However,
other risks remain, e.g., attackers might use library and version in-
formation to identify outdated libraries with known vulnerabilities.

We found Package.swift files in 3 Android (0.03%) and 28 iOS apps
(0.27%). More apps contained Package.swift files than were flagged
as including Swift source code. This discrepancy results from our
classification method, which requires at least ten unique files in
a single programming language to consider an app as containing
source code, which not all of these apps had.

Similar to Podfile.lock, the Package.resolved file records the de-
pendency versions which we found in 7 apps (0.07%). Further, 17
i0S apps (0.16%) contained Cartfiles and 4 (0.04%) Cartfile.resolved.

Gradle and Maven. We also discovered Android-related pack-
age management files, including pom.xml, build.gradle, and gra-
dle.lockfile. Specifically, pom.xml appeared in 229 Android apps
(2.22%) and 1 i0S app (0.01%), build.gradle in 4 Android (0.04%) and
6 10S apps (0.06%), and gradle.lockfile in 1 Android app (0.01%).

The Maven pom.xml files contained only library descriptions of
well-known libraries, while the build.gradle files mostly included
automation scripts rather than dependency declarations. As a result,
their potential to expose sensitive information was limited.

Web. Unlike Java and Swift-related package managers, which
we mostly found on a single platform, package managers of various
web technologies appeared on both platforms. As discussed in
Section 4.2, apps frequently embed web code to streamline cross-
platform development, reducing the need to implement features
twice. Still, we observed a higher prevalence of web-related depen-
dency management files in iOS apps, for example, package.json was
found in 107 Android (1.04%) and 320 iOS apps (3.10%).

To assess the risk of dependency confusion, we analyzed npm
package names and found 17 that were unregistered in the public
repository, spanning six apps. These included three finance apps,
two from Disney, and one health-related app.

David Schmidt, Sebastian Schrittwieser, and Edgar Weippl

4.3 Misc

4.3.1 Dotfiles and Dotdirectories. Hidden dotfiles are often used
for configuration data in development environments but are rarely
needed in production apps. Jungwirth et al. [50] found that 73.6%
of code repositories leak potentially sensitive data through dotfiles.

Dotfiles. In contrast to code repositories, dotfiles in released apps
likely result from oversight. Still, we found them in 126 Android
apps (1.22%) and 869 iOS apps (8.41%). The most frequent were
.gikeep (701 files across 21 Android and 202 iOS apps), .DS_Store
(378 files in 33 Android and 161 iOS apps), and .gitignore (300
files in 21 Android and 202 iOS apps).

Dotdirectory. We found dotdirectories in 8 Android apps (0.08%),
containing a total of 1,401 files, and in 922 i0OS apps (8.93%), contain-
ing 3,190 files. The most common was . AppLovinQualityService,
present in 768 iOS apps. AppLovin is a monetization library avail-
able for both Android and iOS [8]. This directory consistently
included two files, called: AppLovinQualityService.json and
AppLovinServiceRanges. json. Despite their suffix, these files con-
tain binary data with high entropy (e.g., 7.9), indicating encryption.

Other dotdirectories included . monotouch (found in 61 iOS apps),
.vscode (2 Android and 29 i0S apps), and . swiftpm (19 iOS apps).

Case Study: Epic Seven. In an i0S game app [93], we found an
Apache subversion directory . svn, which contained metadata about
previous code changes.

4.3.2 Markdown. Markdown is a popular markup language for
formatting text [56]. We found Markdown files in 840 Android
(8.13%) and 1,004 iOS apps (9.72%). These files appeared for three
main reasons: (1) apps used them to store text that they render at
runtime; (2) they were included as part of third-party dependencies—
e.g., Markdown files in the node_modules directory were present
in 30 apps; (3) developers used them for internal documentation but
forgot to exclude them from production builds. We classified these
cases based on file location and whether the files were referenced
in binaries or resources.

Most Markdown files originated from third-party dependencies,
found in 734 Android apps (7.10%) and 636 iOS apps (6.16%). Files
likely included unintentionally were found in 91 Android apps
(0.88%) and 398 iOS apps (3.85%).

Case Study: Decathlon Connect. In the Decathlon Connect app [25],
we found Markdown files used for internal documentation, includ-
ing component descriptions and onboarding materials. These files
pose a security risk, as they contained developer names, email
addresses, and internal URLSs, information that could aid in reverse
engineering or targeted social engineering attacks.

Case Study: Scan & Translate+. In the Scan & Translate+ [1]
app, we found general documentation that included a link to an
internal repository, as well as a Markdown file named REMOTE_-
SERVICES.md. This file listed various services along with their
credentials, including those used for premium features. If abused,
these credentials could allow unauthorized access to paid services,
resulting in financial costs for the app provider.

4.3.3 Al assets. Therise of Al and machine learning has introduced
new security risks, like model stealing, where attackers extract and

Leaky Apps: Large-scale Analysis of Secrets Distributed in Android and iOS Apps

Table 3: Coded content of responses to the responsible
disclosure. Two researchers manually coded the responses.
Afterwards, they compared their codebooks, merged them,
and discussed disagreements. We received 77 non-automated
responses, 37 about the app content, and 40 about secrets.

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 4: Number of valid and invalid credentials in context
of the number of credential candidates of the same type
detected per file. To minimize validation requests, we did not
attempt to validate credentials when we found 15 or more
credentials of the same type in a single file.

Responses Files Secrets Total # Credential-type per File Valid Invalid Valid Ratio
Aware of issue 2(5.00%) 2 (2.60%) 1 327 5,374 5.74%
Collaboration 1(250%) 1(1.30%) 2 55 1,393 3.80%
Fixed 5(1351%) 8 (20.00%) 13 (16.88%) 3 11 611 1.77%
Fix to expensive 1(2.70%) 1(1.30%) 4 16 501 3.09%
Forward to team 16 (43.24%) 21 (52.50%) 37 (48.05%) 5 3 262 1.13%
No critical issue 1(2.70%) 1(2.50%) 2 (2.60%) 6 2 284 0.70%
No issue 1(2.70%) 1(250%) 2 (2.60%) 7 162

Old version/legacy 4 (10.00%) 4(5.19%) 8 126

Questions 9(24.32%) 3(7.50%) 12 (15.58%) 9 2 181 1.09%
Resubmit 4(10.81%) 4(5.19%) >9 & <15 854

Security address 6 (16.22%) 1(2.50%) 7 (9.09%)

will fix 3(8.11%) 6 (15.00%) 9 (11.69%)

reuse trained models [40, 47]. While running Al tasks on-device
improves privacy by avoiding data transmission to remote servers,
extraction of models bundled with an app is straightforward. We
found Al-related files in 755 Android apps (7.31%) and 491 iOS apps
(4.75%). Not all of these are sensitive, many are publicly-available,
pre-trained models offering specific features. For example, a Google
model for barcode scanning [41] appeared in 347 apps, and a face
detection model [42] in 160 apps. However, we found unique models
in 262 apps, which may include custom-trained ones. For apps
available on both platforms, we counted each model only once.

4.4 Responsible Disclosure

We contacted developers when their apps contained source code
(in January 2025) or dependency management files (in March 2025).
We did not automatically report the presence of markdown files,
scripts, and dotfiles, as manual inspection showed that these rarely
contained sensitive data. If any of these files included valid creden-
tials, we disclosed them as described in Section 5.3. Additionally, we
did not report pom. xml and build. gradle files, as manual review
indicated they carried minimal risk (see Section 4.2.3). Neverthe-
less, even though such files might not be sensitive, their inclusion
increases app size and storage use on the user’s devices.

In total, we sent 661 disclosure emails on findings in the 2024
dataset: 117 regarding exposed source code, 535 about dependency
management files, and 9 covering both. We received mail delivery
failures for 69 messages. Within two weeks, 37 developers replied
with non-automated responses. In Table 3, we provided an overview
of the responses. These were evaluated by two researchers who
independently analyzed their content. Overall, we had a positive
impression of the responses: five (13.51%) stated that they had
already fixed the issue, and three (8.11%) mentioned that they plan
to fix it. However, one developer responded that implementing a
fix would be too expensive (2.7%), another argued that the issue
was not critical enough (2.7%), and one stated that it posed no issue
in their case (2.7%).

L v ~

To answer RQ1: What files do mobile apps contain?, we
found:

e Mobile apps include numerous file types, including un-
expected ones, e.g., Windows binaries and shell scripts;

e Files likely included unintentionally, such as source code,
dependency management files, or internal documen-
tation written in Markdown. Those files can expose
sensitive security and privacy-related information;

e Even when these files do not pose security risks, they
increase app size and storage usage on user’s devices.

5 Secrets

After examining what types of files mobile apps include, we now
address RQ2: What secrets do developers distribute in mobile apps?

In this section, all credential counts refer to the combined datasets
from 2023 and 2024. We include both years to capture all valid
credentials present at the time of analysis. A separate breakdown
by year is provided in Section 7 to explore temporal trends.

5.1 Hardcoded Credentials

Our rule-based detection identified 26,380 potential credentials. We
applied a heuristic that discards any file containing 15 or more
credentials of the same service type, as we observed that rules
producing numerous findings within a file typically represent FPs,
e.g., hash values mistakenly matching token patterns. To minimize
unnecessary validation requests for ethical reasons, we explored
different thresholds by incrementally increasing the cut-off and
manually reviewing files containing potentially valid secrets that
would have been excluded. This reduced the number of candidates
to 10,164. Table 4 summarizes the distribution of valid and invalid
credentials based on the number of same-type credentials found
per file. The majority of valid credentials (327) came from files con-
taining only one instance of a specific credential type. In contrast,
only 23 valid credentials were found in files with more than three

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 5: Number of valid and invalid credentials discovered
for selected services. We summarized the other 55 services
for which we found at least one valid credential as Other. We
provide the full table online [90].

Valid Invalid Valid Ratio
AWS 58 85 40.56%
Alibaba 10 9 52.63%
Azure 1 52 1.89%
FTP 1 100%
GCP 1 24 4%
GitHub 9 15 37.5%
RazorPay 3 30 9.09%
Squareup 3 100%
Stripe 4 4 50%
Yelp 1 16 5.88%
Other 325 1.546 17.37%

of the same type, demonstrating our heuristic’s effectiveness in
filtering out FPs.

The 10,164 potential credentials identified came from 258 differ-
ent categories. After completing the validation requests, we con-
firmed 416 as valid (4.09%), spanning 65 services. In Table 5, we pro-
vide details for 10 services with confirmed valid credentials. The FP
rate varied significantly by credential type. This has three reasons:
(1) Some credential types are rarely used in mobile apps compared to
code repositories (for which TruffleHog was originally developed).
For instance, none of the 46 Dockerhub tokens were valid, while all
three Squareup tokens were. Squareup provides financial services
for mobile payments. Thus, its scope aligns with mobile apps. (2)
All Squareup tokens used a consistent prefix (sq@idp-), making
them easier to detect accurately. (3) Some tokens consist of multiple
parts, as seen with YouTube and AWS credentials. For both, one
part can be identified easily due to its prefix, while the other lacks
a clear pattern, leading to misclassification of unrelated strings.

The valid credentials stem from 200 Android (1.94%) and 292
i0S apps (2.83%). These totals do not match the overall number
of valid credentials because 29 credentials appeared in multiple
apps (¥ = 1.12, sd = 0.56, max = 8). Android and iOS versions
of the same app were counted only once. In addition, we found
106 credentials in 117 apps across both platforms, often due to
developers reusing the same credentials. Overall, 67 apps contained
more than one valid credential (X = 1.18, sd = 0.52, max = 5).

Popular Apps. In Table 6, we break down our findings by the
number of downloads reported on the Play Store. Each app was
counted only once, even if the finding occurred in both its Android
and iOS versions. Since the App Store does not provide installation
data, we used Play Store downloads as a proxy for iOS apps. The
median minimum installation count of apps with secrets was 1
million (MAD 990,500). Notably, two apps had over 1 billion installs,
showing that even widely used apps are affected by credential leaks.

5.1.1 Git Credentials. For Git credentials, we additionally per-
formed a GET request to check repository access and assess the

David Schmidt, Sebastian Schrittwieser, and Edgar Weippl

Table 6: Number of apps with valid credentials. We cate-
gorized the apps by their Android installation count and
grouped categories below 1,000 installations into 0-1,000.
Further, we show in i U @ the number of apps where we
found a credential in the Android or iOS app.

|ﬁ| .’ |ﬁ| U .’
1,000,000,000+ 1(0.01%) 1(0.01%) 2(0.02%)
500,000,000+ 0(0.00%) 4(0.04%) 4(0.04%)
100,000,000+ 8(0.08%) 8(0.08%) 11(0.11%)
50,000,000+ 7(0.07%) 12(0.12%) 14 (0.14%)
10,000,000+ 26 (0.25%) 50 (0.48%) 59 (0.57%)
5,000,000+ 18(0.17%) 31(0.30%) 38 (0.37%)
1,000,000+ 9 (0.28%) 48 (0.46%) 60 (0.58%)
500,000+ 14(0.14%) 22(0.21%) 30 (0.29%)
100,000+ 35(0.34%) 44 (0.43%) 59 (0.57%)
50,000+ 11(0.11%) 10 (0.10%) 15 (0.15%)
10,000+ 12(0.12%) 16 (0.15%) 22 (0.21%)
5,000+ 1(0.01%) 3(0.03%) 3(0.03%)
1,000+ 14(0.14%) 17 (0.16%) 21 (0.20%)
0 - 1,000 24 (0.23%) 26 (0.25%) 35 (0.34%)
Total 200 (1.94%) 292 (2.83%) 373 (3.61%)

potential impact. Valid tokens could allow attackers to push mali-
cious code, regardless of whether the repository is public or private.
Private repositories pose an additional risk by exposing internal
company data, enabling cloning and republishing of apps.

We identified 13 valid Git credentials: nine for GitHub, three for
BitBucket, and one for Gerrit. We also found nine GitLab tokens
matching the prefix glpat-, but none were valid. This may be due
to their use in self-hosted GitLab instances. However, we found no
private GitLab URLs in the files containing the identified tokens.

These 13 valid tokens granted access to 218 public and 2,440
private repositories. One token alone had access to 1,140 private
and 17 public repositories. Another appeared particularly sensitive,
providing access to six private repositories belonging to a bank.

We manually investigated the causes for including Git credentials
in mobile apps. The two main reasons were: (1) leftover code in the
app intended to trigger continuous integration workflows, and (2)
the inclusion of dependency management files.

5.1.2 Files Containing Credentials. Table 7 presents an overview
of the file categories in which we identified hardcoded credentials.
We used the category Web when we found credentials in JS files;
Resources for those located in Info.plist, AndroidManifest.xml,
or other Android resource files; Config for configuration files not
tied to the operating system, such as . json or . xml; Cross-platform
for files associated with cross-platform or game libraries; Binary
for common compiled Android or iOS binary files; and Unintended
for files that are typically not expected in released apps, such as
.gitlab-ci.yml, .xcconfig, or shell scripts.

We found the majority of credentials in binary files, 133 on
Android (61.86%) and 184 on iOS (59.93%). However, the second
most frequent category is Web, with 36 credentials found in Android
(16.74%) and 47 in i0OS apps (15.31%).

Leaky Apps: Large-scale Analysis of Secrets Distributed in Android and iOS Apps

Table 7: File categories of valid credentials. Web indicates that
we found credentials in JS files. Resources refers to credentials
found in Info.plist, Manifest, or Android resource files.
Cross-platform denotes files related to cross-platform or
game libraries. Note that we found two Android and two
iOS credentials in two file categories each. Overall, we found
106 credentials on both platforms.

] a HUE

B Binary 133 (61.86%) 184 (59.93%) 277 (66.59%)
&% Config 26 (12.09%) 15 (4.89%) 33 (7.93%)
& Cross- 17 (7.91%) 22 (7.17%) 25 (6.01%)
platform

Resources 5(2.33%) 30 (9.77%) 35 (8.41%)
¥¥ Unintended 11 (3.58%) 11 (2.64%)
Q@ Web 36 (16.74%) 47 (15.31%) 50 (12.02%)
Y, Credentials 215 307 416

This result highlights limitations in traditional static analysis
methods, such as VSA, which would usually overlook credentials
embedded in web assets or require substantial customization to de-
tect them. The situation is similar for credentials in cross-platform
libraries, as each library may require a tailored analysis approach.
Moreover, we found 11 credentials (3.58%) in files likely included
unintentionally, making them especially difficult to detect using
standard approaches.

We also identified 106 credentials shared across both platforms,
with 93 (87.74%) located in the same file category. For the remaining
13 (12.26%), discrepancies in file locations were observed. For exam-
ple, a Twitter consumer key was found in a Prototype.xcconfig
on iOS, while on Android, it was stored directly in the app’s byte-
code. Similarly, an Infura key appeared in an Android bytecode but
in a JS file on iOS. The other differences were limited to binary,
resource, and config file categories.

5.2 JSON Web Tokens (JWTs) and Private Keys

Unlike hardcoded credentials discussed in the previous section, we
did not test the validity of found JSON Web Tokens (JWTs) and
private keys. The presence of private keys in mobile apps inherently
violates their purpose, which is to remain confidential. The security
impact depends on how the key is used in the app. For example, in
a payment app [74], the private key was solely used for obfuscation,
e.g., encrypting payloads before transmission. While knowing the
key simplifies protocol reverse engineering, it does not have further
security implications.

We identified 212 private keys across 433 Android (4.19%) and
180 iOS apps (1.74%). Among these, 29 keys appeared in more than
one app, and six were found in over 100 apps. These frequently
recurring keys originated from default or test values included in
libraries such as the Google HTTP Client Library [39]. For this
evaluation, we counted findings in the Android and iOS versions
of the same app as a single instance.

The situation for JWTs is similar. These tokens are commonly
used for user authentication and authorization, and leaking them

CCS 25, October 13-17, 2025, Taipei, Taiwan

can enable unauthorized access. In total, we found 1,378 tokens
across 1,018 Android (9.85%) and 569 iOS apps (5.51%).

A significant portion of this discrepancy stems from a single
token in the 2024 dataset, included by the Unity library [98], which
appeared in 645 Android apps. Excluding this token, the number
of affected Android apps drops to 385 (3.73%), while the iOS count
remains unchanged, resulting in more iOS apps with at least one to-
ken. We also identified 75 tokens present in multiple apps, primarily
due to reuse by the same developer.

To further analyze the JWTs, we parsed their contents. Of the
1,378 tokens, 859 (62.34%) did not have an expiration date set, 69
(5.01%) were still valid for more than ten years, and 392 (28.45%)
were expired. We also searched for the keyword admin and found
it in 202 tokens (14.66%), only 11 of which were already expired.

In some cases, the credentials appeared unused, suggesting they
may have been unintentionally included for debugging or legacy
reasons. Nonetheless, their presence can aid manual analysis and
help uncover potential security or privacy issues. Automatically
determining the purpose of a private key or JWT is challenging,
as it requires understanding or executing the surrounding code,
which we leave to future work, see Section 8.

5.3 Responsible Disclosure

We automatically sent 422 emails to developers in January 2025 to
report hardcoded credentials. Of these, 12 messages (2.84%) failed
to deliver. In total, we received 40 non-automated responses.

We provided insights into the responses in Table 3. Positively,
eight (20%) responded that they fixed it already, and six (15%)
that they will fix it. Interestingly, four (10%) answered that the
issue comes from legacy code or an old app version, and two (5%)
mentioned that they are aware of the issue.

{riicaner, ~

To answer RQ2: What secrets do developers distribute in
mobile apps, we showed:

e We found valid credentials for 65 different services,
including unexpected ones such as GitHub;

o Credentials appeared not only in app binaries but also
in files likely included unintentionally. We identified 11
such cases;

e Developers embedded private keys and JWTs in their
apps. Only 27.16% of the tokens had already expired, and
18.52% contained indications of administrator privileges.

6 Platform Differences

To answer RQ3: How does the situation differ between Android and
iOS apps?, we compare the contents of the apps and the credentials
found. We highlight key differences and explore potential factors
contributing to discrepancies.

6.1 Files

As shown in Table 1, Android and iOS apps share similar distri-
butions across most file categories. However, archives and text
categories deviate from this trend, appearing more frequently in An-
droid apps than in i0S apps (77.21% vs. 17.1%; p < 0.01,d = 1.16 and

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 8: Comparison of valid credentials found in Android
and iOS apps. We display services with large differences
separately. f N @ indicates credentials discovered on both
platforms. We also report the p-value of a dependent t-test
and the effect size (d) calculated using Cohen’s d. We provide
the complete table online [87].

Services with

Major Differences w [W N [p d

AWS 31 47 20 <0.01 -0.02
Flickr 10 5 2 0.29 0.01
Github 1 0.41 -0.01
Infura 5 12 4 0.02 -0.02
OpenAl 1 13 0 <0.01 -0.02
OpenWeather 5 13 3 <0.01 -0.02
SlackWebhook 17 49 13 <0.01 -0.03
Other 142 162 63 0.01 -0.02

73.86% vs. 55%; p < 0.01, d = 0.33, respectively). The higher preva-
lence of archive files in Android is primarily due to the OkHttp3 li-
brary which includes the file publicsuffixes. gz presentin 72.75%
of Android apps. Similarly, the increase of text files results from the
presence of the androidsupportmultidexversion.txt in 47.13%
of Android apps.

Source Code, Scripts, Markdown. As detailed in Section 4.2, our
analysis identified 73 Android apps (0.71%) and 34 iOS apps (0.33%)
containing source code files that may reveal app code (p < 0.01,d =
0.04). In contrast, a greater share of iOS apps included potentially
unintended files: scripts (1.39% vs. 2.85%, p < 0.01, d = —0.09),
markdown files (8.13% vs. 9.72%, p < 0.01, d = —0.05; non third-
party 1.64% vs. 4.09%, p < 0.01,d = —0.11), dotfiles (1.22% vs. 8.41%,
p < 0.01, d = —0.25), and dotdirectories (0.08% vs. 8.92%, p < 0.01,
d = —0.31). We observed similar trends in the 2024 dataset, as we
discuss in Section 7.

Factors Contributing to Platform Differences. Two main factors
explain these differences. First, Android apps are more accessible for
analysis, e.g., due to the distribution of app bundles via third-party
platforms such as APKPure [7] and APKMirror [6]. As a conse-
quence, previous research primarily focused on Android. Second,
Apple encrypts iOS app binaries [102], which may cause confusion
among developers about the encryption status of additional files in
the app bundle. One developer responding to our disclosure was
surprised that Apple did not take any measures to protect depen-
dency management files that had been unintentionally bundled
with their app.

However, even if Apple would encrypt all files, they must be
decrypted at runtime. This makes it still possible to extract and
analyze the content using jailbroken iOS devices.

6.2 Hardcoded Secrets

Overall, fewer Android apps contained valid credentials compared
to i0S apps (1.94% vs. 2.83%, p < 0.01, d = —0.04). This difference is
also reflected in the absolute number of valid credentials found: 230

David Schmidt, Sebastian Schrittwieser, and Edgar Weippl

Table 9: Comparison of valid credentials found in apps with
at least 100 million installations from 2023. i N @ indicates
credentials discovered in an app’s Android and iOS version.

100,000,000+ in 2023 "I TaX
AWS 3 3 2
Alchemy 2
BrowserStack 1

Infura 1 3 1
LaunchDarkly 1
PubNubSubscriptionKey 1 1 1
SlackWebhook 1
TwitterConsumerkey 1 3

URI 1

Total 6 16 4

in Android and 352 in iOS apps. We identified 106 credentials shared
across platforms, originating from 117 apps that included at least
one common credential in both their Android and iOS versions.

We identified fewer credentials than apps that share them across
the platforms because developers use the same credentials in multi-
ple apps, see Section 5.1.

Services. When we look at the services with valid credentials, we
learn that a significant difference results from five services. i0S apps
contained more valid credentials for AWS, Infura, OpenAl, Open-
Weather, and SlackWebhook. In contrast, Android apps included
more valid credentials for Flickr. The remaining services yielded 142
valid credentials in Android apps and 162 in iOS apps. We provide an
overview in Table 8. The table also shows the number of credentials
found on both platforms, underscoring the importance of analyzing
both Android and iOS apps. For instance, of the nine valid GitHub
credentials, five were found exclusively in iOS apps and three only
in Android apps. Consequently, we would have missed a significant
number if we had only analyzed a single platform.

The most pronounced difference occurred with SlackWebhook
credentials. We identified 49 such credentials in i0S apps, 13 of
which also appeared in the Android version, while only four were
exclusive to Android (p < 0.01, d = —0.03). SlackWebhooks allow
apps to send messages to Slack channels, with the severity of
exposed credentials depending on the channel’s purpose. In general,
we consider this a lower-risk issue. The AWS findings also showed
a notable difference across platforms. We found 11 credentials
exclusively in Android apps, 27 exclusively in iOS apps, and 20
shared between both (p < 0.01, d = —0.02).

Files with Credentials. A comparison of the file types containing
credentials revealed two key differences between the two OSes. On
Android, credentials were more frequently found in configuration
files (12.09% vs. 4.89%), whereas on i0S, they appeared more often
in system resource files (2.33% vs. 9.77%). Additionally, we identified
11 credentials in files likely included unintentionally in 9 iOS apps.
These included files such as .gitlab-ci.yml, x.xcconfig, and
shell scripts. We provide a detailed breakdown in Table 7.

Leaky Apps: Large-scale Analysis of Secrets Distributed in Android and iOS Apps

Popular Apps. In 2019, Google launched a bug bounty program
for Android apps with over 100 million installations [78], including
third-party apps. However, the program was discontinued in August
2024, just before we collected our dataset in October [78].

We report the number of valid credentials found in the 2023

dataset for apps with at least 100 million installations in Table 9.

With two findings exclusively in Android apps, 12 only in iOS apps,
and four in both, the platform difference is significant (p = 0.02,
d = —0.1). Two of the iOS findings resulted from unintentionally
included files. In one case, we discovered a SlackWebhook token
within a commented-out block of a Swift file in a game app [68]. In
another, a BrowserStack token appeared in a Java test file included
with the Wattpad app [100] as part of test automation code.

Discussion. At first glance, Android apps seem to exhibit fewer
credential exposures. However, we also found several instances
where credentials were present only in the Android version. One
likely reason is the better accessibility of Android app bundles,
which makes them easier to analyze and thus has historically
received more research attention. Additionally, Google’s bug bounty
program likely had a positive impact on popular apps. In Section 7,
we revisit this topic to examine how findings shifted after the
program ended in 2024. Another explanation for platform-specific
issues is that different development teams may be responsible for
each version, resulting in inconsistencies in secure coding practices.
Overall, our research underscores the importance of analyzing both
platforms, as many findings were exclusive to a single platform.

To answer RQ3: How does the situation differ between
Android and iOS apps?, we showed:

e Unintentionally included files were more common in
iOS apps. A potential explanation is Apple’s closed
environment, which limits accessibility and complicates
external security analysis;

The pattern extended to credential exposures, with more
valid credentials identified in iOS apps;

Despite identifying more issues in i0S apps, the situation
on Android is only slightly better. We also found cases
where findings appeared exclusively in the Android
version of the app.

7 Changes in 2024

To answer RQ4: How did the situation change between 2023 and
2024?, we examine shifts in the inclusion of files such as code and
scripts, and highlight differences related to credentials. To ensure
comparability of relative values, we normalize the results based on
the updated 2024 dataset sizes of 8,702 Android and 9,212 iOS apps.

7.1 Files

A comparison of file categories between the 2023 and 2024 datasets
revealed no major overall changes. However, we observed a notable
increase in iOS apps flagged for potentially including source code:
from 62 in 2023 (0.67%) to 156 in 2024 (1.51%). This increase was
more pronounced on i0S (p < 0.01, d = —0.04), while numbers for

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 10: Comparison of files included in mobile apps across
platforms and collection years. The findings in 2024 are relate
to the reduced number of 8,702 Android and 9,212 iOS apps.

2023 2024
» a] [
Dotdirectory 8 (0.08%) 922 (8.92%) 11(0.13%) 979 (10.63%)
Dotfile 126 (1.22%) 869 (8.41%) 122 (1.40%) 1,006 (10.92%)
Code 73(0.71%) 34 (0.33%) 66 (0.76%) 62 (0.67%)

((
Markdown 840 (8.13%) 1,004 (9.72%) 918 (8.89%) 1,071 (10.37%)
Scripts 144 (1.39%) 294 (2.85%) 129 (1.48%) 232 (2.52%)

Android remained relatively stable (p = 0.62, d = 0.01), with 66 in
2023 (0.76%) and 76 in 2024 (0.74%).

Similarly, the occurrences of dotfiles and dotdirectories increased
more notably in the iOS dataset. In 2023, we identified dotfiles in
126 Android (1.22%) and 869 iOS apps (8.41%). In 2024, the relative
number on Android slightly rose to 122 (1.40%, p = 0.54,d = —0.01),
while it did clearly on iOS to 1,006 (10.92%, p < 0.01, d = —0.07).
Dotdirectories increased from 8 (0.08%) to 11 in Android apps (0.13%,
p = 0.25,d = —0.01), while on iOS, the number grew from 922
(8.92%) to 979 (10.63%, p < 0.01, d = —0.04), as detailed in Table 10.

For dependency management files, the number of findings stayed
mostly constant, as shown in Table 2. The most notable change
concerned package.json files, which dropped on iOS from 330 in
2023 (3.1%) to 222 in 2024 (2.41%, p < 0.01, d = 0.05). In contrast,
the numbers for Android remained relatively constant, with 107 in
2023 (1.04%) and 104 in 2024 (1.2% p = 0.47, d = —0.01).

7.2 Hardcoded Credentials

In Figure 2, we present the number of hardcoded credentials that
were valid at the time of testing. Notably, we identified 95 cre-
dentials in the 2023 dataset that, despite their removal from the
app version downloaded in 2024, remained valid. For example, in
the 2023 dataset, the Android version of the app com.viber.voip
included AWS credentials within a native library. Although these
were removed in the 2024 version, the credentials themselves re-
mained valid. This finding is particularly concerning given the
app’s large user base, with over one billion installations. A pos-
sible explanation for this practice is legacy support. Developers
may remove credentials from newer app versions but refrain from
revoking them to prevent breaking functionality in older versions,
which could otherwise become non-functional.

Further, we found 99 credentials newly introduced in the 2024
app versions. The total number of valid credentials remained nearly
constant, with 317 valid credentials in 2023 and 321 in 2024 (p = 0.01,
d = —0.02). However, relative to the number of apps analyzed, the
numbers slightly increased in 2024, as 1,629 Android and 1,119 i10S
apps were not available anymore at the time of the dataset update.
The number of valid credentials on Android decreased from 175
in 2023 to 161 in 2024, but the relative share increased from 1.69%
to 1.85% (p = 0.01, d = —0.03). We observed a similar trend for
i0S: 236 valid credentials in 2023 and 230 in 2024 (2.28% vs. 2.5%,
p =0.17,d = —0.01). In general, we assumed a slight increase as we

CCS 25, October 13-17, 2025, Taipei, Taiwan

expected some developers to remove or revoke leaked credentials
from newer builds. Still, others also introduce new credentials that
have not yet been revoked.

Credential Types. We observed an increase in OpenAl credentials,
rising from three in 2023 to 11 in 2024 (p = 0.03, d = —0.67). The
reason is likely the increased popularity of generative Al [53].

The number of valid Git credentials also increased from 7 in
2023 to 12 in 2024 (p = 0.01, d = —0.2). The percentage of valid Git
credentials rose from 25% to 36.36%. One possible reason could be
that developers tend to revoke Git credentials once they become
aware of their exposure.

End of Google’s Bounty Program. To examine the impact of the
end of Google’s bug bounty program in August 2024, we compared
the number of valid credentials found in apps with over 100 million
installations across both years.

In the 2023 dataset, we identified valid credentials in 5 Android
and 11 i0S apps exceeding 100 million installations. In 2024, the
number of affected iOS apps slightly decreased to 8, while the num-
ber for Android increased to 7. The difference between platforms
in 2023 was statistically significant (p = 0.02, d = —0.1), but this
was no longer the case in 2024 (p = 0.29, d = —0.05).

~

To answer RQ4: How did the situation change between 2023
and 2024?, we showed:

e The types of files included in mobile apps remained
mostly constant across both years;

e Even if developers removed credentials from apps, it
does not necessarily mean they also revoked them;

o We observed a slight increase in credential exposure in
popular Android apps, possibly linked to the termination
of Google’s bug bounty program.

8 Limitations and Future Work

Our analysis faces limitations inherent to static analysis. For ex-
ample, we are unable to detect encrypted credentials or files that
are dynamically downloaded during runtime. Future work could
address such limitations by triggering decryption routines in apps,
e.g., with VSA or dynamic forced code execution. Also, pattern-
based secret detection faces limitations. Basak et al. [11] reported
a high number of FPs and False Negatives (FNs). We eliminate all
FPs from our pattern matching results by remotely validating our
findings. Thus, our results represent a lower bound, highlighting
the severity of our findings.

Developer responses to our findings regarding dependency man-
agement and included source code revealed a lack of awareness
that such files could be packaged with production apps. One devel-
oper expressed surprise that Apple does not obfuscate or encrypt
these files. This suggests that future research should investigate
developers’ mental models related to file inclusion in mobile apps
and explore strategies to improve their awareness.

We did not attempt to detect misconfigurations related to infor-
mation that developers intentionally include in apps. Prior work has
demonstrated the risks of misconfigured services, such as publicly

David Schmidt, Sebastian Schrittwieser, and Edgar Weippl

81 95 92
Android Removed Android
317 321
94 69

Both Both I
142 2023 2024 161
i0S i0S

99
o New

Figure 2: Valid credentials discovered in Android and iOS
apps. The numbers above the bars indicate the amount of
credentials discovered. The removed bar represents creden-
tials present exclusively in the 2023 app version. Conversely,
the new bar highlights credentials detected solely in 2024.

accessible AWS S3 buckets [21]. Detecting such misconfigurations
typically requires knowledge of resource identifiers, e.g., bucket
names and regions, which mobile apps may reveal. Similarly, Jin et
al. [49] showed that improperly configured IoT access policies can
lead to data leakage. They identified such issues through analysis of
online code repositories. Future work could extend this by inferring
misconfigurations from app content.

Future research could target context-dependent secrets, such as
JWTs. For these cases, dynamic analysis or Al-based methods could
be used to interpret application logic and better understand the
context in which values are used.

9 Related Work

Secrets in Git Repositories. In previous research, pattern-matching
approaches have been frequently used to detect secrets in Git
repositories [92, 31, 57, 50, 101]. Meli et al. [57] conducted a large-
scale longitudinal analysis of public GitHub repositories to identify
secrets and private key leaks. Koishybayev et al. [51] highlighted
the security risks of CI/CD pipelines executing arbitrary code from
untrusted sources and proposed an early warning system to detect
security risks, including the exposure of secrets in Git repositories.

Moreover, researchers have explored machine learning tech-
niques to improve secret detection in Git repositories [84, 33, 55, 46,
69]. For instance, Saha et al. [84] used machine learning to reduce
false positives and expand the range of detectable secrets.

Others focused on developers’ perspectives by analyzing why
secrets leak, the challenges developers face in preventing exposure,
and mitigation techniques [52, 77, 12].

Analyzing mobile apps for secrets comes with two major differ-
ences compared to analyzing code repositories: (1) The analyzed
code format differs. While repositories primarily contain source

Leaky Apps: Large-scale Analysis of Secrets Distributed in Android and iOS Apps

code, mobile apps are distributed in compiled binary form, making
extraction and analysis more complex. (2) The purpose of these
platforms differs. Repositories facilitate collaboration among devel-
opers, whereas apps are built for end-users.

Researchers have also applied regular expression-based detection
beyond code repositories. Yadmani et al.[29] employed this method
to uncover secrets stored on cloud storage servers. Similar to our
work, they validated detected credentials and responsibly disclosed
their findings. Dahlmanns et al.[23] applied this approach to Docker
container images. However, as with code repositories, the purpose
and format of data shared through cloud storage services and
container images differ significantly from those of mobile apps.

Mobile Analysis. Previous work often focused on privacy aspects
of mobile apps, in particular leaks of PII [20, 67, 82, 81] or permission
models to protect personal data [80, 86, 103, 54]. In contrast, our
study takes a different direction, we focus on secrets embedded in
released mobile apps instead of privacy aspects.

Previous work on mobile app analysis researched the threat of
hardcoded cryptographic keys and credentials in mobile apps [99,
32, 34, 58, 38]. Schrittwieser et al. [91] identified authentication
bypass vulnerabilities in popular messenger apps based on protocol
analysis. Zhou et al. [105] used data flow analysis to find email
and Amazon AWS credentials in Android apps. Mendoza et al. [58]
developed a methodology to identify credential misuse in two iOS
SDKs and showed their real-world impact by analyzing 100 apps.
Zuo et al. [107] analyzed Android apps to find potential data leaks
of cloud APIs due to authentication and authorization issues.

In contrast to existing work, we studied Android and iOS apps to
compare the situation on both platforms. Furthermore, we adopted
a broader perspective rather than limiting our analysis to specific
credentials or those strictly required by the app to function prop-
erly. This allowed us to identify sensitive information in files that
developers likely included unintentionally, such as source code
or documentation, and to examine files originating from cross-
platform libraries and embedded web content.

Baskaran et al. [13] and Zhang et al. [104] studied secrets in-
cluded in so-called super-apps which support third-party mini-
programs to extend their functionality. In contrast, we conducted a
large-scale analysis of Android and iOS apps without restricting
our scope to the ecosystem of individual super-apps.

10 Conclusion

Our analysis revealed that mobile apps often contain unintention-
ally added files, exposing security- and privacy-sensitive infor-
mation. These files included markdown documentation, source
code, and dependency management files. In particular, dependency
management files can pose a critical risk by enabling remote code
execution on developer machines or build servers. We identified
this threat for 114 dependencies declared in 87 apps (0.84%).

We also uncovered 416 valid credentials spanning 65 different
services. Notably, this included 13 Git credentials that provided
access to 218 public and 2,440 private repositories. These issues
were not limited to niche apps: We identified two apps with over
one billion installations, and the median installation count across
affected apps was one million.

CCS 25, October 13-17, 2025, Taipei, Taiwan

Overall, our findings showed a higher prevalence of such issues
in i0S apps. However, we also documented findings exclusive to
either the Android or iOS version of the same app. This underlines
the importance of analyzing apps from both OSes.

In some cases, developers removed hardcoded credentials or
unintended files from newer app versions. However, this alone does
not eliminate the risk. Attackers may have already downloaded
earlier versions or still have access to them. Developers should,
therefore, carefully audit app bundles before release, and when
removing credentials, they must also revoke them. However, this
does not always happen. We found 95 credentials that had been
removed from the 2024 app version but remained valid.

Acknowledgments

The financial support by the Austrian Federal Ministry of Econ-
omy, Energy and Tourism, the National Foundation for Research,
Technology and Development and the Christian Doppler Research
Association is gratefully acknowledged.

References

[1] Aisberg Inc LLC. App Store — Scan & Translate+ Text Grabber. Archived at:
https://archive.ph/qHLIP. https://apps.apple.com/us/app/scan-translate-text-
grabber/id845139175.

[2] M. Alfhaily. Github - majd/ipatool - release v2.2.0. Archived: https://archive.
ph/OUJbE. https://github.com/majd/ipatool/releases/tag/v2.2.0.

[3] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. AndroZoo: Collecting
Millions of Android Apps for the Research Community. In Proceedings of the
13th International Conference on Mining Software Repositories (MSR). (May
2016). doi:10.1145/2901739.2903508.

[4] AloneMonkey. GitHub - frida-ios-dump. Commit: 56e99b2. https://github.
com/AloneMonkey/frida-ios-dump.

[5] Android Developers. Build multiple APKs. Archived at https://archive.ph/
s17jN. https://developer.android.com/build/configure-apk-splits.

[6] APKMirror. Free APK Downloads. Archived at https://archive.ph/h4ABV.
https://www.apkmirror.com/.

[7]1 APKPure. Download APK on Android. Archived at https://archive.ph/oCCd5.
https://apkpure.com/.

[8] AppLovin. Connect to audiences in-app, on mobile devices, and across CTV.
Archived at https://archive.ph/JLpKX. https://www.applovin.com/.

[9] Audible, Inc. App Store — Audible: Audio Entertainment. Archived at https:
//archive . ph/G5CPz. https://apps.apple.com/us/app/audible - audio -
entertainment/id379693831.

[10] M. Backes, S. Bugiel, and E. Derr. Reliable Third-Party Library Detection
in Android and its Security Applications. In Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications Security (CCS). (Oct.
2016). doi:10.1145/2976749.2978333.

[11] S. K. Basak, J. Cox, B. Reaves, and L. Williams. A Comparative Study of
Software Secrets Reporting by Secret Detection Tools. In Proceedings of the
IEEE/ACM International Symposium on Empirical Software Engineering and
Measurement (ESEM). (Dec. 2023). doi:10.1109/ESEM56168.2023.10304853.

[12] S. K. Basak, L. Neil, B. Reaves, and L. Williams. What Are the Practices
for Secret Management in Software Artifacts? In Proceedings of the IEEE
Cybersecurity Development (SecDev). (Oct. 2022). doi:10.1109/SecDev53368.
2022.00026.

[13] S. Baskaran, L. Zhao, M. Mannan, and A. Youssef. Measuring the Leakage
and Exploitability of Authentication Secrets in Super-apps: The WeChat Case.
In Proceedings of the 26th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID). (Oct. 2023). doi:10.1145/3607199.3607236.

[14] P.Beer, M. Squarcina, L. Veronese, and M. Lindorfer. Tabbed Out: Subverting
the Android Custom Tab Security Model. In Proceedings of the 45th IEEE
Symposium on Security & Privacy (S&P). (May 2024). doi:10.1109/SP54263.
2024.00105.

[15] A. Birsan. Dependency Confusion: How I Hacked Into Apple, Microsoft and
Dozens of Other Companies. Archived at https://archive.ph/455ky. (Feb. 9,
2021). https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec
610.

[16] Carthage. GitHub — A simple, decentralized dependency manager for Cocoa.
Archived at https://archive.ph/KVMKT. https://github.com/Carthage/
Carthage.

https://archive.ph/qHLIP
https://apps.apple.com/us/app/scan-translate-text-grabber/id845139175
https://apps.apple.com/us/app/scan-translate-text-grabber/id845139175
https://archive.ph/OUJbF
https://archive.ph/OUJbF
https://github.com/majd/ipatool/releases/tag/v2.2.0
https://doi.org/10.1145/2901739.2903508
https://github.com/AloneMonkey/frida-ios-dump
https://github.com/AloneMonkey/frida-ios-dump
https://archive.ph/s17jN
https://archive.ph/s17jN
https://developer.android.com/build/configure-apk-splits
https://archive.ph/h4ABV
https://www.apkmirror.com/
https://archive.ph/oCCd5
https://apkpure.com/
https://archive.ph/JLpKX
https://www.applovin.com/
https://archive.ph/G5CPz
https://archive.ph/G5CPz
https://apps.apple.com/us/app/audible-audio-entertainment/id379693831
https://apps.apple.com/us/app/audible-audio-entertainment/id379693831
https://doi.org/10.1145/2976749.2978333
https://doi.org/10.1109/ESEM56168.2023.10304853
https://doi.org/10.1109/SecDev53368.2022.00026
https://doi.org/10.1109/SecDev53368.2022.00026
https://doi.org/10.1145/3607199.3607236
https://doi.org/10.1109/SP54263.2024.00105
https://doi.org/10.1109/SP54263.2024.00105
https://archive.ph/455ky
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://archive.ph/KVMkT
https://github.com/Carthage/Carthage
https://github.com/Carthage/Carthage

CCS 25, October 13-17, 2025, Taipei, Taiwan

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

(30]

(31]

(32]

(33]

(39]
[40]

[41]

G. Cluley. Snapchat’s source code leaked out, and was published on GitHub.
Archived at https://archive.ph/OgcR6. (Aug. 8, 2018). https://www.bitdefender.
com/en-gb/blog/hotforsecurity/snapchats- source-code-leaked- out-and-
was-published-on-github.

CocoaPods. CocoaPods.org. Archived at https://archive.ph/yQ24y. https:
//cocoapods.org/.

Codename One. How to Build iOS Apps with Java. Archived at https://archive.
ph/VAGWX. https://www.codenameone.com/blog/how-to-build-ios-apps-
with-java.html.

A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand, C. Kruegel,
and G. Vigna. Obfuscation-Resilient Privacy Leak Detection for Mobile Apps
Through Differential Analysis. In Proceedings of the 24th Network and Dis-
tributed System Security Symposium (NDSS). (Feb. 2017). doi:10.14722/ndss.
2017.23465.

A. Continella, M. Polino, M. Pogliani, and S. Zanero. There’s a Hole in that
Bucket! A Large-scale Analysis of Misconfigured S3 Buckets. In Proceedings
of the 34th Annual Computer Security Applications Conference (ACSAC). (Dec.
2018). doi:10.1145/3274694.3274736.

Corona Labs Inc. Corona - Free Cross-Platform 2D Game Engine. Archived
at: https://archive.ph/FmKN1. https://coronalabs.com/.

M. Dahlmanns, C. Sander, R. Decker, and K. Wehrle. Secrets Revealed in
Container Images: An Internet-wide Study on Occurrence and Impact. In Pro-
ceedings of the 18th ACM ASIA Conference on Computer and Communications
Security (ASIACCS). (July 2023). doi:10.1145/3579856.3590329.

B. De Sutter, S. Schrittwieser, B. Coppens, and P. Kochberger. Evaluation
Methodologies in Software Protection Research. ACM Computing Surveys, 57,
4. doi:10.1145/3702314.

Decathlon. App Store — Decathlon Connect. Archived at: https://archive.ph/
13znY. https://apps.apple.com/us/app/decathlon-connect/id1288552594.

J. Dinneen. GitHub - File Extension Categoriser. Archived at https://archive.
ph/DntMe. https://github.com/jddinneen/file-extension-categoriser.

D. Dominguez—Alvarez, A. de la Cruz, A. Gorla, and J. Caballero. LibKit: De-
tecting Third-Party Libraries in i0S Apps. In Proceedings of the 10th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). (Aug. 2015). doi:10.1145/3611643.3616344.
Dyne.org. GitHub - Organised collection of common file extensions. Archived
at https://archive.ph/LS08v. https://github.com/dyne/file-extension-list/.
S.El Yadmani, O. Gadyatskaya, and Y. Zhauniarovich. The File That Contained
the Keys Has Been Removed: An Empirical Analysis of Secret Leaks in Cloud
Buckets and Responsible Disclosure Outcomes. In Proceedings of the 46th IEEE
Symposium on Security & Privacy (S&P). (May 2025). doi:10.1109/SP61157.
2025.00009.

Expedia. Play Store — Expedia: Hotels, Flights, Cars. Archived at https://
archive.ph/aYx88. https://play.google.com/store/apps/details?id=com.expedia.
bookings.

C. Farinella, A. Ahmed, and C. Watterson. Git Leaks: Boosting Detection
Effectiveness Through Endpoint Visibility. In Proceedings of the 20th IEEE
International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom). (Oct. 2021). d0i:10.1109/TrustCom53373.2021.
00103.

J. Feichtner. A Comparative Study of Misapplied Crypto in Android and iOS
Applications. In Proceedings of the 16th International Conference on Security
and Cryptography (SECRYPT). (July 2019). doi:10.5220/0007915300960108.

R. Feng, Z. Yan, S. Peng, and Y. Zhang. Automated Detection of Password
Leakage from Public GitHub Repositories. In Proceedings of the 44th IEEE/ACM
International Conference on Software Engineering (ICSE). (May 2022). doi:10.
1145/3510003.3510150.

A.Forsberg and L. H. Iwaya. Security Analysis of Top-Ranked mHealth Fitness
Apps: An Empirical Study. In Proceedings of the 29th Secure IT Systems - Nordic
Conference (NordSec). (Nov. 2024). doi:10.1007/978-3-031-79007-2_19.

Free Software Foundation, Inc. Coreutils - GNU Core Utilities. Archived at
https://archive.ph/9cQ2P. https://www.gnu.org/sof tware/coreutils/.

GitHub - jadx - Dex to Java decompiler. Version: 1.5.1. https://github.com/
skylot/jadx.

Gitleaks. GitHub - Gitleaks. Version: 8.21.2. https://github.com/gitleaks/
gitleaks.

L. Glanz, P. Miller, L. Baumgéartner, M. Reif, S. Amann, P. Anthonysamy,
and M. Mezini. Hidden in Plain Sight: Obfuscated Strings Threatening Your
Privacy. In Proceedings of the 15th ACM ASIA Conference on Computer and
Communications Security (ASIACCS). (Oct. 2020). doi:10.1145/3320269.3384745.
Google. GitHub - Google HTTP Client Library for Java. Archived at: https:
//archive.ph/TQKS53. https://github.com/googleapis/google- http-java-client.
Google. ML Kit. Archived at https://archive.ph/oktoP. https://developers.
google.com/ml-kit.

Google. ML Kit - Barcode scanning. Archived at https://archive.ph/NmHdk.
https://developers.google.com/ml-kit/vision/barcode-scanning.

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]
[61]
[62]
[63]
[64]

[65]

[66]

David Schmidt, Sebastian Schrittwieser, and Edgar Weippl

Google. ML Kit — Face detection. Archived at https://archive.ph/6J3yw.
https://developers.google.com/ml-kit/vision/face-detection.

Y. Guo and T. Dong. Exposing the Danger Within: Hardcoded Cloud Creden-
tials in Popular Mobile Apps. Archived at https://archive.ph/bC9m3. (Oct. 22,
2024). https://www .security.com/threat- intelligence/exposing - danger -
within-hardcoded-cloud- credentials-popular-mobile-apps.

L. Gupta. Mobile App Industry Statistics 2023: Trends and Insights You Shouldn’t
Ignore. Archived at: https://archive.ph/00jDB. https://ripenapps.com/blog/
mobile-app-industry-statistics/.

J. Howarth. iPhone vs Android User Stats (2024 Data). Archived at https:
//archive.ph/L1QOZ. (June 14, 2024). Retrieved Jan. 13, 2025 from https:
//explodingtopics.com/blog/iphone-android-users.

Y. Huang, Y. Li, W. Wu, J. Zhang, and M. R. Lyu. Your Code Secret Belongs to
Me: Neural Code Completion Tools Can Memorize Hard-Coded Credentials.
ACM on Software Engineering, 1, FSE, (July 2024). doi:10.1145/3660818.
Hugging Face. The Al community building the future. Archived at https:
//archive.ph/T6678. https://huggingface.co/.

iRobot Corporation. App Store — iRobot Home. Archived at https://archive.
ph/HKgmC. https://apps.apple.com/at/app/irobot-home/id1012014442.
Z.Jin, L. Xing, Y. Fang, Y. Jia, B. Yuan, and Q. Liu. P-verifier: understanding
and mitigating security risks in cloud-based iot access policies. In Proceedings
of the 29th ACM SIGSAC Conference on Computer and Communications Security
(CCS). (Nov. 2022). doi:10.1145/3548606.3560680.

G. Jungwirth, A. Saha, M. Schréder, T. Fiebig, M. Lindorfer, and J. Cito.
Connecting the .dotfiles: Checked-In Secret Exposure with Extra (Lateral
Movement) Steps. In Proceedings of the 21st International Conference on Mining
Software Repositories (MSR). (Apr. 2024). doi:10.1109/MSR59073.2023.00051.
1. Koishybayev, A. Nahapetyan, R. Zachariah, S. Muralee, B. Reaves, A. Kaprav-
elos, and A. Machiry. Characterizing the Security of Github CI Workflows. In
Proceedings of the 31st USENIX Security Symposium (USENIX Security). (Aug.
2022).

A. Krause, J. H. Klemmer, N. Huaman, D. Wermke, Y. Acar, and S. Fahl.
Pushed by Accident: A Mixed-Methods Study on Strategies of Handling Secret
Information in Source Code Repositories. In Proceedings of the 32nd USENIX
Security Symposium (USENIX Security). (Aug. 2023).

Lareina Yee. McKinsey — The state of Al: How organizations are rewiring
to capture value. Archived at https://archive.ph/h26UW. (Mar. 12, 2025).
https://www.mckinsey.com/capabilities/quantumblack/our- insights/the-
state-of-ai/.

X.Liu, Y. Leng, W. Yang, W. Wang, C. Zhai, and T. Xie. A Large-Scale Empirical
Study on Android Runtime-Permission Rationale Messages. In Proceedings
of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). (Oct. 2018). doi:10.1109/VLHCC.2018.8506574.

S. Lounici, M. Rosa, C. Negri, S. Trabelsi, and M. Onen. Optimizing Leak
Detection in Open-source Platforms with Machine Learning Techniques. In
Proceedings of the 7th International Conference on Information Systems Security
and Privacy. (Feb. 2021). doi:10.5220/0010238101450159.

Markdown Guide — Getting Started. Archived at https://archive.ph/s01xz.
https://www.markdownguide.org/getting-started/.

M. Meli, M. R. McNiece, and B. Reaves. How Bad Can It Git? Characterizing
Secret Leakage in Public GitHub Repositories. In Proceedings of the 26th
Network and Distributed System Security Symposium (NDSS). (Feb. 2019).
doi:10.14722/ndss.2019.23418.

A. Mendoza and G. Gu. Mobile Application Web API Reconnaissance: Web-
to-Mobile Inconsistencies & Vulnerabilities. In Proceedings of the 39th IEEE
Symposium on Security & Privacy (S&P). (May 2018). doi:10.1109/SP.2018.
00039.

Microsoft Corporation. App Store — Microsoft Whiteboard. Archived at https:
//archive.ph/dWhUu. https://apps.apple.com/us/app/microsoft-whiteboard/
id1352499399.

Microsoft Corporation. Mono interpreter on iOS and Mac Catalyst. Archived
at https://archive.ph/YkA6b. https://learn.microsoft.com/en-us/dotnet/maui/
macios/interpreter.

Microsoft Corporation. Native AOT deployment on iOS and Mac Catalyst.
Archived at https://archive.ph/MG4HP. https://learn.microsoft.com/en-
us/dotnet/maui/deployment/nativeaot.

Microsoft Corporation. Xamarin. Archived at https://archive.ph/29xDC.
https://dotnet.microsoft.com/en-us/apps/xamarin.

MobiVM. Archived at https://archive.ph/PU5uc. https://mobivm.github.io/.
Mono Project. Mono open source ECMA CLI, C# and .NET implementation.
Archived at https://archive.ph/Rtbuv. https://github.com/mono/mono/.
Moonsharp. A Lua interpreter written entirely in C# for the NET, Mono
and Unity platforms. Archived at: https://archive.ph/pp6zg. https://www.
moonsharp.org/.

Mozilla. App Store — Firefox: Private, Safe Browser. Archived at https://
archive.ph/LEK]Jo. https://apps.apple.com/us/app/firefox- private- safe-
browser/id989804926.

https://archive.ph/OgcR6
https://www.bitdefender.com/en-gb/blog/hotforsecurity/snapchats-source-code-leaked-out-and-was-published-on-github
https://www.bitdefender.com/en-gb/blog/hotforsecurity/snapchats-source-code-leaked-out-and-was-published-on-github
https://www.bitdefender.com/en-gb/blog/hotforsecurity/snapchats-source-code-leaked-out-and-was-published-on-github
https://archive.ph/yQ24y
https://cocoapods.org/
https://cocoapods.org/
https://archive.ph/VdGWX
https://archive.ph/VdGWX
https://www.codenameone.com/blog/how-to-build-ios-apps-with-java.html
https://www.codenameone.com/blog/how-to-build-ios-apps-with-java.html
https://doi.org/10.14722/ndss.2017.23465
https://doi.org/10.14722/ndss.2017.23465
https://doi.org/10.1145/3274694.3274736
https://archive.ph/FmKN1
https://coronalabs.com/
https://doi.org/10.1145/3579856.3590329
https://doi.org/10.1145/3702314
https://archive.ph/13znY
https://archive.ph/13znY
https://apps.apple.com/us/app/decathlon-connect/id1288552594
https://archive.ph/DntMe
https://archive.ph/DntMe
https://github.com/jddinneen/file-extension-categoriser
https://doi.org/10.1145/3611643.3616344
https://archive.ph/LS08v
https://github.com/dyne/file-extension-list/
https://doi.org/10.1109/SP61157.2025.00009
https://doi.org/10.1109/SP61157.2025.00009
https://archive.ph/aYx88
https://archive.ph/aYx88
https://play.google.com/store/apps/details?id=com.expedia.bookings
https://play.google.com/store/apps/details?id=com.expedia.bookings
https://doi.org/10.1109/TrustCom53373.2021.00103
https://doi.org/10.1109/TrustCom53373.2021.00103
https://doi.org/10.5220/0007915300960108
https://doi.org/10.1145/3510003.3510150
https://doi.org/10.1145/3510003.3510150
https://doi.org/10.1007/978-3-031-79007-2_19
https://archive.ph/9cQ2P
https://www.gnu.org/software/coreutils/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/gitleaks/gitleaks
https://github.com/gitleaks/gitleaks
https://doi.org/10.1145/3320269.3384745
https://archive.ph/TQK53
https://archive.ph/TQK53
https://github.com/googleapis/google-http-java-client
https://archive.ph/oktoP
https://developers.google.com/ml-kit
https://developers.google.com/ml-kit
https://archive.ph/NmHdk
https://developers.google.com/ml-kit/vision/barcode-scanning
https://archive.ph/6J3yw
https://developers.google.com/ml-kit/vision/face-detection
https://archive.ph/bC9m3
https://www.security.com/threat-intelligence/exposing-danger-within-hardcoded-cloud-credentials-popular-mobile-apps
https://www.security.com/threat-intelligence/exposing-danger-within-hardcoded-cloud-credentials-popular-mobile-apps
https://archive.ph/0OjDB
https://ripenapps.com/blog/mobile-app-industry-statistics/
https://ripenapps.com/blog/mobile-app-industry-statistics/
https://archive.ph/L1QOZ
https://archive.ph/L1QOZ
https://explodingtopics.com/blog/iphone-android-users
https://explodingtopics.com/blog/iphone-android-users
https://doi.org/10.1145/3660818
https://archive.ph/T6678
https://archive.ph/T6678
https://huggingface.co/
https://archive.ph/HKgmC
https://archive.ph/HKgmC
https://apps.apple.com/at/app/irobot-home/id1012014442
https://doi.org/10.1145/3548606.3560680
https://doi.org/10.1109/MSR59073.2023.00051
https://archive.ph/h26UW
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai/
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai/
https://doi.org/10.1109/VLHCC.2018.8506574
https://doi.org/10.5220/0010238101450159
https://archive.ph/s01xz
https://www.markdownguide.org/getting-started/
https://doi.org/10.14722/ndss.2019.23418
https://doi.org/10.1109/SP.2018.00039
https://doi.org/10.1109/SP.2018.00039
https://archive.ph/dWhUu
https://archive.ph/dWhUu
https://apps.apple.com/us/app/microsoft-whiteboard/id1352499399
https://apps.apple.com/us/app/microsoft-whiteboard/id1352499399
https://archive.ph/YkA6b
https://learn.microsoft.com/en-us/dotnet/maui/macios/interpreter
https://learn.microsoft.com/en-us/dotnet/maui/macios/interpreter
https://archive.ph/MG4HP
https://learn.microsoft.com/en-us/dotnet/maui/deployment/nativeaot
https://learn.microsoft.com/en-us/dotnet/maui/deployment/nativeaot
https://archive.ph/29xDC
https://dotnet.microsoft.com/en-us/apps/xamarin
https://archive.ph/PU5uc
https://mobivm.github.io/
https://archive.ph/Rtbuv
https://github.com/mono/mono/
https://archive.ph/pp6zg
https://www.moonsharp.org/
https://www.moonsharp.org/
https://archive.ph/LEKJo
https://archive.ph/LEKJo
https://apps.apple.com/us/app/firefox-private-safe-browser/id989804926
https://apps.apple.com/us/app/firefox-private-safe-browser/id989804926

Leaky Apps: Large-scale Analysis of Secrets Distributed in Android and iOS Apps

(67]

(68]

[69]

(78]

[79]

(80]

(82]

(83]

(85]

(86]

(89]

[90]

Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, and M. Yang. Finding Clues for
Your Secrets: Semantics-Driven, Learning-Based Privacy Discovery in Mobile
Apps. In Proceedings of the 25th Network and Distributed System Security
Symposium (NDSS). (Feb. 2018). doi:10.14722/ndss.2018.23092.

NAVER Z Corporation. App Store — ZEPETO: Avatar, Connect & Live. Archived
at https://archive.ph/2fz7N. https://apps.apple.com/us/app/zepeto-avatar-
connect-live/id1350301428.

L. Niu, S. Mirza, Z. Maradni, and C. Pépper. CodexLeaks: Privacy Leaks from
Code Generation Language Models in GitHub Copilot. In Proceedings of the
32nd USENIX Security Symposium (USENIX Security). (Aug. 2023).

npm - Home. Archived at https://archive.ph/ImYpo. https://www.npmjs.com/.
OWASP Foundation. OWASP Mobile Top 10. Archived at: https://archive.ph/
fspDN. https://owasp.org/www-project-mobile-top-10/.

paleraln. Version: v2.0.0-beta.8. https://palera.in/.

PayPal, Inc. App Store — PayPal Business. Archived at https://archive.ph/
C3sAq. https://apps.apple.com/us/app/paypal-business/id1053148887.
Paytm. Secure UPI Payments. Archived at: https://archive.ph/rPnAX. https:
//paytm.com/.

L. Quinn. What’s the difference between IPA and APK? Archived at https:
//archive.ph/110i9. (Feb. 3, 2022). https://lovequinn.medium.com/whats-the-
difference-between-ipa-and-apk-eff81fb0c61b.

K. Rahkema and D. Pfahl. SwiftDependencyChecker: detecting vulnerable
dependencies declared through CocoaPods, carthage and swift PM. In Pro-
ceedings of the 9th IEEE/ACM International Conference on Mobile Software
Engineering and Systems (MOBILESOFT). (May 2022). doi:10.1145/3524613.
3527806.

M. R. Rahman, N. Imtiaz, M.-A. Storey, and L. Williams. Why Secret Detection
Tools Are Not Enough: It’s Not Just about False Positives - An Industrial Case
Study. Empirical Software Engineering, 27, 3, (May 2022). doi:10.1007/s10664-
021-10109-y.

M. Rahman. AndroidAuthority — Google Play will no longer pay to discover
vulnerabilities in popular Android apps. Archived at https://archive.ph/1RKjo.
(Aug. 19, 2024). https://www.androidauthority.com/google- play-security-
reward-program-winding-down-3472376/.

Raiffeisen Bank Romania S.A. App Store — Noul Raiffeisen Smart Mobile.
Archived at https://archive.ph/7GjQk. https://apps.apple.com/us/app/noul-
raiffeisen- smart-mobile/id1255136212.

J. Reardon, A. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez, and S.
Egelman. 50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention
of the Android Permissions System. In Proceedings of the 28th USENIX Security
Symposium (USENIX Security). (Aug. 2019).

J.Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-Rodriguez.
Bug Fixes, Improvements, ... and Privacy Leaks - A Longitudinal Study of PII
Leaks Across Android App Versions. In Proceedings of the 25th Network and
Distributed System Security Symposium (NDSS). (Feb. 2018). doi:10.14722/ndss.
2018.23143.

J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes. ReCon: Revealing
and Controlling PII Leaks in Mobile Network Traffic. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys). (June 2016). doi:10.1145/2906388.2906392.

A.Ruggia, D. Nisi, S. Dambra, A. Merlo, D. Balzarotti, and S. Aonzo. Unmasking
the veiled: A comprehensive analysis of Android evasive malware. In Pro-
ceedings of the 19th ACM ASIA Conference on Computer and Communications
Security (ASIACCS). (July 2024). doi:10.1145/3634737.3637658.

A. Saha, T. Denning, V. Srikumar, and S. K. Kasera. Secrets in Source Code:
Reducing False Positives Using Machine Learning. In Proceedings of the Inter-
national Conference on COMmunication Systems & NETworkS (COMSNETS).
(Jan. 2020). doi:10.1109/COMSNETS48256.2020.9027350.

E. F. D. Santos. Dependency Management in iOS Development: A Developer
Survey Perspective. In Proceedings of the 10th IEEE/ACM International Confer-
ence on Mobile Software Engineering and Systems (MOBILESOFT). (Apr. 2024).
doi:10.1145/3647632.3647992.

D. Schmidt, A. Ponticello, M. Steinbock, K. Krombholz, and M. Lindorfer.
Analyzing the iOS Local Network Permission from a Technical and User
Perspective. In Proceedings of the 46th IEEE Symposium on Security & Privacy
(S&P). (May 2025). doi:10.1109/SP61157.2025.00045.

D. Schmidt, S. Schrittwieser, and E. Weippl. GitHub - Leaky Apps: Full
Comparison of Valid Credentials Table. https://github.com/CDL- AsTra/
leaky_apps/blob/main/tables/comparison.md.

D. Schmidt, S. Schrittwieser, and E. Weippl. GitHub - Leaky Apps: Full
Dependency Management Table. https://github.com/CDL- AsTra/leaky_apps/
blob/main/tables/dependencies.md.

D. Schmidt, S. Schrittwieser, and E. Weippl. GitHub - Leaky Apps: Full List
of Services. https://github.com/CDL- AsTra/leaky_apps/blob/main/analysis/
rules.md.

D. Schmidt, S. Schrittwieser, and E. Weippl. GitHub - Leaky Apps: Full Valid
Credential Table. https://github.com/CDL- AsTra/leaky_apps/blob/main/
tables/service_table.md.

[o1]

[92]

[93]

[94]

[95]
[96]
[97]
[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

CCS ’25, October 13-17, 2025, Taipei, Taiwan

S. Schrittwieser, P. Frithwirt, P. Kieseberg, M. Leithner, M. Mulazzani, M.
Huber, and E. Weippl. Guess Who’s Texting You? Evaluating the Security of
Smartphone Messaging Applications. In Proceedings of the 19th Network and
Distributed System Security Symposium (NDSS). (Feb. 2012).

V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani. Detecting and
Mitigating Secret-Key Leaks in Source Code Repositories. In Proceedings
of the 12th International Conference on Mining Software Repositories (MSR).
(May 2014). doi:10.1109/MSR.2015.48.

Smilegate Holdings, Inc. App Store — Epic Seven. Archived at https://archive.
ph/ZBZI2. https://apps.apple.com/us/app/epic-seven/id1322399438.

M. Steinbéck, J. Bleier, M. Rainer, T. Urban, C. Utz, and M. Lindorfer. Com-
paring Apples to Androids: Discovery, Retrieval, and Matching of iOS and
Android Apps for Cross-Platform Analyses. In Proceedings of the 21st In-
ternational Conference on Mining Software Repositories (MSR). (Apr. 2024).
doi:10.1145/3643991.3644896.

Swift.org. Swift.org — Package Manager. Archived at https://archive.ph/4i8F5.
https://www.swift.org/documentation/package-manager/.

Trufflesecurity. GitHub - TruffleHog. Version: 3.84.0. https://github.com/
trufflesecurity/trufflehog/.

United Command International Ltd. App Store - Jelly Blast. Archived at https:
//archive.ph/ydPsK. https://apps.apple.com/us/app/jelly-blast/id372948897.
Unity. Unity Real-Time Development Platform. Archived at https://archive.
ph/qwkgW. https://unity.com/.

T. Watanabe et al. Understanding the Origins of Mobile App Vulnerabilities:
A Large-Scale Measurement Study of Free and Paid Apps. In Proceedings of
the 14th International Conference on Mining Software Repositories (MSR). (May
2017). doi:10.1109/MSR.2017.23.

Wattpad Corp. App Store — Wattpad - Read & Write Stories. Archived at
https://archive.ph/k1ukh. https://apps.apple.com/us/app/wattpad-read-write-
stories/id306310789.

E. Wen, J. Wang, and J. Dietrich. SecretHunter: A Large-scale Secret Scan-
ner for Public Git Repositories. In Proceedings of the 21st IEEE International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom). (Nov. 2022). d0i:10.1109/TrustCom56396.2022.00028.

H. Wen, J. Li, Y. Zhang, and D. Gu. An Empirical Study of SDK Credential
Misuse in iOS Apps. In Proceedings of the 25th Asia-Pacific Software Engineering
Conference (APSEC). (Dec. 2018). doi:10.1109/APSEC.2018.00040.

D. Yeke, M. Ibrahim, G. S. Tuncay, H. Farrukh, A. Imran, A. Bianchi, and Z. B.
Celik. Wear’s my Data? Understanding the Cross-Device Runtime Permission
Model in Wearables. In Proceedings of the 45th IEEE Symposium on Security &
Privacy (S&P). (May 2024). doi:10.1109/SP54263.2024.00077.

Y. Zhang, Y. Yang, and Z. Lin. Don’t Leak Your Keys: Understanding, Measur-
ing, and Exploiting the AppSecret Leaks in Mini-Programs. In Proceedings of
the 30th ACM SIGSAC Conference on Computer and Communications Security
(CCS). (Nov. 2023). doi:10.1145/3576915.3616591.

Y. Zhou, L. Wu, Z. Wang, and X. Jiang. Harvesting Developer Credentials in
Android Apps. In Proceedings of the 8th ACM Conference on Security & Privacy
in Wireless and Mobile Networks (WISEC). (June 2015). doi:10.1145/2766498.
2766499.

O. Zungur, A. Bianchi, G. Stringhini, and M. Egele. AppJitsu: Investigating the
Resiliency of Android Applications. In Proceedings of the 6th IEEE European
Symposium on Security & Privacy (EuroS&P). (Mar. 2021). doi:10.1109/EuroSP
51992.2021.00038.

C. Zuo, Z. Lin, and Y. Zhang. Why Does Your Data Leak? Uncovering the Data
Leakage in Cloud from Mobile Apps. In Proceedings of the 40th IEEE Symposium
on Security & Privacy (S&P). (May 2019). doi:10.1109/SP.2019.00009.

A Appendix

Dear {Developer_Name},

We are

security researchers from the University of Vienna studying

< Android and iOS apps. During our research, we discovered in
< vyour {platform} app ({app_name}) the following finding:

+» Hardcoded Credentials++ We found hardcoded AWS credentials (

rrerts

Despite best efforts, some findings might be false
— already fixed in the
If you have any further questions or comments,

access and secret key)
from the mail) in the following file
can give
might lead to data breaches on AWS. We recommend revoking the
keys and using Amazon Cognito instead.

{CREDENTIALS} (removed parts of the key
{FILE}. The credentials

attackers unauthorized AWS cloud resource access and

positives or
latest version.
please contact us.

Sincerely , David Schmidt

https://doi.org/10.14722/ndss.2018.23092
https://archive.ph/2fz7N
https://apps.apple.com/us/app/zepeto-avatar-connect-live/id1350301428
https://apps.apple.com/us/app/zepeto-avatar-connect-live/id1350301428
https://archive.ph/ImYpo
https://www.npmjs.com/
https://archive.ph/fspDN
https://archive.ph/fspDN
https://owasp.org/www-project-mobile-top-10/
https://palera.in/
https://archive.ph/C3sAq
https://archive.ph/C3sAq
https://apps.apple.com/us/app/paypal-business/id1053148887
https://archive.ph/rPnAX
https://paytm.com/
https://paytm.com/
https://archive.ph/llOi9
https://archive.ph/llOi9
https://lovequinn.medium.com/whats-the-difference-between-ipa-and-apk-eff81fb0c61b
https://lovequinn.medium.com/whats-the-difference-between-ipa-and-apk-eff81fb0c61b
https://doi.org/10.1145/3524613.3527806
https://doi.org/10.1145/3524613.3527806
https://doi.org/10.1007/s10664-021-10109-y
https://doi.org/10.1007/s10664-021-10109-y
https://archive.ph/1RKjo
https://www.androidauthority.com/google-play-security-reward-program-winding-down-3472376/
https://www.androidauthority.com/google-play-security-reward-program-winding-down-3472376/
https://archive.ph/7GjQk
https://apps.apple.com/us/app/noul-raiffeisen-smart-mobile/id1255136212
https://apps.apple.com/us/app/noul-raiffeisen-smart-mobile/id1255136212
https://doi.org/10.14722/ndss.2018.23143
https://doi.org/10.14722/ndss.2018.23143
https://doi.org/10.1145/2906388.2906392
https://doi.org/10.1145/3634737.3637658
https://doi.org/10.1109/COMSNETS48256.2020.9027350
https://doi.org/10.1145/3647632.3647992
https://doi.org/10.1109/SP61157.2025.00045
https://github.com/CDL-AsTra/leaky_apps/blob/main/tables/comparison.md
https://github.com/CDL-AsTra/leaky_apps/blob/main/tables/comparison.md
https://github.com/CDL-AsTra/leaky_apps/blob/main/tables/dependencies.md
https://github.com/CDL-AsTra/leaky_apps/blob/main/tables/dependencies.md
https://github.com/CDL-AsTra/leaky_apps/blob/main/analysis/rules.md
https://github.com/CDL-AsTra/leaky_apps/blob/main/analysis/rules.md
https://github.com/CDL-AsTra/leaky_apps/blob/main/tables/service_table.md
https://github.com/CDL-AsTra/leaky_apps/blob/main/tables/service_table.md
https://doi.org/10.1109/MSR.2015.48
https://archive.ph/ZBZl2
https://archive.ph/ZBZl2
https://apps.apple.com/us/app/epic-seven/id1322399438
https://doi.org/10.1145/3643991.3644896
https://archive.ph/4i8F5
https://www.swift.org/documentation/package-manager/
https://github.com/trufflesecurity/trufflehog/
https://github.com/trufflesecurity/trufflehog/
https://archive.ph/ydPsK
https://archive.ph/ydPsK
https://apps.apple.com/us/app/jelly-blast/id372948897
https://archive.ph/qwkgW
https://archive.ph/qwkgW
https://unity.com/
https://doi.org/10.1109/MSR.2017.23
https://archive.ph/k1ukh
https://apps.apple.com/us/app/wattpad-read-write-stories/id306310789
https://apps.apple.com/us/app/wattpad-read-write-stories/id306310789
https://doi.org/10.1109/TrustCom56396.2022.00028
https://doi.org/10.1109/APSEC.2018.00040
https://doi.org/10.1109/SP54263.2024.00077
https://doi.org/10.1145/3576915.3616591
https://doi.org/10.1145/2766498.2766499
https://doi.org/10.1145/2766498.2766499
https://doi.org/10.1109/EuroSP51992.2021.00038
https://doi.org/10.1109/EuroSP51992.2021.00038
https://doi.org/10.1109/SP.2019.00009

	Abstract
	1 Introduction
	2 Threat Model, Secret Definition, and Mitigation
	3 Methodology
	3.1 Large-scale Analysis
	3.2 Verification and Disclosure
	3.3 Cross-platform Dataset
	3.4 Data Analysis

	4 App Content
	4.1 Binaries
	4.2 Source Code and Scripts
	4.3 Misc
	4.4 Responsible Disclosure

	5 Secrets
	5.1 Hardcoded Credentials
	5.2 JSON Web Tokens (JWTs) and Private Keys
	5.3 Responsible Disclosure

	6 Platform Differences
	6.1 Files
	6.2 Hardcoded Secrets

	7 Changes in 2024
	7.1 Files
	7.2 Hardcoded Credentials

	8 Limitations and Future Work
	9 Related Work
	10 Conclusion
	A Appendix

