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Abstract

Background: Single-cell RNA-seq suffers from unwanted technical variation between cells, caused by its complex experi-
ments and shallow sequencing depths. Many conventional normalization methods try to remove this variation by calculat-
ing the relative gene expression per cell. However, their choice of the maximum likelihood estimator is not ideal for this
application.

Results: We present GTestimate, a new normalization method based on the Good-Turing estimator, which improves upon con-
ventional normalization methods by accounting for unobserved genes. To validate GTestimate, we developed a novel cell-targeted
PCR amplification approach (cta-seq), which enables ultra-deep sequencing of single cells. Based on these data, we show
that the Good-Turing estimator improves relative gene expression estimation and cell-cell distance estimation. Finally, we use
GTestimate’s compatibility with Seurat workflows to explore 4 example datasets and show how it can improve downstream
results.

Conclusion: By choosing a more suitable estimator for the relative gene expression per cell, we were able to improve scRNA-seq
normalization, with potentially large implications for downstream results. GTestimate is available as an easy-to-use R-package and

compatible with a variety of workflows, which should enable widespread adoption.
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Introduction

Single-cell RNA-seq (scRNA-seq) provides new insights into cell
diversity, differentiation, and disease [1-3]. These insights are en-
abled by affordable high-throughput methods for the parallel se-
quencing of thousands of cells [4, 5]. However, they require many
experimental steps, whose efficiency differs between cells, leading
to high variability in the number of mRNAs captured. Addition-
ally, sequencing depths as low as 20,000 reads per cell [6] and the
nature of parallel sequencing introduce stochastic variation [5, 7,
8]. After accounting for PCR duplicates among reads, a median of
~5,000 UMIs/cell (number of sequenced mRNA molecules per cell)
with a range of ~500 to 20,000 UMIs/cell is typical for a high-quality
sample (Fig. 1A). This high technical variation between cells re-
sults in a low signal-to-noise ratio, which makes data analysis
challenging.

During data processing (Fig. 1B), global-scaling normalization
methods [8] such as Seurat’s NormalizeData [9], scran’s com-
puteSumFactors [10, 11], or scanpy’s normalize_total [12] account
for the variation in UMIs/cell by calculating a single scaling
factor (or size factor) per cell. Despite its simplicity, this ap-

proach has been shown to outperform more complex methods
[13].

Global-scaling normalization inherently requires the calculation
of the relative gene expression levels per cell. Although not typ-
ically discussed as such, the calculation used by these methods
is a maximum likelihood (ML) estimation [14] of the relative gene
expression frequency per cell.

~ML Cg

"= (1)
where c denotes the transcriptomic profile of the cell with a count
cq for each gene g.

However, at ~5,000 UMIs/cell, only ~2.5% of the ~200,000 mRNA
transcripts in a typical mammalian cell [15] are sequenced and
many expressed genes remain unobserved, as evident by the low
genes/cell observed in scRNA-seq experiments (Supplementary Fig.
S1). ML then estimates the relative expression of unobserved
genes as zero. This inherently leads to overestimation of the rel-
ative expression for observed genes, since the sum of all relative

frequencies equals 1 (3, )";ML =1).
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Figure 1: (A) Histogram of UMIs/cell for 17,653 cells in the cta-seq experiment before amplification. (B) Schema of a scRNA-seq analysis showing where
GTestimate integrates into the workflow. (C) UMIs/cell for the 18 selected cells in the cta-seq experiment, before (typical) and after (ultra-deep)
amplification. Cells ordered based on UMIs/cell in the typical cta-seq data. (D) Absolute error of the relative gene expression estimation in the cta-seq
experiment. (E) Euclidean cell-cell distances in PCA space in the cta-seq experiment. (F) Average absolute estimation error of the relative gene
expression of a cell when subsampled to different UMIs/cell. (G, H) Mean Euclidean cell-cell distance in relative gene expression space, between 2
independent random samples of the same cell (G) between independent random samples of 2 different cells (H). (I) Difference between the mean
cell-cell distances in (G) and (H). Colored ribbons in (F), (G), and (H) represent the 5% — 95% quantile range.

To reduce this overestimation, we propose a Simple Good-
Turing (GT) estimator [16, 17].

(cq+1)  S(Negia)
ngT: Zg(q . S(N‘ig) , forg;>0

0, forc; =0

(GT)

where N, denotes the number of genes with count ¢, in the cell,
and S() is a smoothing function following Gale and Sampson [17].

GT adjusts the relative expression estimates of observed genes,
particularly those with low counts, based on the frequency of each
count value in the cell. This even enables an estimate for the
relative expression of unobserved genes (for further details, see
Supplementary Materials 1.1).

In this study, we first compare the performance of GT and ML
on novel ultra-deep sequencing data and then show how GT im-

proves downstream results, by integrating it into standard scRNA-
seq analysis workflows. To achieve this, we developed GTestimate,
a new scRNA-seq normalization method centered on GT. GTesti-
mate is an easy-to-use R-package designed to seamlessly replace
Seurat’s NormalizeData.

Results

ultra-deep sequencing of single cells

Comparison between GT and ML requires ground-truth transcrip-
tomic profiles of single cells. However, current simulation software
cannot adequately emulate the complexity of scRNA-seq data,
and the choice of simulator may affect benchmarking results [18].
We therefore designed a cell-targeted PCR amplification strategy
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(cta-seq), which enabled us to sequence a small set of selected
cells, from a typical sequencing run, a second time at an ultra-deep
sequencing depth. This ultra-deep sequencing data contain an av-
erage of 23 million reads (44,511 UMIs, 7,403 genes) per cell, a stark
contrast to the average 16,965 reads (6,048 UMIs, 2,246 genes) for
the same cells in the typical data (Supplementary Fig. S2). This rep-
resents a ~7.4-fold increase in UMIs/cell (Fig. 1C) and a ~3.3-fold
increase in genes/cell (Supplementary Fig. S3). We then used the
relative gene expression levels of these ultra-deep profiles as the
ground truth for these cells.

Performance of GT and ML

Based on the cta-seq data, we then evaluated GT and ML. When we
applied GT and ML to the typical profiles and compared the results
to the ground truth, GT consistently showed a lower estimation
error across all 18 cells, by ~17% on average (Fig. 1D).

Relative gene expression profiles are the basis of most scRNA-
seq analysis (Fig. 1B), such as the calculation of cell-cell distances
in principal component analysis (PCA) space (often used as a mea-
sure for the similarity between 2 cells). We therefore also calcu-
lated cell-cell distances between the typical profiles, once based on
GT and once based on ML, and compared the results to the cell-
cell distances between the ultra-deep profiles. We observed a 36%
reduction of the distance estimation error when using GT instead
of ML (Fig. 1E, Supplementary Table S1).

Since UMIs/cell vary drastically (Fig. 1A), we further assessed
the performance of GT and ML at different UMIs/cell. We applied
GT and ML to random subsamples of the cell with the highest
UMIs/cell in the ultra-deep cta-seq data (cell 12, at 94,440 UMIs) and
compared the estimates to the ground-truth expression profile of
this cell. Similar to before (Fig. 1D), the estimation error for both
GT and ML decreased with increasing UMIs/cell, and GT consis-
tently showed a lower error than ML, especially at low UMIs/cell
(Fig. 1F).

Next, we assessed the impact of UMIs/cell on cell-cell distances.
We first compared the mean distance between 2 random sam-
ples of the same cell (cell 12), both sampled to the same UMIs/cell.
This distance was calculated in relative gene expression space and
should approach zero for high UMIs/cell. However, ML led to grossly
overestimated distances at small UMIs/cell (Fig. 1G). The estimated
distance after ML additionally showed strong correlation to the
UMIs/cell, which is problematic as we assume that most of the ob-
served variation in UMIs/cell is technical noise. In contrast, GT did
not show correlation to the UMIs/cell and demonstrated lower dis-
tance estimation errors overall.

We then examined the distances between 2 distinct cells by
also drawing random samples from the cell with the second
highest UMIs/cell in the ultra-deep cta-seq data (cell 15, at 58,589
UMIs), which is of a different cell type. We calculated the dis-
tances between the sampled profiles of cell 12 and cell 15 at vary-
ing UMIs/cell. We again saw large overestimation of the distances
when using ML, while using GT strongly reduced this error. For
high UMIs/cell, the estimated distances converged to the true dis-
tance of 0.015 (Fig. 1H).

When based on ML, the estimated distances between identical
cells (Fig. 1G) and distinct cells (Fig. 1H) were almost the same for
low UMIs/cell. This makes it very difficult to distinguish between
cell types. However, when we used GT as the basis for these dis-
tances, we saw a much clearer separation between identical cells
and cells of different cell types, for cells with < 10, 000 UMIs/cell
(Fig. 11).
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GTestimate’s impact on downstream results

After showing GT's advantages for relative gene expression esti-
mation and cell-cell distance estimation, we examined how our
GT-based normalization method GTestimate impacts downstream
results. The difference between GTestimate and other global-scaling
normalization methods is only in the estimator used; all other set-
tings can be adjusted to be equivalent to scran’s computeSum-
Factors or scanpy’s normalize_total, for example. At default set-
tings, GTestimate behaves identically to NormalizeData, including
the same log-transformation. We therefore used NormalizeData,
as a representative of ML-based global-scaling normalizations, for all
following comparisons. However, we would expect similar results
when comparing to other global-scaling normalization methods.

Direct comparison of normalized gene expression values across
different normalization methods (e.g., residual-based methods
such as SCTransform) is often difficult due to varying scales
and different data transformations. We therefore focus our ini-
tial comparison (Fig. 2) on NormalizeData, representing global-
scaling normalization methods. This choice aligns with recent
findings indicating that global-scaling methods (followed by a
log-transformation with pseudo-count and PCA) typically match
or outperform more complex approaches [13]. However, we also
provide a downstream clustering-based comparison, including
SCTransform.

We first assessed GTestimate’s impact on cell-type clustering by
reanalyzing the pbmc3k dataset of peripheral blood mononuclear
cells [19]. Here, normalization with GTestimate instead of Normal-
izeData resulted in 4.6% of cells being assigned to a different clus-
ter (Fig. 2A), mostly among the naive CD4 T cells, memory CD4 T
cells, and CD8 T cells.

We additionally analyzed a developing pancreas dataset [20],
characterized by more gradual cell-type transitions compared to
the pbmc3k dataset. After normalization with GTestimate instead
of NormalizeData, 14.6% of cells were assigned to a different cluster
(Fig. 2C, D).

While the correct classification of cells in both of these datasets
remains unknown, our results in Fig. 1 suggest that GTestimate pro-
vides a better basis for this classification.

To examine the impact of GTestimate on the expression esti-
mates of individual genes, we considered the log-normalized ex-
pression of cell-type specific marker genes in the pbmec3k dataset.
As an example, we used NKG7, a highly specific NK-cell and CD8"
T-cell marker [21]. When using GTestimate instead of Normalize-
Data, the log-normalized expression of NKG7 remained constant
in NK cells and CD8* T cells but was reduced in all other cell types
(Fig. 2B). GTestimate therefore resulted in clearer separation of NK
cells and CD8" T cells from other cell types. We observed this
for nearly all marker genes described in Seurat’s pbmc3k tutorial
(Supplementary Fig. S4). These differences may explain some of
the observed changes in clustering.

We also applied GTestimate to the spotwise normalization of
a Spatial Transcriptomics dataset of the mouse brain [22]. In
this dataset, normalization with GTestimate and NormalizeData re-
sulted in 17 and 19 clusters, respectively (Supplementary Figs. S5,
S6, S7); we therefore refrained from any cluster-based compar-
isons of GTestimate and NormalizeData. However, the spatial coor-
dinates enabled examination of area-specific marker genes, in-
dependent of the clustering. As an example, we considered the
log-normalized expression of the choroid plexus marker gene Ttr
(Fig. 2E). When using GTestimate, we saw a reduction of the unspe-
cific expression of Ttr for spots outside the choroid plexus. Here,
GTestimate showed up to 50% reduction of the log-normalized
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Figure 2: pbmc3k: (A) UMAPs based on NormalizeData and GTestimate, and UMAP highlighting differences in cluster assignment. (B) Boxplot showing
log-normalized expression of NKG7 per cell type (zeroes not shown). Developing Pancreas: (C) UMAPs based on NormalizeData and GTestimate, and
UMAP highlighting differences in cluster assignment. (D) Sankey diagram showing the differences in cluster assignment based on NormalizeData and
GTestimate. Spatial Transcriptomics: (E) log-normalized gene expression of Ttr based on NormalizeData and GTestimate as well as percent difference in
log-normalized expression of Ttr between NormalizeData and GTestimate. (F) Density plot showing the distribution of log-normalized gene expression

values of Ttr for NormalizeData and GTestimate.

expression, compared to NormalizeData, while expression esti-
mates inside the choroid plexus remained constant (Fig. 2E). This
resulted in clearer separation of the choroid plexus spots from the
surrounding tissue, as shown by the distribution of expression val-
ues of Ttr (Fig. 2F).

When  we  additionally considered the  UMIs/spot
(Supplementary Fig. S8), we saw a negative correlation between
the change in log-normalized expression of Ttr and UMIs/spot.
This supports previous observations that NormalizeData over-
estimates the expression of Ttr in areas with low UMIs/spot. In
contrast, GTestimate reduces this overestimation and improves
the signal-to-noise ratio.

The datasets shown in Figs. 2A, C are widely used examples that
highlight different aspects of scRNA-seq analysis. However, since
these datasets lack ground-truth cell-type annotations, we cannot

conclusively evaluate clustering accuracy based on them alone.
Although the clear differences observed when using GTestimate in-
stead of NormalizeData, together with our earlier results (Fig. 1),
suggest improved relative gene-expression estimation with GT,
this does not necessarily translate to better clustering perfor-
mance. Direct benchmarking of clustering performance requires
annotated data.

To address this, we analyzed a recently published PBMC scRNA-
seq dataset from Fu et al. [23], which includes experimen-
tally annotated cell types obtained via antibody-coated mag-
netic beads, providing a robust benchmark for clustering per-
formance. We performed standard scRNA-seq analysis on this
dataset, normalizing once with GTestimate, once with Normal-
izeData, and once with SCTransform, followed by unsupervised
clustering.
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Here we also included SCTransform, as clustering is a down-
stream analysis step where differences in scaling and trans-
formations become intrinsic properties of each normalization
method. Consequently, the effects of these differences should
be interpreted as advantages or disadvantages inherent to each
approach.

We assessed clustering performance by calculating the Ad-
justed Rand Index (ARI) between the unsupervised clustering re-
sults and the provided cell-type annotations. The ARI ranges from
0 to 1, with 0 indicating no agreement and 1 indicating perfect
agreement between 2 clusterings. Because clustering outcomes
strongly depend on the selected resolution parameter, we evalu-
ated a broad range of resolutions from 0.1 to 1.5 (Supplementary
Fig. 59).

Normalization with GTestimate produced higher ARI scores
than NormalizeData at 14 of the 15 tested resolutions and outper-
formed SCTransform at 10 resolutions. Importantly, GTestimate also
yielded the highest overall ARI (0.874), compared to 0.768 for Nor-
malizeData and 0.822 for SCTransform. This superior maximum ARI
is particularly relevant, as in practice, the clustering resolution is
routinely adjusted to optimize results. By this criterion, normal-
ization with GTestimate provides the best clustering accuracy for
this dataset.

Discussion

In summary, the estimation of relative gene expression is a cen-
tral part of scRNA-seq data analysis, which has not received the
same attention as other steps. We have shown that replacing
the standard ML with GT improves relative gene expression es-
timation, without requiring expensive computations. By improv-
ing the signal-to-noise ratio at this basic level, our new normal-
ization method GTestimate can have large impact on downstream
results.

In the validation, we avoided potential issues with simulated
data by employing a novel cell-targeted PCR amplification strat-
egy to sequence the same cells at 2 vastly different UMIs/cell. This
strategy may also be useful in other areas, such as the study of
rare cell types. Additionally, the resulting dataset may serve as a
benchmark for other methods.

GTestimate is available as an open-source R-package (https:
//www.github.com/Martin-Fahrenberger/GTestimate) and works
with all common scRNA-seq data formats. While GTestimate’s de-
fault behavior is designed to seamlessly replace NormalizeData, it
is also compatible with a wide variety of other workflows.

Materials and Methods
Implementation of GTestimate

The user-facing section of our GTestimate package was developed
in R and handles input and output in the various supported data
formats. The core implementation of the Simple Good-Turing es-
timator is written in C++ and is heavily based on Aaron Lun’s im-
plementation for the edgeR R-package [24]. This core implemen-
tation includes the linear smoothing, which is necessary due to
the sparsity of the frequencies of frequencies vector (i.e., the fre-
quency of the count values). It further includes a rescaling step,
which ensures that the estimated relative expression frequencies
of all observed genes, plus the sum of probabilities of all unob-
served genes (Supplementary Materials 1.1), add up to exactly 1
[17].
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cta-seq experiment

In the cta-seq experiment, we aimed to sequence a selected set
of cells from a typical scRNA-seq library again at an ultra-deep
sequencing depth. However, due to sequencing saturation, this
quickly becomes prohibitively expensive. We therefore designed
a PCR-based cell-targeted amplification strategy (cta-seq) to se-
lectively amplify all transcripts from a small set of cells, through
the use of primers specific to their cell barcode. This is similar
to the TAP-seq protocol [25], which uses gene-specific primers to
amplify all transcripts of certain genes.

Sequencing cta-seq, typical

To ensure high-quality input material, we used leftover cDNA
from a previously sequenced sample [26], which had shown high
UMIs/cell and genes/cell. The sample was taken out of —20°C stor-
age and prepared for lllumina sequencing at the Vienna Biocenter
Next Generation Sequencing facility using the 10X Dual Index Kit
TT. We then split the resulting sequencing library into 2 aliquots
and stored the second half again at —20°C. The first half was se-
quenced on a Illumina NovaSeq S4 in paired-end mode with a 2 x
150-bp read length and 400 million reads.

Sequencing cta-seq, ultra-deep

Based on the results from the typical sequencing run, we selected
18 cells of interest for the cta-seq experiment (see below). For
these 18 cells, we designed PCR primers specific to their cell bar-
codes. We used the second aliquot of the previously prepared se-
quencing library and split it further into 18 individual reactions,
one for each targeted cell. We then performed 3 rounds of PCR
amplification with the respective primers using Amplitag Gold
360 MM (ThermoFisher, cat.: 4398886) supplemented with Eva-
Green dye (Biotium, cat.: 31000). We used the following programs
in a total volume of 50 uL. PCR1: 1. 95°C, 10 min; 2. 62°C, 30 s;
3.72°C, 2 min; 4. Return to 2, x2; 5. 95°C, 25 s; 6. 62°C, 30 s; 7.
72°C, 2 min, fluorescence measurement; 8. 72°C, 15 s; 9. Return
to 5, x16. PCR2: 1. 95°C, 10 min; 2. 62°C, 30 s; 3. 72°C, 2 min; 4.
Return to 2, x2; 5. 95°C, 25 s; 6. 62°C, 30 s; 7. 72°C, 2 min, fluo-
rescence measurement; 8. 72°C, 15 s; 9. Return to 5, x16. PCR3:
1. 95°C, 10 min; 2. 67°C, 30 s; 3. 72°C, 2 min; 4. Return to 2, x2; 5.
95°C, 25 8;6.67°C,30s; 7.72°C, 2 min, fluorescence measurement;
8.72°C, 15 s; 9. Return to 5, x8. Reactions were stopped in step
8 according to fluorescent measurements in log phase. Reaction
inputin PCRs 2 and 3 were 0.5 pL of the previous reaction. Result-
ing reactions were purified and pooled for Illumina sequencing on
a NovaSeq S4 in paired-end mode with a 2 x 150-bp read length
and 400 million reads. The primer sequences used can be found
in Supplementary Table S2, and PCR1 primers were designed with
varying lengths to achieve similar melting temperatures.

Data analysis

All data analysis was performed in R (v4.3.1) using Seurat (v5.0.0)
functions at default settings unless stated otherwise.

Data analysis, cta-seq typical depth

We first processed the typical depth sequencing data using Cell-
Ranger (v7.1.0), which resulted in 20,214 cells. During cell qual-
ity control (QC), we then removed all cells expressing < 1, 000 or
> 5,000 genes, as well as cells with > 8% mitochondrial reads,
with 17,653 cells remaining. We then normalized with Seurat’s
NormalizeData, selected the top 2,000 most variable genes, and
performed genewise z-score scaling. Next we applied PCA and
performed unsupervised clustering of cells using the Louvain
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algorithm [27] (resolution = 0.1), based on the first 50 principal
components (PCs). This resulted in 4 cell-type clusters, and the
smallest cluster (with only 504 cells) was excluded from the sub-
sequent analysis.

From the remaining 17,149 cells, we selected 18 cells for tar-
geted amplification, 6 cells from each of the 3 remaining clusters.
To select a diverse set of cells from each cluster, we used the fol-
lowing:

1. We identified the 2 nearest neighbors for each cell (in PCA
space).

2. We excluded cells for which at least 1 nearest neighbor be-
longed to a different cluster.

3. For the remaining 16,295 cells, we computed the #UMI rank,
from the number of observed UMIs per cell (ties were broken
randomly).

4. Similarly, we computed the 2L rank based on the ratio of
the number of observed UMIs and the number of observed
genes in the cell (ties were broken randomly).

5. Subsequently, we calculated the diversity of each cell and its
neighbors as the area of the induced triangle of the cell and
its neighbors in a #UMI rank x 2L rank plot. The 6 cells
from the 2 most diverse neighborhoods (i.e., largest triangle
area) were selected for amplification.

These steps were designed to cover a diverse set of cells for
which the various experimental steps had varying efficiencies.
The selection of triplets from the same neighborhoods provided
groups of cells with similar gene expression patterns, while the
number of UMIs and the number of observed genes were used as
proxies for the mRNA capture efficiencies and the health of the
isolated cells.

Data analysis, cta-seq ultra-deep

The sequencing data from the ultra-deep sequencing run were pro-
cessed using CellRanger (v7.1.0).

However, due to the high number of PCR cycles during amplifi-
cation and the resulting high number of reads for the 18 selected
cells, CellRanger’s UMI correction approach was no longer suffi-
cient. Manual inspection of the reads showed that errors in the
UMI sequences had inflated the number of unique reads.

This was further exacerbated by a faulty implementation of
the UMI correction approach in the CellRanger software by 10X
Genomics. CellRanger erroneously corrects UMIs containing se-
quencing errors toward other UMIs that also contain sequencing
errors. For example, if we have 3 UMIs—AAAA with 10 reads, AAAT
with 2 reads, and AATT with 1 read—AATT would be corrected to-
ward AAAT (Hamming Distance 1) and stay as AAAT, even though
the original 2 AAAT reads would be corrected to AAAA in the same
step. We reported this issue to 10X Genomics on 13 July 2023, and
10X Genomics acknowledged the issue on 14 July 2023. The issue
remains unresolved in CellRanger 7.2.0 (released on 10 November
2023).

To circumvent these issues, we extracted the relevant infor-
mation for each read (count, ensemble gene ID, cell barcode,
uncorrected UMI, and CellRanger-corrected UMI) from the pos-
sorted_genome_bam.bam, as provided by CellRanger, and repli-
cated CellRanger’s read-counting workflow in R. As a sanity check,
we first used the CellRanger-corrected UMIs and achieved the ex-
act same count matrix as CellRanger. We then used the raw UMIs
instead of the CellRanger-corrected UMIs, implemented the UMI
tools’ directional UMI correction approach [28]in R, and applied it
to correct the UMIs for the 18 selected cells, and we then counted

again. The resulting count matrix showed differences for 28% of
the nonzero entries when compared to the CellRanger results. We
used these improved counts for the ultra-deep profiles in all further
analysis.

Comparison of GT and ML using cta-seq

To evaluate the performance of GT and ML based on the cta-seq
dataset, we estimated the relative gene expression for the 18 se-
lected cells by applying both estimators to the typical transcrip-
tomic profiles.

The relative gene expression for the ground-truth ultra-deep
profiles was estimated with ML. We chose ML to be conservative
regarding the performance of GT and since the overestimation
due to unobserved genes should be small for the ultra-deep pro-
files Supplementary Fig. S10.

Relative gene expression estimation

We calculated the absolute estimation error for the relative gene
expression of the 18 cells by comparing the estimation results
of GT and ML based on the typical transcriptomic profiles to the
ground-truth relative gene expression of the ultra-deep profiles. We
consider the relative gene expression estimation error of a cell to
be the sum of the individual relative gene expression estimation
errors in the cell.

Cell—cell distances

The pairwise Euclidean distances between the 18 cells were cal-
culated in PCA space (as is common for cell-cell distances in
scRNA-seq). However, to keep the necessary projections similar
to a regular scRNA-seq analysis, this space could not simply be
constructed based only on the 18 selected cells.

Instead, we calculated the projections based on 17,653 cells in
the typical sequencing run. After normalization, there were 3 pre-
processing steps that all depended on the context of a full dataset:
variable gene selection, genewise z-score scaling, and PCA.

To keep these steps identical for both the GT and ML profiles
of the typical sequenced cells, as well as the ultra-deep profiles, we
performed them using customized functions. We used the same
list of variable genes (calculated based on all 17,653 cells) for the
analysis of all profiles. We then scaled the genes in all profiles
using the mean and standard deviation of genes calculated based
on the full 17,653 cells. Finally, we projected all profiles into the
same 50 dimensional PCA space calculated from the full 17,653
cells.

In this PCA space, we calculated the pairwise distances be-
tween the ML profiles, between the GT profiles, and between the
ground-truth ultra-deep profiles. We then compared the resulting
nonzero distances based on GT and ML to the ground-truth ultra-
deep distances.

Comparison of GT and ML at different UMIs/cell

When analyzing the impact of UMIs/cell on the estimation per-
formance, we used the cell with the highest number of UMIs af-
ter amplification (cell 12, cell barcode TCTCTGGGTGTGCTTA) and
the cell with the second highest number of UMIs after amplifica-
tion (cell 15, cell barcode GGCTTTCGTGTGTCGC).

We generated 1,000 randomly sampled profiles at each UMI/cell
level by drawing genes from the ultra-deep count vector, weighted
by count and with replacement. The 20 UMI/cell levels at which
we sampled were chosen equidistant in logjp-space from 100 to
100,000 (i.e., 100, 143, 206, 297, 428, 615, 885, 1,274, 1,832, 2,636,
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3,792, 5,455, 7,847, 11,288, 16,237, 23,357, 33,598, 48,329, 69,519,
100,000 UMIs/cell). We then applied GT and ML, respectively, to
these sampled profiles to estimate their relative gene expression.

Relative gene expression estimation

To assess the relative gene expression estimation performance of
GT and ML, we compared their estimates for each sampled profile
from cell 12 to the relative gene expression of the full ultra-deep
profile of cell 12 and calculated the absolute error.

Cell—cell distance estimation

To assess cell-cell distance estimation performance, we calcu-
lated the Euclidean distances between the relative gene expres-
sion profiles of pairs of sampled profiles (either from cell 12 twice
or from cell 12 and cell 15) based on GT and ML. We calculated
the true distance based on the full ultra-deep profiles.

Downstream analysis
Data analysis, pbmc3k

The pbmc3k dataset was downloaded from 10X Genomics [19] and
processed following Seurat’s “Guided Clustering Tutorial” [29]. In
short:

During QC, we filtered out genes expressed in fewer than 3 cells
and cells with fewer than 200 expressed genes. We then filtered
out cells with > 5% mitochondrial reads, and finally, we removed
all cells expressing more than 2,500 genes.

During preprocessing, cells were normalized using Seurat’s Nor-
malizeData or GTestimate at default settings. For both normaliza-
tion methods individually, we then identified variable genes and
z-score scaled the data, followed by calculation of the top 10
PCs. Based on these PCs, we then constructed the neighborhood
graphs and performed unsupervised Louvain clustering (resolu-
tion = 0.5). Finally, we calculated the UMAP for both conditions
and annotated clusters based on marker gene expression, follow-
ing the Seurat tutorial.

Data analysis, developing pancreas

The pancreas endocrinogenesis day 15 dataset was downloaded
[30] and imported into R to be processed using Seurat. We only
used the spliced counts and normalized them using GTestimate
and NormalizeData; from there on, all following steps were per-
formed identically for the 2 approaches.

First we identified variable genes and performed genewise z-
score scaling, followed by calculation of the top 50 PCs. Based on
the PCs, we constructed the neighborhood graph and performed
unsupervised Louvain clustering (resolution = 0.4). Finally, we cal-
culated the UMAP.

We manually adjusted the cluster numbering (and thereby
their color) for Fig. 2C, D to have consistent cluster colors from
left to right.

Data analysis, Spatial Transcriptomics

The stxBrain dataset of sagittal mouse brain slices from 10X Ge-
nomics was downloaded using the SeuratData R-package. In our
analysis, we focused on the anterior1 slice of the dataset follow-
ing Seurat’s “Analysis of spatial datasets (Sequencing-based)” vi-
gnette [31].

Our analysis differs from the vignette only in the normaliza-
tion methods used. While the vignette uses sctransform [32] for
spotwise normalization, we instead used NormalizeData and GTes-
timate. Direct comparison of GT and ML to SCTransform on the ba-
sis of relative gene expression is not possible, since SCTransform
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does not calculate relative gene expression levels. Normalization
was followed by variable gene selection and genewise scaling. We
then calculated the first 30 PCs and used them to construct the
neighborhood graph, perform unsupervised Louvain clustering,
and calculate the UMAP.

Data analysis, experimentally annotated PBMCs (Liu
dataset)

The Liu dataset was downloaded and imported into R to be pro-
cessed using Seurat. We used the purified version of the dataset,
which includes an additional filtering step to ensure correct cell-
type assignments.

For our GTestimate and NormalizeData analyses, we first normal-
ized the data using the respective method at default settings, and
then we identified the 2,000 most variable genes and performed
genewise z-score scaling. For our SCTransform-based analysis, we
simply applied SCTransform at its default settings, as it is supposed
to replace all 3 of these steps.

From here, the remaining steps were identical for the 3 analy-
ses: we first calculated the top 30 PCs (we chose 30 PCs to be in
line with the original analysis by Fu et al. [23] performed as part
of their cell filtering step) and then constructed the neighborhood
graph and performed unsupervised Louvain clustering. Louvain
clustering was repeated at 15 different resolutions from 0.1 to 1.5
in steps of 0.1.

At each resolution, we calculated the ARI between the experi-
mentally annotated ground-truth cell types and the unsupervised
clustering results.

Availability of Source Code and
Requirements

Project name: GTestimate
Project homepage: https://github.com/Martin-Fahrenberger/
GTestimate
Operating system(s): Platform independent
Programming language: R, C++
Other Requirements: devtools, sparseMatrixStats
License: GPL3
RRID: SCR_026562
A version of record snapshot of the GitHub repository has been
archived in the Software Heritage [33].

All Code for the Analysis (raw-data, figures)

Project name: GTestimate-Paper
Project homepage: https://www.github.com/Martin-
Fahrenberger/GTestimate-Paper
Operating system(s): Platform independent
Programming language: R
Other Requirements: renv (additional requirements as in note-
books/renv.lock)
License: GPL3

A version of record snapshot of the GitHub repository has been
archived in the Software Heritage [34].

Additional Files

Supplementary Fig. S1. Histogram showing the number of ob-
served genes per cell for the 17,653 cells in the cta-seq sample
before amplification (typical).
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Supplementary Fig. S2. Raw read counts per cell before (typical)
and after (ultra-deep) amplification for the 18 selected cells in the
cta-seq experiment.

Supplementary Fig. S3. Number of observed genes before (typical)
and after (ultra-deep) amplification for the 18 selected cells in the
cta-seq experiment.

Supplementary Fig. S4. Log-normalized expression of all cell-type
markers described in Seurat’s pbmc3k tutorial (zeroes not shown).
Supplementary Fig. S5. UMAPs visualizing the clustering of Spa-
tial Transcriptomics spots, based on NormalizeData (left) and GTes-
timate (right) for the mouse brain Spatial Transcriptomics dataset.
Supplementary Fig. S6. Visualization of the different clusters
based on NormalizeData (left) and GTestimate (right) for the mouse
brain Spatial Transcriptomics dataset.

Supplementary Fig. S7. Similarity of the clusters based on Normal-
izeData and GTestimate as represented by the Jaccard Index. Clus-
ters on the y-axis have been rearranged to maximize diagonal en-
tries using the Hungarian algorithm.

Supplementary Fig. S8. UMIs/spot in the Spatial Transcriptomics
mouse brain dataset.

Supplementary Fig. S9. Adjusted Rand Index (ARI) comparing un-
supervised clustering results (Louvian algorithm) to the experi-
mentally annotated cell types in the Liu dataset. Clustering was
performed after normalizing with GTestimate, NormalizeData, or
SCTransform and repeated for different clustering resolutions.
The maximum ARI for each normalization method is indicated
and labeled.

Supplementary Fig. S10. Missing mass before (typical) and after
(ultra-deep) amplification for the 18 selected cells in the cta-seq
experiment (see Suppl. Materials 1.1).

Supplementary Fig. S11. Histogram showing GTestimate’s missing
mass estimates per cell for the 17,653 cells in the cta-seq sample
before amplification (typical).

Supplementary Table S1. Characteristics of the regression line
of the estimated vs. ground-truth distances for the cta-seq data
(Fig. 1D).

Supplementary Table S2. PCR primer sequences used for the
18 separate cta-seq reactions. Forward primers were designed to
specifically target the selected cell-barcodes and to attach the
necessary sequencing adapters. Reverse primers are non-specific
and also attach the necessary sequencing adapters.

Abbreviations

ARI: Adjusted Rand Index; cta-seq: cell-targeted PCR amplification
followed by sequencing; GT: Good-Turing estimator; ML: maxi-
mum likelihood estimator; PC: principal component; scRNA-seq:
single-cell RNA sequencing.
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