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Abstract 

Background: Single-cell RNA-seq suffers from unwanted technical variation between cells, caused by its complex experi- 
ments and shallow sequencing depths. Many conventional normalization methods try to remove this variation by calculat- 
ing the relative gene expression per cell. However, their choice of the maximum likelihood estimator is not ideal for this 
application. 

Results: We present GTestimate , a new normalization method based on the Good–Turing estimator, which improves upon con- 
ventional normalization methods by accounting for unobserved genes. To validate GTestimate , we developed a novel cell-targeted 

PCR amplification approach (cta-seq), which enables ultra-deep sequencing of single cells. Based on these data, we show 

that the Good–Turing estimator improves relative gene expression estimation and cell–cell distance estimation. Finally, we use 
GTestimate ’s compatibility with Seurat workflows to explore 4 example datasets and show how it can improve downstream 

results. 

Conclusion: By choosing a more suitable estimator for the relative gene expression per cell, we were able to improve scRNA-seq 

normalization, with potentially large implications for downstream results. GTestimate is available as an easy-to-use R-package and 

compatible with a variety of workflows, which should enable widespread adoption. 

Keywords: scRNA-seq, normalization, gene expression, Good–Turing estimator, deep sequencing, targeted amplification 

 

p
[

o  

i  

i  

e

w  

c
 

t  

m  

g
S  

g  

a  

f

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf084/8277207 by guest on 06 N

ovem
ber 2025
Introduction 

Single-cell RNA-seq (scRNA-seq) provides new insights into cell 
diversity, differentiation, and disease [ 1–3 ]. These insights are en- 
abled by affordable high-throughput methods for the parallel se- 
quencing of thousands of cells [ 4 , 5 ]. However, they require many 
experimental steps, whose efficiency differs between cells, leading 
to high variability in the number of mRNAs captured. Addition- 
ally, sequencing depths as low as 20,000 reads per cell [ 6 ] and the 
nature of parallel sequencing introduce stochastic variation [ 5 , 7 ,
8 ]. After accounting for PCR duplicates among reads, a median of 
∼5,000 UMIs/cell (number of sequenced mRNA molecules per cell) 
with a range of ∼500 to 20,000 UMIs/cell is typical for a high-quality 
sample (Fig. 1 A). This high technical variation between cells re- 
sults in a low signal-to-noise ratio, which makes data analysis 
challenging. 

During data processing (Fig. 1 B), global-scaling normalization 
methods [ 8 ] such as Seurat’s NormalizeData [ 9 ], scran’s com- 
puteSumFactors [ 10 , 11 ], or scanpy’s normalize_total [ 12 ] account 
for the variation in UMIs/cell by calculating a single scaling 
factor (or size factor) per cell. Despite its simplicity, this ap- 
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roach has been shown to outperform more complex methods 
 13 ]. 

Global-scaling normalization inherently requires the calculation 

f the relative gene expression levels per cell. Although not typ-
cally discussed as such, the calculation used by these methods
s a maximum likelihood (ML) estimation [ 14 ] of the relative gene
xpression frequency per cell. 

̂ fg 
ML = cg ∑ 

i ci 
(ML) 

here c denotes the transcriptomic profile of the cell with a count

g for each gene g. 
However, at ∼5,000 UMIs/cell , only ∼2.5% of the ∼200,000 mRNA

ranscripts in a typical mammalian cell [ 15 ] are sequenced and
any expressed genes remain unobserved, as evident by the low

enes/cell observed in scRNA-seq experiments ( Supplementary Fig. 
1 ). ML then estimates the relative expression of unobserved
enes as zero. This inherently leads to overestimation of the rel-
tive expression for observed genes, since the sum of all relative

requencies equals 1 ( 
∑ 

g ̂
 fg 
ML = 1 ). 
e. This is an Open Access article distributed under the terms of the Creative
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Figure 1: (A) Histogram of UMIs/cell for 17,653 cells in the cta-seq experiment before amplification. (B) Schema of a scRNA-seq analysis showing where 
GTestimate integrates into the workflow. (C) UMIs/cell for the 18 selected cells in the cta-seq experiment, before ( typical ) and after ( ultra-deep ) 
amplification. Cells ordered based on UMIs/cell in the typical cta-seq data. (D) Absolute error of the relative gene expression estimation in the cta-seq 
experiment. (E) Euclidean cell–cell distances in PCA space in the cta-seq experiment. (F) Average absolute estimation error of the relative gene 
expression of a cell when subsampled to different UMIs/cell . (G, H) Mean Euclidean cell–cell distance in relative gene expression space, between 2 
independent random samples of the same cell (G) between independent random samples of 2 different cells (H). (I) Difference between the mean 
cell–cell distances in (G) and (H). Colored ribbons in (F), (G), and (H) represent the 5% − 95% quantile range. 
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To reduce this overestimation, we propose a Simple Good–
uring (GT) estimator [ 16 , 17 ]. 

̂ fg 
GT =

{ 

(cg +1) ∑ 

i ci 
· S (Ncg +1 ) 

S (Ncg ) 
, for cg > 0 

0 , for cg = 0 
(GT) 

here Ncg denotes the number of genes with count cg in the cell,
nd S () is a smoothing function following Gale and Sampson [ 17 ].

GT adjusts the relative expression estimates of observed genes,
articularly those with low counts, based on the frequency of each
ount value in the cell. This even enables an estimate for the
elative expression of unobserved genes (for further details, see
upplementary Materials 1.1 ). 

In this study, we first compare the performance of GT and ML
n novel ultra-deep sequencing data and then show how GT im-
roves downstream results, by integrating it into standard scRNA-
eq analysis workflows. To achieve this, we developed GTestimate ,
 new scRNA-seq normalization method centered on GT. GTesti-
ate is an easy-to-use R-package designed to seamlessly replace
eurat’s NormalizeData . 

esults 

ltra-deep sequencing of single cells 

omparison between GT and ML requires ground-truth transcrip-
omic profiles of single cells. However, current simulation software
annot adequately emulate the complexity of scRNA-seq data,
nd the choice of simulator may affect benchmarking results [ 18 ].
e therefore designed a cell-targeted PCR amplification strategy

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data


GTestimate: improving relative gene expression estimation | 3

 

 

G
A
m
G
r
n  

t
F  

t
t  

a  

f
w

d
s  

a
t
s
fi
l
o  

p
S

 

r
c  

i  

t  

c
 

c
t
o  

(
 

r  

v
 

m
p  

A
T  

D
i  

(  

c  

f  

(  

t

a  

t
s
S
i
d
d  

l
(  

c  

G

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf084/8277207 by guest on 06 N

ovem
ber 2025
(cta-seq), which enabled us to sequence a small set of selected 

cells, from a typical sequencing run, a second time at an ultra-deep 
sequencing depth. This ultra-deep sequencing data contain an av- 
erage of 23 million reads (44,511 UMIs , 7,403 genes ) per cell, a stark 
contrast to the average 16,965 reads (6,048 UMIs , 2,246 genes ) for 
the same cells in the typical data ( Supplementary Fig. S2 ). This rep- 
resents a ∼7.4-fold increase in UMIs/cell (Fig. 1 C) and a ∼3.3-fold 

increase in genes/cell ( Supplementary Fig. S3 ). We then used the 
relative gene expression levels of these ultra-deep profiles as the 
ground truth for these cells. 

Performance of GT and ML 

Based on the cta-seq data, we then evaluated GT and ML. When we 
applied GT and ML to the typical profiles and compared the results 
to the ground truth, GT consistently showed a lower estimation 

error across all 18 cells, by ∼17% on average (Fig. 1 D). 
Relative gene expression profiles are the basis of most scRNA- 

seq analysis (Fig. 1 B), such as the calculation of cell–cell distances 
in principal component analysis (PCA) space (often used as a mea- 
sure for the similarity between 2 cells). We therefore also calcu- 
lated cell–cell distances between the typical profiles, once based on 

GT and once based on ML, and compared the results to the cell–
cell distances between the ultra-deep profiles. We observed a 36% 

reduction of the distance estimation error when using GT instead 

of ML (Fig. 1 E, Supplementary Table S1 ). 
Since UMIs/cell vary drastically (Fig. 1 A), we further assessed 

the performance of GT and ML at different UMIs/cell . We applied 

GT and ML to random subsamples of the cell with the highest 
UMIs/cell in the ultra-deep cta-seq data (cell 12, at 94,440 UMIs) and 

compared the estimates to the ground-truth expression profile of 
this cell. Similar to before (Fig. 1 D), the estimation error for both 

GT and ML decreased with increasing UMIs/cell , and GT consis- 
tently showed a lower error than ML, especially at low UMIs/cell 
(Fig. 1 F). 

Next, we assessed the impact of UMIs/cell on cell–cell distances.
We first compared the mean distance between 2 random sam- 
ples of the same cell (cell 12), both sampled to the same UMIs/cell .
This distance was calculated in relative gene expression space and 

should approach zero for high UMIs/cell . However, ML led to grossly 
overestimated distances at small UMIs/cell (Fig. 1 G). The estimated 

distance after ML additionally showed strong correlation to the 
UMIs/cell , which is problematic as we assume that most of the ob- 
served variation in UMIs/cell is technical noise. In contrast, GT did 

not show correlation to the UMIs/cell and demonstrated lower dis- 
tance estimation errors overall. 

We then examined the distances between 2 distinct cells by 
also drawing random samples from the cell with the second 

highest UMIs/cell in the ultra-deep cta-seq data (cell 15, at 58,589 
UMIs), which is of a different cell type. We calculated the dis- 
tances between the sampled profiles of cell 12 and cell 15 at vary- 
ing UMIs/cell . We again saw large overestimation of the distances 
when using ML, while using GT strongly reduced this error. For 
high UMIs/cell , the estimated distances converged to the true dis- 
tance of 0.015 (Fig. 1 H). 

When based on ML, the estimated distances between identical 
cells (Fig. 1 G) and distinct cells (Fig. 1 H) were almost the same for 
low UMIs/cell . This makes it very difficult to distinguish between 

cell types. However, when we used GT as the basis for these dis- 
tances, we saw a much clearer separation between identical cells 
and cells of different cell types, for cells with < 10 , 000 UMIs/cell 
(Fig. 1 I). 
Testimate ’s impact on downstream results 

fter showing GT’s advantages for relative gene expression esti- 
ation and cell–cell distance estimation, we examined how our 
T-based normalization method GTestimate impacts downstream 

esults. The difference between GTestimate and other global-scaling 
ormalization methods is only in the estimator used; all other set-
ings can be adjusted to be equivalent to scran’s computeSum- 
actors or scanpy’s normalize_total , for example. At default set-
ings, GTestimate behaves identically to NormalizeData , including 
he same log-transformation. We therefore used NormalizeData ,
s a representative of ML-based global-scaling normalizations , for all
ollowing comparisons. However, we would expect similar results 
hen comparing to other global-scaling normalization methods. 
Direct comparison of normalized gene expression values across 

ifferent normalization methods (e.g., residual-based methods 
uch as SCTransform ) is often difficult due to varying scales
nd different data transformations. We therefore focus our ini- 
ial comparison (Fig. 2 ) on NormalizeData , representing global- 
caling normalization methods. This choice aligns with recent 
ndings indicating that global-scaling methods (followed by a 

og-transformation with pseudo-count and PCA) typically match 

r outperform more complex approaches [ 13 ]. However, we also
rovide a downstream clustering-based comparison, including 
CTransform . 

We first assessed GTestimate ’s impact on cell-type clustering by
eanalyzing the pbmc3k dataset of peripheral blood mononuclear 
ells [ 19 ]. Here, normalization with GTestimate instead of Normal-
zeData resulted in 4.6% of cells being assigned to a different clus-
er (Fig. 2 A), mostly among the naive CD4 T cells, memory CD4 T
ells, and CD8 T cells. 

We additionally analyzed a developing pancreas dataset [ 20 ],
haracterized by more gradual cell-type transitions compared to 
he pbmc3k dataset. After normalization with GTestimate instead 

f NormalizeData , 14.6% of cells were assigned to a different cluster
Fig. 2 C, D). 

While the correct classification of cells in both of these datasets
emains unknown, our results in Fig. 1 suggest that GTestimate pro-
ides a better basis for this classification. 

To examine the impact of GTestimate on the expression esti-
ates of individual genes, we considered the log-normalized ex- 

ression of cell-type specific marker genes in the pbmc3k dataset.
s an example, we used NKG7 , a highly specific NK-cell and CD8+ 

-cell marker [ 21 ]. When using GTestimate instead of Normalize-
ata , the log-normalized expression of NKG7 remained constant 

n NK cells and CD8+ T cells but was reduced in all other cell types
Fig. 2 B). GTestimate therefore resulted in clearer separation of NK
ells and CD8+ T cells from other cell types. We observed this
or nearly all marker genes described in Seurat’s pbmc3k tutorial
 Supplementary Fig. S4 ). These differences may explain some of
he observed changes in clustering. 

We also applied GTestimate to the spotwise normalization of 
 Spatial Transcriptomics dataset of the mouse brain [ 22 ]. In
his dataset, normalization with GTestimate and NormalizeData re- 
ulted in 17 and 19 clusters, respectively ( Supplementary Figs. S5, 
6, S7 ); we therefore refrained from any cluster-based compar- 
sons of GTestimate and NormalizeData . However, the spatial coor- 
inates enabled examination of area-specific marker genes, in- 
ependent of the clustering. As an example, we considered the

og-normalized expression of the choroid plexus marker gene Ttr 
Fig. 2 E). When using GTestimate , we saw a reduction of the unspe-
ific expression of Ttr for spots outside the choroid plexus. Here,
Testimate showed up to 50% reduction of the log-normalized 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
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Figure 2: pbmc3k: (A) UMAPs based on NormalizeData and GTestimate , and UMAP highlighting differences in cluster assignment. (B) Boxplot showing 
log-normalized expression of NKG7 per cell type (zeroes not shown). Developing Pancreas: (C) UMAPs based on NormalizeData and GTestimate , and 
UMAP highlighting differences in cluster assignment. (D) Sankey diagram showing the differences in cluster assignment based on NormalizeData and 
GTestimate . Spatial Transcriptomics: (E) log-normalized gene expression of Ttr based on NormalizeData and GTestimate as well as percent difference in 
log-normalized expression of Ttr between NormalizeData and GTestimate . (F) Density plot showing the distribution of log-normalized gene expression 
values of Ttr for NormalizeData and GTestimate . 
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xpression, compared to NormalizeData , while expression esti-
ates inside the choroid plexus remained constant (Fig. 2 E). This

esulted in clearer separation of the choroid plexus spots from the
urrounding tissue, as shown by the distribution of expression val-
es of Ttr (Fig. 2 F). 

When we additionally considered the UMIs/spot
 Supplementary Fig. S8 ), we saw a negative correlation between
he change in log-normalized expression of Ttr and UMIs/spot .
his supports previous observations that NormalizeData over-
stimates the expression of Ttr in areas with low UMIs/spot . In
ontrast, GTestimate reduces this overestimation and improves
he signal-to-noise ratio. 

The datasets shown in Figs. 2 A, C are widely used examples that
ighlight different aspects of scRNA-seq analysis. However, since
hese datasets lack ground-truth cell-type annotations, we cannot
onclusively evaluate clustering accuracy based on them alone.
lthough the clear differences observed when using GTestimate in-
tead of NormalizeData , together with our earlier results (Fig. 1 ),
uggest improved relative gene-expression estimation with GT,
his does not necessarily translate to better clustering perfor-

ance. Direct benchmarking of clustering performance requires
nnotated data. 

To address this, we analyzed a recently published PBMC scRNA-
eq dataset from Fu et al. [ 23 ], which includes experimen-
ally annotated cell types obtained via antibody-coated mag-
etic beads, providing a robust benchmark for clustering per-

ormance. We performed standard scRNA-seq analysis on this
ataset, normalizing once with GTestimate , once with Normal-

zeData , and once with SCTransform , followed by unsupervised
lustering. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
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Here we also included SCTransform , as clustering is a down- 
stream analysis step where differences in scaling and trans- 
formations become intrinsic properties of each normalization 

method. Consequently, the effects of these differences should 

be interpreted as advantages or disadvantages inherent to each 

approach. 
We assessed clustering performance by calculating the Ad- 

justed Rand Index (ARI) between the unsupervised clustering re- 
sults and the provided cell-type annotations. The ARI ranges from 

0 to 1, with 0 indicating no agreement and 1 indicating perfect 
agreement between 2 clusterings. Because clustering outcomes 
strongly depend on the selected resolution parameter, we evalu- 
ated a broad range of resolutions from 0.1 to 1.5 ( Supplementary 
Fig. S9 ). 

Normalization with GTestimate produced higher ARI scores 
than NormalizeData at 14 of the 15 tested resolutions and outper- 
formed SCTransform at 10 resolutions. Importantly, GTestimate also 
yielded the highest overall ARI (0.874), compared to 0.768 for Nor- 
malizeData and 0.822 for SCTransform . This superior maximum ARI 
is particularly relevant, as in practice, the clustering resolution is 
routinely adjusted to optimize results. By this criterion, normal- 
ization with GTestimate provides the best clustering accuracy for 
this dataset. 

Discussion 

In summary, the estimation of relative gene expression is a cen- 
tral part of scRNA-seq data analysis, which has not received the 
same attention as other steps. We have shown that replacing 
the standard ML with GT improves relative gene expression es- 
timation, without requiring expensive computations. By improv- 
ing the signal-to-noise ratio at this basic level, our new normal- 
ization method GTestimate can have large impact on downstream 

results. 
In the validation, we avoided potential issues with simulated 

data by employing a novel cell-targeted PCR amplification strat- 
egy to sequence the same cells at 2 vastly different UMIs/cell . This 
strategy may also be useful in other areas, such as the study of 
rare cell types. Additionally, the resulting dataset may serve as a 
benchmark for other methods. 

GTestimate is available as an open-source R-package ( https: 
//www.github.com/Martin-Fahrenberger/GTestimate ) and works 
with all common scRNA-seq data formats. While GTestimate ’s de- 
fault behavior is designed to seamlessly replace NormalizeData , it 
is also compatible with a wide variety of other workflows. 

Materials and Methods 

Implementation of GTestimate 
The user-facing section of our GTestimate package was developed 

in R and handles input and output in the various supported data 
formats. The core implementation of the Simple Good–Turing es- 
timator is written in C ++ and is heavily based on Aaron Lun’s im- 
plementation for the edgeR R-package [ 24 ]. This core implemen- 
tation includes the linear smoothing, which is necessary due to 
the sparsity of the frequencies of frequencies vector (i.e., the fre- 
quency of the count values). It further includes a rescaling step,
which ensures that the estimated relative expression frequencies 
of all observed genes, plus the sum of probabilities of all unob- 
served genes ( Supplementary Materials 1.1 ), add up to exactly 1 
[ 17 ]. 
ta-seq experiment 
n the cta-seq experiment, we aimed to sequence a selected set
f cells from a typical scRNA-seq library again at an ultra-deep
equencing depth. However, due to sequencing saturation, this 
uickly becomes prohibitively expensive. We therefore designed 

 PCR-based cell-targeted amplification strategy (cta-seq) to se- 
ectively amplify all transcripts from a small set of cells, through
he use of primers specific to their cell barcode. This is similar
o the TAP-seq protocol [ 25 ], which uses gene-specific primers to
mplify all transcripts of certain genes. 

equencing cta-seq, typical 
o ensure high-quality input material, we used leftover cDNA 

rom a previously sequenced sample [ 26 ], which had shown high
MIs/cell and genes/cell . The sample was taken out of −20◦C stor-
ge and prepared for Illumina sequencing at the Vienna Biocenter
ext Generation Sequencing facility using the 10X Dual Index Kit
T. We then split the resulting sequencing library into 2 aliquots
nd stored the second half again at −20◦C. The first half was se-
uenced on a Illumina NovaSeq S4 in paired-end mode with a 2 ×
50-bp read length and 400 million reads. 

equencing cta-seq, ultra-deep 

ased on the results from the typical sequencing run, we selected
8 cells of interest for the cta-seq experiment (see below). For
hese 18 cells, we designed PCR primers specific to their cell bar-
odes. We used the second aliquot of the previously prepared se-
uencing library and split it further into 18 individual reactions,
ne for each targeted cell. We then performed 3 rounds of PCR
mplification with the respective primers using Amplitaq Gold 

60 MM (ThermoFisher, cat.: 4398886) supplemented with Eva- 
reen dye (Biotium, cat.: 31000). We used the following programs

n a total volume of 50 μL. PCR1: 1. 95◦C, 10 min; 2. 62◦C, 30 s;
. 72◦C, 2 min; 4. Return to 2, ×2; 5. 95◦C, 25 s; 6. 62◦C, 30 s; 7.
2◦C, 2 min, fluorescence measurement; 8. 72◦C, 15 s; 9. Return
o 5, ×16. PCR2: 1. 95◦C, 10 min; 2. 62◦C, 30 s; 3. 72◦C, 2 min; 4.
eturn to 2, ×2; 5. 95◦C, 25 s; 6. 62◦C, 30 s; 7. 72◦C, 2 min, fluo-
escence measurement; 8. 72◦C, 15 s; 9. Return to 5, ×16. PCR3:
. 95◦C, 10 min; 2. 67◦C, 30 s; 3. 72◦C, 2 min; 4. Return to 2, ×2; 5.
5◦C, 25 s; 6. 67◦C, 30 s; 7. 72◦C, 2 min, fluorescence measurement;
. 72◦C, 15 s; 9. Return to 5, ×8. Reactions were stopped in step
 according to fluorescent measurements in log phase. Reaction 

nput in PCRs 2 and 3 were 0.5 μL of the previous reaction. Result-
ng reactions were purified and pooled for Illumina sequencing on
 NovaSeq S4 in paired-end mode with a 2 × 150-bp read length
nd 400 million reads. The primer sequences used can be found
n Supplementary Table S2 , and PCR1 primers were designed with
arying lengths to achieve similar melting temperatures. 

ata analysis 

ll data analysis was performed in R (v4.3.1) using Seurat (v5.0.0)
unctions at default settings unless stated otherwise. 

ata analysis, cta-seq typical depth 

e first processed the typical depth sequencing data using Cell-
anger (v7.1.0), which resulted in 20,214 cells. During cell qual-

ty control (QC), we then removed all cells expressing ≤ 1 , 000 or
5 , 000 genes, as well as cells with ≥ 8% mitochondrial reads,
ith 17,653 cells remaining. We then normalized with Seurat’s 
ormalizeData , selected the top 2,000 most variable genes, and
erformed genewise z -score scaling. Next we applied PCA and
erformed unsupervised clustering of cells using the Louvain 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
https://www.github.com/Martin-Fahrenberger/GTestimate
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
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lgorithm [ 27 ] (resolution = 0.1), based on the first 50 principal
omponents (PCs). This resulted in 4 cell-type clusters, and the
mallest cluster (with only 504 cells) was excluded from the sub-
equent analysis. 

From the remaining 17,149 cells, we selected 18 cells for tar-
eted amplification, 6 cells from each of the 3 remaining clusters.
o select a diverse set of cells from each cluster, we used the fol-
owing: 

1. We identified the 2 nearest neighbors for each cell (in PCA
space). 

2. We excluded cells for which at least 1 nearest neighbor be-
longed to a different cluster. 

3. For the remaining 16,295 cells, we computed the #UMI rank,
from the number of observed UMIs per cell (ties were broken
randomly). 

4. Similarly, we computed the #UMI 
#Genes rank based on the ratio of

the number of observed UMIs and the number of observed
genes in the cell (ties were broken randomly). 

5. Subsequently, we calculated the diversity of each cell and its
neighbors as the area of the induced triangle of the cell and
its neighbors in a #UMI rank × #UMI 

#Genes rank plot. The 6 cells
from the 2 most diverse neighborhoods (i.e., largest triangle
area) were selected for amplification. 

These steps were designed to cover a diverse set of cells for
hich the various experimental steps had varying efficiencies.
he selection of triplets from the same neighborhoods provided
roups of cells with similar gene expression patterns, while the
umber of UMIs and the number of observed genes were used as
roxies for the mRNA capture efficiencies and the health of the

solated cells. 

ata analysis, cta-seq ultra-deep 

he sequencing data from the ultra-deep sequencing run were pro-
essed using CellRanger (v7.1.0). 

However, due to the high number of PCR cycles during amplifi-
ation and the resulting high number of reads for the 18 selected
ells, CellRanger’s UMI correction approach was no longer suffi-
ient. Manual inspection of the reads showed that errors in the
MI sequences had inflated the number of unique reads. 
This was further exacerbated by a faulty implementation of

he UMI correction approach in the CellRanger software by 10X
enomics. CellRanger erroneously corrects UMIs containing se-
uencing errors toward other UMIs that also contain sequencing
rrors. For example, if we have 3 UMIs—AAAA with 10 reads, AAAT
ith 2 reads, and AATT with 1 read—AATT would be corrected to-
ard AAAT (Hamming Distance 1) and stay as AAAT, even though

he original 2 AAAT reads would be corrected to AAAA in the same
tep. We reported this issue to 10X Genomics on 13 July 2023, and
0X Genomics acknowledged the issue on 14 July 2023. The issue
emains unresolved in CellRanger 7.2.0 (released on 10 November
023). 

To circumvent these issues, we extracted the relevant infor-
ation for each read (count, ensemble gene ID, cell barcode,

ncorrected UMI, and CellRanger-corrected UMI) from the pos-
orted_genome_bam.bam, as provided by CellRanger, and repli-
ated CellRanger’s read-counting workflow in R. As a sanity check,
e first used the CellRanger-corrected UMIs and achieved the ex-
ct same count matrix as CellRanger. We then used the raw UMIs
nstead of the CellRanger-corrected UMIs, implemented the UMI
ools’ directional UMI correction approach [ 28 ] in R, and applied it
o correct the UMIs for the 18 selected cells, and we then counted
gain. The resulting count matrix showed differences for 28% of
he nonzero entries when compared to the CellRanger results. We
sed these improved counts for the ultra-deep profiles in all further
nalysis. 

omparison of GT and ML using cta-seq 

o evaluate the performance of GT and ML based on the cta-seq
ataset, we estimated the relative gene expression for the 18 se-

ected cells by applying both estimators to the typical transcrip-
omic profiles. 

The relative gene expression for the ground-truth ultra-deep
rofiles was estimated with ML. We chose ML to be conservative
egarding the performance of GT and since the overestimation
ue to unobserved genes should be small for the ultra-deep pro-
les Supplementary Fig. S10 . 

elative gene expression estimation 

e calculated the absolute estimation error for the relative gene
xpression of the 18 cells by comparing the estimation results
f GT and ML based on the typical transcriptomic profiles to the
round-truth relative gene expression of the ultra-deep profiles. We
onsider the relative gene expression estimation error of a cell to
e the sum of the individual relative gene expression estimation
rrors in the cell. 

ell–cell distances 
he pairwise Euclidean distances between the 18 cells were cal-
ulated in PCA space (as is common for cell–cell distances in
cRNA-seq). However, to keep the necessary projections similar
o a regular scRNA-seq analysis, this space could not simply be
onstructed based only on the 18 selected cells. 

Instead, we calculated the projections based on 17,653 cells in
he typical sequencing run. After normalization, there were 3 pre-
rocessing steps that all depended on the context of a full dataset:
ariable gene selection, genewise z -score scaling, and PCA. 

To keep these steps identical for both the GT and ML profiles
f the typical sequenced cells, as well as the ultra-deep profiles, we
erformed them using customized functions. We used the same

ist of variable genes (calculated based on all 17,653 cells) for the
nalysis of all profiles. We then scaled the genes in all profiles
sing the mean and standard deviation of genes calculated based
n the full 17,653 cells. Finally, we projected all profiles into the
ame 50 dimensional PCA space calculated from the full 17,653
ells. 

In this PCA space, we calculated the pairwise distances be-
ween the ML profiles, between the GT profiles, and between the
round-truth ultra-deep profiles. We then compared the resulting
onzero distances based on GT and ML to the ground-truth ultra-
eep distances. 

omparison of GT and ML at different UMIs/cell 
hen analyzing the impact of UMIs/cell on the estimation per-

ormance, we used the cell with the highest number of UMIs af-
er amplification (cell 12, cell barcode TCTCTGGGTGTGCTTA) and
he cell with the second highest number of UMIs after amplifica-
ion (cell 15, cell barcode GGCTTTCGTGTGTCGC). 

We generated 1,000 randomly sampled profiles at each UMI/cell
evel by drawing genes from the ultra-deep count vector, weighted
y count and with replacement. The 20 UMI/cell levels at which
e sampled were chosen equidistant in log10 -space from 100 to
00,000 (i.e., 100, 143, 206, 297, 428, 615, 885, 1,274, 1,832, 2,636,

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
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3,792, 5,455, 7,847, 11,288, 16,237, 23,357, 33,598, 48,329, 69,519,
100,000 UMIs/cell ). We then applied GT and ML, respectively, to 
these sampled profiles to estimate their relative gene expression. 

Relative gene expression estimation 

To assess the relative gene expression estimation performance of 
GT and ML, we compared their estimates for each sampled profile 
from cell 12 to the relative gene expression of the full ultra-deep 
profile of cell 12 and calculated the absolute error. 

Cell–cell distance estimation 

To assess cell–cell distance estimation performance, we calcu- 
lated the Euclidean distances between the relative gene expres- 
sion profiles of pairs of sampled profiles (either from cell 12 twice 
or from cell 12 and cell 15) based on GT and ML. We calculated 

the true distance based on the full ultra-deep profiles. 

Downstream analysis 

Data analysis, pbmc3k 

The pbmc3k dataset was downloaded from 10X Genomics [ 19 ] and 

processed following Seurat’s “Guided Clustering Tutorial” [ 29 ]. In 

short: 
During QC, we filtered out genes expressed in fewer than 3 cells 

and cells with fewer than 200 expressed genes. We then filtered 

out cells with > 5% mitochondrial reads, and finally, we removed 

all cells expressing more than 2,500 genes. 
During preprocessing, cells were normalized using Seurat’s Nor- 

malizeData or GTestimate at default settings. For both normaliza- 
tion methods individually, we then identified variable genes and 

z -score scaled the data, followed by calculation of the top 10 
PCs. Based on these PCs, we then constructed the neighborhood 

graphs and performed unsupervised Louvain clustering (resolu- 
tion = 0.5). Finally, we calculated the UMAP for both conditions 
and annotated clusters based on marker gene expression, follow- 
ing the Seurat tutorial. 

Data analysis, developing pancreas 
The pancreas endocrinogenesis day 15 dataset was downloaded 

[ 30 ] and imported into R to be processed using Seurat. We only 
used the spliced counts and normalized them using GTestimate 
and NormalizeData ; from there on, all following steps were per- 
formed identically for the 2 approaches. 

First we identified variable genes and performed genewise z - 
score scaling, followed by calculation of the top 50 PCs. Based on 

the PCs, we constructed the neighborhood graph and performed 

unsupervised Louvain clustering (resolution = 0.4). Finally, we cal- 
culated the UMAP. 

We manually adjusted the cluster numbering (and thereby 
their color) for Fig. 2 C, D to have consistent cluster colors from 

left to right. 

Data analysis, Spatial Transcriptomics 
The stxBrain dataset of sagittal mouse brain slices from 10X Ge- 
nomics was downloaded using the SeuratData R-package. In our 
analysis, we focused on the anterior1 slice of the dataset follow- 
ing Seurat’s “Analysis of spatial datasets (Sequencing-based)” vi- 
gnette [ 31 ]. 

Our analysis differs from the vignette only in the normaliza- 
tion methods used. While the vignette uses sctransform [ 32 ] for 
spotwise normalization, we instead used NormalizeData and GTes- 
timate . Direct comparison of GT and ML to SCTransform on the ba- 
sis of relative gene expression is not possible, since SCTransform 
oes not calculate relative gene expression levels. Normalization 

as followed by variable gene selection and genewise scaling. We
hen calculated the first 30 PCs and used them to construct the
eighborhood graph, perform unsupervised Louvain clustering,
nd calculate the UMAP. 

ata analysis, experimentally annotated PBMCs (Liu 

ataset) 
he Liu dataset was downloaded and imported into R to be pro-
essed using Seurat. We used the purified version of the dataset,
hich includes an additional filtering step to ensure correct cell-

ype assignments. 
For our GTestimate and NormalizeData analyses, we first normal- 

zed the data using the respective method at default settings, and
hen we identified the 2,000 most variable genes and performed
enewise z -score scaling. For our SCTransform -based analysis, we
imply applied SCTransform at its default settings, as it is supposed
o replace all 3 of these steps. 

From here, the remaining steps were identical for the 3 analy-
es: we first calculated the top 30 PCs (we chose 30 PCs to be in
ine with the original analysis by Fu et al. [ 23 ] performed as part
f their cell filtering step) and then constructed the neighborhood
raph and performed unsupervised Louvain clustering. Louvain 

lustering was repeated at 15 different resolutions from 0.1 to 1.5
n steps of 0.1. 

At each resolution, we calculated the ARI between the experi-
entally annotated ground-truth cell types and the unsupervised 

lustering results. 

vailability of Source Code and 

equirements 

roject name: GTestimate 
roject homepage: https://github.com/Martin-Fahrenberger/ 
Testimate 
perating system(s): Platform independent 
rogramming language: R, C ++ 

ther Requirements: devtools, sparseMatrixStats 
icense: GPL3 
RID: SCR_026562 

A version of record snapshot of the GitHub repository has been
rchived in the Software Heritage [ 33 ]. 

ll Code for the Analysis (raw-data, figures) 
roject name: GTestimate-Paper 
roject homepage: https://www.github.com/Martin- 
ahrenberger/GTestimate-Paper
perating system(s): Platform independent 
rogramming language: R 

ther Requirements: renv (additional requirements as in note- 
ooks/renv.lock) 
icense: GPL3 

A version of record snapshot of the GitHub repository has been
rchived in the Software Heritage [ 34 ]. 

dditional Files 

upplementary Fig. S1. Histogram showing the number of ob- 
erved genes per cell for the 17,653 cells in the cta-seq sample
efore amplification ( typical ). 

https://github.com/Martin-Fahrenberger/GTestimate
https://scicrunch.org/resolver/RRID: SCR_026562
https://www.github.com/Martin-Fahrenberger/GTestimate-Paper
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upplementary Fig. S2. Raw read counts per cell before ( typical )
nd after ( ultra-deep ) amplification for the 18 selected cells in the
ta-seq experiment. 
upplementary Fig. S3. Number of observed genes before ( typical )
nd after ( ultra-deep ) amplification for the 18 selected cells in the
ta-seq experiment. 
upplementary Fig. S4. Log-normalized expression of all cell-type
arkers described in Seurat’s pbmc3k tutorial (zeroes not shown).

upplementary Fig. S5. UMAPs visualizing the clustering of Spa-
ial Transcriptomics spots, based on NormalizeData (left) and GTes-
imate (right) for the mouse brain Spatial Transcriptomics dataset.
upplementary Fig. S6. Visualization of the different clusters
ased on NormalizeData (left) and GTestimate (right) for the mouse
rain Spatial Transcriptomics dataset. 
upplementary Fig. S7. Similarity of the clusters based on Normal-

zeData and GTestimate as represented by the Jaccard Index. Clus-
ers on the y-axis have been rearranged to maximize diagonal en-
ries using the Hungarian algorithm. 
upplementary Fig. S8. UMIs/spot in the Spatial Transcriptomics
ouse brain dataset. 

upplementary Fig. S9. Adjusted Rand Index (ARI) comparing un-
upervised clustering results (Louvian algorithm) to the experi-
entally annotated cell types in the Liu dataset. Clustering was

erformed after normalizing with GTestimate, NormalizeData, or
CTransform and repeated for different clustering resolutions.
he maximum ARI for each normalization method is indicated
nd labeled. 
upplementary Fig. S10. Missing mass before ( typical ) and after
 ultra-deep ) amplification for the 18 selected cells in the cta-seq
xperiment (see Suppl. Materials 1.1 ). 
upplementary Fig. S11. Histogram showing GTestimate ’s missing
ass estimates per cell for the 17,653 cells in the cta-seq sample

efore amplification ( typical ). 
upplementary Table S1. Characteristics of the regression line
f the estimated vs. ground-truth distances for the cta-seq data
Fig. 1 D). 
upplementary Table S2. PCR primer sequences used for the
8 separate cta-seq reactions. Forward primers were designed to
pecifically target the selected cell-barcodes and to attach the
ecessary sequencing adapters. Reverse primers are non-specific
nd also attach the necessary sequencing adapters. 

bbreviations 

RI: Adjusted Rand Index; cta-seq: cell-targeted PCR amplification
ollowed by sequencing; GT: Good–Turing estimator; ML: maxi-

um likelihood estimator; PC: principal component; scRNA-seq:
ingle-cell RNA sequencing. 

cknowledgments 

he authors thank Oliver L. Eichmüller for the original cDNA-
ibrary used in the cta-seq experiment and for his feedback dur-
ng discussions, all members of CIBIV for their valuable feedback
hroughout this project, and Thomas Grentzinger from the Vienna
ioCenter Core Facilities GmbH (VBCF) Next Generation Sequenc-

ng Unit for consultation and sequencing. 

uthor Contributions 

.F. and A.v.H. conceived this project, C.E. and M.F. developed cta-
eq, J.K. provided the cDNA samples, C.E. performed the cta-seq
et-lab experiments in the lab of J.K., M.F. implemented GTesti-
ate and analyzed the data. M.F. wrote the manuscript with in-
ut from C.E. and A.v.H. All authors read and approved the final
ersion of the manuscript. 

unding 

his work was supported by the network grant of the Euro-
ean Commission H2020-MSCA-ITN-2017-765104 “MATURE-NK”
o A.v.H.; M.F. was a fellow in the project. M.F. was further sup-
orted by the Austrian Science Fund (FWF) project number F78 to
.v.H. 

ata Availability 

rocessed cta-seq data are available in NCBI via GEO accession
umber GSE268930. Raw sequencing data are available via con-
rolled access at the European Genome-Phenome Archive (EGA)
nder accession number EGAD50000001338. 

ompeting Interests 

he authors declare that they have no competing interests. 

eferences 

. Regev A, Teichmann SA, Lander ES, et al. The Human Cell Atlas.
elife. 2017;6:e27041. https://doi.org/10.7554/eLife.27041 .

. Farrell JA, Wang Y, Riesenfeld SJ, et al. Single-cell reconstruc-
tion of developmental trajectories during zebrafish embryoge-
nesis. Science. 2018;360(6392):eaar3131. https://doi.org/10.1126/
science.aar3131 .

. Park J, Shrestha R, Qiu C, et al. Single-cell transcriptomics of the
mouse kidney reveals potential cellular targets of kidney dis-
ease. Science. 2018;360(6390):758–63. https://doi.org/10.1126/sc
ience.aar2131 .

. Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide
expression profiling of individual cells using nanoliter droplets.
Cell. 2015;161(5):1202–14. https://doi.org/10.1016/j.cell.2015.05
.002 .

. Zheng GX, Terry JM, Belgrader P, et al. Massively parallel
digital transcriptional profiling of single cells. Nat Commun.
2017;8(1):14049. https://doi.org/10.1038/ncomms14049 .

. 10X Genomics. Technical Note—Chromium Single Cell
3’ v3: Reagent, workflow & software updates. 25 Febru-
ary 2019. Document Number CG000201, Rev A. https:
//cdn.10xgenomics.com/image/upload/v1660261285/suppo 
rt-documents/CG000201_TechNote_Chromium_Single_Cell_3 
___v3_Reagent__Workflow___Software_Updates_RevA.pdf.

. Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for
single-cell transcriptomics applied to embryonic stem cells. Cell.
2015;161(5):1187–201. https://doi.org/10.1016/j.cell.2015.04.044 .

. Vallejos CA, Risso D, Scialdone A, et al. Normalizing single-cell
RNA sequencing data: challenges and opportunities. Nat Meth-
ods. 2017;14(6):565–71. https://doi.org/10.1038/nmeth.4292 .

. Butler A, Hoffman P, Smibert P, et al. Integrating single-cell tran-
scriptomic data across different conditions, technologies, and
species. Nat Biotechnol. 2018;36(5):411–20. https://doi.org/10.1
038/nbt.4096 .

0. Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for
low-level analysis of single-cell RNA-seq data with Bioconduc-
tor. F1000Research. 2016;5:2122. https://doi.org/10.12688/f1000
research.9501.2 .

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf084#supplementary-data
https://doi.org/10.7554/eLife.27041
https://doi.org/10.1126/science.aar3131
https://doi.org/10.1126/science.aar2131
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1038/ncomms14049
https://cdn.10xgenomics.com/image/upload/v1660261285/support-documents/CG000201_TechNote_Chromium_Single_Cell_3___v3_Reagent__Workflow___Software_Updates_RevA.pdf
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1038/nmeth.4292
https://doi.org/10.1038/nbt.4096
https://doi.org/10.12688/f1000research.9501.2


GTestimate: improving relative gene expression estimation | 9

11. L Lun AT, Bach K, Marioni JC. Pooling across cells to normal- 
 

 

 

24. Chen Y, Chen L, Lun AT, et al. edgeR v4: powerful differential 

2

2  

2
 

2

2  

3

3
 

3

3  

3

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf084/8277207 by guest on 06 N

ov
ize single-cell RNA sequencing data with many zero counts.
Genome Biol. 2016;17(1):1–14. https://doi.org/10.1186/s13059-0 
16- 0947- 7 .

12. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene 
expression data analysis. Genome Biol. 2018;19:1–5. https://doi. 
org/10.1186/s13059- 017- 1382- 0 .

13. Ahlmann-Eltze C, Huber W. Comparison of transformations for 
single-cell RNA-seq data. Nat Methods. 2023;20:665–72. https:// 
doi.org/10.1038/s41592- 023- 01814- 1 .

14. Fisher RA. On the mathematical foundations of theoretical 
statistics. Phil Trans R Soc London Ser A. 1922;222(594–604):309–
68. https://doi.org/10.1098/rsta.1922.0009 .

15. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing- 
based technologies will revolutionize whole-organism science. 
Nat Rev Genet. 2013;14(9):618–30. https://doi.org/10.1038/nrg3 
542 .

16. Good IJ. The population frequencies of species and the estima- 
tion of population parameters. Biometrika. 1953;40(3–4):237–64. 
https://doi.org/10.1093/biomet/40.3-4.237 .

17. Gale WA, Sampson G. Good-turing frequency estimation with- 
out tears. J Quant Linguist. 1995;2(3):217–37. https://doi.org/10.1 
080/09296179508590051 .

18. Crowell HL, Morillo Leonardo SX, Soneson C, et al. The shaky 
foundations of simulating single-cell RNA sequencing data. 
Genome Biol. 2023;24(1):1–19. https://doi.org/10.1186/s13059-0 
23- 02904- 1 .

19. 10X Genomics. 3k PBMCs from a Healthy Donor, Single Cell 
Gene Expression Dataset by Cell Ranger 1.1.0. 26 May 2016.
https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_fil 
tered_gene_bc_matrices.tar.gz .

20. Bastidas-Ponce A, Tritschler S, Dony L, et al. Comprehensive sin- 
gle cell mRNA profiling reveals a detailed roadmap for pancre- 
atic endocrinogenesis. Development. 2019;146(12):dev173849. ht 
tps://doi.org/10.1242/dev.173849 .

21. Turman MA, Yabe T, McSherry C, et al. Characterization of 
a novel gene (NKG7) on human chromosome 19 that is ex- 
pressed in natural killer cells and T cells. Human Immunol.
1993;36(1):34–40. https://doi.org/10.1016/0198- 8859(93)90006- M 

22. 10X Genomics. Mouse Brain Serial Section 1 (Sagittal-Anterior), 
Spatial Gene Expression Dataset by Space Ranger 1.0.0. 2 De- 
cember 2019. https://support.10xgenomics.com/spatial- gene- e 
xpression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Anterior

23. Fu Q, Dong C, Liu Y, et al. A comparison of scRNA-seq annotation 

methods based on experimentally labeled immune cell subtype 
dataset. Brief Bioinform. 2024;25(5):bbae392. https://doi.org/10.1 
093/bib/bbae392 .
Received: September 3, 2024. Revised: March 25, 2025. Accepted: June 25, 2025 
© The Author(s) 2025. Published by Oxford University Press on behalf of GigaScience. This is an Op
License ( https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribu
analysis of sequencing data with expanded functionality and 

improved support for small counts and larger datasets. Nucleic 
Acids Research. 2025;53(2):gkaf018. https://doi.org/10.1093/nar/ 
gkaf018 .

5. Schraivogel D, Gschwind AR, Milbank JH, et al. Targeted Perturb- 
seq enables genome-scale genetic screens in single cells. Nat 
Methods. 2020;17(6):629–35. https://doi.org/10.1038/s41592-020 
- 0837- 5 .

6. Eichmüller OL, Corsini NS, Vértesy Á, et al. Amplification of hu-
man interneuron progenitors promotes brain tumors and neu- 
rological defects. Science. 2022;375(6579):eabf5546. https://doi. 
org/10.1126/science.abf5546 .

7. Blondel VD, Guillaume JL, Lambiotte R, et al. Fast unfolding 
of communities in large networks. J Stat Mech Theor Exp.
2008;2008(10):P10008. https://doi.org/10.1088/1742-5468/2008/1 
0/P10008 .

8. Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing 
errors in Unique Molecular Identifiers to improve quantification 

accuracy. Genome Res. 2017;27(3):491–99. https://doi.org/10.110 
1/gr.209601.116 .

9. Satija-Lab. Seurat—guided clustering tutorial. Satija-Lab. 2023.
https://satijalab.org/seurat/articles/pbmc3k_tutorial . Accessed 
13 December 2023.

0. Theis Lab. scVelo—GitHub page. Theis Lab. 2021. https: 
//github.com/theislab/scvelo_notebooks/raw/master/data/P 
ancreas/endocrinogenesis_day15.h5ad . Accessed 13 December 
2023.

1. Satija-Lab. Analysis, visualization, and integration of spa- 
tial datasets with Seurat. Satija-Lab. 2023. https://satijalab.
org/seurat/articles/spatial_vignette . Accessed 13 December 
2023.

2. Choudhary S, Satija R. Comparison and evaluation of statistical 
error models for scRNA-seq. Genome Biol. 2022;23(1):27. https: 
//doi.org/10.1186/s13059- 021- 02584- 9 .

3. Fahrenberger M, Esk C, Knoblich JA, et al. GTestimate: improv-
ing relative gene expression estimation in scRNA-seq using 
the Good-Turing estimator. 2025. [Computer software]. Soft- 
ware Heritage, https://archive.softwareheritage.org/swh:1:snp: 
771e3894557efea0268dabfbb17c82c3244e29d8;origin=https: 
//github.com/Martin-Fahrenberger/GTestimate .

4. Fahrenberger M, Esk C, Knoblich JA, et al. GTestimate: Improv- 
ing relative gene expression estimation in scRNA-seq using 
the Good-Turing estimator. 2025. [Computer software]. Soft- 
ware Heritage, https://archive.softwareheritage.org/swh:1:snp: 
3935aa1bbaac154e15e5a96296bcc865a394c0c0;origin=https: 
//github.com/Martin-Fahrenberger/GTestimate-Paper.
en Access article distributed under the terms of the Creative Commons Attribution 
tion, and reproduction in any medium, provided the original work is properly cited.

em
ber 2025

https://doi.org/10.1186/s13059-016-0947-7
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/s41592-023-01814-1
https://doi.org/10.1098/rsta.1922.0009
https://doi.org/10.1038/nrg3542
https://doi.org/10.1093/biomet/40.3-4.237
https://doi.org/10.1080/09296179508590051
https://doi.org/10.1186/s13059-023-02904-1
https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://doi.org/10.1242/dev.173849
https://doi.org/10.1016/0198-8859(93)90006-M
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Anterior
https://doi.org/10.1093/bib/bbae392
https://doi.org/10.1093/nar/gkaf018
https://doi.org/10.1038/s41592-020-0837-5
https://doi.org/10.1126/science.abf5546
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1101/gr.209601.116
https://satijalab.org/seurat/articles/pbmc3k_tutorial
https://github.com/theislab/scvelo_notebooks/raw/master/data/Pancreas/endocrinogenesis_day15.h5ad
https://satijalab.org/seurat/articles/spatial_vignette
https://doi.org/10.1186/s13059-021-02584-9
https://archive.softwareheritage.org/swh:1:snp:771e3894557efea0268dabfbb17c82c3244e29d8;origin=https://github.com/Martin-Fahrenberger/GTestimate
https://archive.softwareheritage.org/swh:1:snp:3935aa1bbaac154e15e5a96296bcc865a394c0c0;origin=https://github.com/Martin-Fahrenberger/GTestimate-Paper
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Discussion
	Materials and Methods
	Availability of Source Code and Requirements
	Additional Files
	Abbreviations
	Acknowledgments
	Author Contributions
	Funding
	Data Availability
	Competing Interests
	References

