Hybrid Reactive Autoscaling for Task-Based
Pipelines on Kubernetes

Andrey Nagiyev*', Enes Bajrovic*, Siegfried Benkner*
*Faculty of Computer Science, University of Vienna, Vienna, Austria
TDoctoral School Computer Science, University of Vienna, Vienna, Austria
andrey.nagiyev@univie.ac.at, enes.bajrovic@univie.ac.at, siegfried.benkner @univie.ac.at

Abstract—We present Python-to-Kubernetes (PTK), a hybrid
autoscaling framework for pipeline-oriented, task-based Python
applications on Kubernetes. PTK coordinates queue-length-
driven horizontal scaling for CPU, memory, and GPU, together
with reactive in-place vertical scaling of CPU and memory. The
framework introduces source-code annotations, enabling users to
define task-specific scaling constraints and automatically generate
Kubernetes manifests. A periodic controller uses utilization and
queue metrics to coordinate horizontal and vertical scaling,
improving resource efficiency while maintaining pipeline perfor-
mance. In a streaming machine learning (ML) inference pipeline,
PTK sustains the target throughput while reducing hourly cost
by 40.6%, CPU by 32.1%, and memory by 22.4%, and lowering
the GPU count from 4 to 3, compared with an uncoordinated
baseline that combines the Horizontal Pod Autoscaler (HPA) and
the Vertical Pod Autoscaler (VPA). It also cuts peak cost by 23.6%
compared with a queue-driven HPA baseline.

Index Terms—autoscaling, Horizontal Pod Autoscaler, Kuber-
netes, resource management, source-code annotations, task-based
programming, Vertical Pod Autoscaler

I. INTRODUCTION

Over the past decade, hardware has become markedly more
heterogeneous and cloud-centric, while software complexity
has risen with the convergence of compute- and data-intensive
applications. Managing these complexities effectively requires
advanced autoscaling mechanisms. Autoscaling has become
critical in modern cloud environments, especially for appli-
cations deployed on container-orchestration platforms such as
Kubernetes [1]. Efficient resource management is essential for
maintaining application responsiveness, optimizing resource
utilization, and reducing operational costs. Autoscaling en-
ables applications to dynamically adapt to workload fluctu-
ations, preventing performance degradation and service inter-
ruptions under high load, while avoiding unnecessary resource
allocation and cost wastage during low-demand periods.

Kubernetes provides two primary built-in autoscaling mech-
anisms: the HPA and the VPA. Both autoscalers operate at the
granularity of Pods, which are the smallest deployable units
within Kubernetes clusters. The HPA adjusts the number of
Pod replicas based on short-term resource metrics, typically
CPU utilization, to improve application throughput (i.e., the
volume of data processed per unit of time) and manage
immediate load spikes. Conversely, the VPA focuses on ver-
tical scaling by recommending CPU and memory allocations
within Pods, based on historical usage patterns and average
resource demands observed over extended periods; by default,

it applies changes by evicting and recreating Pods rather than
updating them in place, which delays responsiveness to short-
term bottlenecks. Cloud-managed Kubernetes services (e.g.,
Google Kubernetes Engine (GKE)) include these autoscalers,
facilitating deployment and scaling.

Despite their effectiveness in certain scenarios, these au-
toscalers have limitations. First, the HPA and the VPA operate
independently and consider scaling dimensions separately,
lacking integration and coordination. Second, the VPA’s re-
liance on historical data makes it insufficiently reactive, re-
sulting in delayed responses to short-term performance bottle-
necks. Third, both autoscalers focus on individual Pods rather
than the multi-stage pipeline (i.e., the chain of tasks or func-
tions deployed as multiple Kubernetes Pods and connected by
inter-Pod queues) as a cohesive unit. Fourth, the built-in HPA
scales replicas on CPU or memory utilization (GPU scale-out
requires exposing a custom metric). The VPA, in turn, right-
sizes only CPU and memory. However, neither autoscaler ac-
counts for inter-Pod network communication overhead, which
becomes critical in large, multi-node inference pipelines where
stages run across multiple nodes and exchange high-volume
data. Finally, deploying replicas to additional nodes without
application-aware management can unintentionally increase
network latency and degrade overall pipeline performance.

To address these limitations, we propose a runtime-adaptive
autoscaling mechanism within the PTK framework [2]. The
hybrid mechanism integrates reactive vertical and queue-
driven horizontal scalings for pipeline-oriented, task-based
applications on Kubernetes. Scalings are controlled by the
user through source-code annotations defining task-specific
autoscaling constraints taken into account by our Autoscaling
Controller. Our approach leverages real-time, application-level
metrics, including resource utilization (CPU, memory, GPU)
and task queue lengths, to dynamically coordinate horizon-
tal and vertical scalings. By proactively addressing resource
bottlenecks and pipeline-level dependencies, PTK maintains
throughput while improving resource and cost efficiency.

The remainder of this paper is structured as follows. Sec-
tion II reviews related work. Section III provides an overview
of PTK and describes the Python-based annotations for spec-
ifying resource requirements, autoscaling constraints, and de-
ployment configurations. Section IV details the autoscaling
mechanism. Section V presents an experimental evaluation of
PTK’s autoscaling mechanism applied to an ML pipeline. Sec-

tion VI summarizes the paper and discusses future directions.
II. BACKGROUND AND RELATED WORK

Research on autoscaling for containerized systems has
aimed at improving predictability and utilization and reducing
cost. Prior analyses of the HPA have investigated metric
choices and control behavior. For example, Casalicchio et
al. [3] analyzed the Kubernetes HPA and proposed using
absolute CPU performance metrics for resource management
(e.g., CPU core units) instead of the default Kubernetes HPA
approach, which relies on relative, percentage-based CPU
utilization metrics. They demonstrated that using absolute met-
rics yielded more predictable and effective scaling behavior,
particularly for CPU-intensive containerized workloads.

Vertical scaling and proactive rightsizing have also been
studied. Shan et al. [4] proposed an adaptive anticipatory
resource allocation scheme for workflow tasks to improve
provisioning accuracy and reduce waste. A closely related
line of work is the integration of vertical and horizontal
scaling. Rzadca et al. [5] combined rightsizing with Kuber-
netes autoscaling in production clusters to improve resource
management efficiency. Similarly, Vu et al. [6] proposed com-
bining VPA and HPA with predictive, ML-based forecasting
and burst detection to proactively handle demand spikes,
aiming to maintain Quality of Service (QoS) and enhance
resource utilization efficiency. However, these approaches do
not model pipeline-level dependencies or inter-task commu-
nication overhead—factors that become prominent for data-
intensive, task-based pipelines.

Beyond Kubernetes-native autoscalers, task-based program-
ming models such as StarPU [7] and OpenMP tasking [8]
deliver dynamic scheduling across heterogeneous resources in
HPC settings but lack cloud-native support for autoscaling in
containerized deployments. Related work has also explored
high-level pipeline parallelism and pipeline patterns on many-
core systems [9]-[11], but these do not address Kubernetes
integration or queue-driven autoscaling.

Kubernetes Event-driven Autoscaling (KEDA) [12] comple-
ments HPA by exposing external, event-derived signals (queue
length or stream lag) to drive activation and horizontal scale-
out. KEDA supports scaling to and from zero replicas. Un-
like PTK, which coordinates queue-aware horizontal actions
with in-place vertical right-sizing and makes pipeline-level
decisions across dependent tasks, KEDA focuses on trigger-
driven horizontal scaling of individual workloads and does not
orchestrate vertical resizing or pipeline-wide trade-offs.

Knative Pod Autoscaler (KPA) [13] provides request-driven
autoscaling for stateless services. It scales based on either
request concurrency or requests per second and uses separate
stable and panic windows to smooth load and react to spikes.
Unlike PTK, KPA does not perform vertical autoscaling.

III. PROGRAMMING FRAMEWORK

In this section, we provide an overview of the framework,
discuss its task-based programming approach, and introduce
source-code annotations for specifying resource requirements,
autoscaling constraints, and deployment configurations.

Python Application

Source Code Annotations
Tasks, Resource Requirements, Deployment Configurations,
Scaling Constraints
12

PTK Library |
2

Kubernetes Artefacts
Manifest Files (Containers, Pods, Deployments)

Kubernetes Cluster

!
PTK Autoscaling Controller |

Fig. 1. Overview of the PTK framework.

A. Overview

The framework comprises a Python-based library and an
autoscaling controller (Fig. 1). Users define application re-
sources, autoscaling constraints, data-transfer hints, and task-
to-Pod mappings by annotating Python functions. Based on
these annotations, the framework transforms the application
into Kubernetes manifest files containing objects (e.g., De-
ployments). Each Deployment manages a set of identical Pods,
each of which contains one or more containers that encapsulate
the application and its required dependencies, libraries, and
runtime environment. PTK deploys manifests and co-deploys
the autoscaling controller, which collects runtime metrics from
the deployed workloads and orchestrates scaling decisions.

B. Task-Based Programming and Pipelines

To use PTK, each application must be decomposed into
distinct tasks. Each task is represented as a Python function
executed as a self-contained unit, including all necessary
libraries and the runtime environment. Tasks communicate by
sending and receiving data through runtime-managed queues:
the output of one task is automatically enqueued and becomes
the next task’s input; users do not create or manage queues
explicitly. Queues can reside on shared Network File Sys-
tem (NFS), local volumes, or in-memory stores, depending
on performance and scalability requirements. PTK supports
deployment on multi-node Kubernetes clusters, where tasks
may run on different nodes. Communication between tasks is
managed automatically by PTK via inter-Pod queues backed
by Kubernetes storage (e.g., PersistentVolumeClaims (PVCs)
or in-memory emptyDir volumes for co-located stages).

To demonstrate task-based programming and evaluate the
effectiveness of our adaptive PTK autoscaling mechanism, we
implement a synthetic real-time ML inference pipeline over the
Galaxy10 DECaLS dataset [14] (Fig. 2). The dataset provides
labeled galaxy image cutouts across ten morphological classes;
the labels come from Galaxy Zoo [15], [16] and images from
the DESI Legacy Imaging Surveys [17]. We use 256256 -px
RGB cutouts as the input stream. The pipeline demonstrates
key real-world challenges, including substantial variations in
computational demands, stringent real-time constraints, GPU-
intensive inference, and high-volume inter-task data transfers.
The pipeline comprises the following sequential steps:

| Task1:Datalngeston |
| Tesk2 Prevprocessing |
| Task 3: éatching |
|] |
|

Task 4: CNN Inference
]
Task 5: Filtering and Aggregation‘

Fig. 2. ML inference pipeline.

Task 1 (Data Ingestion): This step reads Galaxyl0 cutouts
from shared storage (e.g., NFS), decodes them into tensors,
and enqueues them for downstream processing. To sustain
GPU utilization and emulate streaming workloads, images are
grouped into batches that are published as single queue mes-
sages at a fixed cadence; in our experiments, we used batches
of 50-300images every 100 ms, yielding 500-3,000 images/s
(=210 MiB/s, assuming ~145KiB per PNG cutout).

Task 2 (Preprocessing): This step performs ML prepro-
cessing (e.g., resizing/cropping, channel-wise normalization,
photometric standardization) and prepares per-image metadata.

Task 3 (Batching): This step re-batches arriving batches into
fixed-size batches of 128 images. Images are appended to a
staging buffer as they arrive; a batch is dispatched immediately
when it reaches 128, while any remainder is carried into
the next batch. The stage coalesces queue messages into
contiguous tensors and aligns the memory layout. Using a
constant batch size improves kernel selection and occupancy,
and amortizes I/O and launch overheads, leading to higher and
more stable throughput in the subsequent inference step.

Task 4 (CNN Inference): This step runs a Convolutional
Neural Network (CNN) based on the ResNet architecture [18]
on GPUs to produce class-probability vectors over the ten
Galaxy10 classes. To maximize throughput, the stage exploits
batching and overlap of data transfers and computation. The
output is a structured set of classification predictions, provided
as probability vectors indicating the likelihood of each image
belonging to one of the primary categories.

Task 5 (Filtering and Aggregation): This step collects
and aggregates prediction results to enhance accuracy and
reliability. Threshold-based filtering is applied to the CNN-
generated probabilities, discarding predictions below prede-
fined confidence levels. Duplicate or overlapping detections
across different image segments are identified and removed to
reduce redundancy. Final results are persisted for evaluation.

C. Application Annotations

PTK provides source-code annotations enabling users to
define, for each application task, resource requirements, au-
toscaling constraints, deployment configurations, and inter-
task data transfers directly in the application code prior to
deployment (Listing 1 for the Galaxy10 pipeline).

1) Resource Requirements and Autoscaling Constraints:
Within each @task annotation, users specify resource re-

quirements and autoscaling constraints. CPU and memory are
specified as Python tuples (requests, 1imits). Resource
requests define the minimum resources used for scheduling
placement; the Kubernetes scheduler places Pods based on
requests, while limits cap the maximum resources a con-
tainer may use at runtime. These values serve as inputs to
PTK’s horizontal- and vertical-scaling logic. On Kubernetes
v1.33 clusters with in-place Pod vertical scaling for CPU
and memory enabled, PTK updates container requests and
limits in place, i.e. without evicting and recreating Pods [19].
PTK computes the vertical-scaling actions itself and applies
the updates directly via the Kubernetes API. To prevent
drastic resource fluctuations and ensure stability, PTK in-
troduces cpu_thresholds and memory_thresholds
annotations, each specified as a pair of tuples for requests and
limits — (min, max). These thresholds bound the allowable
resource adjustments, enabling the autoscaler to modify initial
requests and [imits within user-defined ranges. Listing 1 shows
these thresholds for the preprocess task.

The framework provides horizontal queue-based autoscal-
ing through pending_res=(min, max), which specifies
lower and upper thresholds for the input queue of a task. In
a linear pipeline this input queue is identical to the upstream
stage’s output, but the scaling action is applied to the consum-
ing task. When the queue length exceeds max, PTK scales up
the task to mitigate throughput bottlenecks. If the queue length
falls below min, it scales down the task to optimize resource
utilization. The annotation supports thresholds based on the
number of queued results or the total data size. For example,
specifying pending_res=(’50MiB’, ’500MiB’) for
the Preprocessing step instructs PTK to scale down when the
queue is fewer than 50 MiB, and scale up whenever the total
queued data awaiting processing exceeds 500 MiB.

Users define horizontal autoscaling constraints using
replicas=(min, max), the allowed range of Pod repli-
cas. The PTK Autoscaling Controller scales replicas within
this range when the task’s input queue length crosses the con-
figured pending_res bounds (with a CPU- and memory-
based downscale guard). Because Kubernetes cannot resize
GPU resources in place, PTK fixes GPU allocation per replica.
Thus, increasing GPU capacity for a task is achieved via
horizontal scaling (i.e., increasing the number of Pod replicas).

The utilization_bounds enables users to define
lower and upper bounds for CPU and memory utilization
that trigger reactive vertical scaling. Lower values (e.g., 0.3
or 30%) initiate resource downscaling earlier, improving ef-
ficiency when workloads consistently underutilize allocated
resources. Conversely, smaller upper values (e.g., 70%) initiate
resource upscaling earlier, ensuring additional resource head-
room beneficial for workloads with highly variable demands.
Higher upper values (e.g., 90%) yield more conservative
resource allocation, maximizing resource utilization and min-
imizing overhead—suitable for stable workloads. By default,
PTK uses 50% and 90%, and evaluates adjustments every 60 s.

Each task may optionally set gamma_up and
gamma_down, the scale-up and scale-down step fractions

that bound how many replicas change per decision, and
downscale_guard € (0,1], a utilization-ratio threshold
applied to CPU and memory (and GPU when available)
below which horizontal downscale is permitted. Unless
specified, PTK uses conservative defaults: gamma_up is 0.5,
gamma_down is 0.25, and downscale_guard is 0.5.

2) Deployment Configurations: PTK provides annotations
to define the mapping of tasks to Pods and containers [2].
Multiple tasks can be grouped into a single container, and
multiple containers can be deployed within a single Pod. Users
configure these mappings with @pod, which specifies task-to-
Pod allocation, and @container, which specifies the task-
to-container mapping.

Fine-tuning the organization of tasks into Pods and con-
tainers influences scalability and performance, revealing an
important trade-off. Packing multiple containers into one
Pod enhances data-transfer bandwidth by enabling in-memory
communication; however, this approach restricts the deploy-
ment of those tasks across multiple nodes, thereby limiting
horizontal scalability. Conversely, distributing tasks across sep-
arate Pods improves horizontal scalability but may introduce
additional inter-node network overhead, potentially reducing
data-transfer efficiency. If users apply the @task annotation
without further specification, PTK creates a separate Pod and
container for each task by default.

3) Data Transfer: Beyond Kubernetes’ standard capa-
bilities, PTK handles data transfers between tasks, which
can significantly affect overall pipeline performance. Users
specify approximate data-transfer sizes via input_data
and output_data clauses for each annotation. PTK uses
these hints to provision appropriate Kubernetes-based storage
resources, such as local PersistentVolumes or NFS-
backed storage based on HDD and SSD managed through
Kubernetes’ PVCs, for tasks deployed on separate Pods. For
tasks residing within the same Pod, PTK employs an in-
memory data-transfer mechanism using Kubernetes’ tempo-
rary shared volume emptyDir with medium: "Memory",
facilitating high-performance communication. In our pipeline,
NFS-backed PVCs are used for inter-Pod queues.

Task connectivity follows standard Python conventions:
function arguments represent inputs and return values repre-
sent outputs. By analyzing these annotations and task argu-
ments, PTK ensures that dependent tasks residing in different
Pods and containers transfer data correctly. For automatic seri-
alization and deserialization of transferred data, PTK leverages
Python’s built-in json module for standard Python types and
the external NumPy library for array data, enabling seamless
data exchange within the pipeline.

IV. AUTOSCALING MECHANISM

In this section, we introduce the adaptive autoscaling mech-
anism integrated into PTK and describe its core components
(shown in Fig. 3). We address how PTK supports reactive
vertical scaling and coordinates vertical and horizontal scaling
actions to optimize pipeline-level autoscaling decisions.

from PTK import task

@task (name=’ ingest’,
10GiB’, None), input_data={’size’
pending_res=(’50MiB’, "500MiB’),
output_data={’size’ :’6GiB’, ’type’:'nfs’})
def ingest():
Task 1: Ingest raw data from source
return ingest_result

cpu= (4, None), memory=(’

" 6GiB’" },

@Qtask (name='preprocess’, cpu=(16, 48), memory
=("10GiB’, ’"20GiB’), replicas=(1, 3),
cpu_thresholds=((8, 32), (16, 64)),
memory_thresholds=((’8GiB’, ’'32GiB’), (’1l6

GiB’, ’64GiB’)), pending_res=(’50MiB’", '
500MiB"), output_data={’size’:’6GiB’", '
type’ :'nfs’}, gamma_up=0.5, gamma_down
=0.25, downscale_guard=0.5)

preprocess (ingest_result) :

Task 2: Preprocess data

return preprocess_result

def

@task (name='batch’, cpu=(4, None),
GiB’, None), utilization_bounds=(0.3,
, pending_res=(’50MiB’, ’'500MiB’"),
output_data={’size’ :"6GiB’, ’type’:'nfs’})
def batch (preprocess_result):
Task 3: Reorganize batches
return batch_result

memory= ('8
0.8)

@task (name='run_inference’, cpu=(2, None),
gpu=1l, memory=(’6GiB’, None), pending_res
=(’50MiB”, ’500MiB’), output_data={’size’:
"8GiB’, ’'type’ :'nfs’})

def run_inference (batch_result):
Task 4: CNN-based classification

return run_inference_result

@task (name=’ filter_aggregate’, cpu=(2, None),
memory=(’4GiB’, None), pending_res=(’50
MiB’, ’500MiB’), output_data={’size’:’8GiB
", "type’:'nfs’})

def filter_aggregate (run_inference_result):
Task 5: Filter results
return filter result

def main () :

ingest_res = ingest ()

prep_res = preprocess (ingest_res)

batch_res = batch (prep_res)

infer_res = run_inference (batch_res)

filter_res = filter_aggregate(infer_res)

Listing 1. Galaxyl0 DECaLS inference pipeline

A. PTK Autoscaling Components

The proposed PTK autoscaling mechanism comprises two
core components that operate collaboratively to enable dy-
namic pipeline-level autoscaling within Kubernetes clusters.

Metrics Agent: A lightweight Metrics Agent is implemented
as a Kubernetes DaemonSet configured to run one Pod per
node and continuously collects runtime utilization metrics
(CPU, memory, GPU) and queue metrics (per-task queue

Kubernetes Cluster

Node 1 Node 2 Node 3
Pod 1 Pod 1 Pod 1
Pod 2 Pod 2 Pod 2
Metrics Metrics Metrics
Agent Agent Agent
Monitoring Node
PTK Autoscaling Controller
Prometheus Server

Fig. 3. Core components of our autoscaling framework.

length and wait time). CPU/memory come from Kubernetes;
GPU metrics are exported via the NVIDIA Data Center GPU
Manager (DCGM) when GPUs are present. Queue metrics are
emitted by the PTK library at the task ingress/egress points
to avoid log scraping. Metrics are exported in real time to
the Prometheus server [20] at 5s intervals, enabling rapid
aggregation and analysis of metrics to support timely pipeline-
level autoscaling decisions.

PTK Autoscaling Controller: Implemented using Kube-
builder [21], the controller orchestrates autoscaling decisions
based on time-series metrics provided by Prometheus via
its HTTP API, which are systematically collected by Met-
rics Agents. At fixed decision intervals (default: 60s), the
controller computes coordinated horizontal (replica counts)
and vertical (CPU/memory requests and limits) actions per
task over a stabilization window (default: 300s). To prevent
oscillations, PTK enforces one action per decision interval and
records the timestamp of the last change. If metrics are stale
or unavailable for a task, scaling for that task is temporarily
frozen until fresh samples are observed.

Leveraging Kubernetes v1.33 in-place Pod vertical scaling
for CPU and memory, the controller updates container requests
and limits without restarting Pods [19]. We optionally use the
upstream VPA recommender for target hints but do not rely on
VPA’s eviction-based update path. For horizontal actions, the
controller writes the target replica count via the standard scale
subresource of the owning workload. All changes are enacted
through the Kubernetes API.

The controller, Prometheus Server and Metrics Agent are
deployed alongside each application, providing real-time mon-
itoring and continuous optimization of autoscaling decisions.

B. Horizontal and Vertical Scaling

By default, Kubernetes’ HPA and VPA operate indepen-
dently, which can lead to conflicting or inefficient resource-
allocation decisions. To address this limitation, we present
a dynamic autoscaling mechanism integrated into PTK that
seamlessly combines reactive vertical and horizontal scaling.
This unified approach is executed by the PTK Autoscaling
Controller at each decision interval, applying HPA or VPA
holistically as appropriate to proactively adjust per-Pod re-
sources and replica counts and to optimize task performance,
resource efficiency, and pipeline responsiveness. The proposed
scaling strategy consists of two complementary phases:

Horizontal Scaling Phase: The PTK framework dynami-
cally adjusts the replica count 7} for each task ¢; based on
the current queue length ¢; and resource utilization w; and a
per-task stabilization window extending Kubernetes’ standard
HPA. Algorithm 1 illustrates scaling logic only for CPU,
but identical logic is applied to memory and GPU, currently
assuming homogeneous GPU types across the cluster.

The pending_res annotation defines the input-queue

bounds ¢™" and ¢"®* for task t¢;; the queue length g; is
measured either in items or in aggregate bytes, as specified
by the annotation. Horizontal scaling is triggered when the
queue length crosses its predefined bounds, subject to the
configured replica limits. Horizontal scaling is considered only
when ¢; crosses these bounds and a full stabilization window
has elapsed since the last scaling change for ¢;; all actions
respect the replica limits [r;™", 7.
When ¢; > ¢*** and the task has not reached its maximum
replicas (r] < r;"™*), PTK increases r} by a bounded step
proportional to the current replica count, max(1, [y -77]),
where vy, determines how many replicas can be added per
decision and guarantees that at least one is added when
is 0. It then limits the new replica count 7! to rl™
Conversely, when ¢; < gMi® and the task remains above
its minimum replicas (r} > r;"™™"), PTK decreases r} by a
bounded step controlled by g, only if the per-replica CPU,
GPU or memory utilization ratio (usage u,; relative to request
r;) is below the guard threshold h; otherwise no downscale
is applied. Both ¢; and u; are averaged over the stabilization
window, and the controller records the time of each change to
suppress further actions within the same window.

At each decision interval, the controller runs the same
horizontal scaling three times, once each for CPU, memory,
and GPU, so it gets three replica proposals for the task. They
look at the task’s input-queue pressure but use the resource-
specific utilization to decide whether scale-in is safe. The
controller merges these proposals conservatively: on scale-
out, it picks the largest of the three; on scale-in, it reduces
replicas only if all three passes agree that it is safe to shrink;
otherwise, it keeps the current replica count. This prevents
removing capacity while any resource is still a bottleneck.

Vertical Scaling Phase: The PTK framework dynamically
adjusts CPU and memory resource requests r; and limits
l; of existing Pods for each task ¢; based on the mean
per-replica usage u; measured over the stabilization window
(Algorithm 2). While the algorithm illustrates CPU scaling,
the logic for memory scaling is identical. PTK uses lower
and upper utilization bound AM" and h®*, with default
values of 50% and 90%. Vertical scaling is considered when
either (i) the queue length ¢; is within its bounds [qzmin7 ;"]
instantiated by the pending_res annotation, or (ii) the task
has reached its maximum replica count (r} = r;"™")

When utilization relative to the current request exceeds the
upper bound h}"®*, PTK scales the request up so that the
predicted utilization falls back near the upper bound, rounding
to scheduler units ¢ (by default, 0.1 cores and 128 MiB),
ensuring resource values remain within the defined maximum

Algorithm 1: PTK Horizontal Scaling (CPU)

Algorithm 2: PTK Vertical Scaling (CPU)

Input:
., t¢}: set of ¢ tasks; each task ¢; is defined by:

r,min r,maxij,
y T

T={t,..
ri: current replicas with bounds [r; f ;
gi: current queue length with bounds [¢™™"
ri: per-replica CPU request (r; > 0);
u;: per-replica CPU usage, averaged over the stabilization
window;
® Yup, Ydown: Scale-up / scale-down step fractions;
o h: downscale guard (utilization-ratio threshold).
Output: ,
T' = {t},...,t;}: updated tasks with adjusted replicas r} .
1 foreach task t; € T do

maxi.
[3 il

2 if ¢ > ¢ and rj < ;™" then
’ . r,maxy .,

3 ‘ r; < min(r] + max(1, [yup - 7i] 2;‘ r;):

4 else if ¢; < g™ and v} > r;"™" and — < h then

T3

! .

5 ‘ i < max(r; — max(1, [Yaown -7i]), 7);
’

6 else r; <+ 75

7 return 7’

thresholds r;"#*. The corresponding limit is increased consis-
tently (preserving the request and limit ratio when possible),
then clamped to [[M", [M%%] from cpu_thresholds and
memory_thresholds while ensuring I} > 7.

Conversely, when utilization drops below the lower bound, it
scales the request down so that the predicted utilization returns
to the band, rounding down to scheduler units and never going
below 7%, The limit is reduced in step with the request and
clamped to [[?® [M2X] preserving [} > r{. If utilization lies
within the band, both requests and limits are left unchanged.
Due to current Kubernetes constraints, PTK performs vertical
scaling only for CPU and memory; GPUs cannot be resized
in place and are addressed via horizontal scaling.

Taken together, horizontal scaling and vertical scaling en-
able the framework to maintain throughput and responsiveness
while improving efficiency and stability. To avoid vertical and
horizontal interference, PTK (i) bases horizontal decisions on
external queue-length signals rather than CPU-percentage of
request, (ii) performs at most one action (replica or request
and limit change) per decision interval and during which no
further scaling is applied to the pipeline. We configure the
stabilization windows and rate limits to suppress oscillations.

V. EXPERIMENTS

To empirically evaluate the effectiveness of the dynamic au-
toscaling mechanism, we constructed scenarios for the Python-
based ML inference pipeline described in Section III-B.

A. Overview

We construct a streaming image-classification inference
pipeline from the GalaxylO dataset (256x256-px cutouts;
each image ~145KiB) as the input stream (Section III-B).
Using the same pipeline, to vary compute intensity at fixed
network throughput, we also consider GalaxiesML (127x127 -
px cutouts; each image ~35 KiB) [22]. In both cases, we form
synthetic batches to produce controlled input throughput.

Input:

T ={t1,...,t:}: set of ¢ tasks; for each ¢;:

ri: current replicas with bounds [r;"™", r; ;
gi: current queue length with bounds [¢}"", ¢{***];
ri: per-replica CPU request with bounds [r;™", r;"**];
l;: per-replica CPU limit with bounds [[j"™", I;"**];
u;: per-replica CPU usage, averaged over the stabilization
window;
o M ¥ CPU utilization bounds;
e gcpu: CPU scheduler quantum (e.g., 0.1 cores).
Output:
T = {t1,...,t;}: updated tasks with adjusted CPU requests
and limits (r}, 1}).
1 foreach task t; € T do

r,maxjy,

2 if ¢ < g < @™ or i =" then
.o Ui
3 if — > h™** then
T
4 ‘ i min([ihff,éx—‘ , T;"ax);
w v Gepu
5 else if — < ™™ then
i
’ U, min |\ .
B I e (e
, K Qcpu
7 else r; < 7;;
8 if 7 # r; then
/ . max T;'li / min .
9 l; < min | [}, max o , Ty Ui ;
v laepu
10 else I} « I;;

11 return 7’

We evaluate our proposed PTK autoscaling strategy against
two Kubernetes baselines, where all strategies use identical
min/max replica bounds per task:

(1) HPA+VPA (uncoupled): HPA with an 80% CPU target
(300s stabilization) and VPA in Auto mode with evicting
updates; only CPU/memory metrics are used (no queue or
GPU signals); in-place vertical resizing is applied by PTK
based on VPA recommendations.

(ii)) KEDA: HPA driven by an external queue-length metric
(5min average) implemented via KEDA; scale-to-zero dis-
abled; 300s for both stabilization and cooldown periods; no
vertical scaling. Polling interval is 30s. We treat KEDA as a
baseline because it uses the same queue-length signal as PTK
for horizontal scaling. Replica bounds are identical to PTK.
The queue threshold equals the pending_res bounds.

(iii) PTK: our controller from Section IV, combining queue-
aware horizontal scaling with reactive in-place vertical scaling
(CPU/memory) using a utilization band of [0.5,0.9] and a
300s stabilization window; decisions every 60s.

Experiments run on Google Cloud Platform (GCP) on a ho-
mogeneous node pool with three n1-standard-64 nodes in
us—centrall; each node has four NVIDIA Tesla T4 GPUs
(16 GiB). A dedicated CPU-only node (nl-standard-4)
hosts the PTK Autoscaling Controller and Prometheus (pinned
via a Kubernetes node selector). The CNN inference task uses
CUDA 12.4 on GPU; other tasks are CPU-only. Inter-task
queues use NFS-backed PVCs (ReadWriteMany) so that
replicas across nodes consume shared data consistently. We

TABLE I
EXPERIMENT 1: DATA-INTENSIVE SCENARIOS
Autoscalin . Provisioned Cost
Strategyg Scenario | Throughput resources ($/h)
img/s | MiB/s | CPU | Memory | GPU

1 500 | 70 34 50 1 |[1.72
HPA+VPA 2 1,500| 210 | 64 112 2 |3.36
3 3,000 420 | 112 192 4 16.04
1 500 | 70 34 52 1 [1.73
KEDA 2 1,500 210 | 56 100 2 |3.04
3 3,000 420 | 96 170 4 1470
1 500 | 70 32 53 1 |1.67
PTK 2 1,500 210 | 48 87 2 1271
3 3,000 420 | 76 149 3 [3.59

Note: CPU values are vCPU cores; Memory values are in GiB.

discard the first 10 min as warm-up and average metrics over
the subsequent 60 min.

We model cost using the GCP Pricing Calculator [23]. For
each task, we extract the steady-state provisioned resources
over the reporting window—i.e., the average replica count
multiplied by the per-replica requests with the number of
GPUs. In us—centrall and at on-demand rates, we price
the smallest single VM configuration that can host that task
footprint: for CPU/memory we select a custom nl machine
with the required vCPUs and GiB (rounded up), and when
GPUs are present we attach the minimal number of T4 devices
needed for that task; this yields a per-task $/h. We sum tasks
to obtain the modeled pipeline cost for each strategy. This cost
reflects the resources used by the pipeline, not the cluster’s bill,
and is reported consistently across strategies with identical
task-to-Pod mappings, images, and hardware. We held the
cluster hardware, container images, and task-to-Pod mappings
fixed across all experiments; only the input throughput and
autoscaling policy varied.

B. Evaluation Scenarios

To evaluate and compare the performance of different au-
toscaling approaches, we conducted two distinct experimental
scenarios (compute-intensive and data-intensive) designed to
simulate realistic workload variations.

Experiment 1. Data-Intensity Sweep: To assess horizontal-
scaling responsiveness under varying input pressure, we ad-
justed the input throughput by modifying the number of con-
current images per second, while keeping the per-image size
(GalaxylO cutouts, ~145KiB each) fixed, closely reflecting
realistic operational conditions. We considered three scenarios
to evaluate scalability and resource efficiency (see Table I):

1) Moderate Load (baseline): 500 images/s (=70 MiB/s).
2) High Load: 1,500 images/s (3 baseline; ~210 MiB/s).
3) Peak Load: 3,000 images/s (6x baseline; ~420 MiB/s).

All images differ in content but remain identical in size,
ensuring consistent assessment criteria across all scenarios.

As the input throughput scales from 1 x (baseline) to 3x and
6x, PTK sustains the target throughput with fewer resources
than uncoordinated Kubernetes autoscaling. At moderate load,
PTK reduces CPU cores by 5.9% (34 vs. 32) while allocating

I HPA+VPA (Kubernetes baseline)
800+ HHE KEDA (Kubernetes baseline)
/1 PTK

p95 end-to-end latency (ms)

N

Scenario 2
1,500 img/s
210 MiB/s

Scenario 3
3,000 img/s
420 MiB/s

Scenario 1
500 img/s
70 MiB/s

Fig. 4. p95 end-to-end latency by load scenario for the Galaxy10 dataset.

6.0% more memory (50 vs. 53) with the same GPU count,
lowering cost by 3.0%. As PTK requires an additional node
for Autoscaling Controller and Prometheus Server, it reduces
differences in resource utilization and cost for scenarios with
smaller data volumes. However, at high load, PTK shows
better results, decreasing the number of CPU and memory by
25.0% and 22.3%, while keeping the GPU count the same,
cutting cost by 19.4%. At peak load, PTK requires three
GPUs instead of four and further reduces CPU and memory
by 32.1% and 22.4%, yielding a 40.6% lower cost. These
gains arise from coordinating HPA and VPA around queue-
length bounds and stabilized utilization, avoiding the overpro-
visioning observed with independent autoscalers. Relative to
KEDA, PTK achieves a smaller footprint at all loads by right-
sizing CPU/memory in place and scaling replicas only when
queues breach bounds. PTK provisions 20.8% less CPU and
12.4% less memory at peak load and requires 3 GPUs at peak,
decreasing modeled cost by 23.6% compared with KEDA.

We measure per-image end-to-end latency as the time from
ingest enqueue to result persistence at the sink, and report 95th
percentile (p95) over a 60-min steady-state window following
a 10-min warm-up (Fig. 4). The figure plots p95 latency for
three data-intensive load scenarios; the y-axis shows latency
(ms) for the two Kubernetes baselines (HPA+VPA and KEDA)
and PTK, and the x-axis lists the three input-rate scenarios.
Across all loads, PTK yields the lowest latency, improving
over HPA+VPA by 6-23% and over KEDA by 14-35%.

Experiment 2. Compute Intensity at Fixed Throughput:
To exercise vertical scaling while holding network pressure
constant, we ran two workloads at a fixed input workload of
~210MiB/s, matching the high-throughput setting in Experi-
ment 1. The baseline workload uses Galaxy10 cutouts, which
yields ~1,500 images/s (256256 -px) at this data throughput
(Scenario 1). The compute-intensive workload uses Galax-
iesML cutouts, which yields ~6,144 images/s (127x 127 -px)
at the same 210 MiB/s (Scenario 2).

However, due to the differences in image resolutions, the
number of images processed per second varies significantly,
thus changing the computational demands per second. The per-
inference compute differs, but because the 127x127 stream
yields ~4x more images/s, total compute/s is higher, which
primarily engages VPA. This design isolates and evaluates the
effectiveness of PTK’s vertical autoscaling capabilities under
changing computational loads. In both experimental setups,
we measured and compared pipeline resource utilization and

TABLE II
EXPERIMENT 2: COMPUTE INTENSITY AT FIXED THROUGHPUT

Autoscaling . Provisioned Cost
Strategy Scenario | Throughput resources ($/h)
img/s |MiB/s | CPU |Memory| GPU

1 1,500 210 | o4 112 2 1332

HPATVPA 1 le1da| 210 | 72 | 128 | 2 |36
1 1,500 210 | 56 100 2 13.04

KEDA > 6144 210 | 62 | 108 | 2 |324
1 1,500 210 | 48 87 2 |2.68

PTK 2 6144 210 | 54 | 91 | 2 |290
Note: CPU values are vCPU cores; Memory values are in GiB.

overall cost efficiency. We report the resulting steady-state
resource footprints and costs in Table II.

Scenario 1 reproduces the high-throughput setting from
Experiment 1. PTK sustains the target rate with the same GPU
count while right-sizing CPU and memory, lowering modeled
cost by 19.3% relative to HPA+VPA and 11.8% relative to
KEDA. Scenario 2, with substantially more images/s at the
same byte throughput, again uses 2 GPUs across all three
strategies. HPA+VPA provisions 72 vCPUs and 128 GiB and
KEDA 62 vCPUs and 108 GiB, whereas PTK right-sizes to
54 vCPUs and 91 GiB: 25.0% fewer CPU, 28.9% less memory,
and 20.8% lower cost relative to HPA+VPA; and 12.9% fewer
CPU, 15.7% less memory, and 10.5% lower cost relative
to KEDA. Because queues remain within bounds, horizontal
actions are infrequent; gains primarily come from in-place
vertical scaling that keeps utilization within the target band.

VI. CONCLUSION

This paper presents PTK, a runtime-adaptive autoscaling
orchestrator for deploying and scaling task-based pipelines
on Kubernetes clusters. PTK provides Python source-code
annotations that let users specify resource requirements, de-
ployment configurations, data transfers, and autoscaling con-
straints prior to deployment. We presented a coordinated
autoscaling mechanism that integrates reactive, queue-length-
driven horizontal scaling and in-place vertical scaling.

We implemented a prototype and evaluated it on a stream-
ing ML inference pipeline. It outperforms uncoordinated
HPA+VPA and KEDA baselines, sustaining target throughput
while reducing hourly cost by up to 41%, CPU by up to 32%,
and memory by up to 29%, and lowering the GPU count in
the peak-load scenario. PTK further reduces p95 end-to-end
latency by approximately 6-23% compared with HPA+VPA
and 14-35% compared with KEDA across scenarios.

Future research directions include enhancing PTK by in-
troducing more advanced annotations (e.g., SLO- or latency-
aware constraints), integration with cluster autoscaling mech-
anisms and heterogeneous node pools, especially those with
advanced GPU configurations. Extending integration to mul-
tiple cloud providers beyond GKE will further increase the
versatility and practical applicability of PTK.

REFERENCES

[1] Kubernetes.io, “Kubernetes: Open-Source Container Orchestration Sys-
tem.” https://kubernetes.io/, 2024. [Online; accessed 10-May-2025].

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

A. Nagiyev, E. Bajrovic, and S. Benkner, “Python to kubernetes: A pro-
gramming and resource management framework for compute- and data-
intensive applications,” in 2024 IEEE 30th International Conference on
Farallel and Distributed Systems (ICPADS), pp. 479-486, IEEE, 2024.
E. Casalicchio, “A study on performance measures for auto-scaling cpu-
intensive containerized applications,” Cluster Computing, vol. 22, no. 3,
pp. 995-1006, 2019.

C. Shan, C. Wu, Y. Xia, Z. Guo, D. Liu, and J. Zhang, “Adaptive resource
allocation for workflow containerization on kubernetes,” Journal of
Systems Engineering and Electronics, vol. 34, no. 3, pp. 723-743, 2023.
K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand, et al., “Autopilot: work-
load autoscaling at google,” in Proceedings of the Fifteenth European
Conference on Computer Systems, pp. 1-16, 2020.

D.-D. Vu, M.-N. Tran, and Y. Kim, “Predictive hybrid autoscaling for
containerized applications,” IEEE Access, vol. 10, pp. 109768-109778,
2022.

C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:
a unified platform for task scheduling on heterogeneous multicore
architectures,” in Euro-Par 2009 Parallel Processing: 15th International
Euro-Par Conference, Delft, the Netherlands, August 25-28, 2009.
Proceedings 15, pp. 863-874, Springer, 2009.

R. Chandra, Parallel programming in OpenMP. Morgan kaufmann,
2001.

S. Benkner, E. Bajrovic, E. Marth, M. Sandrieser, R. Namyst, and
S. Thibault, “High-level support for pipeline parallelism on many-core
architectures,” in European Conference on Parallel Processing, pp. 614—
625, Springer, 2012.

E. Bajrovic and S. Benkner, “Automatic performance tuning of pipeline
patterns for heterogeneous parallel architectures,” in Proceedings of
the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), (Las Vegas, Nevada, USA), July
21-24 2014.

E. Bajrovic, S. Benkner, and J. Dokulil, “Pipeline patterns on top
of task-based runtimes,” in International Conference on Parallel and
Distributed Computing: Applications and Technologies, pp. 100-110,
Springer, 2018.

The KEDA Authors, “Keda: Kubernetes event-driven autoscaling.”
https://keda.sh/, 2025. [Online; accessed 23-Sep-2025].

“Knative autoscaling.” https://knative.dev/docs/serving/autoscaling/,
2025. [Online; accessed 10-Aug-2025].

H. W. Leung and astroNN contributors, “Galaxyl0 decals dataset.”
astroNN Documentation, 2025. [Online; accessed 10-Sep-2025].

C. J. Lintott, K. Schawinski, A. Slosar, K. Land, S. Bamford, D. Thomas,
M. J. Raddick, R. C. Nichol, A. Szalay, D. Andreescu, et al., “Galaxy
z00: morphologies derived from visual inspection of galaxies from the
sloan digital sky survey,” Monthly Notices of the Royal Astronomical
Society, vol. 389, no. 3, pp. 1179-1189, 2008.

M. Walmsley, C. Lintott, T. Géron, S. Kruk, C. Krawczyk, K. W.
Willett, S. Bamford, L. S. Kelvin, L. Fortson, Y. Gal, et al., “Galaxy
z00 decals: Detailed visual morphology measurements from volunteers
and deep learning for 314 000 galaxies,” Monthly Notices of the Royal
Astronomical Society, vol. 509, no. 3, pp. 3966-3988, 2022.

A. Dey, D. J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, J. R.
Findlay, D. Finkbeiner, D. Herrera, S. Juneau, et al., “Overview of the
desi legacy imaging surveys,” The Astronomical Journal, vol. 157, no. 5,
p. 168, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770-778, 2016.

“Resize cpu and memory resources assigned to containers.” Kubernetes
Documentation, 2025. Feature state: Kubernetes v1.33 [beta]. [Online;
accessed 10-Sep-2025].

The Prometheus Authors, “Prometheus: Monitoring system & time series
database.” https://prometheus.io/, 2016. [Online; accessed 17-Sep-2025].
Kubebuilder Google Group, “Kubebuilder: Kubernetes API Builder.”
https://book.kubebuilder.io/, 2024. [Online; accessed 10-May-2025].

T. Do, B. Boscoe, E. Jones, Y. Q. Li, and K. Alfaro, “Galaxiesml: a
dataset of galaxy images, photometry, redshifts, and structural parame-
ters for machine learning,” arXiv preprint arXiv:2410.00271, 2024.
Google Cloud, “Google cloud pricing calculator.”
https://cloud.google.com/products/calculator, 2025. [Online; accessed
10-Sep-2025].

