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A B S T R A C T
The increasing complexity of distributed computing environments necessitates efficient resource man-
agement strategies to optimize performance and minimize resource consumption. Although proactive
horizontal autoscaling dynamically adjusts computational resources based on workload predictions,
existing approaches primarily focus on improving workload resource consumption, often neglecting
the overhead introduced by the autoscaling system itself. This could have dire ramifications on
resource efficiency, since many prior solutions rely on multiple forecasting models per compute node
or group of pods, leading to significant resource consumption associated with the autoscaling system.
To address this, we propose GraphOpticon, a novel proactive horizontal autoscaling framework that
leverages a singular global forecasting model based on Spatiotemporal Graph Neural Networks.
The experimental results demonstrate that GraphOpticon is capable of providing improved service
performance, and resource consumption (caused by the workloads involved and the autoscaling system
itself). As a matter of fact, GraphOpticon manages to consistently outperform other contemporary
horizontal autoscaling solutions, such as Kubernetes’ Horizontal Pod Autoscaler, with improvements
of 6.62% in median execution time, 7.62% in tail latency, and 6.77% in resource consumption, among
others.

1. Introduction
The growing complexity of distributed computing en-

vironments introduces variability in workload demands, la-
tency issues, and data management challenges, necessitating
automated resource management strategies. Resource scal-
ing (1) is the process of dynamically adjusting computational
resource allocation, such as CPU and memory, based on
workload fluctuations to optimize performance and cost
efficiency (2). Horizontal scaling refers to the process of
increasing or decreasing the number of instances in response
to demand. Kubernetes1, a widely adopted container orches-
tration framework, plays a crucial role in managing these
scaling processes through mechanisms such as the Horizon-
tal Pod Autoscaler (HPA) (3), ensuring efficient allocation
of computational resources via pod replication.
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In large-scale systems, resource utilization metrics typi-
cally exhibit time-series patterns with non-linear behaviors.
Recurrent Neural Networks (RNNs) (4) have demonstrated
effectiveness in modeling such data distributions. Advanced
RNN-based architectures, such as Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Units (GRU) (5), can pre-
dict resource utilization trends, enabling more efficient sys-
tem orchestration. While conventional time-series forecast-
ing models focus on single-step-ahead predictions, multi-
step-ahead forecasting strategies provide a sequence of fu-
ture values, allowing for more granular resource manage-
ment. This enables the implementation of proactive resource
allocation and scaling techniques that mitigate bottlenecks
and improve overall efficiency.

Encoder-Decoder (ED) Deep Learning (DL) architec-
tures have shown superior performance in multi-step fore-
casting compared to traditional prediction models (6). The
encoder processes a variable-length sequence, transforming
it into a structured representation that the decoder then
utilizes to generate predictions. Recent advancements in
handling non-Euclidean data have also led to the emergence
of Graph Neural Networks (GNNs) (7), which excel in
solving problems with spatial components. This capability
stems from their inherent ability to leverage and utilize the
spatial characteristics of data related to a given problem.
Spatio-temporal GNNs (8) have been particularly successful
in forecasting problems, as their architecture allows them to
simultaneously capture both spatial and temporal dependen-
cies. This is achieved by using graph convolutions to model
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spatial dependencies and RNNs to capture temporal depen-
dencies in alignment with the Encoder-Decoder paradigm.
Proactive horizontal autoscaling strategies involve leverag-
ing such models to enhance resource allocation efficiency
by dynamically adjusting the number of processing nodes in
anticipation of workload fluctuations.

A review of the scientific literature reveals that prior
works on proactive horizontal autoscaling focus on improv-
ing resource consumption solely from the perspective of
the workloads being executed. Hence, they do not consider
the resource consumption of the autoscaling system itself.
In proactive horizontal pod autoscaling, workload resource
consumption refers to the resources utilized by the running
application workloads within a Kubernetes cluster. This
metric is essential for assessing system load and making
informed scaling decisions. Conversely, autoscaling system
resource consumption accounts for the resources used by the
autoscaler itself. An efficient proactive autoscaling system
should minimize its own resource footprint while effectively
scaling workloads to maintain performance and optimize
resource utilization. Many of the prior works are designed to
employ multiple forecasting models (one per pod or group
of pods), which would introduce significant overhead if
integrated into the scaling decision-making process.

Employing multiple DL models in decision-making can
improve resource management by enabling task specializa-
tion. However, this approach also increases resource usage,
as each model requires computational resources for both
training and inference. Training multiple models is partic-
ularly resource-intensive, and frequent updates can further
amplify resource demands. Moreover, managing the outputs
of multiple models introduces computational overhead and
potential latency, affecting performance in real-time appli-
cations. Therefore, it is essential to minimize the number
of forecasting mechanisms deployed in a system, ensuring
efficient resource scaling and management while mitigating
the subsequent resource consumption. This overhead could
potentially offset the benefits of proactive resource allocation
and deallocation.

These observations motivated us to propose GraphOp-
ticon. GraphOpticon is a proactive horizontal autoscaling
solution designed to enhance service performance while
minimizing autoscaling system resource consumption by
leveraging only a singular global forecasting model instead
of numerous local specialized ones. Towards achieving this
goal, GraphOpticon is based on the implementation of in-
formation fusion and distillation processes, driven by the
characteristics of the deployed services, as well as by the
ontological relations that these services form with each other
in order to further refine the generalization capabilities of the
employed forecasting model that is based on Spatiotemporal
GNNs. The key contributions of our research are:

• We advocate for the use of a singular global forecast-
ing model (instead of numerous local ones) in order
to establish resource-efficient proactive horizontal au-
toscaling.

• We propose GraphOpticon, a novel global horizontal
autoscaling solution that leverages the information
fusion & distillation processes to improve both ser-
vice performance and workload resource consumption
while minimizing the underlying autoscaling system
resource consumption.

• We extensively analyze the architectural decisions,
results, and potential ramifications that are intertwined
with the use of a global proactive horizontal autoscal-
ing solution.

The remaining sections of this work are organized as fol-
lows. Section 2 provides the current research status of rele-
vant proactive horizontal autoscaling solutions. Section 3 es-
tablishes the motivation behind this study. Section 4 presents
the problem formulation. Section 5 describes the proposed
’GraphOpticon’ solution. Section 6 discusses several imple-
mentation aspects that are intertwined with GraphOpticon.
Section 7 focuses on the experimental results to evaluate
the efficiency of the proposed solution. Finally, Section 8
concludes this study and discusses potential directions for
future work.

2. Related Work
This section explores recent advancements in proac-

tive horizontal autoscaling techniques. To achieve this, we
meticulously analyze numerous scientific works in the frame
of various aspects, such as forecasting models, workflows,
datasets, evaluation tools, and evaluation metrics (as ex-
plained in Table 2). An overview of this analysis is presented
in Table 1. Aside from showcasing the fact that GraphOp-
ticon constitutes an advancement toward more efficient re-
source orchestration solutions, the purpose of this section
is to guarantee that the subsequent experimental evaluation
will be conducted in a manner that is aligned with the
corresponding scientific literature.

Forecasting models are widely explored in the literature
for resource orchestration. These models play a crucial role
in proactive autoscaling, where they predict future resource
needs and scale infrastructure accordingly. To improve the
forecasting performance of container-based load prediction
models, Tang et al. (9) design ’Fisher,’ which consists of
metric selection and neural network training components.
The metric selection component identifies relevant metrics
using a novel shape-based time series clustering technique.
Subsequently, a Bidirectional LSTM (BiLSTM) is applied
to predict the one-step-ahead workload. Patel et al. (10) pro-
pose a dynamic consolidation technique for cloud systems.
They present a clustering-based stacked bidirectional LSTM
model to forecast the future CPU and memory usage of ma-
chines. Utilizing the prediction results, they design different
consolidation approaches to show improvements in energy,
migrations, and SLA violations. Radhika et al.(11) present
ARIMA and LSTM algorithms to predict future CPU usage
from a 3-tier architecture of web applications hosted on a
private cloud platform. The LSTM approach notably shows
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the high accuracy and effectiveness in forecasting future web
application demands. Theodoropoulos et al. (6) introduced
a novel Encoder-Decoder architecture that utilizes stacked
LSTM and BiLSTM layers at both the encoder and the
decoder parts of the model. This approach managed to pro-
vide superior results in terms of service demand forecasting
accuracy against a plethora of contemporary forecasting so-
lutions, is referred to as the Hybrid LSTM Encoder-Decoder.
Following works (12) have also demonstrated the superiority
of the Hybrid LSTM Encoder-Decoder in the frame of
resource consumption forecasting, surpassing competitors
such as LTMS, Bi-LSTMs, GRUs, the CNN-LSTMs, as well
as various other ED architectures, providing slightly worse
results only when compared against Spatiotemporal GNNs
that are based on Discrete-Time Dynamic Graphs (DTDG)
(13) paradigm.

Proactive horizontal autoscaling strategies leverage ma-
chine learning and predictive models to enhance resource
allocation efficiency by dynamically adjusting the number
of processing nodes in anticipation of workload fluctua-
tions. Various approaches have been proposed, each aiming
to improve certain aspects of the autoscaling process. For
instance, some of them focus on improving performance
in the frame of evaluation metrics such as Inference Time,
Latency, Availability, Elastic Speedup, Execution Time, and
Response Time. Violos et al. (14) introduce an ’Intelligent
Horizontal Proactive Autoscaling’ strategy that utilizes re-
source usage metrics (CPU) of processing edge nodes to
make timely and efficient scale-up and scale-down decisions.
Their approach is based on a double-tower deep learning-
driven topology, which simultaneously analyzes and dis-
tinguishes the time-series resource usage metrics for local
processing nodes and the edge infrastructure’s aggregated
resource metrics. The framework shows improvements in
latency and execution time. Kakade et al. (15) designed a
Bi-LSTM model-based proactive autoscaler to predict future
demands and automatically scale containers. Their exper-
iments with a three-node Kubernetes setup indicate that
Bi-LSTM outperforms stacked LSTM, while the proactive
autoscaler achieves better performance than the default Ku-
bernetes autoscaler. Marie-Magdelaine et al. (16) develop an
LSTM-based proactive auto-scaling approach that dynami-
cally adjusts the resource pool horizontally and vertically to
optimize availability and minimize latency in cloud-native
applications.

Aside from improving performance, other works aim
to also enhance resource efficiency in the frame of In-
ference Time, Training Time, over-provisioning, under-
provisioning, and Resource Underutilization. For instance,
Imdoukh et al. (17) design an LSTM-based adaptive fore-
casting model that predicts future HTTP demands to de-
termine the required number of containers, minimizing
delays caused by starting and stopping active containers and
eliminating oscillations during scaling operations. Dang-
Quang et al. (18) propose a BiLSTM-based proactive au-
toscaler to predict future HTTP workloads, incorporating
a 1-minute ’Cool Down Time’ (CDT) interval to mitigate

oscillations and a resource removal approach to handle un-
derutilized resources. Similarly, Dogani et al. (19) introduce
an attention-based GRU encoder-decoder (K-AGRUED)
model for proactive autoscaling in Kubernetes, reducing
scaling operations and under-provisioning compared to the
Kubernetes horizontal pod autoscaler. Dogani et al. (20)
devise a proactive auto-scaling approach for edge environ-
ments using FedAvg and multi-step workload forecasting
with a Bidirectional Gated Recurrent Unit (BiGRU). Their
results show improvements in resource overprovisioning,
underprovisioning, and elastic speedup while reducing data
transmission between edge nodes and cloud servers. Ahmad
et al. (21) propose Smart HPA and ProSmart HPA, two
resource-efficient horizontal pod autoscalers; Smart HPA
applies a reactive scaling policy, while ProSmart HPA
leverages Prophet-based machine learning for proactive
scaling. Their results demonstrate improvements in resource
utilization by mitigating underutilization, overprovisioning,
and underprovisioning.

Aside from the aforementioned resource efficiency eval-
uation metrics, the number of pod replicas plays a significant
role in the overall resource consumption. The number of pod
replicas directly impacts resource consumption by determin-
ing how many instances of a specific application or service
run simultaneously within a Kubernetes cluster. Each pod
replica consumes CPU, memory, and other resources based
on the application’s requirements. Increasing the number of
replicas spreads the workload, leading to higher resource uti-
lization across the cluster, which can improve performance
and availability but also increase overall resource consump-
tion. Conversely, decreasing replicas reduces resource usage
but may also impact the application’s ability to handle traffic
or provide high availability. Thus, managing pod replicas
helps balance resource efficiency with performance needs.
Following this line of thought, various works have emerged.
Yadav et al. (22) design an autoscaler that enables horizon-
tal scaling for Docker containers using a Support Vector
Regression (SVR)-based proactive method, leveraging the
IBM MAPE-K computing platform to optimize resource
allocation in terms of the number of the deployed repli-
cas. Nguyen et al. (23) introduce a graph-based proactive
horizontal pod autoscaling strategy for microservices, em-
ploying an LSTM-GNN hybrid model that first predicts up-
coming workloads and then determines the optimal number
of pods required for efficient resource allocation, leading
to significant resource savings. Goli et al. (24) propose
’Waterfall,’ a predictive autoscaler using machine learning
models such as linear regression, random forest, and SVR to
estimate the required replicas for each microservice while
considering interdependencies between services. Ju et al.
(25) introduce the Proactive Pod Autoscaler for Kubernetes,
utilizing multiple user-defined and customizable metrics for
workload forecasting, dynamically scaling applications, and
outperforming the default Kubernetes pod autoscaler in re-
source utilization efficiency. Theodoropoulos et al. (26) pro-
pose a GNN-LSTM-based approach that uses Spatiotempo-
ral GNNs to forecast CPU consumption and then leverages
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these forecasts to conduct proactive horizontal autoscaling,
achieving performance gains in execution time and latency,
while requiring fewer pod replicas.

Despite their various scientific contributions, all afore-
mentioned works examine resource consumption only from
the perspective of workloads. However, they do not account
for the potential autoscaling system resource consumption.
In proactive horizontal pod autoscaling, workload resource
consumption refers to the resource consumption caused by
the running application workloads within the Kubernetes
cluster. This metric helps determine how much load the sys-
tem is handling and is crucial for making scaling decisions.
On the other hand, autoscaling system resource consumption
pertains to the resource consumption caused by the autoscal-
ing system itself. An optimal proactive autoscaling system
should minimize its own resource footprint while effectively
scaling workloads to maintain performance and resource
efficiency. Since various of these works leverage numerous
forecasting models (one for each pod or set of pods), the
overhead that would derive from their incorporation into the
scaling decision-making process would be significant and
more than likely negate the improvements in terms of work-
load resource consumption caused by proactively allocating,
and de-allocating compute resources. To the best of our
knowledge, no work exists in the corresponding scientific
literature that aims at constructing a proactive horizontal
autoscaling solution that improves both service performance
and workload resource consumption while minimizing the
underlying autoscaling system resource consumption. Our
work is dedicated to mitigating this research gap.

3. Motivation
The use of numerous DL models comes in stark contrast

with our goal to construct a proactive horizontal autoscaling
solution that improves both service performance and work-
load resource consumption and minimizes the underlying
autoscaling system resource consumption. Having many lo-
cal models in a system allows for task specialization, which
can enhance forecasting accuracy by tailoring each model
to capture the unique characteristics of individual compute
nodes (27). Local models are designed with architectures,
features, and training datasets that optimize them for par-
ticular computing environments. However, a critical aspect
of enabling reduced resource consumption in the frame of
autonomic computing lies in the need to keep the number
of forecasting models to a minimum. Each model requires
resources to operate, meaning that a system with many local
models will generally consume more resources than one with
a single, consolidated global model. This demand can be
substantial when the models are run frequently, as with real-
time CPU forecasting in autonomic systems. Training multi-
ple local models can be very resource-intensive, especially if
each model is regularly updated to ensure optimal accuracy.
Training typically consumes far more resources than infer-
ence, and multiple training cycles for different models can

lead to significantly higher energy costs, impacting the sus-
tainability of the system. Balancing the outputs of multiple
local models requires additional computational overhead, as
the system must aggregate, reconcile, or prioritize forecasts
from each model. This integration process can introduce
latency, particularly in real-time scenarios, where autonomic
responses are critical for maintaining system stability or
optimizing resource allocation.

Motivated by the aforementioned drawbacks of lever-
aging numerous local DL models, we propose the use of
a singular global forecasting model for proactive horizon-
tal autoscaling in order to improve service performance &
resource consumption. Our main assumption is that one of
the key advantages of using a global forecasting model in
distributed computing environments is its ability to leverage
shared underlying patterns across multiple pods. In many
containerized applications, pods exhibit similar usage trends
due to common workload types, synchronized traffic pat-
terns, or shared infrastructure constraints. By recognizing
these patterns, a global model can generalize across pods,
leading to improved forecasting accuracy compared to in-
dividual pod-specific models that may overfit to transient
fluctuations or noise.

Furthermore, since pods operate within a cluster to host
services, their resource consumption is often influenced by
their service type and cluster membership. By incorporating
these factors, a global forecasting model can effectively
capture workload correlations across pods, leading to im-
proved accuracy compared to isolated, pod-specific models
that may overfit to transient variations. Pods hosting the
same service tend to exhibit similar CPU usage trends due
to synchronized request patterns, common workload depen-
dencies, and shared execution environments. For instance,
multiple pods serving the same API requests will likely
experience correlated resource consumption trends, with
peaks during high-traffic periods and lower usage during
off-hours. A global forecasting model trained on aggregated
data from such pods can identify these recurring patterns and
seasonal fluctuations, allowing for more reliable predictions
even when dealing with newly deployed or short-lived pods.
The impact of shared underlying patterns is particularly
valuable in autoscaling scenarios, where Kubernetes dynam-
ically adjusts the number of pods in response to workload
changes (28). When a new pod is spawned, it lacks historical
resource utilization data, making forecasting difficult for
local models. However, a global model can instantly predict
its expected resource consumption by leveraging data from
existing pods running the same service. This reduces the
lag time in making accurate forecasts, ensuring that resource
allocation remains efficient and preventing overprovisioning
and underprovisioning.

4. Problem Formulation
Multi-cluster deployments involve managing and or-

chestrating applications across multiple independent clus-
ters of pods. These clusters are denoted by the set 𝐶 =
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Table 1
Analysis of horizontal pod autoscaling approaches.

Contributors Forecasting Workflow Datasets Evaluation Evaluation
& Year Model Tools Metrics

Marie-
Magdelaine et
al. (16) (2020)

LSTM
Applying LSTM model to dynamically
adjust the resource pool, number of

replicas and pool of resources
Simulated traffic dataset

Digital Ocean
cloud provider’s

VMs

Availability, Latency, Number of Pod
Replicas

Imdoukh et al.
(17) (2020) LSTM

Utilizing proactive machine learning
method for auto-scaling of Docker
containers in response to dynamic

workload

HTTP request (logs of
Worldcup98) Python

MSE, 𝑅2, RMSE, MAE, Resource
Underprovisioning &

Overprovisioning, Inference Time

Goli et al.
(24) (2021)

Linear
regression,

random forest,
support vector

regression

Apply ML models to forecast the
required number of replicas for each

microservice and considers the impact of
scaling one microservice on others

within a given workload

Generated custom
dataset using Teastore

application

Compute
Canada Arbutus
Cloud platform

Response Time, Number of Pod
Replicas

Ju et al. (25)
(2021) ARMA, LSTM

Incorporates multiple metrics for
workload forecasting and later utilizes
these predictions to dynamically scale

the applications

Random access, NASA
datasets

Edge computing
cluster

MSE, Response Time, Resource
Underutilization

Dang-Quang
et al. (18)

(2021)
BiLSTM

Applying a proactive custom autoscaler
using BiLSTM model for handling the

dynamic workload

NASA and FIFA World
Cup 98 log traces

Python, Google
Colab

environment

MSE, RMSE, 𝑅2, MAE, Resource
Underprovisioning &

Overprovisioning, Elastic Speedup

Yadav et al.
(22) (2021) SVR

Applying SVR model to perform
horizontal elasticity for Docker

containers

Web service logs of the
Complutense University

of Madrid

Python,
Computing

cluster

RMSE, MAE, MSE, Resource
Consumption, Elastic Speedup

Nguyen (23)
(2022) LSTM, GNN

Applying LSTM for workload prediction
and then Graph Convolution Networks

for relationship modeling between
workload and resource consumption

Microsoft’s Azure traces AWS EC2
instances

MSE, MAE, Number of Pod
Replicas

Violos et al.
(14) (2022)

Feedfor-
ward+RNN

Applying horizontal proactive
autoscaling to provide scale up and

scale down decisions
Alibaba cluster traces Python,

CloudSim Plus
RMSE, MSE, MAE, Execution

Time, Tail Latency

Dogani et al.
(19) (2022)

Atten-
tion+GRU

Adapted proactive autoscaling method
to predict the multi-step resource usage

based on cooldown time

FIFA Worldcup Dataset,
NASA Log

Python,
Computing

cluster

MAE, MAPE, RMSE, Resource
Underprovisioning &

Overprovisioning, Elastic Speedup

Kakade et al.
(15) (2023) Bi-LSTM

Predict future demands and
automatically scale containers

accordingly

Generated custom
dataset

Computing
cluster MAE, RMSE, Latency

Theodoropou-
los et al. (26)

(2023)
GNN-LSTM

Uses Spatiotemporal GNNs to forecast
CPU consumption, and then leverage
said forecastings to conduct proactive

horizontal autoscaling

Generated custom
dataset

Python,
CloudSim Plus

MAE, RMSE, Latency, Execution
Time, Number of Pod Replicas

Dogani et al.
(20) (2024)

FedAVG-
BiGRU

Design proactive auto-scaling for a
multi-step prediction model

FIFA World Cup 98 Web
Server

Computing
cluster

MAE, MAPE, RMSE, Resource
Underprovisioning &

Overprovisioning, Elastic Speedup

Ahmad et al.
(21) (2025) Prophet

introduce ProSmart HPA, a
resource-efficient horizontal pod

auto-scaler, which utilizes machine
learning for proactive scaling to mitigate

resource mismanagement.

FIFA World Cup 98 Web
Server

AWS EC2
instances

Resource Underutilization, Resource
Underprovisioning &

Overprovisioning, Elastic Speedup

Proposed:
GraphOpticon

(2025)

GNN-LSTM,
Information
Fusion &

Distillation
Algorithms

Utilizes Spatiotemporal GNNs and
information fusion & distillation
algorithms to improve service

performance and resource consumption

Google cluster traces Python,
CloudSim Plus

RMSE, MAE, Execution Time,
Latency, Number of Pod Replicas,
Training Time, Inference Time,

Number of Parameters

𝑐1, 𝑐2, ..., 𝑐𝑐 , with 𝑐𝑐 indicating the 𝑐𝑡ℎ cluster, where 1 ≤
𝑐 ≤ |𝐶|. In the context of clusters, pods are the fundamental
units that encapsulate and run one or more containers. They
provide isolation, resource management, and a consistent
deployment model across different clusters in container
orchestration systems like Kubernetes. A pod is the smallest
deployable unit in Kubernetes and can host one or more
containers. Pods provide a layer of abstraction and encap-
sulation for its containers. These pods are denoted by the
set 𝑃 = 𝑝1, 𝑝2, ..., 𝑝𝑝, with 𝑝𝑝 indicating the 𝑝𝑡ℎ pod, where
1 ≤ 𝑝 ≤ |𝑃 |. Furthermore, they are used to host services of
various types. These types of services are denoted by the set
𝑆 = 𝑠1, 𝑠2, ..., 𝑠𝑠, with 𝑠𝑠 indicating the 𝑠𝑡ℎ type of service,

where 1 ≤ 𝑠 ≤ |𝑆|. Much like the service types mentioned
above, each pod is intertwined with a specific replication
time that highly depends on the service this pod hosts. The
replication time for pods refers to the duration it takes for a
pod in a container orchestration system (such as Kubernetes)
to be replicated. This process involves pulling container
images, setting up the environment, and initializing the
application. Faster start-up times are desirable for efficient
scaling and responsiveness in dynamic environments. These
replication times are denoted by the set 𝑇 = 𝑡1, 𝑡2, ..., 𝑡𝑡, with
𝑡𝑡 indicating the 𝑡𝑡ℎ replication time, where 1 ≤ 𝑡 ≤ |𝑇 |. Each
pod 𝑝 is associated with a service type 𝑆 and a replication
time 𝑇 .
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Table 2
Evaluation metrics used in contemporary works on proactive
horizontal autoscaling.

Evaluation Metrics Descriptions

Mean Absolute Error
(MAE)

Average magnitude of errors between
predicted and actual values

Mean Elasticity Index
(MEI)

Ratio of the minimum to the maximum of
actual vs. predicted resources, averaged

over time
Root Mean Squared

Error (RMSE)
Evaluates the standard deviation of the

prediction errors
Mean Absolute

Percentage Error
(MAPE)

Average percentage error between predicted
and actual values

R-squared (𝑅2)
Square of the multiple correlation

coefficient between the observed outcomes
and the predicted values

Mean Squared Error
(MSE)

Average squared difference between the
forecast and the observed values

Availability
Percentage of successfully processed

requests out of the total user requests
issued.

Training time Time required to train the model on a given
dataset

Inference time Time required for a trained model to make
predictions on unseen data.

Number of
parameters

Total count of trainable weights and biases
in the model

Resource
underprovisioning

Resources that a microservice needs but is
unavailable.

Resource
overutilization

Resource utilization exceeding a predefined
threshold value.

Resource
overprovisioning

The residual resource not utilized by a
microservice

Elastic speedup The rate at which a system dynamically
adjusts resources to meet workload demands

Workload Resource
Consumption

Resource consumption caused by the
running application workloads

Autoscaling System
Resource

Consumption

Resource consumption caused by the
autoscaler

Finally, each pod exhibits a certain type of resource con-
sumption. In the frame of this work, resource consumption
corresponds to the ongoing percentage of CPU utilization,
as it is the most widely applied resource metric for CPU-
intensive applications in Kubernetes (29). The ongoing re-
source consumption at pod 𝑝 at time 𝑡 is denoted as𝑅𝑝

𝑡 . Table
3 summarizes the notations used in this work. Our work aims
to introduce an advanced forecasting model that, through
information refinement & fusion, is capable of producing
more accurate resource consumption predictions regarding
multiple pods.

In time-series analysis, the multi-step formulation in-
volves predicting future values of a time series by forecasting
multiple time steps ahead. This approach contrasts with the
single-step approach, which only estimates the next point
in time. In the present challenge’s context, the output vec-
tor’s dimensional space is denoted as 𝑅|𝑃 |∗𝑀 , where |𝑃 |
represents the number of pods for which traffic predictions
are intended at time point 𝑡, and 𝑀 represents the number
of future steps for these projections. Similarly, the input
vector’s dimensional space is defined as 𝑅|𝑃 ′

|∗𝑀 ′ , with |𝑃 ′
|

corresponding to pods whose resource consumption varia-
tions depend on those of 𝑃 , and 𝑀 ′ indicating the number

of preceding time steps contributing to the retrospective
observation window (look-back window). It’s essential to
note that in the frame of this work, the value of 𝑀 ′ is
equivalent to that of 𝑀 .

To delve further into our analysis, we concentrate on a
specific time point 𝑡𝑖 and define the input vector 𝑋 as:

𝑋 = {𝑥𝑖−𝑀 ′+1, ..., 𝑥𝑖−𝑧′ , ..., 𝑥𝑖}, 𝑧
′ ∈ 𝑀 ′, (1)

where 𝑥𝑖−𝑧′ = 𝑅1
𝑡𝑖−𝑧′

, 𝑅2
𝑡𝑖−𝑧′

, ..., 𝑅|𝑃 ′
|

𝑡𝑖−𝑧′
represents the

resource consumption of each pod 𝑝 ∈ 𝑃 ′ at time 𝑡𝑖−𝑧′ .Similarly, we model the output vector 𝑌 as:

𝑌 = {𝑦𝑖+1, ..., 𝑦𝑖+𝑧, ..., 𝑦𝑀}, 𝑧 ∈ 𝑀, (2)
where 𝑦𝑖+𝑧 = 𝑅1

𝑡𝑖+𝑧
, 𝑅2

𝑡𝑖+𝑧
, ..., 𝑅|𝑃 |

𝑡𝑖+𝑧
represents resource

consumption at pod 𝑝 ∈ 𝑃 at time 𝑡𝑖+𝑧.
As our proposed solution is based on the information

fusion & distillation properties of graph neural networks,
it is crucial to transform the previous problem formulation
into a graph format. There are various graph types, with a
significant distinction being whether the considered graph
structures are static or dynamic. Dynamic graphs can be
categorized into Discrete-Time Dynamic Graphs (DTDG)
(13) and Continuous-Time Dynamic Graphs (CTDG) (30).
This work adopts the DTDG approach to represent resource
consumption across pods dynamically, since its ability to
capture spatiotemporal dependencies in the frame of re-
source consumption forecasting has been documented in the
corresponding scientific literature, as discussed previously
in the Related Work section of this work. In the DTDG
paradigm, a dynamic graph is defined as a sequence of
snapshots of a static graph, each corresponding to a specific
time-step 𝑡, with the duration between consecutive time-
steps termed as 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. These snapshots create a temporal
continuum, enabling the emergence of temporal patterns.

Each static graph consists of multiple nodes and edges
representing spatial relations. In our context, each graph
corresponds to a computational infrastructure that consists
of |𝑃 | Pods that exhibit a certain resource consumption
behavior at each time-step 𝑡.

Given an undirected graph 𝐺 with |𝑃 | nodes and 𝐸
edges, nodes correspond to pods, and edges represent the
correlations in resource consumption that emerge within the
context of the various pods. This graph can be described by
a weighted Adjacency Matrix 𝐀 ∈ ℝ|𝑃 |×|𝑃 | incorporating
edge weights 𝑤𝑖𝑗 and a Feature Matrix 𝐅 ∈ ℝ|𝑃 |×𝑉 , where
𝑉 is the dimension of each feature vector.

The Feature Matrix represents the collective of Fea-
ture Vectors. Each of the |𝑃 | rows in the Feature Matrix
corresponds to a Feature Vector describing node-specific
attributes. In this study, graph node (pod) is characterized by
a Feature Vector with a dimension equal to 𝑀 ′ , representing
resource consumption values recorded at the respective pod
over the last 𝑀 ′ time intervals, hence 𝑉 = 𝑀 ′ . Moreover,
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Table 3
Notations used in this paper.

Notations Descriptions

ℝ𝑛 n-dimensional euclidean space
𝐶 Set of clusters
𝑃 Set of pods
𝑅𝑝

𝑡 Resource consumption of 𝑃𝑜𝑑𝑝 at time-step 𝑡
𝑆 Set of services
𝑆𝑝 Type of service deployed in 𝑃𝑜𝑑𝑝
𝑇𝑝 Replication time for 𝑃𝑜𝑑𝑝
𝑀 Number of input time-steps
𝑀 ′ Number of prediction time-steps
𝑡𝑤𝑖𝑛𝑑𝑜𝑤 Duration between consecutive time-steps
𝑉 Dimension of Feature Vector
𝐹 Feature Matrix
𝑋 Input Matrix
𝐺 Undirected Graph
𝐴 Adjacency matrix with edge weights 𝑤𝑖𝑗
𝐼 Identity Matrix
𝑊 Learnable weight matrix
|𝐸| The number of elements in a given set 𝐸

each of the 𝑀 ′ columns in the Feature Matrix 𝐹 represents a
distinct time interval 𝑡 within the input sequence. This setup
allows instances of the Feature Matrix to be treated as time-
series data. The Adjacency Matrix 𝐴 remains constant, rep-
resenting the resource consumption correlation among the
various Pods. Conversely, the Feature Matrix 𝐹 is dynamic
and varies for each time interval 𝑡. Consequently, snapshots
of the Feature Matrix 𝐹 are conceptually analogous to the
aforementioned input vector 𝑋 ∈ ℝ|𝑃 |×𝑀 ′ .

5. GraphOpticon
This work aims to establish a proactive horizontal au-

toscaling solution that is capable of simultaneously achiev-
ing better service performance and reduced resource con-
sumption. The proposed solution operates based on accurate
resource consumption predictions that involve numerous
pods across numerous time steps. To that end, the authors
of this work propose GraphOpticon, a proactive horizontal
autoscaling solution that leverages the information fusion &
distillation properties of graph neural networks. GraphOpti-
con consists of 4 components. These components are:

• Monitoring Component
• Input Construction Component
• Forecasting Component
• Output Distillation Component
These components are designed to operate as parts of a

singular pipeline. This pipeline is depicted in Fig. 1.

5.1. Monitoring Component
This component is built upon the functionalities of mod-

ern monitoring frameworks, such as Prometheus. It is de-
signed to perform three distinct operations related to infor-
mation retrieval. First, it periodically scrapes CPU utiliza-
tion values for each pod at every time-step 𝑡 to construct
the Input Matrix 𝑋. The second operations involve the
construction of the weighted Adjacency Matrix 𝐴. While
the Monitoring Component does not directly compute the
weights of 𝐴, it is responsible for gathering the necessary
data and transmitting it to the Input Construction Compo-
nent, which performs the weight calculations. Towards as-
sisting in the construction of 𝐴, the Monitoring Component
retrieves information about the cluster 𝐶 each pod 𝑝 belongs
to and the service 𝑆 it hosts. This process occurs once
during the initialization of GraphOpticon. The third and final
operation of the Monitoring Component involves conveying
the estimated replication times 𝑇 of all examined services to
the Output Distillation Component.
5.2. Input Construction Component

This component uses the name of the cluster 𝐶 that
a pod 𝑝 belongs to, along with the name of the service
𝑆 the pod hosts, to create the Adjacency Matrix 𝐴. The
aforementioned input information is provided by the Mon-
itoring Component. Graph edges are crucial for illustrating
the relationships among pods and determining which nodes
shall be involved in the feature aggregation process that
shall be performed by the encoder part of the Forecasting
Component. The encoder part of the Forecasting Component
is based on Graph Convolutional Networks (GCNs) (31).
Feature aggregation, in the frame of GCNs, is the process
of combining node features from a node’s neighbors (and
sometimes itself) using weighted summation or averaging to
capture local graph structure and propagate information. In
this paper, we aim to leverage the relations that are present
among the various pods in order to construct the correspond-
ing Adjacency Matrix 𝐴. According to this approach, the
Adjacency Matrix 𝐴 is formed based on the service 𝑆 and
cluster 𝐶 similarities between each pair of pods (nodes).
The algorithm for calculating the corresponding weights is
detailed in Algorithm 1. If two pods do not facilitate the same
type of service 𝑆𝑝, then the corresponding weight associated
with edge 𝑒𝑖𝑗 equals zero. If two Pods facilitate the same
type of service 𝑆𝑝, but they do not belong to the same cluster
𝐶 , then the corresponding weight associated with edge 𝑤𝑖𝑗equals 0.5. Finally, if two Pods facilitate the same type of
service 𝑆𝑝, and they belong to the same cluster 𝐶 , then the
corresponding weight associated with edge 𝑒𝑖𝑗 equals 1.

An example of this approach is showcased in Figure 2.
This figure depicts 4 clusters (1,2,3,4) with 16 pods that
host 4 different types of services (red, green, blue, yellow).
According to the proposed approach, pods that belong to the
same cluster 𝐶 and host the same type of service 𝑆 (inside
black rectangles) shall have edge weights 𝑤 equal to 1. Pods
that host the same service 𝑆 and belong to different clusters
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Figure 1: The pipeline of the proposed solution.

𝐶 (connected by a colored edge) shall have edge weights 𝑤
equal to 0. The rest shall have edge weights equal to 0.

The underlying rationale for leveraging the Input Con-
struction Component is to streamline the feature aggregation
process by restricting it to pods hosting the same service
type. This simplifies the model’s complexity by focusing on
distilled spatial correlations inherent in the input structure.
Moreover, the forecasting model can capture more refined
dependencies by introducing the weight differentiation be-
tween pods that inhabit the same cluster and pods that
do not. The proposed weight assignment derives from the
assumption that pods that host the same type of service
are expected to present more similarities in terms of their
resource (CPU) consumption patterns when compared with
pods that do not host the same type of service. Furthermore,
pods that host the same the same type of service and belong
to the same cluster are expected to present more similarities
in terms of their resource (CPU) consumption patterns when
compared with pods that do host the same type of service but
do not belong to the same cluster. This assumption serves
as an extension to our line of thought that was presented in
Section 3.
Algorithm 1 Input Construction Algorithm.

Input: The |𝑃 | Pods, alongside their corresponding 𝐶𝑝and 𝑆𝑝 attributes, which describe the cluster that each pod
belongs to and the type of service each pod facilitates,
respectively.
Output: The weighted Adjacency Matrix 𝐴.
Begin algorithm
1. For each pair of pods 𝑖, 𝑗 in 𝑃 :
2. If 𝑆𝑖 ≠ 𝑆𝑗 :
3. Then 𝐴𝑖, 𝑗 ← 0.
4. If (𝑆𝑖 = 𝑆𝑗) ∧ (𝐶𝑖 ≠ 𝐶𝑗):
5. Then 𝐴𝑖, 𝑗 ← 0.5.
6. If (𝑆𝑖 = 𝑆𝑗) ∧ (𝐶𝑖 = 𝐶𝑗) :
7. Then 𝐴𝑖, 𝑗 ← 1.
8. Return 𝐴
End algorithm

Figure 2: Input construction process.

5.3. Forecasting Component
We have combined weighted Graph Convolutional Net-

work (GCN) (31) and LSTM layers to construct an encoder-
decoder architecture capable of predicting resource con-
sumption. Encoder-decoder architectures for time-series
forecasting involve an encoder that processes input se-
quences into a fixed representation and a decoder that uses
this representation to predict future sequences. The weighted
GCNs serve as the encoder to extract structural features from
the input sequence to generate a consolidated representation.
This operation is conducted as follows:

𝐻encoder = Weighted GCNencoder(𝑋,𝐴) (3)
Here, ℎencoder denotes the consolidated representation

post the application of weighted stacked graph convolution,
where 𝐴 signifies the weighted Adjacency Matrix of the
graph, and𝑋 indicates the Feature Matrix, which is the input
of the forecasting entity. The weighted Adjacency Matrix 𝐴
is provided by the Input Construction Component, while the
Feature Matrix𝑋 is provided by the Monitoring Component.

Subsequently, the constructed representation is chan-
neled into the LSTM component of the model, enabling the
capture of temporal patterns at the level of graph snapshots.
Functioning as a decoder, the LSTM component generates
the desired forecasts through the following process:
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Figure 3: Architecture of the Forecasting Component.

𝑌 = LSTMdecoder(𝐻encoder) (4)
The term LSTMdecoder denotes the LSTM network,

which accepts the aggregated representation from the en-
coder to produce an output that is then passed through
a dense layer for multi-step prediction generation. In the
context of multi-step time-series prediction, the Forecasting
Component takes a sequence of graph signals as input, where
each signal represents a different time-step and is depicted
as a graph signal on a consistent graph. The objective is to
forecast future time-series values based on the graph signals
from preceding time steps.
5.3.1. Encoder (Weighted GCN Layer)

The encoder part of the Forecasting Component is based
on the use of weighted Graph Convolutional Networks
(GCNs). Weighted GCNs are a powerful framework for
learning representations of nodes in graphs, considering
both the graph structure and features associated with nodes.
Let 𝐗 denote the feature matrix of size |𝑃 | × 𝑀 , where 𝑁
is the number of nodes and 𝑀 is the number of features
per node. The weighted adjacency matrix 𝐀 represents the
connections between nodes in the graph. The propagation
rule in a weighted GCN is defined as:

𝐇(𝑙+1) = 𝜎
(

𝐃̃− 1
2 𝐀̃𝐃̃− 1

2𝐇(𝑙)𝐖(𝑙)
)

(5)
Where:
• 𝐇(𝑙) is the feature representation matrix at layer 𝑙,
• 𝐀̃ is the weighted adjacency matrix with added self-

connections,
• 𝐃̃ is the degree matrix of 𝐀̃,

• 𝐖(𝑙) is the weight matrix of layer 𝑙,
• 𝜎 is the ReLU activation function.

The input feature matrix 𝐻 (0) is typically initialized as 𝑋,
which is the input sequence provided by the Monitoring
Component. Furthermore, in the frame of this work, 𝑙 = 1.
5.3.2. Decoder (LSTM Layer)

The decoder part of the Forecasting Component is based
on Long Short-Term Memory (LSTM) networks. LSTM
networks employ the Hidden State mechanism to capture
dynamic temporal patterns. What sets LSTM networks apart
is their utilization of the Cell State structure, introduc-
ing Cell State manipulation through regulatory mechanisms
known as Gates. Each LSTM node comprises three gate-
related elements, all incorporating sigmoid layers to ensure
differentiation within the range of 0 − 𝑡𝑜 − 1. The sigmoid
activation function scales values to facilitate the assessment
of data importance and decision-making regarding retention
or omission. Gate structures include two sets of weight
matrices, labeled 𝑊 and 𝑈 , associated with Hidden State
and input and additional matrices for Cell State. The input
𝑋𝑡 corresponds to timestamp 𝑡. Gates utilize these matrices,
input, and prior Hidden State (ℎ𝑖𝑑𝑑𝑒𝑛𝑡−1).

The Forget Gate determines which historical information
from past timestamps to exclude from the Cell State. Its
output is computed using Eq. 6. The Input Gate assesses
the significance of recent input, updating the Cell State
using Eq. 7. Cell State calculation employs the C vector,
generated as per Eq. 8, with the tanh activation function
mitigating gradient issues. The Cell State update process
is described in Eq. 9, combining the output of the Forget
Gate and the Input Gate with C. The Output Gate computes
the subsequent hidden state using Eq. 10. The new Hidden
State is calculated according to Eq. 11. Updated Cell State
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and Hidden State are then propagated to subsequent LSTM
nodes for the next time-step (32).

forget𝑡 = sigmoid(𝑋𝑡 ⋅𝑊𝑓 + hidden𝑡−1 ⋅ 𝑈𝑓 ) (6)
input𝑡 = sigmoid(𝑋𝑡 ⋅𝑊𝑖 + hidden𝑡−1 ⋅ 𝑈𝑖) (7)

C = tanh(𝑋𝑡 ⋅𝑊𝑐 + hidden𝑡−1 ⋅ 𝑈𝑐) (8)
𝐶𝑡 = forget𝑡 ⋅ 𝐶𝑡−1 + input𝑡 ⋅ C𝑡 (9)

output𝑡 = sigmoid(𝑋𝑡 ⋅𝑊𝑜 + hidden𝑡−1 ⋅ 𝑈𝑜) (10)
hidden𝑡 = output𝑡 ⋅ tanh(𝐶𝑡) (11)

In the frame of the decoder, 𝑜𝑢𝑡𝑝𝑢𝑡𝑡 is passed through a
dense layer to construct the desired 2-dimensional output 𝑌
shape.
5.4. Output Distillation Component

The Forecasting Component produces a multi-step out-
put 𝑌 corresponding to 𝑃 pods. The Output Distillation
Component is designed to receive the multi-step prediction
𝑌 generated by the Forecasting Component as input, along
with the replication time 𝑇 corresponding to each pod 𝑝.
Upon receiving these inputs, the Output Distillation Com-
ponent determines, based on each pod, which step from the
multi-step prediction should be retained to produce a single-
step prediction. This functionality is conducted using a ded-
icated list (𝑁), which associates each replication time 𝑇
with a corresponding time-step of the multi-step prediction.
Calculating 𝑁 is showcased using Algorithm 2.

This decision is guided by the necessity of selecting a
time step further into the future than the anticipated com-
pletion time of the deployment process. Additionally, it
prioritizes a time step closer to the expected completion
moment of the deployment process, as looking too far ahead
compromises prediction accuracy. This process tailors pre-
dictions to each pod. Figure 4 depicts an example of how the
proposed component selects the prediction step to retain.

6. System Implementation
Before proceeding to the experimental evaluation section

of this work, it is of paramount importance to address any
potential limitations that the architecture of GraphOpticon
may present. These potential limitations involve aspects such
as the compatibility of GraphOpticon with contemporary
frameworks, as well as its scalability, and the underlying
formalism that is used in the frame of this work. This section
is dedicated to addressing these limitations.
6.1. Integration

The aforementioned components that were described
in the previous section of this work are designed to be
integrated into cloud and edge computing frameworks such
as Kubernetes or K3S2, inheriting foundational orchestration
and management mechanisms. GraphOpticon does not seek
to replace these established frameworks but aims to enhance

2https://k3s.io/

Figure 4: Output distillation process.

Algorithm 2 Output Distillation Algorithm
Input: List of replication times 𝑇 = [𝑡1, 𝑡2,… , 𝑡

|𝑃 |], and
list of prediction time-steps 𝑀 = [𝑚1, 𝑚2,… , 𝑚

|𝑀|

].
The temporal difference between each time step equals
𝑡𝑤𝑖𝑛𝑑𝑜𝑤.
Output: List of singular time-steps 𝑁 corresponding to
each replication time 𝑇 .
Begin algorithm
1.Sort 𝑀 in ascending order
2.Initialize 𝑁 as an empty list
3.For each 𝑡 in 𝑇 :
4. Initialize 𝑛𝑒𝑥𝑡_𝑠𝑡𝑒𝑝 ← 𝑁𝑜𝑛𝑒
5. For each 𝑚 in 𝑀 :
6. If 𝑚 > 𝑡:
7. Then 𝑛𝑒𝑥𝑡_𝑠𝑡𝑒𝑝 ← 𝑚
8. break
9. Append 𝑛𝑒𝑥𝑡_𝑠𝑡𝑒𝑝 to 𝑁
10.Return 𝑁
End algorithm

them, specifically regarding improved service performance
and resource consumption. By limiting the required changes
to the scaling mechanisms, GraphOpticon maintains the
overall stability and reliability of the existing orchestra-
tion frameworks. This strategy minimizes disruption and
complexity, allowing for a smoother integration while still
achieving the desired improvements. Enhancing this aspect
without altering other parts of the framework ensures that
GraphOpticon can offer performance improvements without
the need for major changes or overhauls, thus preserving
the integrity and usability of the underlying orchestration
system.

The same principles have also been applied in regard to
its compatibility with the leveraged monitoring framework.

Theodoropoulos et al.: Preprint submitted to Elsevier Page 10 of 22



GraphOpticon: A Global Proactive Horizontal Autoscaler for Improved Service Performance & Resource Consumption

The Monitoring Component is designed in a manner that
enables it to seamlessly integrate with the Prometheus3
monitoring system. Its primary functions include monitor-
ing application components, whether deployed as pods or
virtual machines, and monitoring hosts, whether physical or
virtual, on Kubernetes or K3s clusters located in the cloud
or at the edge. For our case, it is necessary to retrieve the
CPU utilization of pods. In the Monitoring Component’s
setup, Prometheus periodically pulls metrics from monitor-
ing agents named Prometheus exporters. Particularly for pod
monitoring, the Monitoring Component utilizes kube-state-
metrics4 exporter to perform pod monitoring. This exporter
provides metrics by interfacing with the Kubernetes API
server and incorporating data from both Kubelet and cAdvi-
sor. The cAdvisor exporter collects resource usage statistics,
including CPU utilization, for all running pods. Kubelet is
an agent on each node in a Kubernetes cluster, working with
the Kubernetes API server to collect information on node
events, pod statuses, and resource usage.

The leveraged architectural design (33) enables the Mon-
itoring Component to detect the replication time of pods
by utilizing the kube-state-metrics exporter and its above-
mentioned capability to monitor pod statuses. The detec-
tion of a running pod produces an alert that includes the
deployment time as a timestamp, the number of replicas,
the namespace to which the pod belongs, the host node,
node IP, pod IP, pod status, external IPs, and the applied
pod labels. The above alert was configured to meet our case
requirements by including the master node IP indicating
the cluster’s IP and a master’s label indicating the cluster
name. This feature can match pods with the cluster they are
running in. This addition was also achieved based on met-
rics retrieved by kube-state-metrics. A naming convention
is essential to accurately identify the name of the service
provided by a pod. Specifically, the pod name should be
associated with the service name it provides, ensuring that
the monitoring mechanism generates meaningful alerts for
the entire system.
6.2. Scalability Analysis

The centralized architecture of GraphOpticon raises sev-
eral scalability concerns. Chief among them is the potential
for performance bottlenecks, as the autoscaler must process
vast amounts of data from numerous pods, which could
lead to increased latency and delayed scaling decisions.
There is the risk that as the system scales, the overhead
associated with data collection and processing could become
a significant drain on resources, further exacerbating perfor-
mance issues. Calculating the complexity of the proposed
autoscaler provides a structured method to address these
concerns. By analyzing the corresponding complexity, one
can quantify how the autoscaler’s performance degrades as
the number of pods and metrics increases. This quantitative
insight allows for the identification of potential bottlenecks

3https://prometheus.io/
4https://github.com/kubernetes/kube-state-metrics

and critical thresholds, guiding the design towards more
efficient algorithms and data handling methods.

Towards examining the scalability of the proposed solu-
tion, we analyze the computational complexity of the data
collection and processing algorithms that are leveraged in
the frame of GraphOpticon. These include the Monitoring
process, the Input Construction process, and the Output Dis-
tillation process. Since scalability is investigated in relation
to the number of pods, complexity shall be calculated on the
basis of the number of pods 𝑃 . In order to construct Input
Matrix 𝑋, the Monitoring component periodically retrieves
CPU utilization metrics from the Metrics Server or an ex-
ternal monitoring system. Given that the Monitoring com-
ponent queries metrics for each running pod individually,
the time complexity of this operation is 𝑂(𝑃 ), where 𝑃 is
the number of pods being monitored. The same complexity
applies to the retrieval of the required information that is
later used by the Input Construction Component to create
the Adjacency Matrix 𝐴.

The Input Construction Component is responsible for
generating the Adjacency Matrix 𝐴 based on relationships
between pods. This process involves iterating over all 𝑃
pods and performing pairwise comparisons to establish edge
weights. In the worst case, each pod is compared against
every other pod, leading to a complexity of 𝑂(𝑃 2). The
quadratic growth arises due to the necessity of examining
all potential connections within the system. However, it is of
paramount importance to point out that this process is fully
carried out only when GraphOpticon is instantiated.

The Output Distillation component involves selecting
the most relevant prediction step for each pod. Given 𝑀
sorted prediction time-steps, the nearest step can be iden-
tified using a binary search operation with complexity
𝑂(log |𝑀|). Since this operation is performed for each
of the 𝑃 pods, the total complexity is given by 𝑂((𝑃 +
|𝑀|) log |𝑀|). Based on these results, the overall complex-
ity of GraphOpticon shall be equal to 𝑂(𝑃 2) for its instantia-
tion and equal to 𝑂((𝑃 + |𝑀|) log |𝑀|) during its operation.
In other words, when the Adjacency Matrix 𝐴 is calculated,
the complexity is dominated by the quadratic term, yielding
𝑂(𝑃 2). However, after the initial matrix is constructed, the
subsequent complexity is equal to 𝑂((𝑃 + |𝑀|) log |𝑀|).
Since we expect that 𝑀 < 𝑃 , the term 𝑃 +|𝑀| is dominated
by 𝑃 . So it simplifies to 𝑂(𝑃 ). As a result, the complexity
becomes approximately 𝑂(𝑃 log |𝑀|). In this case, 𝑙𝑜𝑔|𝑀|

grows slower than 𝑃 , and the overall complexity will still
be influenced by 𝑃 , with a logarithmic factor that does not
change the linear dependence on 𝑃 . So, this complexity
can be characterized as linear with a logarithmic correction.
Thus, it is safe to conclude that GraphOpticon constitutes
a scalable solution, the complexity of which grows in an
almost linear manner as the number of pods increases.
6.3. Formalism

In the frame of Kubernetes’ autoscaling operation, the
number of pods dynamically increases and decreases. As
a result, the size and structure of the Adjacency Matrix 𝐴
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would constantly change over time. However, this would
contradict the CTDG paradigm on which GraphOpticon is
based. Towards resolving this issue, in the frame of this
work, we consider that the Adjacency Matrix 𝐴 is con-
structed on the basis of the maximum number of pods that
can be deployed for each type of service, given the resource
limitations of the underlying computational infrastructure,
instead of simply considering just the pods that are deployed
during the instantiation phase of GraphOpticon. As such, the
size of the Adjacency Matrix 𝐴 (in terms of graph nodes)
is bound to always be greater or equal to the number of
deployed pods. Furthermore, when a pod is not currently
operating, its corresponding Feature Matrix 𝑋 values should
be equal to 0 since its CPU consumption is equal to 0. In
the frame of GCNs, a zero feature vector value means the
node is present but inactive in feature propagation. So, even
if the structural graph connectivity is still intact (edges), a
zero feature vector value has no effect on its neighbors in
terms of information contribution during the feature aggre-
gation process. In other words, in the context of information
contribution, a zero feature vector value has the same effect
as the removal of the corresponding edge would have. As
a result, the information contribution for a node shall only
involve nodes that have both an edge formed with each other
and nonzero feature vector values (corresponding to pods
that are currently deployed). Subsequently, the forecasting
accuracy of GraphOpticon is not affected at all by this design
choice.

7. Experimental Evaluation
To evaluate the efficiency of GraphOpticon, we con-

ducted a large-scale experiment in a simulated distributed
computing environment using the CloudSim Plus5(34) frame-
work on a machine that utilizes an AMD Ryzen 9 4900HS
processor, and 16GBs of RAM. Given the modular and ex-
tendable nature of this simulation framework, it constitutes
a widely adopted approach to conducting refined distributed
computing simulations (35). The simulated distributed com-
puting environment consists of 20 compute nodes that
process tasks assigned by a dedicated scheduling algorithm.
There are 5 compute nodes available for task processing at
all times and 15 additional ones that can be allocated based
on resource demand via horizontal autoscaling. In the frame
of the experimental evaluation of this work, each compute
node corresponds to a pod.

Across all scaling solutions, the scaling decision is pro-
duced once every 1 second. Furthermore, the duration be-
tween each time-step 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 equals 1 second. In the frame of
this experiment, there are 5 distinct types of services whose
replication times 𝑇 are equal to 1, 3, 5, 7, and 9 seconds.
To incorporate various types of service scenarios, the task
generation patterns for 3 of these services were modeled as
work-related services, and the other 2 services were modeled
as leisure-time services. This type of modeling is geared
towards establishing distinct temporal patterns in terms of

5https://cloudsimplus.org/

task creation rates, depending on the time of day, as well
as the day of the week. For instance, leisure-time-related
services are designed to peak in terms of task creation after
work hours and during the weekends. On the other hand,
work-related services are designed to peak in terms of task
creation rate during work hours. Such a peak is depicted
in Fig. 5, which associates task production rates of a work-
related service with the CPU usage of a compute node that is
dedicated to handling tasks that correspond to this service.
As one can see, task production rates (and the corresponding
CPU) usage peaks around 12 ∶ 00.

For each type of service, a maximum of 4 compute
nodes is allocated to handle its corresponding tasks. Tasks
produced during the simulation are assigned to processing
nodes based on a scheduling algorithm. The combination
of scheduling policies and resource allocation strategies can
greatly affect resource & energy consumption, operational
costs, and service quality (36). Three task-scheduling algo-
rithms were examined to ensure that GraphOpticon outper-
forms its competitors across various scenarios. The algo-
rithms include Round-Robin, MinMin, and MaxMin.

Round-robin is a preemptive scheduling method where
tasks are assigned to computational resources in a rotating
sequence without considering specific task or node charac-
teristics. MinMin prioritizes short-length tasks by identify-
ing the task with the fewest Million Instructions (MI) in two
phases. First, it selects the task with the shortest length, and
second, it assigns this task to the processing node that can
execute it in the least amount of time. This process repeats
for each task to minimize overall execution time. MaxMin,
on the other hand, prioritizes long-duration tasks. It begins
by identifying the task with the longest duration in terms
of MI and then allocates it to the processing node that can
complete it in the shortest time possible. This algorithm
considers the computational load and capabilities of tasks
and processing nodes to ensure efficient task allocation.

Finally, to ensure experimental integrity, the allocation
of each pod to a specific cluster 𝐶 was performed in a
randomized manner. There are 4 available clusters. During
each second, numerous tasks are generated and sent to the
available compute nodes for processing. Given that service
demand and resource consumption are influenced by peri-
odic phenomena occurring over hours, days, and even weeks,
the experiment was designed to span a 28-day period and
to include more than 8 million tasks that were generated
based on multiple Poisson probability distributions and sta-
tistical properties that were derived from the Google Cluster
dataset6(37; 38), to capture those patterns, using statistical
techniques. The incorporation of Google Cluster traces into
simulation frameworks (39), as well as the use of statistical
techniques to improve the modeling capabilities of these
frameworks, constitute practices found in the corresponding
scientific literature (40). More specifically, in accordance
with the Google Cluster dataset, the task arrival rate can
be modeled using a Poisson process, which captures the
burstiness of frequent, short tasks and idle periods when task

6https://github.com/google/cluster-data
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Figure 5: Number of tasks and the corresponding CPU usage.

demand is low. The dataset is dominated by light tasks (short,
low-resource-consuming) but includes a smaller number of
heavy tasks (long-running, resource-intensive), following a
heavy-tailed distribution. Additionally, peak and off-peak
trends in workload intensity, such as hourly or daily fluc-
tuations, can be identified to optimize resource management
and system performance during varying task loads.. Aside
from the various periodic phenomena, resource consumption
is heavily influenced by sudden bursts in resource demand.
To simulate the sudden bursts in resource demand, the
number of tasks created at each time-step 𝑡, is dynamically
calculated using a combination of the process mentioned
above that is capable of simulating periodic phenomena and
a function that generates random numbers that are within
an acceptable range considering 𝑡. Furthermore, tasks were
categorized into three sizes based on Millions of Instructions
Per Second (MIPS): 0.5, 1, and 1.5 MI, with each compute
node handling 1 MIPS. Out of the 8 million tasks in total,
about 4 million were 0.5 MIPS, 3 million 1 MIPS, and 1
million 1.5 MIPS. The type of each task created at any given
moment was random, potentially overwhelming compute
nodes during bursts of lengthy tasks. Thus, we were able to
evaluate the efficiency of the proposed approach in handling
both sudden bursts and periodic phenomena (as depicted in
5).
7.1. Forecasting Models

The evaluation of the proposed solution consists of two
parts. In the first part, we compare the forecasting accuracy
of the proposed GraphOpticon (a singular model for all
pods) and the Hybrid LSTM Encoder-Decoder (ranging
from using only a singular model for all pods to having a
dedicated model for each pod). As was previously discussed
in the Related Work section of this work, the Hybrid LSTM
Encoder-Decoder (6) has shown promising results in the

field of multi-step service demand forecasting, surpassing
many contemporary forecasting solutions. Aside from its
forecasting accuracy, it was selected due to the fact that
this model and GraphOpticon both constitute DL Encoder-
Decoder solutions, and thus, it would be highly appropriate
to compare them.

Towards evaluating the accuracy of various forecasting
solutions, we utilized the traces derived from the aforemen-
tioned large-scale simulation, employing the Standard scal-
ing approach. The Standard reactive horizontal autoscaling
approach requests allocating an additional compute node
when CPU consumption exceeds the 80% mark and de-
allocates a compute node when its CPU consumption falls
below 20% These traces encapsulate the CPU consumption
for each of the 20 pods throughout the duration of the
experiment. Using these traces, we performed multi-step
CPU consumption forecasting based on 7 scenarios. The first
6 scenarios explored different configurations of the Hybrid
LSTM Encoder-Decoder. In scenario 1, 20 models were
used, each predicting CPU consumption for a single pod.
Scenario 2 involved 10 models, each predicting CPU con-
sumption for 2 pods, while scenario 3 used 5 models, each
covering 4 pods. Scenario 4 employed 4 models to predict
CPU consumption for 5 pods each, and scenario 5 utilized 2
models, each predicting for 10 pods. Finally, scenario 6 used
a single Hybrid LSTM Encoder-Decoder model to predict
CPU consumption across all 20 pods. Finally, scenario 7
employed GraphOpticon, which is designed to predict CPU
consumption for all 20 nodes.

Scenarios (1−6) serve a dual purpose. On the one hand,
they are used to identify the optimal configuration of the
Hybrid LSTM Encoder-Decoder, which is then compared
against GraphOpticon. On the other hand, these scenarios
represent different layers of information fusion and deep
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learning model specialization. Scenario 1 examines the use
of a distinct forecasting model for each pod, thereby oper-
ating with a localized context. Scenarios 2 and 3 focus on
the service type level. In scenario 3, a single forecasting
model is assigned to all pods facilitating the same type of
service, whereas in scenario 2, two forecasting models are
assigned to all pods facilitating the same type of service.
Scenarios 4 and 5 focus on the cluster level. In scenario 4,
a single forecasting model is assigned to all pods within the
same cluster, whereas in scenario 5, one forecasting model
is assigned to all pods spanning a pair of clusters. Finally,
scenario 6 explores the use of a single forecasting model for
all pods, thereby incorporating a global context. Thus, by
comparing the experimental results, one can useful insights
into which levels of information fusion are able to provide
the best results.
7.2. Performance & Resource Consumption

The second part of the experimental evaluation process
involves examining the impact of the various horizontal
autoscaling approaches (proactive & reactive) on service
performance and resource consumption. This part aims to
compare the results in terms of execution time, latency,
and resource consumption that correspond to four horizontal
autoscaling approaches. The first is the aforementioned Stan-
dard reactive horizontal autoscaling approach. The second
one is the Kubernetes’ Horizontal Pod Autoscaler (HPA)
approach, set to have the 𝑇 𝑎𝑟𝑔𝑒𝑡 − 𝑀𝑒𝑡𝑟𝑖𝑐 − 𝑉 𝑎𝑙𝑢𝑒 equal
to 50% in terms of CPU consumption.HPA automatically
scales the number of pods based on the observed resource
usage. The HPA controller operates by comparing the target
metric value with the current metric value, as expressed in
the following equation:

Target-Replicas =
(Current-Metric-Value

Target-Metric-Value
)

× Current-Replicas
(12)

This equation calculates a scaling factor by dividing
the Current-Metric-Value by the Target-Metric-Value, which
indicates how far the current metric value deviates from the
target. This ratio is then multiplied by Current-Replicas to
determine the Target-Replicas, which is the desired number
of replicas Kubernetes should scale to bring the metric value
closer to the target. In practical terms, if the observed metric
(CPU utilization) exceeds the target value, the equation will
calculate a higher number of Target-Replicas, prompting
Kubernetes to scale up the deployment to handle increased
load and maintain performance. Conversely, if the metric is
below the target, it will calculate a lower number of Target-
Replicas, potentially triggering the scaling down to con-
serve resources. The third one is based on the GraphOption
framework that performs proactive horizontal autoscaling
based on the produced predictions using the same scaling
in and out thresholds as the standard reactive approach.
GraphOpticon receives the 10 more recent CPU values as
input to construct a singular prediction for each compute

Task 
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node 1

node 2
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Figure 6: Simulation workflow.

node per its associated replication time, while its forecasting
horizon is equal to 10 time-steps. Finally, the fourth one is
based on the use of the best-performing configuration of the
Hybrid LSTM Encoder-Decoder (as shall be decided by the
first part of the experimental evaluation) for proactive hor-
izontal autoscaling. Within the frame of this experimental
evaluation process, the proactive approach that leverages the
best configuration of the Hybrid LSTM Encoder-Decoder
shall be referred to as Proactive. Proactive receives the 10
more recent CPU values, while its forecasting horizon is
equal to 10 time-steps.

A brief overview of the simulation workflow that consti-
tutes the cornerstone of the experimental evaluation process
is depicted in Fig. 6. Tasks are generated by a dedicated
Task Generator and then sent to the available compute nodes
on the basis of the decisions made by the Task Scheduler
(Round Robin, MinMin, MaxMin). The dedicated Horizon-
tal Autoscaler (Standard, Kubernetes, Proactive, GraphOpti-
con) is in charge of adjusting the number of processing nodes
in anticipation of workload fluctuations. The Task Gener-
ator, all Task Scheduler algorithms, and the reactive Hori-
zontal Autoscaler algorithms (Standard, Kubernetes) were
constructed using Java as extensions to the CloudSim Plus
simulation framework. The proactive Horizontal Autoscaler
algorithms (Proactive, GraphOpticon) required the use of
deep learning models that were implemented in Python 3,
utilizing libraries such as NumPy, pandas, statistics, Scikit-
learn, SciPy, Scikit-Optimize, TensorFlow 2, and its high-
level API, Keras.
7.3. Evaluation Metrics

To assess forecasting accuracy, we used two metrics.
These metrics are the Mean Absolute Error (MAE) and the
Root Mean Squared Error (RMSE). The MAE quantifies
the mean of the absolute differences between the predicted
and actual values, capturing the average error magnitude.
Equation 13 shows the calculation of MAE:

MAE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖| (13)
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In contrast, the RMSE evaluates the standard deviation
of the prediction errors, giving higher weight to larger dis-
crepancies by squaring them before averaging. The formula
for RMSE is shown in Equation 14:

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (14)

Selecting between MAE and RMSE depends on the pri-
oritization of errors. MAE is generally preferred when equal
importance is assigned to all errors, whereas RMSE is useful
for penalizing larger errors more heavily. Furthermore, aside
from examining the accuracy of the various forecasting
solutions, this part is dedicated to exploring aspects such
as Training Time, Inference Time, and the Number of
Parameters that are associated with each forecasting solu-
tion. Long training times increase computational resource
demand, consuming significant energy and resources. The
larger the model, the longer it generally takes to train,
resulting in higher power consumption. Inference, or the
process of making predictions with a trained model, also
requires resources. Faster models require fewer resources per
prediction, while models with longer inference times con-
sume more. Efficiency during inference is crucial for real-
time applications due to latency concerns or deployment
on resource-limited devices. Training and inference times
are calculated in seconds. Models with more parameters are
more complex, requiring more memory and computational
power for both training and inference. This increases re-
source usage significantly.

Execution time corresponds to the interval between the
beginning and the end of task processing. Some of the most
notable metrics used to evaluate latency and execution time
include Average Execution Time, which offers a compre-
hensive perspective on service performance. Nevertheless,
solely depending on the average might cause one to overlook
the intricacies within the latency value distribution. Median
Execution Time is valuable for assessing the central point
of the latency distribution, as it is not sensitive to outliers.
A significant difference between the median and the aver-
age may indicate outliers disproportionately impacting la-
tency. Standard Deviation of Execution Time indicates the
spread of execution times, with a higher standard deviation
suggesting greater variability in latency. Monitoring stan-
dard deviation helps identify consistency or inconsistency
in response times, which is crucial for user experience and
detecting potential issues in the service infrastructure. Max-
imum Execution Time represents the longest duration for
task completion within a system, serving as an upper limit
on acceptable execution time. Lower maximum execution
time is desirable for timely and responsive performance,
especially in real-time or time-sensitive applications. Range
of Execution Time measures the difference between the
shortest and longest execution times, providing insight into
the variability and potential extremes in task completion

times. A smaller range suggests more consistent perfor-
mance, while a larger range can indicate fluctuations that
might need addressing.

On the other hand, latency corresponds to the interval
between task creation and the beginning of its processing.
Skewness of Latency assesses the asymmetry of latency
distribution. A right-skewed distribution indicates that some
requests experience significantly longer delays than aver-
age, guiding optimizations to mitigate outliers. Kurtosis of
Latency measures the tails of the distribution, with higher
kurtosis suggesting heavy tails and the presence of ex-
treme values. Understanding kurtosis helps anticipate and
manage rare but impactful events affecting service latency.
Tail Latency (98th percentile) focuses on extreme values
in latency distribution, identifying the 2% of requests with
the longest response times. Monitoring tail latency ensures
that even under adverse conditions, a small percentage of
users do not experience unacceptably long delays, directly
impacting user satisfaction and Service Level Agreements.
In combination, these metrics can serve as good indicators
of service latency. For instance, high Average or Median
Execution Times, coupled with high Maximum Execution
Time, Range of Execution Time, Skewness of Latency,
and Kurtosis of Latency, may indicate performance issues
that need attention. Conversely, a low Average or Median
Execution Time, combined with a low Maximum Execution
Time, a narrow range of Execution Time, and well-behaved
Skewness of Latency and Kurtosis of Latency suggests a
more stable and predictable service. By regularly analyzing
and interpreting these metrics, service providers can identify
areas for improvement and optimize performance accord-
ingly.

Aside from the aforementioned metrics that examine
execution time and latency, the authors of this work have
also examined the Resource Consumption that manifests
at each distinct combination of horizontal autoscaling and
task scheduling approaches. In the frame of this section, the
resource consumption corresponds to the average number of
compute nodes used in each examined scenario. Across all
examined scenarios, 1 node is always allocated for hosting
the Monitoring Component. Furthermore, in the case of the
proactive horizontal autoscaling scenarios, 1 additional node
is allocated at all times for hosting each of the corresponding
forecasting models.
7.4. Forecasting Models: Experimental Results &

Discussion
Figures 7 and 8 present the experimental results in

terms of RMSE and MAE. For the Hybrid LSTM Encoder-
Decoder scenarios (1-6), the results are displayed indepen-
dently for all three task scheduling approaches. In these
figures, the blue line corresponds to Round Robin, the orange
line to MinMin, and the green line to MaxMin. To reduce vi-
sual clutter, for the GraphOpticon scenario (7), we included
the average performance across the three task scheduling
approaches. Furthermore, although these results correspond
to 3 runs, toward ensuring that there is no overlap between
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Figure 7: RMSE comparison between the Hybrid LSTM ED and GraphOpticon, across various experimental configurations.

competitors, we have chosen to keep the worst-performing
run for GraphOpticon, and the best-performing runs for its
competitors.

GraphOpticon demonstrates superior performance across
almost all explored configurations, with the sole exception
being the 10 models (2 pods each) configuration. These
experimental results not only highlight GraphOpticon’s
forecasting accuracy but also offer a wealth of intriguing
insights. By analyzing the performance of various configura-
tions, we gain valuable indicators regarding the importance
of interrelations among pods. Among the configurations,
the 5 models (4 pods each) setup delivers the best results.
It is closely followed by the 10 models (2 pods each)
configuration. This finding is particularly notable given
that the 5 models (4 pods each) setup employs a single
forecasting model for each distinct type of service. In
contrast, the 10 models (2 pods each) configuration uses
two forecasting models per service type. Ranking next in
terms of forecasting accuracy are the 4 models (5 pods each)
and 2 models (10 pods each) configurations. The 4 models
(5 pods each) configuration relies on a single forecasting
model for each distinct cluster, while the 2 models (10 pods
each) configuration adopts a similar approach but involves
two clusters instead of one. Lastly, the poorest results are
observed in the 20 models (1 pod each) and 1 model (20
pods) configurations. These results indicate that attempts
at performing resource consumption forecasting at a purely
local or global level are not as effective as ones that target
specific conceptual groups (such as service type level or
cluster level).

Considering these results, it can be concluded that, for
resource consumption forecasting, it is more efficient to
focus primarily on the service type level, followed by the
cluster level. This approach is perfectly aligned with the

philosophy of GraphOpticon, which considers the relations
at the service type level more important compared to the
relations at the cluster level. As stated before, according
to the Input Construction Component of the GraphOpticon
approach, if two pods do not provide the same type of service
𝑆𝑝, the weight associated with the edge 𝑒𝑖𝑗 is set to zero. If
two pods provide the same service 𝑆𝑝 but are in different
clusters 𝐶 , the weight of the edge 𝑤𝑖𝑗 is set to 0.5. Finally,
if two pods provide the same service 𝑆𝑝 and belong to the
same cluster 𝐶 , the weight of the edge 𝑒𝑖𝑗 is set to 1. This
design choice enables GraphOpticon to perform information
fusion and distillation in an optimal manner, thus surpassing
the various configurations of the highly sophisticated Hybrid
LSTM Encoder-Decoder, while requiring a lower number
of computational resources. According to the experimental
results, GraphOpticon managed to surpass the best over-
all configuration, which requires 5 distinct Hybrid LSTM
Encoder-Decoder models to be implemented instead of the
single one that is used in the case of GraphOption.

On top of that, GraphOpticon is considerably more
lightweight compared to even a single instance of the Hybrid
LSTM Encoder-Decoder. Table 4 depicts the experimental
results in terms of the Number of Parameters, Training
Time, and Inference Time, GraphOpticon requires 67, 847,
118.663, and 0.0394, respectively. By contrast, the Hybrid
LSTM Encoder-Decoder requires 426, 694, 320.199, and
0.092 for the same metrics. An NVIDIA GeForce RTX 3060
GPU was used for the training and inference processes. It
is worth mentioning that these results can be attributed to
the fact that the Hybrid LSTM Encoder-Decoder leverages
4 LSTM layers. More specifically, its encoder part consists
of a Bi-LSTM layer (256 units) and an LSTM layer (128
units), while its decoder part consists of an LSTM layer
(256 units) and a Bi-LSTM layer (128 units). On the other
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Figure 8: MAE comparison between the Hybrid LSTM ED and GraphOpticon, across various experimental configurations..

Model #Param. Train. Time Inf. Time

Hybrid LSTM ED 426,694 320.199 0.092
GraphOpticon 67,847 118.663 0.0394

Table 4
Comparison of GraphOpticon and Hybrid LSTM Encoder-
Decoder in terms of parameters, training time, and inference
time.

hand, only the decoder of the GraphOpticon forecasting
model leverages LSTM units (128). In terms of service
performance, GraphOpticon’s fewer parameters and lower
inference and training times suggest that it can provide faster
responses with reduced latency and quicker execution times
compared to the Hybrid LSTM Encoder-Decoder model.
This is beneficial for real-time or near-real-time applica-
tions where low latency is critical. The reduced number of
parameters also implies that GraphOpticon consumes less
computational power, leading to lower resource usage during
both the training and inference phases. Thus, potentially
requiring fewer hardware resources, it is a more resource-
efficient choice for proactive horizontal autoscaling.
7.5. Performance & Resource Consumption:

Experimental Results
Table 5 presents experimental results comparing ex-

ecution times across different scheduling algorithms and
scaling approaches. GraphOpticon consistently outperforms
both Standard, Kubernetes, and Proactive methods, achiev-
ing lower average execution times, standard deviations,
medians, maximums, and ranges in most cases. GraphOp-
ticon achieves the lowest average execution times across
all scheduling algorithms. For Round-Robin scheduling,

GraphOpticon records an average execution time of 1.45
seconds, which is 3.33% lower than Standard (1.50 seconds),
1.36% lower than Kubernetes (1.47 seconds), and 0.68%
lower than Proactive (1.46 seconds). In MinMin scheduling,
GraphOpticon’s average is 1.42 seconds, outperforming
Standard (1.49 seconds) by 4.70%, Kubernetes (1.45 sec-
onds) by 2.07%, and Proactive (1.45 seconds) by 2.07%. For
MaxMin scheduling, GraphOpticon achieves an average of
1.52 seconds, a reduction of 7.32% compared to Standard
(1.64 seconds), 4.40% compared to Kubernetes (1.59 sec-
onds), and 0.66% compared to Proactive (1.53 seconds).

GraphOpticon also demonstrates greater consistency in
execution times, as indicated by lower standard deviations.
In Round-Robin scheduling, GraphOpticon’s standard de-
viation is 0.89 seconds, 7.29% lower than Standard (0.96
seconds), 9.18% lower than Kubernetes (0.98 seconds), and
1.11% lower than Proactive (0.90 seconds). For MinMin
scheduling, GraphOpticon achieves a standard deviation of
0.85 seconds, which is 3.41% lower than Standard (0.88
seconds), 15.84% lower than Kubernetes (1.01 seconds),
and 2.30% lower than Proactive (0.87 seconds). In MaxMin
scheduling, GraphOpticon has a standard deviation of 1.04
seconds, which is 12.61% and 11.11% lower than Standard
(1.19 seconds) and Kubernetes (1.17 seconds), respectively,
and 1.89% lower than Proactive (1.06 seconds).

GraphOpticon presents the lowest median execution
times across all scheduling algorithms. For Round-Robin
scheduling, GraphOpticon’s median is 1.27 seconds, an im-
provement of 13.61% over Standard (1.47 seconds), 6.62%
over Kubernetes (1.36 seconds), and 0.78% over Proactive
(1.28 seconds). In MinMin scheduling, GraphOpticon’s
median is 1.26 seconds, 14.86% lower than Standard (1.48
seconds), 7.46% lower than Kubernetes (1.36 seconds), and
2.33% lower than Proactive (1.29 seconds). In MaxMin

Theodoropoulos et al.: Preprint submitted to Elsevier Page 17 of 22



GraphOpticon: A Global Proactive Horizontal Autoscaler for Improved Service Performance & Resource Consumption

Execution Time

Average Standard
Deviation

Median Max Range

Round-Robin

Standard 1.50 0.96 1.47 15.79 15.29
Kubernetes 1.47 0.98 1.36 27.05 26.55
Proactive 1.46 0.90 1.28 15.52 15.02

GraphOpticon 1.45 0.89 1.27 15.22 14.72

MinMin

Standard 1.49 0.88 1.48 19.16 18.66
Kubernetes 1.45 1.01 1.33 20.73 20.23
Proactive 1.45 0.87 1.29 16.53 16.03

GraphOpticon 1.42 0.85 1.26 13.05 12.55

MaxMin

Standard 1.64 1.19 1.54 21.65 21.15
Kubernetes 1.59 1.17 1.52 38.30 37.80
Proactive 1.53 1.06 1.45 21.10 20.60

GraphOpticon 1.52 1.04 1.43 20.73 20.23

Table 5
Experimental results for Execution Time.

scheduling, GraphOpticon’s median of 1.43 seconds is
7.14% lower than Standard (1.54 seconds), 5.92% lower than
Kubernetes (1.52 seconds), and 1.39% lower than Proactive
(1.45 seconds).

GraphOpticon reduces the maximum execution time in
each algorithm, helping to minimize extreme outliers. In
Round-Robin scheduling, GraphOpticon’s maximum exe-
cution time is 15.22 seconds, 3.57% lower than Standard
(15.79 seconds), 43.73% lower than Kubernetes (27.05 sec-
onds), and 1.93% lower than Proactive (15.52 seconds). For
MinMin scheduling, GraphOpticon achieves a maximum of
13.05 seconds, which is 31.99% and 37.11% lower than
Standard (19.16 seconds) and Kubernetes (20.73 seconds),
respectively, and 21.04% lower than Proactive (16.53 sec-
onds). In MaxMin scheduling, GraphOpticon’s maximum is
20.73 seconds, 4.16% lower than Standard (21.65 seconds),
45.83% lower than Kubernetes (38.30 seconds), and 1.75%
lower than Proactive (21.10 seconds).

GraphOpticon has the lowest range of execution times,
which reflects a more predictable performance. For Round-
Robin scheduling, GraphOpticon’s range is 14.72 seconds,
a reduction of 3.73% compared to Standard (15.29 sec-
onds), 44.72% compared to Kubernetes (26.55 seconds), and
2.00% compared to Proactive (15.02 seconds). In MinMin
scheduling, GraphOpticon’s range is 12.55 seconds, which
is 32.74% lower than Standard (18.66 seconds), 38.05%
lower than Kubernetes (20.23 seconds), and 24.35% lower
than Proactive (16.03 seconds). For MaxMin scheduling,
GraphOpticon achieves a range of 20.23 seconds, which is
4.21% lower than Standard (21.15 seconds), 46.59% lower
than Kubernetes (37.80 seconds), and 1.80% lower than
Proactive (20.60 seconds).

Table 6 illustrates latency and resource consumption
metrics across different scheduling algorithms. GraphOp-
ticon shows consistent improvements over the Standard,
Kubernetes, and Proactive approaches, excelling in skew-
ness, kurtosis, tail latency, and resource consumption across

all scheduling configurations. GraphOpticon achieves the
lowest skewness values, reflecting a more balanced latency
distribution. For Round-Robin scheduling, GraphOpticon’s
skewness of 3.67 is lower than Standard (3.84), Kuber-
netes (4.36), and Proactive (3.82), achieving reductions of
4.43%, 15.8%, and 3.92%, respectively. In MinMin schedul-
ing, GraphOpticon’s skewness of 3.01 outperforms Stan-
dard’s 3.85, Kubernetes’ 4.43, and Proactive’s 3.05, with
reductions of 21.82%, 32.05%, and a minor improvement of
1.31% over Proactive. For MaxMin, GraphOpticon records
a skewness of 4.07, which is 14.68% lower than Standard
(4.77), 53.52% lower than Kubernetes (8.76), and 4.24%
lower than Proactive (4.25). This reduction in skewness
demonstrates GraphOpticon’s superior ability to stabilize
latency distributions across workload types.

GraphOpticon also exhibits the lowest kurtosis values,
indicating fewer extreme outliers in latency. For Round-
Robin scheduling, GraphOpticon achieves a kurtosis of
22.68, representing reductions of 20.66% compared to Stan-
dard (28.59), 36.48% compared to Kubernetes (35.70),
and 12.93% compared to Proactive (26.04). With MinMin
scheduling, GraphOpticon achieves a kurtosis of 15.93,
significantly outperforming Standard (29.57), Kubernetes
(73.85), and Proactive (17.85) by 46.11%, 78.42%, and
10.77%, respectively. In MaxMin scheduling, GraphOpti-
con’s kurtosis of 30.05 shows improvements of 19.57%
over Standard (37.36), 48.21% over Kubernetes (58.04),
and 5.51% over Proactive (31.80). These results underscore
GraphOpticon’s robustness in handling extreme latency
values, leading to more predictable performance.

GraphOpticon consistently achieves lower tail latency
than Standard, Kubernetes, and Proactive models, reflecting
fewer high-latency occurrences. In Round-Robin schedul-
ing, GraphOpticon’s tail latency of 4.09 is lower than Stan-
dard (4.40), Kubernetes (4.72), and Proactive (4.22), show-
ing reductions of 7.05%, 13.34%, and 3.08%, respectively.
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Skewness
of Latency

Kurtosis
of Latency

Tail
Latency

Resource
Consumption

Round-Robin

Standard 3.84 28.59 4.40 11.174
Kubernetes 4.36 35.70 4.72 11.854
Proactive 3.82 26.04 4.22 14.857(9.857+5)

GraphOpticon 3.67 22.68 4.09 10.747(9.747+1)

MinMin

Standard 3.85 29.57 4.16 10.907
Kubernetes 4.43 73.85 4.08 11.109
Proactive 3.05 17.85 3.92 14.608(9.608+5)

GraphOpticon 3.01 15.93 3.87 10.591(9.591+1)

MaxMin

Standard 4.77 37.36 5.06 11.419
Kubernetes 8.76 58.04 5.12 11.793
Proactive 4.25 31.80 4.85 15.080(10.080+5)

GraphOpticon 4.07 30.05 4.73 10.993(9.993+1)

Table 6
Experimental results for Latency and Resource Consumption.

With MinMin scheduling, GraphOpticon achieves a tail la-
tency of 3.87, marking a 6.73% improvement over Standard
(4.16), a 5.15% reduction compared to Kubernetes (4.08),
and a slight improvement of 1.28% over Proactive (3.92).
In MaxMin scheduling, GraphOpticon’s tail latency of 4.73
seconds is 6.52% lower than Standard (5.06), 7.62% lower
than Kubernetes (5.12), and 2.47% lower than Proactive
(4.85). These findings highlight GraphOpticon’s ability to
minimize latency extremes effectively.

GraphOpticon proves to be the most resource-efficient
option, requiring fewer resources across all scheduling al-
gorithms compared to Standard, Kubernetes, and Proactive.
In Round-Robin scheduling, GraphOpticon’s resource con-
sumption is 10.747, reducing consumption by 3.82% com-
pared to Standard (11.174), 9.34% compared to Kubernetes
(11.854), and an impressive 27.65% compared to Proactive
(14.857). In MinMin scheduling, GraphOpticon uses 10.591
resources, representing reductions of 2.89% from Standard
(10.907), 4.66% from Kubernetes (11.109), and 27.51%
compared to Proactive (14.608). For MaxMin scheduling,
GraphOpticon consumes 10.993 resources, showing a 3.73%
reduction compared to Standard (11.419), a 6.77% reduction
compared to Kubernetes (11.793), and a 27.06% reduction
compared to Proactive (15.080). This efficiency in resource
allocation positions GraphOpticon as the most cost-effective
option.
7.6. Discussion

In terms of the three scheduling algorithms that were
leveraged in the context of this work, some clear conclusions
can be drawn. The evaluation of scheduling algorithms in
this study reveals that the MaxMin approach, which prior-
itizes longer tasks, yields the poorest performance across
all assessed metrics, including latency, execution time, and
resource consumption. This inefficiency is particularly pro-
nounced in workloads dominated by short tasks, as seen
in the experimental framework. The inherent strategy of

MaxMin scheduling causes short tasks to experience in-
creased wait times, leading to higher overall execution time
and elevated system latency.

In contrast, the MinMin scheduling algorithm, which
prioritizes shorter tasks, significantly improves performance
by quickly clearing the majority of the workload. This results
in a lower average execution time and reduced tail latency,
particularly in environments where short tasks are prevalent.
Similarly, the Round-Robin approach, by evenly distributing
tasks across available resources, ensures a balanced execu-
tion time and mitigates the monopolization of resources by
any specific task type.

Moreover, the resource consumption is notably higher
under MaxMin scheduling in short-task-heavy workloads
due to prolonged resource occupation by longer tasks. This
necessitates the activation of additional compute nodes to
manage the backlog of shorter tasks, leading to inefficiencies
in system resource utilization. By contrast, MinMin and
Round-Robin scheduling optimize resource usage by either
prioritizing short tasks for rapid completion or ensuring an
equitable task distribution, respectively. These approaches
contribute to more efficient system operation, minimizing
the number of active nodes and reducing overall resource
expenditure.

In terms of horizontal scaling algorithms, let us be-
gin our analysis by focusing on Standard, Kubernetes, and
GraphOpticon. While Kubernetes often achieves slightly
lower average and median execution times compared to the
Standard approach, it suffers from significantly higher max-
imum execution times, range of execution time, tail latency,
resource consumption, skewness, and kurtosis of latency,
indicating greater inconsistency and more frequent outliers
in task execution times. This discrepancy can be attributed
to the different methods used for horizontal autoscaling
in Kubernetes and the Standard approach. The Standard
approach utilizes two distinct thresholds for scaling in and
out, providing a more controlled and predictable mechanism
for resource allocation. When the system load reaches the
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upper threshold, additional resources are allocated to man-
age the increased demand, and when the load drops below
the lower threshold, excess resources are released. This
binary threshold system ensures that resources are scaled in a
predictable manner, which helps maintain a more consistent
performance across varying loads.

In contrast, Kubernetes employs HPA, which uses a more
dynamic formula for scaling. The HPA adjusts the number
of running pods based on the observed CPU utilization
against a target utilization defined by the user. The formula
calculates the desired number of pods as a ratio of current
CPU utilization to the target utilization. While this method
allows for more fine-tuned and responsive scaling, it can also
lead to greater variability in execution times due to the rapid
and frequent adjustments in resource allocation. This can
result in a system that is more susceptible to sudden spikes
in demand, leading to higher maximum execution times,
larger ranges, and increased skewness and kurtosis in the
distribution of latency.

The proactive horizontal autoscaling approach employed
by GraphOpticon is a key factor in its superior performance.
Unlike the Standard and Kubernetes approaches, which react
to changes in demand, GraphOpticon anticipates demand
fluctuations and scales resources accordingly. This proactive
approach leads to lower execution time and latency by scal-
ing resources ahead of anticipated demand spikes, minimiz-
ing the occurrence of high-latency events, and maintaining a
high quality of service. In addition, proactive scaling ensures
that resources are allocated precisely when needed, avoiding
both underutilization and overprovisioning. This efficient
resource management reduces the average number of com-
pute nodes used, lowering operational costs, and improving
system efficiency.

GraphOpticon’s efficiency can be attributed to two fac-
tors. The first is its ability to encapsulate temporal patterns
throughout the temporal continuum. The second is its ability
to further refine the encapsulation of these temporal patterns
through information fusion and distillation. GraphOpticon,
contrary to the other examined approaches, takes into con-
sideration the ongoing and past CPU consumption values
across numerous compute nodes to produce the values upon
which the horizontal autoscaling process shall take place.
These produced values provide valuable information re-
garding the number of pods that will be deployed in the
near future. These insights can be leveraged to conduct the
horizontal autoscaling process in an advanced manner that is
associated with enhanced service performance and reduced
resource consumption.

A sudden burst in resource consumption can be followed
by: i) a further increase in resource consumption and ii) a
decrease in resource consumption. GraphOpticon is capable
of leveraging various temporal patterns to calculate which
one of the scenarios is more likely to play out and formulate
its predictions accordingly. In case a gradual increase fol-
lows the burst in resource consumption, GraphOpticon will
proactively allocate additional computational resources to
mitigate the ramifications on service performance that would

derive from the insufficiency of resources. In case a decrease
follows the burst in resource consumption, GraphOpticon
will either de-allocate a compute node or maintain the on-
going compute node configuration as is. This is essential for
achieving reduced resource consumption.

Aside from reduced resource consumption, this ap-
proach can achieve better service performance. In the sce-
nario of a sudden burst in resource consumption, the reactive
approaches would allocate more compute nodes. Newly
produced tasks would then be assigned to these newly
added compute nodes. However, if the sudden burst is just a
random event, which is followed by a decrease in resource
consumption, then resource overprovisioning would emerge,
and subsequently, the newly added compute nodes would
be de-allocated. The tasks that were assigned to the de-
allocated nodes shall have to be re-assigned to other nodes,
thus increasing latency and the overall execution time.

Furthermore, when encountering a sudden drop in re-
source demand, GraphOpticon can effectively manage two
possible scenarios: i) a further decrease in resource usage or
ii) a subsequent increase. By analyzing various temporal pat-
terns, GraphOpticon predicts which scenario is more likely
and adjusts its resource allocation strategy accordingly. If the
drop is expected to be followed by an additional decrease,
GraphOpticon proactively de-allocates compute nodes or
maintains the current configuration without adding more re-
sources. This approach prevents resource overprovisioning,
reduces unnecessary costs, and enhances resource efficiency.
By scaling down resources only when necessary, GraphOp-
ticon ensures a lean operational state, which is crucial for
minimizing resource consumption.

On the other hand, if the drop is anticipated to be
temporary and followed by a gradual increase in resource
consumption, GraphOpticon retains or slightly increases
resource allocation. This proactive strategy helps mitigate
potential performance issues arising from resource shortages
when demand rises again. These performance issues also
include the fact that the tasks of the previously de-allocated
nodes would have to be re-assigned to alternative compute
nodes, thus increasing latency and the overall execution
time. By forecasting the need for more resources in advance,
GraphOpticon maintains stable and efficient service perfor-
mance, avoiding the drawbacks of reactive scaling. This
constant reassignment process increases latency and overall
execution time, negatively impacting service performance.
Additionally, the rapid scaling up and down of nodes can
introduce instability and additional overhead, further exac-
erbating performance issues. This phenomenon is referred
to as resource oscillation. As showcased in the frame of
this work, GraphOpticon is capable of mitigating resource
oscillation by leveraging predictive analytics.

The Proactive manages to consistently outperform the
Standard and Kubernetes approaches in terms of service per-
formance, yet it performs slightly worse than GraphOpticon.
This is due to the fact that although it is also a proactive
approach and thus can outperform reactive approaches, as is
evident by the prior discussion, its forecasting process is not
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as accurate as that of GraphOpticon. Proactive exhibits the
higher resource consumption among all approaches when
accounting for the computational resources that are required
to host the various forecasting models. In the event that
we do not account for these additional resources, Proactive
manages to outperform the Standard and Kubernetes ap-
proaches. Similarly to GraphOpticon, it is able to de-allocate
resources proactively, which can lead to reduced resource
consumption compared to reactive approaches. However,
the additional resource overhead that is required in order
to facilitate the 5 forecasting models negates the benefits
of proactive horizontal autoscaling in terms of resource
consumption. These experimental results, alongside the fact
that GraphOpticon is considerably more lightweight than
even a singular instance of the Proactive approach, enable us
to safely conclude that GraphOpticon is the superior option
in terms of improving service performance while reducing
the resource consumption that is associated with workloads
and the autoscaling system itself.

8. Conclusions & Future Research Directions
In this work, we introduced GraphOpticon, a global

proactive horizontal pod autoscaling solution aimed at op-
timizing service performance and reducing resource con-
sumption. It integrates four key components: Monitoring,
Input Construction, Forecasting, and Output Distillation,
utilizing GNNs for information fusion and distillation. The
Input Construction component refines input sequence rep-
resentations, enabling accurate resource consumption pre-
dictions across multiple pods and time steps through a
global Forecasting mechanism. Output Distillation then
leverages these predictions to generate tailored insights
specific to pod characteristics. By leveraging predictive
analytics, GraphOpticon maintains efficient resource usage
and enhanced service performance, avoiding the pitfalls of
overprovisioning and reassignment delays seen in reactive
approaches. This proactive management ensures stability
and efficiency, delivering optimal results in varying de-
mand scenarios. These findings highlight the advantages
of proactive scaling strategies in contemporary distributed
systems. GraphOpticon not only reduces latency and exe-
cution time but also improves workload source consumption
while minimizing autoscaling system resource consumption,
ensuring a more reliable and efficient distributed computing
environment.

The aforementioned decrease in workload resource con-
sumption and minimization of autoscaling system resource
consumption is expected to result in enhanced cost-savings
and energy efficiency. As organizations increasingly rely on
cloud-based infrastructure and distributed systems, the need
for more sustainable and cost-effective solutions becomes
critical. As such, future work shall focus on developing more
detailed models to quantify the financial and environmental
benefits of GraphOpticon’s proactive autoscaling approach.
This will involve conducting large-scale evaluations across

various industries and workloads to measure the real-world
impact of improved resource utilization.
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