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SUMMARY

Human brain organoids are powerful in vitro models for brain development and disease. However, protocol

and pluripotent cell line choices influence organoid variability and cell-type representation, complicating their

use in biomedical research. Here, we systematically analyze the cellular and transcriptional landscape of brain

organoids across multiple cell lines using four protocols aimed at recapitulating dorsal and ventral forebrain,

midbrain, and striatum. We introduce the NEST-Score to evaluate cell-line- and protocol-driven differentiation

propensities and comparisons to in vivo references. Thereby, we establish a set of protocols that together

recreate the majority of cell types in the developing brain and provide a reference of cell-type recapitulation

across cell lines and protocols. Additionally, we identify early gene expression signatures predicting proto-

col-driven organoid generation. We provide easy access to our data through a web explorer, creating a refer-

ence for brain organoid research and allowing straightforward protocol and cell-line performance validation.

INTRODUCTION

Human brain organoids are three-dimensional, self-organizing

in vitro models that recapitulate functional as well as structural

aspects of the developing brain.1–13 In order to capture the

neuronal complexity of the brain, a variety of protocols have

been established to model the development of specific brain re-

gions, such as dorsal or ventral forebrain or midbrain.14–19 Publi-

cations describing organoid protocols typically include evidence

showing that the right cell types are generated; but variability

across samples and cell lines has been a challenge.8,20–22 Cell

lines can have intrinsic biases so that individual cell types are

created in variable amounts. Furthermore, a strong cell line

bias can lead to the formation of cell types that are not present

in the tissue to be modeled. Without additional information, it is

impossible to determine whether a transcriptomic state of an or-

ganoid’s cell is driven by cell line intrinsic properties or guidance

cues of a protocol. This poses a challenge to any study using pa-

tient-derived cell lines as it is unclear whether phenotypic effects

are consequences of the genetic background, disease-associ-

ated genetic variants, or due to other cell-line- or protocol-driven

variability.

To define reference protocol signatures that are independent

of the specific cell line used, we systematically evaluated four

organoid growth protocols based on two success factors: (1)

the reliable generation of the same cell types across multiple

cell lines and (2) the generation of cell types that form the

respective target brain region in vivo. Toward this goal, we pro-

vide a comprehensive dataset that evaluates (1) intrinsic biases

of cell lines within a given brain organoid protocol, (2) reliability

of protocols across multiple cell lines, and (3) similarity between

the cells generated in vitro and in vivo. We examined four pro-

tocols guiding organoid growth toward dorsal forebrain, ventral

forebrain, midbrain, and striatum by conducting single-cell

RNA sequencing (scRNA-seq) experiments on mature organo-

ids and time-resolved bulk RNA-seq. For each protocol, we

distinguish protocol-driven cell states formed across multiple

cell lines from cell line-driven cell states only observed in
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few cell lines. Thereby, we determine the reliable generation

of cell types, the first success factor of a protocol. In addition,

we measure how well brain organoid cell types match in vivo

counterparts as the second success factor. To quantify both

success factors, we have developed the NEST-Score (neigh-

borhood sample homogeneity-score) that evaluates how well

different samples cover the transcriptomic state of each cell

based on its neighborhood in principle component space. In

each protocol, we demonstrate that more than half of the

considered cell lines contribute predominantly to protocol-

driven cell states, the majority of which recapitulates cells

found in vivo.23,24 To understand whether the success of a pro-

tocol can already be assessed at early stages, we performed

time-resolved bulk RNA-seq across all protocols and seven

cell lines. This allows us to obtain cell-line-independent, proto-

col-specific marker gene sets that may serve as reference for

future brain organoid experiments. We provide easy open ac-

cess to our data via a web-based data explorer, which enables

simultaneous browsing across both scRNA and bulk RNA-seq

data for individual genes or gene groups of interest (https://

vienna-brain-organoid-explorer.vbc.ac.at).

RESULTS

Brain organoid single-cell RNA-seq across protocols

and cell lines

To explore a large variety of cell types generated in vitro, we em-

ployed four distinct brain organoid protocols designed to

generate dorsal and ventral forebrain, midbrain, and striatum tis-

sue using eight different cell lines for organoid generation. We

examined the cellular composition of 120-day-old organoids in

duplicates using droplet-based scRNA-seq (10X Genomics)

(Figures 1A and S1A). Organoids were grown to day 120 because

at that time point, most major mature neuronal cell types are

created while a diverse population of progenitor cells is re-

tained.8,25–27 All conditions were grown and sequenced in parallel

to minimize batch variability, eliminating the need for subsequent

computational batch correction. Quality control filtering28 retained

approximately 70,000 high-quality single-cell transcriptomes

for downstream analysis (see STAR Methods) (Figures 1B and

S1A). High-quality cells in the combined dataset encompassing

all protocols and cell lines reveal cell clusters that were annotated

based on marker gene expression and previous literature8,22,25,27

and visualized using uniform manifold approximation and projec-

tion (UMAP). We identified a wide range of glial and neuronal cell

types in distinct clusters that reflect neuron maturation (Figure 1B;

Tables S1 and S2). The differentiation of glial cells to neurons from

different dorsal, ventral, midbrain, and striatal brain regions can be

traced as individual trajectories in the combined UMAP. For

instance, the well-documented differentiation of excitatory neu-

rons from dorsal radial glia (marked by PAX6 and HOPX expres-

sion) through intermediate progenitors (EOMES expression) into

immature, deep, and upper layer neurons (SLA, TBR1, and

SATB2 expression, respectively) forms a distinct set of clusters.

This trajectory is separate from ventral, inhibitory progenitors

and neurons (DLX2, SST expression) as well as floorplate progen-

itors (FOXA2 expression) and midbrain-like cells (EN1 expres-

sion). We observed that midbrain and ventral inhibitory forebrain

progenitors clustered relatively close together, suggesting a

more gradual difference between their gene expression profiles

compared to dorsal progenitors (Figure 1B). Additionally, cells of

hindbrain identity or photoreceptor cells and cells of non-neural

origin such as muscle (DES expression) and stromal cells

(COL3A1 expression) can be observed (Figure S1B).

In the combined dataset, cells derived from dorsal, ventral,

and midbrain protocols occupy different transcriptional states

(Figures 1C and S1C). Cells of the excitatory neuronal lineage

originated from organoids grown in the dorsal protocol, while

the ventral protocol predominantly contributed to the develop-

ment of inhibitory neurons. The midbrain protocol generated

midbrain progenitor clusters and contributed to midbrain-like

cells (Figures 1B, 1C, and S1C). In contrast, the striatum protocol

produced cell states that were also found in the other three pro-

tocols, but additionally generated unique cells not produced by

the other three protocols. These striatum-protocol-specific cells

express markers consistent with medium spiny neuron identity

(SIX3, SP9 expression) (Figure S1B). Overall, the four differentia-

tion protocols across all cell lines collectively yield a highly

diverse array of cell types, underscoring the potential of brain or-

ganoid protocols to model many neural cell types of the devel-

oping human brain (Figure 1D).

To link cells produced in the four protocols to their corre-

sponding anatomical locations, we correlated our data with

spatially resolved transcriptome data from comparable mouse

brain slices (Allen Developing Mouse Brain Atlas30,31). To do

so, we used VoxHunt,29 an algorithm that was previously intro-

duced and validated to assess regional identity of human brain

organoids in comparison to spatial transcriptomic mouse data

(Figure 1E). Cells from each protocol generally matched well to

the corresponding anatomical mouse brain region, indicating

that the organoids are patterned as expected. However, upon

closer inspection, minor positive correlation of gene expression

profiles was also observed with unexpected brain regions,

such as cells from the midbrain protocol correlating with mouse

ventral forebrain structures. Indeed, cell-type clusters annotated

to be midbrain progenitors or midbrain-like correlated better with

the corresponding midbrain reference than the sum of midbrain

protocol-derived cells, indicating that protocols contained addi-

tional non-targeted cells (compare Figures 1E and S1D). This

observation led us to split the combined UMAP by both individ-

ual cell line and protocol (Figure S1E) revealing that individual cell

lines vary in the degree to which they contribute to cell types

generated within each protocol. While most cell lines generated

cells consistent with cell types targeted by the respective proto-

cols, some produced aberrant cell types. In the midbrain proto-

col, for example, cell line Uofv_1 produced a considerable num-

ber of inhibitory neurons that align with those generated in the

ventral forebrain protocol (Figure S1C). In the dorsal protocol,

cell lines 176 and Xuja_2 gave rise to different non-neural tissues

(muscle and stromal cells). As such unintended cell types were

generated only from few cell lines, they can be recognized by a

low degree of intermixing with cells from other cell lines. This in-

dicates that inherent tendencies of certain cell lines can override

the guidance cues provided by a protocol, prompting us to cate-

gorize these instances by determining whether a cell state is

consistently produced within a protocol.
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Definition of protocol-driven and cell-line-driven cell

states

To assess how reliable specific cell types are generated in one

protocol from multiple cell lines, we devised the NEST-Score

(Figure 2A; STAR Methods). Computed for each individual

cell, this score measures the degree to which a cell’s neighbor-

hood is composed of cells from different cell lines. A cell’s

maximum score of ‘‘0’’ indicates that this cell’s neighborhood

is consisting perfectly of all cell lines in the experiment, while

a cell’s low (negative) NEST-Score indicates that neighboring

cells are derived predominantly from the same cell line. There-

fore, high NEST-Scores indicate that cells are consistently pro-

duced within a given protocol as multiple cell lines generate

similar cell states. Vice versa, a cell’s low NEST-Score indicates

Figure 1. The transcriptional potential of organoids grown from multiple protocols and cell lines at single-cell resolution (also see Figure S1)

(A) Experimental overview for endpoint scRNA-seq analysis of brain organoids from four protocols and eight cell lines.

(B) UMAP embedding of scRNA-seq data across four protocols and eight cell lines, color-coded by annotated cell types. prog., progenitors; lin., lineage.

(C) UMAP of scRNA-seq data colored by the protocol of origin.

(D) Contribution of protocols to annotated cell types of the scRNA-seq dataset.

(E) VoxHunt29 analysis of organoid scRNA-seq data with spatial transcriptomics data of a mouse brain slice at embryonic day 13 (Allen Developing Mouse Brain

Atlas30,31) shows protocol-specific Spearman correlation patterns.
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a cell line-driven, non-protocol-conform cell state mainly gener-

ated from a particular cell line. Of note, this assessment is inde-

pendent of how well a cell corresponds to the targeted in vivo

counterpart (see below for in vivo comparisons).

In more detail, for each protocol, we performed principal-

component analysis (PCA) on all cells originating from that pro-

tocol. Then, for each cell, we determined the cell line origins of

its 100 nearest neighbor cells (Figure S2A) by considering the

top principal components. This resulted in a cell-wise cell line

frequency vector that was compared to the global cell line fre-

quency vector utilizing the negative Kullback-Leibler diver-

gence32 (STAR Methods). The NEST-Score reaches its upper

bound, ‘‘0’’, when both frequency vectors agree, and hence

the respective cell has a neighborhood consisting of all consid-

ered cell lines (Figure 2A). By applying a threshold (design

dependent on number of cell lines) to the NEST-Scores, we

Figure 2. Definition of protocol-driven transcriptional signatures and cell line biases using NEST-scores (also see Figure S2)

(A) Schematic representation of the NEST-Score. High NEST-Scores (close to ‘‘0’’) per cell are the result of neighboring cells originating from many different cell

lines (top panel), while low (negative) NEST-Scores indicate that the cell’s neighborhood is predominantly composed of cells from the same cell line.

(B) NEST-Score distribution within one protocol depicts protocol-driven cell groups that were consistently developed across multiple cell lines.

(C) Zoom-in dorsal protocol-driven excitatory differentiation lineage (1) and cell-line-driven muscle cells (2) in the dorsal protocol.

(D) Scaled cell line frequencies (STAR Methods) averaged across cells of a given cell line show that cell lines mix well with others within each specific protocol. In a

perfect mix cell lines would contribute to 1/8= 0.125 of a cell’s scaled neighborhood for eight cell lines (dorsal, midbrain, and striatum protocol) and 1/7 ≈ 0.143 for

the seven cell lines in the ventral protocol.
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classify each cell in downstream analyses as either protocol-

driven (high NEST-Score) or cell-line-driven (low NEST-Score).

Plotting the NEST-Scores of each cell onto the protocol-

resolved UMAPs (Figures 2B and 2C) allowed us to visualize

how reliably cell lines generate protocol-driven cell types within

each protocol. For example, the entire trajectory of dorsal fore-

brain progenitors, intermediate progenitors, and excitatory neu-

rons consists of cells with high NEST-Scores, indicating these

cell types are consistently produced across multiple cell lines.

Similarly, other clusters are consistently produced across cell

lines in other protocols (high NEST-Scores), i.e., interneurons

in the ventral protocol. Notably, all protocols also contained

some cells with low NEST-Scores (Figure 2C), indicating that,

in such instances, cells were predominantly mixed with other

cells derived from the same cell line. This suggests that such

cells and therefore the corresponding cell line did not adhere

to a given protocol’s guidance cues.

These effects vary across protocols and cell lines and contra-

dict the assumption that protocol guidance cues affect every

cell line uniformly. For example, cell line 176 produced mostly

protocol-driven cells in ventral, midbrain, and striatum proto-

cols but not in the dorsal protocol, whereas Uofv_1 predomi-

nantly produced cell-line-driven cell types across all four proto-

cols (Figures S1E, S2B, and S2C). This analysis enabled us to

evaluate the performance of all cell lines in all protocols individ-

ually and to compare them pairwise to identify cell lines that act

similarly (STAR Methods). For example, we observed that the

four cell lines, H9, Rozh_5, 177, and 178, produced similar cell

states throughout the dorsal protocol (Figure 2D), indicating

that cells derived from these cell lines were commonly guided

by protocol cues. In contrast, cell lines such as H1, Uofv_1,

Xuja_2, and 176 predominantly mixed only with themselves,

consistent with these lines being cell-line-driven in this partic-

ular protocol. Analyzing all cell lines in all protocols, we found

that individual cell lines may have cell-line-driven biases for

cell generation in different protocols, but most growth condi-

tions support the generation of desired protocol-driven cells

across cell lines.19

The use of the NEST-Score is dependent on which cell lines

are considered for analysis. When multiple cell lines exhibit

similar cell-line-driven biases, cells—and subsequently cell clus-

ters—may be classified as protocol-driven. Therefore, we asked

whether protocol-driven cell states and clusters are also the

ones that occur in protocols’ target tissue, as annotated by re-

gion and cell type (Figure 1B).8,22,25,27 When aggregating the

NEST-Scores by annotated cell type, we found that all main glial

and neuronal cell type clusters visualized in the pan-protocol,

pan-cell line UMAP have high scores for the cell types intended

by the respective protocol (Figures 2B and S2C). For example, in

the dorsal protocol, dorsal progenitors and excitatory neurons

were generated across multiple cell lines. In the ventral protocol,

instead, ventral progenitors and inhibitory neurons are protocol-

driven, and in the midbrain protocol midbrain progenitors are

protocol-driven. In contrast, muscle and stromal cells that are

found in the dorsal protocol have low NEST-Scores, indicating

they were mostly generated by single cell lines (in the dorsal pro-

tocol 79.3% of stromal cells derived from cell line Uofv_1 and

86.40% of muscle cells from cell line 176) (Figures 2C, S2B,

and S2C). Our analysis also identified cell states that are proto-

col-driven in one protocol but cell-line-driven in another proto-

col, underlining the necessity for comparing four different

protocols. For example, while most cell lines produced proto-

col-driven cells in the midbrain protocol, one cell line, Uofv_1,

generated cells classified as interneurons (Figures 2B and

S2B). Cells of the interneuron lineage are protocol-driven in the

ventral and striatum protocols but not the midbrain protocol.

By defining protocol-driven cell states generated from multi-

ple cell lines across four brain organoid protocols and providing

the NEST-Score to assess the reliability of cell generation, we

provide a framework for protocol benchmarking. The definition

of protocol-driven cells per growth protocol thus comprises

the first success factor in the application of a robust brain orga-

noid protocol. Importantly, this method can be used to evaluate

the suitability of any cell line for growing brain organoids by

computing the NEST-Score based on a cell line’s scRNA-seq

data in combination with the reference datasets provided here.

Additionally, the NEST-Score lends itself to evaluate other highly

multiplexed scRNA-seq experiments. For example, we evalu-

ated scRNA-seq data from a recent brain organoid morphogen

screen,19 grouping and classifying morphogen combinations

that result in similar cell fate acquisition (Figures S2D and S2E).

Comparison of brain organoid potential to fetal

references

Our data allow to distinguish cell-line-driven cell types from cell

types that are protocol-driven and consistently generated in a

given protocol. To test how well the protocol-driven cell types

in the four protocols cover the diversity of cells found in the hu-

man brain, we compared them to two commonly referenced

in vivo fetal brain tissue datasets.23,24 One dataset combines

forebrain, midbrain, and hindbrain as well as separate dorsal

and ventral preparations24 and a second dataset contains

cortical regions.23 Since both in vivo dataset comparisons

gave similar results (Braun et al.24 comparison Figures 3A–3F,

S3A, and S3B; Bhaduri et al.23 comparison Figures S3C–

S3H), we focused on the dataset including more brain regions.

We subset the fetal reference to post-conceptional week (pcw)

14, a time point closely resembling day 120 brain organoids

based on the timing of glio- and neurogenesis,33 which addi-

tionally matches our data in terms of cell number and regions

covered, allowing faithful comparisons.24 Integrating the in vivo

reference with our pan-cell line, pan-protocol dataset using

Seurat’s CCA algorithm into a combined UMAP34 revealed a

large overlap (Figures 3A and 3B; Table S2). In vitro clusters an-

notated as dorsal and ventral forebrain as well as midbrain pro-

genitors overlap with corresponding in vivo cortex and midbrain

clusters. Similarly, in vitro excitatory neurons and inhibitory

neurons from dorsal and ventral forebrain show good overlay

with their respective in vivo counterparts, while midbrain-like

in vitro cells show comparatively looser resemblance to in vivo

counterparts. Remaining residual discrepancies between

in vivo and in vitro data are expected and indicate that biolog-

ical variation is not over-corrected. We applied particular care

during the integration as we went on to quantify the overlap be-

tween in vivo and in vitro in a systematic manner by applying the

NEST-Score workflow to access the contribution of in vivo and
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Figure 3. Data integration of in vitro-derived organoid cells with in vivo brain references (also see Figure S3)

(A) Cell numbers of the in vivo dataset split by sequenced brain region and cell numbers of the in vitro dataset split by protocol. Schematic of Seurat CCA

integration of in vivo fetal brain samples from post-conceptional week (pcw) 14.24

(B) Sequenced regions of in vivo and annotated, region-specific cell types of in vitro datasets align in the integrated UMAP.

(C) In vitro/in vivo-matched and -specific cells (STAR Methods) color-coded on the integrated UMAP. Cell types with low in vivo/in vitro overlap are indicated as

in vitro-/in vivo-specific.

(D) Proportions of in vitro-matched and in vivo-specific cells split by in vivo brain regions.

(E) Integrated in vitro UMAP colored by groups of protocol- or cell-line-driven cells and their overlap with in vivo reference.

(F) Number of protocol- and cell-line-driven cells split by cell types falling into in vivo-matched and in vitro-specific categories.
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Figure 4. Time course bulk RNA-seq analysis of brain organoids reveals differences of variation across time, protocol, and cell line (also see

Figure S4)

(A) Experimental overview for time course bulk RNA-seq experiment. pluri., pluripotent.

(B) Principal-component analysis (PCA) of bulk RNA-seq datasets. Plotted are principal components 1 vs. 2 and 3 vs. 4 with samples colored by organoid age.

(C) PCA of bulk RNA-seq datasets. Plotted are principal components 1 vs. 2 and 3 vs. 4 with samples colored by growth protocol.

(D) Overall experimental variance split by time, protocol, cell line, and residual.

(E) Explained variance split by protocol, cell line, and residual across time.

(F) Hierarchically clustered expression heatmap of 2,000 most highly variable genes on day 0 (pluripotent stem cell stage).

(legend continued on next page)
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in vitro samples to a cell’s integrated neighborhood (Figures 3C

and S3B; STAR Methods). The inspection of NEST-Scores indi-

cated that in vitro and in vivo samples contributed to common

cell groups but also that in vitro- and in vivo-specific cell groups

existed.

The majority of cell types in the integrated dataset were

covered by both in vitro organoid and in vivo fetal cells

(Figure 3D). Thereby, in vitro cells in this category fulfill the second

success criteria for brain organoid growth in that they resemble

in vivo counterparts. Importantly, while each protocol individually

allows only limited coverage of the fetal tissue diversity (dorsal

protocol covers 41.4%, ventral 50.8%, midbrain 27.3%, and

striatum 61.2% of the cells in the in vivo reference dataset)

(Figure S3A), combining the four in vitro protocols resulted in an

overall representation of 70.6% of all fetal brain cell states

(Figure 3D). The remaining 29.4% of the in vivo cells that do not

have in vitro cells in their neighborhood include immune cells,

erythrocytes, and vascular cells (Figures 3B and 3C), cell types

originating outside the brain. We also did not cover all cerebellar

cell states, possibly because hindbrain- or cerebellum-specific

brain organoid protocols were not included in our study.

We sought to combine our two success factors for organoid

growth: (1) generation of protocol-driven cells across cell lines

in each protocol and (2) the generation of in vivo matched cell

types. In this analysis, we observed that most protocol-driven

in vitro cells (namely the major dorsal, ventral, and midbrain pro-

genitor populations) have counterparts in vivo (Figures 3E and

3F). This indicates that successful adherence to protocol cues

results predominantly in the production of cell states present

in vivo, highlighting the importance of protocol characterization

across multiple cell lines to evaluate in vivo cell-type generation.

In contrast, most cell-line-driven cells derived from cell lines not

adhering to protocol cues do not mix with any in vivo cells from

the references. These in vitro cells that originate from 2 or fewer

cell lines and at the same time lack explicit in vivo counterparts,

include eye, muscle, and stromal cells (Figures 3E, 3F, S2C,

and S3B).

Bulk RNA-seq derived time-resolved transcriptional

signatures

Our scRNA-seq analysis was confined to day 120, a time point

where a large variety of both progenitor and differentiated cell

types can be observed. To test whether organoid development

at earlier time points can predict later cell stages, we performed

time course bulk RNA-seq experiments to find predictive

markers. For all combinations of the four protocols and seven

cell lines, we sequenced three replicate organoids at days 13/

16, 25, 40, 80, and 120 (Figures 4A and S4A). We also

sequenced three samples of each pluripotent stem cell line in

the pluripotent state (day 0). PCA analysis of the combined data-

sets showed a gradient of samples according to organoid age in

PC1 and PC2 (Figure 4B), while PC3 and PC4 showed a

grouping by protocol (Figure 4C). Interestingly, grouping by

cell line was only visible in PC7 and PC8 (Figure S4B). By quan-

tifying the contribution of each experimental condition to the to-

tal variation of the data,35,36 we found that the sampling time

point explains 39.04% of the overall variance, while protocol

and cell line choice contribute 13.29% and 8.05%, respectively

(Figure 4D). Protocol- and cell-line-induced variability was

consistent over time (Figure 4E). In the pluripotent state (day

0), we observed that some cell lines display slightly more similar

expression profiles than others (i.e., H1 with Xuja_2 or 177 with

178; Figure 4F); however, the overall pairwise correlation be-

tween all cell lines is very high (Figure 4G), and the cell line

grouping is not predictive for common organoid outcomes at

later stages (Figures 4H and S4C–S4F). This indicates that

gene expression in pluripotent cell lines is insufficient to reliably

predict biases in downstream organoid differentiation. Begin-

ning at day 40, we observed a protocol-specific separation of

sample-wise expression profiles driven by genes including tran-

scription factors and developmental signaling pathways in line

with previous data37,38 (Figure 4I; Table S3). At that time point

we also found that cell lines mainly producing protocol-driven

cells largely cluster together (compare Figures S2B and S4C–

S4F). However, this prediction does not hold true for all cell lines

across all protocols. For example, in the dorsal protocol, cell line

similarities differ between day 40 and day 120, showing H9 as an

outlier cell line at day 40 and 176 as an outlier cell line at day 120

(Figure 4I). The latter meets the observation of scRNA-seq sam-

ples at day 120, where H9 produces abundant protocol-driven

cells while 176 does not.

We wanted to understand whether there are communalities be-

tween cell lines whose intrinsic biases prevent the production of

protocol-driven cells. Given that different cell lines produced

different cell-line-driven off-target cells, we asked if there is none-

theless a common feature among cell lines unable to produce

protocol-driven cell types at day 120. Many organoid studies

describe a connection between increased cellular stress levels

and decreased similarity of organoid cells to in vivo data.22,39,40

Organoid stress may result from growth media conditions and

nutrient limitations due to missing vascularization.41,42 We asked

if increased stress less levels might be a correlative with cell-line-

driven tissue growth. To this end, we analyzed the bulk RNA-seq

samples over time with respect to high expression of genes as-

signed to Gene Ontology (GO)43 terms ‘‘Glycolytic Process’’

(GO:0006096) and ‘‘response to endoplasmic reticulum stress’’

(GO:0034976, endoplasmic reticulum [ER]-stress) indicative of

a stress response (STAR Methods). ER-stress is readily apparent

in the pluripotent stem cell stage at day 0 and decreases after the

application of a growth protocol in the first 40 days of organoid

growth, consistent with previous data.44 At later time points,

both stress scores increase again, but to different extents across

cell lines. Indeed, at day 120, in the dorsal protocol high stress

scores are observed for cell lines 176 and Xuja_2, which gener-

ated mainly cell line-driven tissue (Figures 4J, S2A, and S4G).

This suggests that elevated cellular stress may limit the ability

(G) Pearson correlations between cell lines at day 0.

(H) Pearson correlations between cell lines at day 40 and 120 in the dorsal protocol.

(I) Hierarchically clustered expression grouping based on 2,000 most highly variable genes on days 13/16, 25, 40, 80, and 120.

(J) Stress related Gene Ontology gene group expression over time and cell lines.
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of cells to respond to protocol cues at late stages of organoid

development.

Protocol-specific markers for successful organoid

growth

The time-resolved bulk RNA-seq data allowed us to identify pro-

tocol-specific markers independent from individual cell lines.

We sought genes that are highly expressed across all cell lines

in one protocol compared to all other protocols across all time

points (Figure 5A; Table S3). Reassuringly, marker genes identi-

fied in this way match expression patterns of protocol-targeted

cell types in day 120 scRNA-seq data (Figure S5A). However,

this list also includes markers for earlier time points, like SIX6

for the ventral protocol (Figures 5A and 5B), GLI3 for the dorsal

protocol,45 and EN1 and FOXA2 for the midbrain protocol.46 Be-

sides transcription factors (highlighted in Figure S5B), we also

found developmental morphogens (i.e., WNT2B, WNT3A for

dorsal protocols) and morphogen receptors (i.e., PTCH1 in the

ventral protocol) in line with published data37 as well as other

genes including ion channels (i.e., KCNL13 and TRPM3 in the

dorsal protocol) (Figure 5A).

In a second analysis, we concentrated our search for genes

that are highly expressed at day 40 in cell lines that produce pro-

tocol-driven high-quality organoids at day 120. This results in a

marker gene list that is consistent with successful organoid deri-

vation and may serve as a simple quality control readout via
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Figure 5. Time course bulk RNA-seq identifies protocol-specific signatures and data explorer overview (also see Figure S5)

(A) Volcano plots of differentially expressed genes tested against all remaining three protocols separated by indicated protocol. Top 10 upregulated genes are

indicated.

(B) Gene expression in transcripts per million (TPM) of exemplary protocol markers averaged across all samples of a cell line for each time point. Protocols and

marker genes are indicated.

(C) Screenshot of the interactive data browser that allows users to browse through expression profiles of genes of interest in both time course bulk RNA-seq and

UMAPs of scRNA-seq data (in vitro only and in vivo integrated) as well as user-defined Gene Ontology analysis.
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RNA-seq or quantitative real-time PCR of individual organoid

batches months before organoids have matured. Day 40 was

chosen since this is the earliest time point in which we observe

consistent sample separation according to protocol. For each

protocol, we tested cell lines yielding a minimum of 75% proto-

col-driven cells (Figure S2B) against the remaining cell lines in

this protocol and all cell lines in the other three protocols at

day 40 (Figure S5C; Table S3). The resulting list of upregulated

genes again contains expected marker genes (i.e., EOMES,

TBR1 in the dorsal protocol, and DLX genes in the ventral proto-

col) alongside additional putative protocol-specific early regula-

tors of successful organoid derivation.

To make our data easily accessible, we compiled a Shiny App47

data explorer (https://vienna-brain-organoid-explorer.vbc.ac.at)

(Figure 5C). This allows exploration of gene expression signa-

tures for all considered protocols and cell lines across bulk

RNA-seq time points and comparisons of in vivo and in vitro

scRNA-seq datasets. Furthermore, it can be used to analyze

expression patterns of entire gene sets based on their GO term

association, suggesting which biological processes may be

important in specific cell types at specific time points and in spe-

cific protocols.

DISCUSSION

Brain organoids are widely used in neurodevelopment research

and disease modeling,9,13 but variability across cell lines or

protocols makes their use challenging. Here, using four proto-

cols, we provide evidence for generation of large portions

(70.6%) of fetal brain cells across several pluripotent stem

cell lines. Using multiple cell lines allows to define the propen-

sities of brain organoid protocols for cell modeling, providing a

reference for future organoid derivation from additional cell

lines. We provide comprehensive scRNA-seq and bulk RNA-

seq datasets to characterize the four protocols over time and

for cell types generated. We introduce the NEST-Score to pro-

vide a quantitative measure for reliable generation of cell states

across protocols and to evaluate their recapitulation of in vivo

cell types. Thereby, we define successful protocols by two fac-

tors: the generation of (1) protocol-driven cells across multiple

cell lines that (2) match in vivo reference cells. Furthermore, we

identify marker gene sets that will allow predictions of organoid

protocol success in future work and browsing of all our data

using a web portal (https://vienna-brain-organoid-explorer.

vbc.ac.at/).

By aligning additional cell lines to our reference and in vivo

reference data, the NEST-Score can be used to identify proto-

col-driven cell states for each of the four protocols and to assess

how well they match their in vivo counterparts. The NEST-Score

is particularly useful for the analysis of multiplexed scRNA-seq

data that do not require additional batch correction, as we

show in the analysis of protocol-driven cells. When evaluating

samples with a considerable batch effect, the NEST-Score

may also be applied to batch-corrected, integrated data. How-

ever, caution should be used in such cases as a reasonable inter-

pretation of the NEST-Score evaluation is only possible, if the

strength of the batch effect removal does not remove biological

informative variation between samples.

Since the NEST-Score defines cell neighborhoods in PCA

space, it is independent from non-linear and oftentimes informa-

tion-compromising dimensionality reduction methods such as

UMAP. It is calculated cell by cell and does not rely on any clus-

tering. Therefore, it is independent of cluster resolutions that

might average out cell bias effects. Unlike previous methods,8,48

it also does not require prior cell-type annotation, making it

possible to distinguish the success of a protocol based on (1)

reliably producing the same cell states and (2) producing the

desired cell types. Our approach shares similarities to other stra-

tegies, e.g., the batch effect test kBET49 or the coverage coeffi-

cient.22 Similarly to the NEST-Score, kBET compares local batch

frequencies in a cell’s neighborhood with global frequencies but

employs the Pearson’s X test for statistical evaluation. This test

is only performed for a subset of cells, and test results (rejection

rates) are averaged to access the overall mixing of batches. The

test is very sensitive and tends to reject the hypothesis ‘‘well

mixed’’ already with one of the batches not contributing to a

cell’s neighborhood. The NEST-Score is more robust to such

outlier data as shown for the application of protocol-driven cells

(Figure 2): This comparison included a large amount of different

cell lines (=batches), with one cell line Uofv_1 producing limited

protocol-driven cells. In this case, the NEST-Score, which builds

on the Kullback-Leibler divergence, enables a more stable and

balanced measure to access the mixedness of cell lines. With

our scaling scheme of local and global frequencies, the NEST-

Score is bounded on both sides and hence provides increased

interpretability in contrast to one-side unbounded p values.

Other measures, as used in Kanton et al.20 (reference similarity

spectrum [RSS]), Amin et al.19 (cluster overlap), and He et al.22

(Max-presence score), are especially developed to compare

two datasets, e.g., a query in vitro and a reference in vivo sample,

and therefore do not provide a straight-forward analysis of mul-

tiple conditions at once.

Our data show that organoid variability is not just a product of

protocol stringency and cell line bias. Instead, individual cell lines

display distinct biases in a protocol, and a protocol’s outcomes

should ideally be evaluated from data encompassing a collection

of different cell lines, thereby rendering a comprehensive, cell-

line-independent protocol characterization.

This work is a step toward the goal of recapitulating all brain

cells in vitro, with a focus on dorsal and ventral forebrain,

midbrain, and striatum. Given that other brain areas, particularly

cerebellum, are not included in our current protocol set, we

anticipate that brain cell coverage can be further increased in

the future by adding protocols addressing, e.g., cerebellum

but also non-brain-derived cells including blood vessels and im-

mune cells.50,51 Our data complement recent contributions to

quantify the transcriptomic diversity of published brain organoid

data,22 since it allows a harmonized comparison across different

protocols and cell lines without integration/batch-correction

simplifying interpretation and quantification of main sources of

organoid variability.

Our time course RNA-seq data facilitate the identification of

protocol-specific markers that can be tested at early time points

in order to predict successful organoid formation, saving time

and costs. Our datasets and putative marker lists can also serve

as a resource for further optimization of experimental protocols
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and evaluation of pluripotent cell lines for future research. This

may be of particular importance for patient-derived cell lines,

which require a solid definition of protocol-driven cells as con-

trols. It also allows us to predict the potential of new cell lines

to cover the full spectrum of cell types found in vivo.

To facilitate easy access to our data, we implemented a data

explorer that visualizes the expression of protocol markers or

GO-term-specific gene sets over time, protocol, and cell lines

and also in the day 120 scRNA-seq data. The explorer is avail-

able at https://vienna-brain-organoid-explorer.vbc.ac.at and al-

lows users to identify marker genes for the formation of specific

cell types as well as to choose the right protocol for a specific

scientific question.

Limitations of the study

There are several limitations of our study. For example, our cur-

rent data covers only eight cell lines per protocol. Therefore,

future efforts should be geared toward extending the number

of cell lines across multiple protocols further. Another limitation

is that only four protocols are characterized in-depth. Other

studies19,21 consider larger number of growth conditions but

use fewer cell lines and earlier analysis time points, and it will

be interesting to cross-compare cell generation across these

studies.
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V.-E., Peer, A.M., Chu, J., Novatchkova, M., Hainfellner, J.A., et al. (2022).

Amplification of human interneuron progenitors promotes brain tumors

and neurological defects. Science 375, eabf5546. https://doi.org/10.

1126/science.abf5546.

26. Martins-Costa, C., Pham, V.A., Sidhaye, J., Novatchkova, M., Wiegers, A.,

Peer, A., Möseneder, P., Corsini, N.S., and Knoblich, J.A. (2023). Morpho-

genesis and development of human telencephalic organoids in the

absence and presence of exogenous extracellular matrix. EMBO J. 42,

e113213. https://doi.org/10.15252/embj.2022113213.

27. Uzquiano, A., Kedaigle, A.J., Pigoni, M., Paulsen, B., Adiconis, X., Kim, K.,

Faits, T., Nagaraja, S., Antón-Bolaños, N., Gerhardinger, C., et al. (2022).

Proper acquisition of cell class identity in organoids allows definition of

fate specification programs of the human cerebral cortex. Cell 185,

3770–3788.e27. https://doi.org/10.1016/j.cell.2022.09.010.

28. Heumos, L., Schaar, A.C., Lance, C., Litinetskaya, A., Drost, F., Zappia, L.,

Lücken, M.D., Strobl, D.C., Henao, J., Curion, F., et al. (2023). Best prac-

tices for single-cell analysis across modalities. Nat. Rev. Genet. 24,

550–572. https://doi.org/10.1038/s41576-023-00586-w.

29. Fleck, J.S., Sanchı́s-Calleja, F., He, Z., Santel, M., Boyle, M.J., Camp, J.

G., and Treutlein, B. (2021). Resolving organoid brain region identities by

mapping single-cell genomic data to reference atlases. Cell Stem Cell

28, 1148–1159.e8. https://doi.org/10.1016/j.stem.2021.02.015.

30. Thompson, C.L., Ng, L., Menon, V., Martinez, S., Lee, C.-K., Glattfelder,

K., Sunkin, S.M., Henry, A., Lau, C., Dang, C., et al. (2014). A High-

Resolution Spatiotemporal Atlas of Gene Expression of the Developing

Mouse Brain. Neuron 83, 309–323. https://doi.org/10.1016/j.neuron.

2014.05.033.

31. Fleck, J.S. (2020). VoxHunt Expression Maps. Version 2 (Mendeley Data).

https://doi.org/10.17632/g4xg38mwcn.2.

32. Kullback, S., and Leibler, R.A. (1951). On Information and Sufficiency. Ann.

Math. Statist. 22, 79–86.

33. Giandomenico, S.L., Sutcliffe, M., and Lancaster, M.A. (2021). Generation

and long-term culture of advanced cerebral organoids for studying later

stages of neural development. Nat. Protoc. 16, 579–602. https://doi.org/

10.1038/s41596-020-00433-w.

34. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.

M., Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehen-

sive Integration of Single-Cell Data. Cell 177, 1888–1902.e21. https://doi.

org/10.1016/j.cell.2019.05.031.

35. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth,

G.K. (2015). limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Res. 43, e47. https://

doi.org/10.1093/nar/gkv007.

36. Hoffman, G.E., and Schadt, E.E. (2016). variancePartition: interpreting

drivers of variation in complex gene expression studies. BMC Bioinf. 17,

483. https://doi.org/10.1186/s12859-016-1323-z.

37. Strano, A., Tuck, E., Stubbs, V.E., and Livesey, F.J. (2020). Variable Out-

comes in Neural Differentiation of Human PSCs Arise from Intrinsic Differ-

ences in Developmental Signaling Pathways. Cell Rep. 31, 107732.

https://doi.org/10.1016/j.celrep.2020.107732.

38. Kim, T.W., Piao, J., Koo, S.Y., Kriks, S., Chung, S.Y., Betel, D., Socci, N.D.,

Choi, S.J., Zabierowski, S., Dubose, B.N., et al. (2021). Biphasic Activation

of WNT Signaling Facilitates the Derivation of Midbrain Dopamine Neurons

from hESCs for Translational Use. Cell Stem Cell 28, 343–355.e5. https://

doi.org/10.1016/j.stem.2021.01.005.

39. Bhaduri, A., Andrews, M.G., Mancia Leon, W., Jung, D., Shin, D., Allen, D.,

Jung, D., Schmunk, G., Haeussler, M., Salma, J., et al. (2020). Cell stress in

cortical organoids impairs molecular subtype specification. Nature 578,

142–148. https://doi.org/10.1038/s41586-020-1962-0.

40. Gordon, A., Yoon, S.-J., Tran, S.S., Makinson, C.D., Park, J.Y., Andersen,

J., Valencia, A.M., Horvath, S., Xiao, X., Huguenard, J.R., et al. (2021).

Long Term Maturation of Human Cortical Organoids Matches Key Early

Postnatal Transitions. Nat. Neurosci. 24, 331–342. https://doi.org/10.

1038/s41593-021-00802-y.
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Deposited data

raw organoid in vitro single-cell RNA-seq data This paper EGA: EGAS50000000662

raw organoid in vitro time-course bulk RNA-seq data This paper EGA: EGAS50000000663

processed organoid in vitro single-cell RNA-seq data This paper GEO: GSE277968

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

processed organoid in vitro time-course

bulk RNA-seq data

This paper GEO: GSE277967

processed human in vivo single-cell RNA-seq data Braun et al.24 https://github.com/linnarsson-lab/

developing-human-brain/

processed human in vivo single-cell RNA-seq data Bhaduri et al.23 NeMO (RRID: SCR_002001),

https://data.nemoarchive.org/biccn/grant/

u01_devhu/kriegstein/transcriptome/

scell/10x_v2/human/processed/counts/

processed organoid in vitro single-cell RNA-seq data Amin et al.19 GEO: GSE233574

processed mouse in vivo 3D expression maps

(Allen Developing Mouse Brain Atlas)

Fleck et al.31 Mendeley: https://doi.org/

10.17632/g4xg38mwcn.2

Experimental models: Cell lines

Human: H1: embryonic stem cell (hESCs) line WA01 WiCell hESCs line WA01

Human: H9: embryonic stem cell (hESCs) line WA09 WiCell hESCs line WA09

Human: Rozh_5: induced pluripotent

stem cell (HipSci) line HPSI0114i-rozh_5 (ECACC 77650043)

HipSci consortium cat. no. 77650043

Human: Xuja_2: induced pluripotent

stem cell (HipSci) line HPSI1213i-xuja_2 (ECACC 77650087)

HipSci consortium cat. no. 77650087

Human: Uofv_1: induced pluripotent

stem cell (HipSci) line HPSI1113i-uofv_1 (ECACC 77650078)

HipSci consortium cat. no. 77650078

Human: 176: induced pluripotent stem cell

(HipSci) line SCCF-176J clone#1

(Ethics Approval Number EK 1596/2017)

IMBA iPSC Biobank

Webshop

HipSci line SCCF-176J clone#1

Human: 177: induced pluripotent stem cell

(HipSci) line SCCF-177J clone#8

(Ethics Approval Number EK 1596/2017)

IMBA iPSC Biobank

Webshop

HipSci line SCCF-177J clone#8

Human: 178: induced pluripotent stem cell

(HipSci) line SCCF-178J clone#5

(Ethics Approval Number EK 1596/2017)

IMBA iPSC Biobank

Webshop

HipSci line SCCF-178J clone#5

Software and algorithms

Cell Ranger (v3.0.2) 10X Genomics https://www.10xgenomics.com/

support/software/cell-ranger

Bowtie (v2.3.4.1) Langmead et al.52 https://github.com/BenLangmead/bowtie2

Souporcell (V2.4) Heaton et al.53 https://github.com/wheaton5/souporcell

R (version 4.4.0) The R Foundation for

Statistical Computing

https://cran.r-project.org

Seurat (v5.0.1) Hao et al.54 https://cran.r-project.org/package=Seurat

scrublet (v0.2.3) Wolock et al.55 https://github.com/swolock/scrublet

VoxHunt (v1.1.0) Fleck et al.29 https://github.com/quadbio/VoxHunt

NEST-Score (v.1.0.0) This paper https://github.com/jn-goe/NESTScore; Zenodo:

https://doi.org/10.5281/zenodo.13974434

limma (v3.60.0) Ritchie et al.35 https://bioconductor.org/packages/

release/bioc/html/limma.html

variancePartition (v1.34.0) Hoffman et al.36 https://bioconductor.org/packages/

release/bioc/html/variancePartition.html

DESeq2 (v1.44.0) Love et al.56 https://www.bioconductor.org/packages/

release/bioc/html/DESeq2.html

shiny (v1.9.1) Chang et al.47 https://cran.r-project.org/package=shiny

Brain Organoid Explorer This paper https://vienna-brain-organoid-explorer.vbc.ac.at/

Other

Source data and scripts related to the

analysis of brain organoid transcriptomic data (v2)

This paper https://github.com/jn-goe/

brain_organoids_four_protocols; Zenodo:

https://doi.org/10.5281/zenodo.13742634
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics approval and consent to participate

The study was approved by the local institutional review board (IRB) of the Medical University of Vienna EK 1596/2017. Informed con-

sent from donors providing material for iPSC generation (IMBA iPSC biobank, see below) was obtained from patients and/or their

legal representatives.

METHOD DETAILS

Cell culture

Human embryonic stem cell (hESCs) lines WA01 (H1, male) and WA09 (H9, female) were obtained from WiCell (https://www.wicell.

org). Human induced pluripotent stem cell lines SCCF-176J clone#1 (abbreviated 176, female), SCCF-177J clone#8 (abbreviated

177, female) and SCCF-178J clone#5 (abbreviated 178, male) were obtained from IMBA iPSC biobank (https://shop.vbc.ac.at/

ipsc_biobank/). Human induced pluripotent stem cell lines HPSI0114i-rozh_5 (abbreviated Rozh_5, female, cat. no. 77650043),

HPSI1113i-uofv_1 (abbreviated Uofv_1, male, cat. no. 77650078) and HPSI1213i-xuja_2 (abbreviated Xuja_2, female, cat. no.

77650087) were obtained from the HipSci consortium (https://www.hipsci.org). All lines were contamination free, STR verified and

regularly tested for mycoplasma. Cell lines were maintained according to HipSci recommendations on Vitronectin (Stem Cell Tech-

nologies, cat. no. 100–0763) coated plates with Essential 8 Medium (Thermo Fisher Scientific, cat. no. A1517001 or produced in-

house). All cells were maintained in a 5% CO2 incubator at 37◦C. Cells were either split using DPBS − /− (Gibco, cat. no. 14190-

250) or Accutase (Sigma, cat. no. A6964) and plated in Essential 8 Medium supplemented with RevitaCell Supplement (Thermo Fisher

Scientific, cat. no. A2644501).

Brain organoid generation

Brain organoids were generated as previously described.18,26 Media compositions are given below. Pluripotent cells were grown to

60–80% confluency and single cell suspensions were obtained using Accutase. Pelleted cells were resuspended in E8 media sup-

plemented with RevitaCell and counted. 8 000–10 000 cells were seeded to form embryoid bodies in a 96-well ultra-low-attachment

U-bottom plate (Sigma, cat. no. CLS7007).

Dorsal protocol

Day 0: Seeding in 150 μL E8 supplemented with RevitaCell. Day 3: E8 media. Days 6, 7, 8, 9: Neural induction media (NI), Day 10: 1%

Matrigel in NI media (Corning, cat. no. 356235) and transfer to 10 cm plates coated with anti-adherence rinsing solution (Stemcell

Technologies, cat. no. 07010). Day 13, 14: NI media supplemented with 3 mM CHIR (Merck, cat. no. 361571), Days 16, 19, 22:

Improved-A media with transfer to shaker on day 19. Days 25–40 every 3–4 days: Improved+A media. Days 40–60 every 3–

4 days: Improved+A media supplemented with 1% Matrigel, Day 62: 75% Improved+A media mixed with 25% Brainphys media

supplemented with 1% Matrigel. Day 65: 50% Improved+A media mixed with 50% Brainphys media supplemented with 1%

Matrigel. Day 69: 25% Improved+A media mixed with 75% Brainphys media supplemented with 1% Matrigel. Days 72–120 every

3–4 days: Brainphys media supplemented with 1% Matrigel, 20 ng mL− 1 BDNF (Stemcell Technologies, cat. no. 78005.3),

20 ng mL− 1 GDNF (Stemcell Technologies, cat. no. 78057.3), 1 mM db-cAMP (Santa Cruz Biotechnology, cat. no. sc-201567C).

Ventral protocol

Day 0: Seeding in 150 μL E8 supplemented with RevitaCell. Day 3: E8 media. Days 5, 7, 9, 10: Neural induction media (NI) supple-

mented with 100 nM SAG (Merck, cat. no. US1566660) and 2.5 μM IWP-2 (Sigma-Aldrich, cat. no. 10536) with 1% Matrigel added at

day 10. Days 13, 15, 17: Improved-A supplemented with 100 nM SAG and 2.5 μM IWP-2. Organoid maturation from day 19 on as in

dorsal protocol.

Midbrain protocol

Days 0, 2:150 μL NI supplemented with RevitaCell, 200 ng mL− 1 Noggin (R&D Systems, cat. no. 6057), 10 μM SB431542 (Stemgent,

cat. no. 04-0010-10) and 0.8 μM CHIR. Day 4: NI supplemented with 200 ng mL− 1 Noggin, 10 μM SB431542, 0.8 μM CHIR, 300 nM

SAG and 100 ng mL− 1 FGF-8 (fibroblast growth factor 8; R&D Systems, cat. no. 5057-FF). Day 6: NI supplemented with 300 nM SAG

and 100 ng mL− 1 FGF-8. Day 8: Improved-A supplemented with 300 nM SAG, 100 ng mL− 1 FGF-8, 2% Matrigel. Transfer to a 10cm

dish. Day 10: Improved-A supplemented with 2% Matrigel. Day 13: Improved-A. Days 16–25 every 3–4 days: Improved+A media.

Organoid maturation from day 25 on as in dorsal protocol.

Striatum protocol

Days 0, 2:150 μL NI supplemented with RevitaCell, 10 nM SAG, 2.5 μM IWP-2. Day 4: NI supplemented with 10 nM SAG, 2.5 μM

IWP-2. Day 6: NI, Day 8: Day 8: Improved-A supplemented with 2% Matrigel. Transfer to a 10cm dish. Day 10: Improved-A supple-

mented with 2% Matrigel. Day 13: Improved-A. Days 16–25 every 3–4 days: Improved+A media. Organoid maturation from day 25 on

as in dorsal protocol.
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Organoid media

Neural induction medium (NI)

DMEM/F12 (Invitrogen, cat. no. 11330-057), 1% N2 Supplement (Thermo Fisher, cat. no. 17502001), 1% GlutaMAX-I (Thermo Fisher,

cat. no. 35050-038), 1% MEM-NEAA (Sigma-Aldrich, M7145), 1:1000 heparin solution (Sigma-Aldrich, cat. no. H3149-100KU), 1%

PenStrep (Sigma-Aldrich, cat. no. P4333).

Improved− A medium

50:50 DMEM/F12: Neurobasal (Gibco, cat. no. 21103049), 0.5% N2 supplement, 2% B27− A (Thermo Fisher, cat. no. 12587010),

1:4000 insulin (Sigma-Aldrich, cat. no. I9278), 1% GlutaMAX, 0.5% MEM-NEAA, 1% Antibiotic-Antimycotic (Thermo Fisher, cat.

no. 15240062).

Improved+A medium

50:50 DMEM/F12: Neurobasal. 0.5% N2 Supplement, 2% B27 + A (Thermo Fisher, cat. no. 17504044), 1:4000 insulin, 1% GlutaMAX,

0.5% MEM-NEAA, 1% Antibiotic-Antimycotic, 1% vitamin C solution (40 mM stock in DMEM/F12) (Vitamin C: Sigma-Aldrich, cat. no.

A4544), 1 g L− 1 sodium bicarbonate (Sigma-Aldrich, cat. no. S5761).

Brainphys

BrainPhys Neuronal Medium (Stemcell Technologies, cat. no. 05790), 2% B27 + A, 1% N2 Supplement, 1% CD Lipid Concentrate

(Thermo Fisher Scientific, cat. no.11905031), 1% Antibiotic-Antimycotic, 1:147 20% glucose solution.

scRNA-sequencing

Organoids were dissociated at day 120 by incubation in a 9:1 mixture of Accutase (Sigma Aldrich, cat. no. A6954) and 10x Trypsin

(Gibco, cat. no. 15400) at 37◦C on a Thermo-shaker (800 rpm) for approximately two hours and four units of TurboDNase (Thermo cat.

no. AM2238) were added after 30 min. After enzymatic dissociation, cells were filtered through a 35 μm strainer followed by dilution

with 1% BSA in DPBS− /− (Biostatus; cat. no. DR70250, 0.3 mM), counted and labeled (hashed) with TotalSeq-A antibodies

(Biolegend) as required to allow demultiplexing of 4 samples either by genetic background or hash information per single cell tran-

scriptomic reaction. For hashing, cells were stained for 30 min on ice, washed twice with 1% BSA in DPBS− /− . After flow cytometry

sorting a pool of equal cell numbers for each of the 4 samples was used as input for the Chromium Next GEM Single Cell 3′ Gene

Expression (v3.1) following the 10x Genomics user guide (one experiment of H9 cells in the ventral condition and one sample in

177, dorsal condition failed leading to only three cell lines being loaded in these instances). Sequencing of gene expression and

hash libraries was performed on an Illumina NovaSeq S4 lane.

Bulk RNA-sequencing

RNA samples were extracted from organoids collected in Buffer RLT (Qiagen, cat. no. 79216) using the RNA isolation kit provided by

VBC core facilities. The kit uses carboxylate-modified Sear-Mag Speed beads and was applied using the Kingfisher instrument

(Thermo). For RNA sequencing Lexogen’s Quantseq kit was used, including the UMI extension (Lexogen, cat. no. 015.384,

081.96). Sequencing was performed on Illumina NextSeq High Output 75 cycle lanes and Illumina Novaseq S1 100 cycle lanes

and reads combined. All kits were used according to manufacturers’ instructions. Samples were collected at crucial times during

protocols (days 13, 25, 40, 80, 120 for dorsal and ventral, and days 16, 40, 80, 120 for midbrain and striatum).

QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq sample pooling and demultiplexing

Sequencing data of 10X libraries was processed using Cell Ranger software (v3.0.2, 10X Genomics) using reference genome

GRCh38. Cells were demultiplexed by cell line genotype using Souporcell (v2.4)53 and two replicate organoids per cell line and pro-

tocol pooled for analysis. In experiments containing hash information, hash information was used for demultiplexing.

Pre-processing and downstream analysis

Per sample resulting cell-by-gene, unique molecular identifier (UMI) count matrices were analyzed in R (v4.4.0) using Seurat54

(v5.0.1). We observed high cell-wise expression levels of MALAT1 which is known to be a non-informative sequencing artifact in

scRNA-seq data, dominating total number of UMIs in some cells and influencing gene expression normalization and subsequent

downstream analysis. Hence, we discarded cells, in which more than 10% of all UMIs were assigned to only one gene and subse-

quently deleted MALAT1 from the count matrices of all in vitro datasets. Then, we filtered for high-quality cells based on doublet

detection performed with Python Package scrublet55 (v0.2.3, loaded via R Package reticulate (v1.38.0)), number of uniquely detected

genes (‘nFeature’) between 500 and 5,000, number of UMIs (‘nCount’) between 500 and 10,000, percentage of mitochondrial reads

between 0.1% and 15% and percentage of ribosomal reads between 0.1% and 50%.

Counts across all replicates, cell lines and protocols were merged, and genes expressed in less than 10 cells were discarded. After

cell-wise count log-normalization (‘LogNormalize’), 3,000 highly variable genes were identified (‘FindVariableFeatures’) and ribo-

somal and mitochondrial genes were removed from the list of highly variable genes. Next, we performed cell-wise cell cycle anno-

tation by Seurat’s function ‘CellCycleScoring’ and gene list ‘cc.gene’. Data was scaled (‘ScaleData’) whilst regressing out cell cycle
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biases (vars.to.regress = c(‘S.Score’, ‘G2M.Score’) and Principal Component Analysis was performed (‘RunPCA’). The shared near-

est neighbor graph (‘FindNeighbors’) and the Louvain clustering algorithm (‘FindClusters’, with resolution 3.5) as well as the UMAP

embedding (‘RunUMAP’) were computed on the first 40 Principal Components. 40 Principal Components were chosen due to flat-

tening of an Elbow Plot showing explained variance against number of Principal Components and because well-known clusters and

differentiation trajectories became apparent in the subsequent UMAP visualization. Positively differentially expressed genes per clus-

ter were identified using Seurat’s function ‘FindAllMarkers’ (using the default Wilcoxon Rank-Sum test) and genes were retained

based on an average log fold change larger than 1 and an adjusted p-value below 0.01 (by default Bonferroni corrected;

Table S1). Clusters were annotated based on expression of marker genes and hierarchically aggregated to a coarser cell type anno-

tation (Table S2).

VoxHunt correlation analysis

For comparison of the scRNA-seq organoid data with spatial gene expression data on a mouse brain slice (Allen Developing Mouse

Brain Atlas30), we used VoxHunt29 (v1.1.0) and the provided sample of embryonic day 13 (‘E13’).31 For the Spearman correlation anal-

ysis with subsets of the scRNA-seq organoid atlas, we pooled the top 15 (based on the provided Area under the Curve value, AUC)

genes based on the sample’s respective annotation level ‘custom_2’ using VoxHunt’s function ‘structure_markers’.

Measure cell neighborhood homogeneity: NEST-score

The NEST-Score was computed for each protocol separately, hence for one protocol, the data was subset to all cells generated in

this specific protocol. The concept of the NEST-Score will be explained with respect to the 8 different cell lines that contribute to the

dorsal, midbrain and striatum protocol. For the ventral protocol, only 7 contributing cell lines are present, and the different number of

cell lines results in a different range of NEST-Scores as can be seen in Figure 2B.

For each subset, downstream analysis was re-computed with Seurat, in more detail, the computation of the most variable 2,000

features (‘FindVariableFeatures’), data scaling (‘ScaleData’), Principal Component Analysis (‘RunPCA’) and nearest neighbor search

(‘FindNeighbors’, based on Euclidean distance in the space spanned by the first 40 Principal Components).

Subsequently, for a cell i and its k nearest neighbors Nk
i , we count how often each cell line x occurs. The resulting 8-dimensional

vector (since 8 cell lines are considered) is then divided by k to obtain the local cell line distribution

f local
i (x) =

⃒
⃒Nk

i ∩ Lx

⃒
⃒

k

for cell i and cell line x, where Lx is the set of all cells from cell line x. The local cell line distribution vector f local
i is then entry-wise divided

by the global cell line distribution vector fglobal; i.e., the vector of relative frequencies of cell lines across all cells within the considered

protocol:

fglobal(x) =
|Lx |

M
;

where M =
∑

x

|Lx| is the number of all cells in the considered protocol. This yields the scaled local cell line distribution

fscaled
i (x) = c⋅

f local
i (x)

fglobal(x)
for cell i and cell line x;

where c is a constant such that
∑

x∈ Lx

fscaled
i (x) = 1.

Finally, the NEST-Score N(i) for cell i is defined as negative Kullback-Leibler divergence32 of fscaled
i and the 8-dimensional uniform

frequency vector funiform =
(

1
8
;…;1

8

)
:

N(i) = − DKL

(
fscaled
i

⃦
⃦funiform

)
= −

(
∑

x∈ cell lines

fscaled
i (x) log

(
fscaled
i (x)

funiform(x)

))

;

for cell i.

The minus provides a more intuitive interpretation: In case the neighborhood of a cell is perfectly resembled by all considered cell

lines, the local cell line distribution coincides with the global cell line distribution, yielding
f local
i

(x)

fglobal(x)
= 1 for all cell lines x. Accordingly,

fscaled
i becomes a uniform distribution and hence also

fscaled
i

(x)

funiform(x)
= 1 for all cell lines x. Since log

(
fscaled
i

(x)

funiform(x)

)
= log(1) = 0; the NEST-Score

reaches its upper bound ‘0’ in this scenario. In our application we interpret this as the expression state of (and around) cell i is pro-

duced by multiple cell lines and hence consistently recovered in the considered protocol.

To binarily classify a cell as either protocol-driven (=well-mixed neighborhood with respect to cell line abundances) or cell line-

driven, we computed a NEST-Score threshold as following: As a minimum requirement to identify a cell state as protocol-driven,

we want to observe at least three different cell lines in the respective cell’s neighborhood. Hence, we compute the NEST-Score
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for an artificial scaled local cell line distribution fscaled
i , which would appear if a cell’s neighborhood would only consist of two cell lines

with equal frequencies, i.e.,

fscaled
i =

(
1

2
;
1

2
;0;…; 0

)

:

For the eight cell lines (in dorsal, midbrain and striatum protocol), this results in the threshold of − DKL(f
scaled
i

⃦
⃦funiform) = − 2: Since

only 7 cell lines contribute to the ventral protocol, the threshold computation results in a value of around − 1.8. A cell is then classified

as protocol-driven, as soon as its NEST-Score is strictly greater than the protocol-specific threshold.

For all presented analysis, we choose k = 100 neighbors, since we observe a decreasing NEST-Score for k ∈ {1;…; 99} and a

more or less constant NEST-Score for k ∈ {100;…; 200}: This is shown in Figure S2A for the dorsal protocol, where we compute

the NEST-Scores across multiple k ∈ {1;…; 200} for each cell, resulting in cell-wise NEST-Score lines. Those lines are colored ac-

cording to our binary assignment of cells as cell line- or protocol-driven based using k = 100 and the above introduced NEST-Score

threshold of − 2.

For the analysis of mixedness between in vivo and in vitro datasets, we consider the two sample conditions in vivo and in vitro

instead of different cell lines. Again, the computation of a cell’s 100 nearest neighbors was performed in principle Component space

after batch correction (50 Principal Components to be consistent with the downstream analysis of the integrated data). For the pro-

tocol-wise analysis, the integrated data was subset to in vivo and in vitro data of only the considered protocol. Since during Seurat

CCA integration expression matrices are already subset to highly variable features, we only re-computed the Principal Component

Analysis and subsequent nearest neighbor search (‘FindNeighbors’, based on Euclidean distance in the space spanned by the first

50 Principal Components) for the respective, batch-corrected subset. For a similar binary classification scheme as above, we

computed a NEST-Score threshold based on the scenario that a cell’s scaled neighborhood only originates from one of the two con-

ditions. In more detail we compute the NEST-Score using

fscaled
i = (1; 0) and funiform = (0:5; 0:5)

resulting in value of − DKL(f
scaled
i

⃦
⃦funiform) = − 1, which is also the minimal NEST-Score that can be attained in this setting. If a cell’s

NEST-Score was strictly larger than this threshold, i.e., if at least one cell from each condition was present in the neighborhood, the

cell was labeled as matched. Otherwise, it was labeled as in vivo/in vitro-specific, depending on whether the cell is of in vivo or in vitro

origin.

For pairwise comparisons of cell line y and cell line x, we compute the average of scaled contributions of x to a cell’s neighborhood,

i.e., the average of fscaled
i (x); across all cells i originating from cell line y: This is plotted as a heatmap, where y corresponds to a heat-

map row and x to a heatmap column. Due to the normalization constant c, which is used for the computation of fscaled
i (x), the row

sums of the corresponding heatmaps are 1.

Module Score based on bulk RNA-seq differentially expressed marker genes

Per protocol, the top 50 differentially expressed genes (ranked by adjusted p-value) based on the bulk RNA-seq data across all

considered experimental time points were input into Seurat’s ‘AddModuleScore’ function57 which calculates their average expres-

sion and rescales it with respect to a random control gene set.

Gene Ontology scores for scRNA-seq

For one Gene Ontology term, genes attributed to this term were downloaded using the function ‘select’ of R package AnnotationDbi

(v1.66.0) and package GO.db (v3.19.1) and input into Seurat’s ‘AddModuleScore’ function.

Integration of in vivo and in vitro scRNA-seq data

For fetal brain data published in Braun et al.,24 we merged already quality controlled samples that were sequenced in post-concep-

tional week 14 without any batch correction procedure as provided on https://github.com/linnarsson-lab/developing-human-brain

(last access on July 16th 2024). Then, we followed a similar downstream analysis as for the in vitro data. We identified the most

3,000 highly variable genes, removed ribosomal and mitochondrial genes and MALAT1 from this list. Next, the in vivo and in vitro

data were integrated using Seurat CCA: 1. Integration features (‘SelectIntegrationFeatures’, excluding mitochondrial and ribosomal

genes and MALAT1) and subsequently integration anchors (‘FindIntegrationAnchors’, based on canonical correlation analysis ‘CCA’)

were determined. After integrating the data with ‘IntegrateData’, downstream analysis was performed as described above to obtain

the in vitro pan-protocol and pan-cell line UMAP embedding using the default of all 50 Principal Components. For visualization of

clusters, we combined information of metadata ‘Subregion’ and ‘CellClass’ (Table S2). The alluvial plot in Figure 3F was plotted

with R packages ggplot2 (v3.5.1) and ggalluvial (v0.12.5).

For fetal brain data published in Bhaduri et al.,23 we integrated high-quality cells from Gestational Weeks 14, 17 and 18 and

excluded cells not listed in or labeled as ‘Outlier’ in the provided metadata. We randomly (stratified by cell type) subsampled

46,171 cells from the around 205,000 high-quality cells in Gestational Week 18, such that all considered in vivo cells in total

add up to 70,000 cells roughly matching our in vitro dataset size. The in vivo was integrated with our in vitro data as described
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above, but due to visible batch effects between individuals, we split the considered in vivo data per individual (‘14’, ‘17’, ‘18’,

‘18_2’) and treated the respective 4 datasets as separate batches. Integration anchors (‘FindIntegrationAnchors’) were then

computed by setting in vitro data as reference dataset. For visualization of clusters, we combined information of metadata ‘struc-

ture’ and ‘cell_type’ (Table S2). For a straight-forward comparison with our in vitro dataset, brain region and cell type annotations

of both in vivo datasets were aggregated hierarchically and renamed into simpler and coarser annotation names (Table S2).

Time course bulk RNA-seq analysis

Reads were preprocessed using umi2index (Lexogen) to add the UMI sequence to the read identifier, and trimmed using BBDuk

(v38.06) (ref = polyA.fa.gz,truseq.fa.gz k = 13 ktrim = r useshortkmers = t mink = 5 qtrim = r trimq = 10 minlength = 20). Reads mapping

to abundant sequences included in the iGenomes UCSC hg38 reference (human rDNA, human mitochondrial chromosome, phiX174

genome, adapter) were removed using bowtie252 (v2.3.4.1) alignment. Remaining reads were analyzed using genome and gene

annotation for the GRCh38/hg38 assembly obtained from Homo sapiens Ensembl release 94. Reads were aligned to the genome

using star (v2.6.0c), alignments were processed using collapse_UMI_bam (Lexogen) and reads in genes were counted with featur-

eCounts (subread v1.6.2) using strand-specific read counting (-s 1).

Pre-processing and downstream analysis

For all bulk RNA-seq analysis, R (v4.4.0) was used. To address variable sequencing depths across samples we included only samples

with more than 100,000 reads as high-quality samples in the analysis of the bulk RNA-seq data. For PCA read counts were normalized

for library size to transcripts per million (TPM) and log2 transformed. Then the 2,000 most variable genes were selected and PCA was

performed using the ‘prcomp’ command from the R package ‘stats’ (v4.4.0).

Explained variance by experimental condition

To understand how much the individual factors influence gene expression, we first normalized the count data using the ‘voom’ func-

tion from limma35 (v3.60.0). To ensure reliable analysis, genes with low expression were filtered out from the count matrix: Only genes

that exhibited a counts-per-million (CPM) value of 5 or more in at least 20 samples were kept for subsequent normalization. With the R

package variancePartition36 (v1.34.0) and its function ‘fitExtractVarPartModel’ we then obtained estimates for how much variation of

each gene was explained by the individual factors time, protocol and cell line. We multiplied the proportional explained variance of

each gene for the different factors with the variance of the respective genes across the samples resulting in the fraction of explained

variance per gene. Finally, to gauge the total impact of each factor on gene expression, we added up these individual contributions

(fractional explained variance) per factor for all genes. For computing the explained variance of the factors over time we did the same

as described above only for each time point individually.

Gene expression heatmaps and sample clustering

For creating the heatmaps of the expression data counts were variance-stabilized using the ‘vst’ function from DESeq256 (v1.44.0),

then mitochondrial and ribosomal genes were excluded from the variance-stabilized data and the plots created using the pheatmap

package (v1.0.12) based on the 2,000 most variable genes.

Gene Ontology scores for bulk RNA-seq

Bulk samples were stored as a merged Seurat Object and genes were retained if expressed in more than 10 samples. Default down-

stream analysis was performed (treating one bulkRNA-seq sample as one ‘cell’), i.e., log-normalization, determination of 2,000 highly

variable genes and scaling. For one Gene Ontology term, genes attributed to this term were downloaded using the function ’select’ of

R package AnnotationDbi (v1.66.0) and package GO.db (v3.19.1) and input into Seurat’s ‘AddModuleScore’ function.

Protocol-specific marker genes

In order to find specific genes which are uniquely or predominantly expressed in each experimental protocol, we performed differ-

ential expression analysis on the voom normalized expression data. Using the R package limma (v3.60.0) we tested the expression of

each gene in a given protocol across all cell lines against the average expression of the gene in all other protocols. We performed

moderated t-tests, corrected the p-values via the Benjamini-Hochberg method and for each protocol considered the top 2,000 genes

with adjusted p-value smaller 0.01. Genes were retained if the average log fold change was larger than 0.2. For a refined analysis of

protocol-specific marker genes at day 40, we subset samples to day 40 and, for each protocol, tested cell lines yielding a minimum of

75% protocol-driven cells against remaining cell lines in this protocol and all cell lines in the other three protocols.
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