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In brief

Naas et al. analyzed brain organoids from
multiple cell lines in four regional
protocols using scRNA-seq and time-
resolved RNA-seq. They apply a
computational tool, the “NEST-Score”, to
identify cell-line- and protocol-driven
cells in organoids and compare to in vivo
references. Analyses and visualizations
are provided via a web explorer.
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SUMMARY

Human brain organoids are powerful in vitro models for brain development and disease. However, protocol
and pluripotent cell line choices influence organoid variability and cell-type representation, complicating their
use in biomedical research. Here, we systematically analyze the cellular and transcriptional landscape of brain
organoids across multiple cell lines using four protocols aimed at recapitulating dorsal and ventral forebrain,
midbrain, and striatum. We introduce the NEST-Score to evaluate cell-line- and protocol-driven differentiation
propensities and comparisons to in vivo references. Thereby, we establish a set of protocols that together
recreate the majority of cell types in the developing brain and provide a reference of cell-type recapitulation
across cell lines and protocols. Additionally, we identify early gene expression signatures predicting proto-
col-driven organoid generation. We provide easy access to our data through a web explorer, creating a refer-
ence for brain organoid research and allowing straightforward protocol and cell-line performance validation.

INTRODUCTION

Human brain organoids are three-dimensional, self-organizing
in vitro models that recapitulate functional as well as structural
aspects of the developing brain.'”'® In order to capture the
neuronal complexity of the brain, a variety of protocols have
been established to model the development of specific brain re-
gions, such as dorsal or ventral forebrain or midbrain.*' Publi-
cations describing organoid protocols typically include evidence
showing that the right cell types are generated; but variability
across samples and cell lines has been a challenge.®?°? Cell
lines can have intrinsic biases so that individual cell types are
created in variable amounts. Furthermore, a strong cell line
bias can lead to the formation of cell types that are not present
in the tissue to be modeled. Without additional information, it is
impossible to determine whether a transcriptomic state of an or-
ganoid’s cell is driven by cell line intrinsic properties or guidance
cues of a protocol. This poses a challenge to any study using pa-
tient-derived cell lines as it is unclear whether phenotypic effects
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are consequences of the genetic background, disease-associ-
ated genetic variants, or due to other cell-line- or protocol-driven
variability.

To define reference protocol signatures that are independent
of the specific cell line used, we systematically evaluated four
organoid growth protocols based on two success factors: (1)
the reliable generation of the same cell types across multiple
cell lines and (2) the generation of cell types that form the
respective target brain region in vivo. Toward this goal, we pro-
vide a comprehensive dataset that evaluates (1) intrinsic biases
of cell lines within a given brain organoid protocol, (2) reliability
of protocols across multiple cell lines, and (3) similarity between
the cells generated in vitro and in vivo. We examined four pro-
tocols guiding organoid growth toward dorsal forebrain, ventral
forebrain, midbrain, and striatum by conducting single-cell
RNA sequencing (scRNA-seq) experiments on mature organo-
ids and time-resolved bulk RNA-seq. For each protocol, we
distinguish protocol-driven cell states formed across multiple
cell lines from cell line-driven cell states only observed in
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few cell lines. Thereby, we determine the reliable generation
of cell types, the first success factor of a protocol. In addition,
we measure how well brain organoid cell types match in vivo
counterparts as the second success factor. To quantify both
success factors, we have developed the NEST-Score (neigh-
borhood sample homogeneity-score) that evaluates how well
different samples cover the transcriptomic state of each cell
based on its neighborhood in principle component space. In
each protocol, we demonstrate that more than half of the
considered cell lines contribute predominantly to protocol-
driven cell states, the majority of which recapitulates cells
found in vivo.?*?* To understand whether the success of a pro-
tocol can already be assessed at early stages, we performed
time-resolved bulk RNA-seq across all protocols and seven
cell lines. This allows us to obtain cell-line-independent, proto-
col-specific marker gene sets that may serve as reference for
future brain organoid experiments. We provide easy open ac-
cess to our data via a web-based data explorer, which enables
simultaneous browsing across both scRNA and bulk RNA-seq
data for individual genes or gene groups of interest (https://
vienna-brain-organoid-explorer.vbc.ac.at).

RESULTS

Brain organoid single-cell RNA-seq across protocols

and cell lines

To explore a large variety of cell types generated in vitro, we em-
ployed four distinct brain organoid protocols designed to
generate dorsal and ventral forebrain, midbrain, and striatum tis-
sue using eight different cell lines for organoid generation. We
examined the cellular composition of 120-day-old organoids in
duplicates using droplet-based scRNA-seq (10X Genomics)
(Figures 1A and S1A). Organoids were grown to day 120 because
at that time point, most major mature neuronal cell types are
created while a diverse population of progenitor cells is re-
tained.®?°" All conditions were grown and sequenced in parallel
to minimize batch variability, eliminating the need for subsequent
computational batch correction. Quality control filtering®® retained
approximately 70,000 high-quality single-cell transcriptomes
for downstream analysis (see STAR Methods) (Figures 1B and
S1A). High-quality cells in the combined dataset encompassing
all protocols and cell lines reveal cell clusters that were annotated
based on marker gene expression and previous literature®22-*>27
and visualized using uniform manifold approximation and projec-
tion (UMAP). We identified a wide range of glial and neuronal cell
types in distinct clusters that reflect neuron maturation (Figure 1B;
Tables S1 and S2). The differentiation of glial cells to neurons from
different dorsal, ventral, midbrain, and striatal brain regions can be
traced as individual trajectories in the combined UMAP. For
instance, the well-documented differentiation of excitatory neu-
rons from dorsal radial glia (marked by PAX6 and HOPX expres-
sion) through intermediate progenitors (EOMES expression) into
immature, deep, and upper layer neurons (SLA, TBR1, and
SATB2 expression, respectively) forms a distinct set of clusters.
This trajectory is separate from ventral, inhibitory progenitors
and neurons (DLX2, SST expression) as well as floorplate progen-
itors (FOXA2 expression) and midbrain-like cells (EN1 expres-
sion). We observed that midbrain and ventral inhibitory forebrain
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progenitors clustered relatively close together, suggesting a
more gradual difference between their gene expression profiles
compared to dorsal progenitors (Figure 1B). Additionally, cells of
hindbrain identity or photoreceptor cells and cells of non-neural
origin such as muscle (DES expression) and stromal cells
(COLBAT1 expression) can be observed (Figure S1B).

In the combined dataset, cells derived from dorsal, ventral,
and midbrain protocols occupy different transcriptional states
(Figures 1C and S1C). Cells of the excitatory neuronal lineage
originated from organoids grown in the dorsal protocol, while
the ventral protocol predominantly contributed to the develop-
ment of inhibitory neurons. The midbrain protocol generated
midbrain progenitor clusters and contributed to midbrain-like
cells (Figures 1B, 1C, and S1C). In contrast, the striatum protocol
produced cell states that were also found in the other three pro-
tocols, but additionally generated unique cells not produced by
the other three protocols. These striatum-protocol-specific cells
express markers consistent with medium spiny neuron identity
(SIX3, SP9 expression) (Figure S1B). Overall, the four differentia-
tion protocols across all cell lines collectively yield a highly
diverse array of cell types, underscoring the potential of brain or-
ganoid protocols to model many neural cell types of the devel-
oping human brain (Figure 1D).

To link cells produced in the four protocols to their corre-
sponding anatomical locations, we correlated our data with
spatially resolved transcriptome data from comparable mouse
brain slices (Allen Developing Mouse Brain Atlas®®*"). To do
so, we used VoxHunt,?® an algorithm that was previously intro-
duced and validated to assess regional identity of human brain
organoids in comparison to spatial transcriptomic mouse data
(Figure 1E). Cells from each protocol generally matched well to
the corresponding anatomical mouse brain region, indicating
that the organoids are patterned as expected. However, upon
closer inspection, minor positive correlation of gene expression
profiles was also observed with unexpected brain regions,
such as cells from the midbrain protocol correlating with mouse
ventral forebrain structures. Indeed, cell-type clusters annotated
to be midbrain progenitors or midbrain-like correlated better with
the corresponding midbrain reference than the sum of midbrain
protocol-derived cells, indicating that protocols contained addi-
tional non-targeted cells (compare Figures 1E and S1D). This
observation led us to split the combined UMAP by both individ-
ual cell line and protocol (Figure S1E) revealing that individual cell
lines vary in the degree to which they contribute to cell types
generated within each protocol. While most cell lines generated
cells consistent with cell types targeted by the respective proto-
cols, some produced aberrant cell types. In the midbrain proto-
col, for example, cell line Uofv_1 produced a considerable num-
ber of inhibitory neurons that align with those generated in the
ventral forebrain protocol (Figure S1C). In the dorsal protocol,
cell lines 176 and Xuja_2 gave rise to different non-neural tissues
(muscle and stromal cells). As such unintended cell types were
generated only from few cell lines, they can be recognized by a
low degree of intermixing with cells from other cell lines. This in-
dicates that inherent tendencies of certain cell lines can override
the guidance cues provided by a protocol, prompting us to cate-
gorize these instances by determining whether a cell state is
consistently produced within a protocol.
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Figure 1. The transcriptional potential of organoids grown from multiple protocols and cell lines at single-cell resolution (also see Figure S1)
(A) Experimental overview for endpoint scRNA-seq analysis of brain organoids from four protocols and eight cell lines.

(B) UMAP embedding of scRNA-seq data across four protocols and eight cell lines, color-coded by annotated cell types. prog., progenitors; lin., lineage.

(C) UMAP of scRNA-seq data colored by the protocol of origin.

(D) Contribution of protocols to annotated cell types of the scRNA-seq dataset.

(E) VoxHunt® analysis of organoid scRNA-seq data with spatial transcriptomics data of a mouse brain slice at embryonic day 13 (Allen Developing Mouse Brain
Atlas®**") shows protocol-specific Spearman correlation patterns.

Definition of protocol-driven and cell-line-driven cell maximum score of “0” indicates that this cell’s neighborhood
states is consisting perfectly of all cell lines in the experiment, while
To assess how reliable specific cell types are generated in one  a cell’s low (negative) NEST-Score indicates that neighboring
protocol from multiple cell lines, we devised the NEST-Score cells are derived predominantly from the same cell line. There-
(Figure 2A; STAR Methods). Computed for each individual fore, high NEST-Scores indicate that cells are consistently pro-
cell, this score measures the degree to which a cell’s neighbor-  duced within a given protocol as multiple cell lines generate
hood is composed of cells from different cell lines. A cell’s similar cell states. Vice versa, a cell’s low NEST-Score indicates
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Figure 2. Definition of protocol-driven transcriptional signatures and cell line biases using NEST-scores (also see Figure S2)

(A) Schematic representation of the NEST-Score. High NEST-Scores (close to “0”) per cell are the result of neighboring cells originating from many different cell
lines (top panel), while low (negative) NEST-Scores indicate that the cell’s neighborhood is predominantly composed of cells from the same cell line.

(B) NEST-Score distribution within one protocol depicts protocol-driven cell groups that were consistently developed across multiple cell lines.

(C) Zoom-in dorsal protocol-driven excitatory differentiation lineage (1) and cell-line-driven muscle cells (2) in the dorsal protocol.

(D) Scaled cell line frequencies (STAR Methods) averaged across cells of a given cell line show that cell lines mix well with others within each specific protocol. In a
perfect mix cell lines would contribute to Ys= 0.125 of a cell’s scaled neighborhood for eight cell lines (dorsal, midbrain, and striatum protocol) and 1/7 ~ 0.143 for

the seven cell lines in the ventral protocol.

a cell line-driven, non-protocol-conform cell state mainly gener-
ated from a particular cell line. Of note, this assessment is inde-
pendent of how well a cell corresponds to the targeted in vivo
counterpart (see below for in vivo comparisons).

In more detail, for each protocol, we performed principal-
component analysis (PCA) on all cells originating from that pro-
tocol. Then, for each cell, we determined the cell line origins of
its 100 nearest neighbor cells (Figure S2A) by considering the
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top principal components. This resulted in a cell-wise cell line
frequency vector that was compared to the global cell line fre-
quency vector utilizing the negative Kullback-Leibler diver-
gence® (STAR Methods). The NEST-Score reaches its upper
bound, “0”, when both frequency vectors agree, and hence
the respective cell has a neighborhood consisting of all consid-
ered cell lines (Figure 2A). By applying a threshold (design
dependent on number of cell lines) to the NEST-Scores, we
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classify each cell in downstream analyses as either protocol-
driven (high NEST-Score) or cell-line-driven (low NEST-Score).

Plotting the NEST-Scores of each cell onto the protocol-
resolved UMAPs (Figures 2B and 2C) allowed us to visualize
how reliably cell lines generate protocol-driven cell types within
each protocol. For example, the entire trajectory of dorsal fore-
brain progenitors, intermediate progenitors, and excitatory neu-
rons consists of cells with high NEST-Scores, indicating these
cell types are consistently produced across multiple cell lines.
Similarly, other clusters are consistently produced across cell
lines in other protocols (high NEST-Scores), i.e., interneurons
in the ventral protocol. Notably, all protocols also contained
some cells with low NEST-Scores (Figure 2C), indicating that,
in such instances, cells were predominantly mixed with other
cells derived from the same cell line. This suggests that such
cells and therefore the corresponding cell line did not adhere
to a given protocol’s guidance cues.

These effects vary across protocols and cell lines and contra-
dict the assumption that protocol guidance cues affect every
cell line uniformly. For example, cell line 176 produced mostly
protocol-driven cells in ventral, midbrain, and striatum proto-
cols but not in the dorsal protocol, whereas Uofv_1 predomi-
nantly produced cell-line-driven cell types across all four proto-
cols (Figures S1E, S2B, and S2C). This analysis enabled us to
evaluate the performance of all cell lines in all protocols individ-
ually and to compare them pairwise to identify cell lines that act
similarly (STAR Methods). For example, we observed that the
four cell lines, H9, Rozh_5, 177, and 178, produced similar cell
states throughout the dorsal protocol (Figure 2D), indicating
that cells derived from these cell lines were commonly guided
by protocol cues. In contrast, cell lines such as H1, Uofv_1,
Xuja_2, and 176 predominantly mixed only with themselves,
consistent with these lines being cell-line-driven in this partic-
ular protocol. Analyzing all cell lines in all protocols, we found
that individual cell lines may have cell-line-driven biases for
cell generation in different protocols, but most growth condi-
tions support the generation of desired protocol-driven cells
across cell lines.'®

The use of the NEST-Score is dependent on which cell lines
are considered for analysis. When multiple cell lines exhibit
similar cell-line-driven biases, cells—and subsequently cell clus-
ters—may be classified as protocol-driven. Therefore, we asked
whether protocol-driven cell states and clusters are also the
ones that occur in protocols’ target tissue, as annotated by re-
gion and cell type (Figure 1B).2?>?>27 When aggregating the
NEST-Scores by annotated cell type, we found that all main glial
and neuronal cell type clusters visualized in the pan-protocol,
pan-cell line UMAP have high scores for the cell types intended
by the respective protocol (Figures 2B and S2C). For example, in
the dorsal protocol, dorsal progenitors and excitatory neurons
were generated across multiple cell lines. In the ventral protocol,
instead, ventral progenitors and inhibitory neurons are protocol-
driven, and in the midbrain protocol midbrain progenitors are
protocol-driven. In contrast, muscle and stromal cells that are
found in the dorsal protocol have low NEST-Scores, indicating
they were mostly generated by single cell lines (in the dorsal pro-
tocol 79.3% of stromal cells derived from cell line Uofv_1 and
86.40% of muscle cells from cell line 176) (Figures 2C, S2B,
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and S2C). Our analysis also identified cell states that are proto-
col-driven in one protocol but cell-line-driven in another proto-
col, underlining the necessity for comparing four different
protocols. For example, while most cell lines produced proto-
col-driven cells in the midbrain protocol, one cell line, Uofv_1,
generated cells classified as interneurons (Figures 2B and
S2B). Cells of the interneuron lineage are protocol-driven in the
ventral and striatum protocols but not the midbrain protocol.
By defining protocol-driven cell states generated from multi-
ple cell lines across four brain organoid protocols and providing
the NEST-Score to assess the reliability of cell generation, we
provide a framework for protocol benchmarking. The definition
of protocol-driven cells per growth protocol thus comprises
the first success factor in the application of a robust brain orga-
noid protocol. Importantly, this method can be used to evaluate
the suitability of any cell line for growing brain organoids by
computing the NEST-Score based on a cell line’s scRNA-seq
data in combination with the reference datasets provided here.
Additionally, the NEST-Score lends itself to evaluate other highly
multiplexed scRNA-seq experiments. For example, we evalu-
ated scRNA-seq data from a recent brain organoid morphogen
screen,'® grouping and classifying morphogen combinations
that result in similar cell fate acquisition (Figures S2D and S2E).

Comparison of brain organoid potential to fetal
references

Our data allow to distinguish cell-line-driven cell types from cell
types that are protocol-driven and consistently generated in a
given protocol. To test how well the protocol-driven cell types
in the four protocols cover the diversity of cells found in the hu-
man brain, we compared them to two commonly referenced
in vivo fetal brain tissue datasets.”®** One dataset combines
forebrain, midbrain, and hindbrain as well as separate dorsal
and ventral preparations®® and a second dataset contains
cortical regions.?® Since both in vivo dataset comparisons
gave similar results (Braun et al.>* comparison Figures 3A-3F,
S3A, and S3B; Bhaduri et al.”® comparison Figures S3C-
S3H), we focused on the dataset including more brain regions.
We subset the fetal reference to post-conceptional week (pcw)
14, a time point closely resembling day 120 brain organoids
based on the timing of glio- and neurogenesis,>® which addi-
tionally matches our data in terms of cell number and regions
covered, allowing faithful comparisons.”* Integrating the in vivo
reference with our pan-cell line, pan-protocol dataset using
Seurat’s CCA algorithm into a combined UMAP® revealed a
large overlap (Figures 3A and 3B; Table S2). In vitro clusters an-
notated as dorsal and ventral forebrain as well as midbrain pro-
genitors overlap with corresponding in vivo cortex and midbrain
clusters. Similarly, in vitro excitatory neurons and inhibitory
neurons from dorsal and ventral forebrain show good overlay
with their respective in vivo counterparts, while midbrain-like
in vitro cells show comparatively looser resemblance to in vivo
counterparts. Remaining residual discrepancies between
in vivo and in vitro data are expected and indicate that biolog-
ical variation is not over-corrected. We applied particular care
during the integration as we went on to quantify the overlap be-
tween in vivo and in vitro in a systematic manner by applying the
NEST-Score workflow to access the contribution of in vivo and
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Figure 3. Data integration of in vitro-derived organoid cells with in vivo brain references (also see Figure S3)

(A) Cell numbers of the in vivo dataset split by sequenced brain region and cell numbers of the in vitro dataset split by protocol. Schematic of Seurat CCA
integration of in vivo fetal brain samples from post-conceptional week (pcw) 14.%*

(B) Sequenced regions of in vivo and annotated, region-specific cell types of in vitro datasets align in the integrated UMAP.

(C) In vitro/in vivo-matched and -specific cells (STAR Methods) color-coded on the integrated UMAP. Cell types with low in vivo/in vitro overlap are indicated as
in vitro-/in vivo-specific.

(D) Proportions of in vitro-matched and in vivo-specific cells split by in vivo brain regions.

(E) Integrated in vitro UMAP colored by groups of protocol- or cell-line-driven cells and their overlap with in vivo reference.

(F) Number of protocol- and cell-line-driven cells split by cell types falling into in vivo-matched and in vitro-specific categories.
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Figure 4. Time course bulk RNA-seq analysis of brain organoids reveals differences of variation across time, protocol, and cell line (also see
Figure S4)

(A) Experimental overview for time course bulk RNA-seq experiment. pluri., pluripotent.

(B) Principal-component analysis (PCA) of bulk RNA-seq datasets. Plotted are principal components 1 vs. 2 and 3 vs. 4 with samples colored by organoid age.
(C) PCA of bulk RNA-seq datasets. Plotted are principal components 1 vs. 2 and 3 vs. 4 with samples colored by growth protocol.

(D) Overall experimental variance split by time, protocol, cell line, and residual.

(E) Explained variance split by protocol, cell line, and residual across time.

(F) Hierarchically clustered expression heatmap of 2,000 most highly variable genes on day 0 (pluripotent stem cell stage).

(legend continued on next page)
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in vitro samples to a cell’s integrated neighborhood (Figures 3C
and S3B; STAR Methods). The inspection of NEST-Scores indi-
cated that in vitro and in vivo samples contributed to common
cell groups but also that in vitro- and in vivo-specific cell groups
existed.

The majority of cell types in the integrated dataset were
covered by both in vitro organoid and in vivo fetal cells
(Figure 3D). Thereby, in vitro cells in this category fulfill the second
success criteria for brain organoid growth in that they resemble
in vivo counterparts. Importantly, while each protocol individually
allows only limited coverage of the fetal tissue diversity (dorsal
protocol covers 41.4%, ventral 50.8%, midbrain 27.3%, and
striatum 61.2% of the cells in the in vivo reference dataset)
(Figure S3A), combining the four in vitro protocols resulted in an
overall representation of 70.6% of all fetal brain cell states
(Figure 3D). The remaining 29.4% of the in vivo cells that do not
have in vitro cells in their neighborhood include immune cells,
erythrocytes, and vascular cells (Figures 3B and 3C), cell types
originating outside the brain. We also did not cover all cerebellar
cell states, possibly because hindbrain- or cerebellum-specific
brain organoid protocols were not included in our study.

We sought to combine our two success factors for organoid
growth: (1) generation of protocol-driven cells across cell lines
in each protocol and (2) the generation of in vivo matched cell
types. In this analysis, we observed that most protocol-driven
in vitro cells (namely the major dorsal, ventral, and midbrain pro-
genitor populations) have counterparts in vivo (Figures 3E and
3F). This indicates that successful adherence to protocol cues
results predominantly in the production of cell states present
in vivo, highlighting the importance of protocol characterization
across multiple cell lines to evaluate in vivo cell-type generation.
In contrast, most cell-line-driven cells derived from cell lines not
adhering to protocol cues do not mix with any in vivo cells from
the references. These in vitro cells that originate from 2 or fewer
cell lines and at the same time lack explicit in vivo counterparts,
include eye, muscle, and stromal cells (Figures 3E, 3F, S2C,
and S3B).

Bulk RNA-seq derived time-resolved transcriptional
signatures

Our scRNA-seq analysis was confined to day 120, a time point
where a large variety of both progenitor and differentiated cell
types can be observed. To test whether organoid development
at earlier time points can predict later cell stages, we performed
time course bulk RNA-seq experiments to find predictive
markers. For all combinations of the four protocols and seven
cell lines, we sequenced three replicate organoids at days 13/
16, 25, 40, 80, and 120 (Figures 4A and S4A). We also
sequenced three samples of each pluripotent stem cell line in
the pluripotent state (day 0). PCA analysis of the combined data-
sets showed a gradient of samples according to organoid age in
PC1 and PC2 (Figure 4B), while PC3 and PC4 showed a
grouping by protocol (Figure 4C). Interestingly, grouping by

Cell Reports

cell line was only visible in PC7 and PC8 (Figure S4B). By quan-
tifying the contribution of each experimental condition to the to-
tal variation of the data,®**® we found that the sampling time
point explains 39.04% of the overall variance, while protocol
and cell line choice contribute 13.29% and 8.05%, respectively
(Figure 4D). Protocol- and cell-line-induced variability was
consistent over time (Figure 4E). In the pluripotent state (day
0), we observed that some cell lines display slightly more similar
expression profiles than others (i.e., H1 with Xuja_2 or 177 with
178; Figure 4F); however, the overall pairwise correlation be-
tween all cell lines is very high (Figure 4G), and the cell line
grouping is not predictive for common organoid outcomes at
later stages (Figures 4H and S4C-S4F). This indicates that
gene expression in pluripotent cell lines is insufficient to reliably
predict biases in downstream organoid differentiation. Begin-
ning at day 40, we observed a protocol-specific separation of
sample-wise expression profiles driven by genes including tran-
scription factors and developmental signaling pathways in line
with previous data®"*® (Figure 41; Table S3). At that time point
we also found that cell lines mainly producing protocol-driven
cells largely cluster together (compare Figures S2B and S4C-
S4F). However, this prediction does not hold true for all cell lines
across all protocols. For example, in the dorsal protocol, cell line
similarities differ between day 40 and day 120, showing H9 as an
outlier cell line at day 40 and 176 as an outlier cell line at day 120
(Figure 41). The latter meets the observation of scRNA-seq sam-
ples at day 120, where H9 produces abundant protocol-driven
cells while 176 does not.

We wanted to understand whether there are communalities be-
tween cell lines whose intrinsic biases prevent the production of
protocol-driven cells. Given that different cell lines produced
different cell-line-driven off-target cells, we asked if there is none-
theless a common feature among cell lines unable to produce
protocol-driven cell types at day 120. Many organoid studies
describe a connection between increased cellular stress levels
and decreased similarity of organoid cells to in vivo data.?**%4°
Organoid stress may result from growth media conditions and
nutrient limitations due to missing vascularization.*'** We asked
ifincreased stress less levels might be a correlative with cell-line-
driven tissue growth. To this end, we analyzed the bulk RNA-seq
samples over time with respect to high expression of genes as-
signed to Gene Ontology (GO)*® terms “Glycolytic Process”
(GO:0006096) and “response to endoplasmic reticulum stress”
(G0O:0034976, endoplasmic reticulum [ER]-stress) indicative of
a stress response (STAR Methods). ER-stress is readily apparent
in the pluripotent stem cell stage at day 0 and decreases after the
application of a growth protocol in the first 40 days of organoid
growth, consistent with previous data.** At later time points,
both stress scores increase again, but to different extents across
cell lines. Indeed, at day 120, in the dorsal protocol high stress
scores are observed for cell lines 176 and Xuja_2, which gener-
ated mainly cell line-driven tissue (Figures 4J, S2A, and S4G).
This suggests that elevated cellular stress may limit the ability

(G) Pearson correlations between cell lines at day 0.

(H) Pearson correlations between cell lines at day 40 and 120 in the dorsal protocol.
(I) Hierarchically clustered expression grouping based on 2,000 most highly variable genes on days 13/16, 25, 40, 80, and 120.

(J) Stress related Gene Ontology gene group expression over time and cell lines.
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Figure 5. Time course bulk RNA-seq identifies protocol-specific signatures and data explorer overview (also see Figure S5)

(A) Volcano plots of differentially expressed genes tested against all remaining three protocols separated by indicated protocol. Top 10 upregulated genes are
indicated.

(B) Gene expression in transcripts per million (TPM) of exemplary protocol markers averaged across all samples of a cell line for each time point. Protocols and
marker genes are indicated.

(C) Screenshot of the interactive data browser that allows users to browse through expression profiles of genes of interest in both time course bulk RNA-seq and
UMAPs of scRNA-seq data (in vitro only and in vivo integrated) as well as user-defined Gene Ontology analysis.

of cells to respond to protocol cues at late stages of organoid
development.

Protocol-specific markers for successful organoid
growth

The time-resolved bulk RNA-seq data allowed us to identify pro-
tocol-specific markers independent from individual cell lines.
We sought genes that are highly expressed across all cell lines
in one protocol compared to all other protocols across all time
points (Figure 5A; Table S3). Reassuringly, marker genes identi-
fied in this way match expression patterns of protocol-targeted
cell types in day 120 scRNA-seq data (Figure S5A). However,
this list also includes markers for earlier time points, like SIX6

for the ventral protocol (Figures 5A and 5B), GLI3 for the dorsal
protocol,*® and EN1 and FOXA2 for the midbrain protocol.*® Be-
sides transcription factors (highlighted in Figure S5B), we also
found developmental morphogens (i.e., WNT2B, WNT3A for
dorsal protocols) and morphogen receptors (i.e., PTCH1 in the
ventral protocol) in line with published data®” as well as other
genes including ion channels (i.e., KCNL13 and TRPMS in the
dorsal protocol) (Figure 5A).

In a second analysis, we concentrated our search for genes
that are highly expressed at day 40 in cell lines that produce pro-
tocol-driven high-quality organoids at day 120. This results in a
marker gene list that is consistent with successful organoid deri-
vation and may serve as a simple quality control readout via
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RNA-seq or quantitative real-time PCR of individual organoid
batches months before organoids have matured. Day 40 was
chosen since this is the earliest time point in which we observe
consistent sample separation according to protocol. For each
protocol, we tested cell lines yielding a minimum of 75% proto-
col-driven cells (Figure S2B) against the remaining cell lines in
this protocol and all cell lines in the other three protocols at
day 40 (Figure S5C; Table S3). The resulting list of upregulated
genes again contains expected marker genes (i.e., EOMES,
TBR1 in the dorsal protocol, and DLX genes in the ventral proto-
col) alongside additional putative protocol-specific early regula-
tors of successful organoid derivation.

To make our data easily accessible, we compiled a Shiny App*’
data explorer (https://vienna-brain-organoid-explorer.vbc.ac.at)
(Figure 5C). This allows exploration of gene expression signa-
tures for all considered protocols and cell lines across bulk
RNA-seq time points and comparisons of in vivo and in vitro
scRNA-seq datasets. Furthermore, it can be used to analyze
expression patterns of entire gene sets based on their GO term
association, suggesting which biological processes may be
important in specific cell types at specific time points and in spe-
cific protocols.

DISCUSSION

Brain organoids are widely used in neurodevelopment research
and disease modeling,”'® but variability across cell lines or
protocols makes their use challenging. Here, using four proto-
cols, we provide evidence for generation of large portions
(70.6%) of fetal brain cells across several pluripotent stem
cell lines. Using multiple cell lines allows to define the propen-
sities of brain organoid protocols for cell modeling, providing a
reference for future organoid derivation from additional cell
lines. We provide comprehensive scRNA-seq and bulk RNA-
seq datasets to characterize the four protocols over time and
for cell types generated. We introduce the NEST-Score to pro-
vide a quantitative measure for reliable generation of cell states
across protocols and to evaluate their recapitulation of in vivo
cell types. Thereby, we define successful protocols by two fac-
tors: the generation of (1) protocol-driven cells across multiple
cell lines that (2) match in vivo reference cells. Furthermore, we
identify marker gene sets that will allow predictions of organoid
protocol success in future work and browsing of all our data
using a web portal (https://vienna-brain-organoid-explorer.
vbc.ac.at/).

By aligning additional cell lines to our reference and in vivo
reference data, the NEST-Score can be used to identify proto-
col-driven cell states for each of the four protocols and to assess
how well they match their in vivo counterparts. The NEST-Score
is particularly useful for the analysis of multiplexed scRNA-seq
data that do not require additional batch correction, as we
show in the analysis of protocol-driven cells. When evaluating
samples with a considerable batch effect, the NEST-Score
may also be applied to batch-corrected, integrated data. How-
ever, caution should be used in such cases as a reasonable inter-
pretation of the NEST-Score evaluation is only possible, if the
strength of the batch effect removal does not remove biological
informative variation between samples.
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Since the NEST-Score defines cell neighborhoods in PCA
space, it is independent from non-linear and oftentimes informa-
tion-compromising dimensionality reduction methods such as
UMAP. It is calculated cell by cell and does not rely on any clus-
tering. Therefore, it is independent of cluster resolutions that
might average out cell bias effects. Unlike previous methods,®*®
it also does not require prior cell-type annotation, making it
possible to distinguish the success of a protocol based on (1)
reliably producing the same cell states and (2) producing the
desired cell types. Our approach shares similarities to other stra-
tegies, e.g., the batch effect test kKBET*® or the coverage coeffi-
cient.?” Similarly to the NEST-Score, kBET compares local batch
frequencies in a cell’s neighborhood with global frequencies but
employs the Pearson’s X test for statistical evaluation. This test
is only performed for a subset of cells, and test results (rejection
rates) are averaged to access the overall mixing of batches. The
test is very sensitive and tends to reject the hypothesis “well
mixed” already with one of the batches not contributing to a
cell’s neighborhood. The NEST-Score is more robust to such
outlier data as shown for the application of protocol-driven cells
(Figure 2): This comparison included a large amount of different
cell lines (=batches), with one cell line Uofv_1 producing limited
protocol-driven cells. In this case, the NEST-Score, which builds
on the Kullback-Leibler divergence, enables a more stable and
balanced measure to access the mixedness of cell lines. With
our scaling scheme of local and global frequencies, the NEST-
Score is bounded on both sides and hence provides increased
interpretability in contrast to one-side unbounded p values.
Other measures, as used in Kanton et al.?° (reference similarity
spectrum [RSS]), Amin et al.'® (cluster overlap), and He et al.?”
(Max-presence score), are especially developed to compare
two datasets, e.g., a query in vitro and a reference in vivo sample,
and therefore do not provide a straight-forward analysis of mul-
tiple conditions at once.

Our data show that organoid variability is not just a product of
protocol stringency and cell line bias. Instead, individual cell lines
display distinct biases in a protocol, and a protocol’s outcomes
should ideally be evaluated from data encompassing a collection
of different cell lines, thereby rendering a comprehensive, cell-
line-independent protocol characterization.

This work is a step toward the goal of recapitulating all brain
cells in vitro, with a focus on dorsal and ventral forebrain,
midbrain, and striatum. Given that other brain areas, particularly
cerebellum, are not included in our current protocol set, we
anticipate that brain cell coverage can be further increased in
the future by adding protocols addressing, e.g., cerebellum
but also non-brain-derived cells including blood vessels and im-
mune cells.*>>" Our data complement recent contributions to
quantify the transcriptomic diversity of published brain organoid
data,? since it allows a harmonized comparison across different
protocols and cell lines without integration/batch-correction
simplifying interpretation and quantification of main sources of
organoid variability.

Our time course RNA-seq data facilitate the identification of
protocol-specific markers that can be tested at early time points
in order to predict successful organoid formation, saving time
and costs. Our datasets and putative marker lists can also serve
as a resource for further optimization of experimental protocols


https://vienna-brain-organoid-explorer.vbc.ac.at
https://vienna-brain-organoid-explorer.vbc.ac.at/
https://vienna-brain-organoid-explorer.vbc.ac.at/

Cell Reports

and evaluation of pluripotent cell lines for future research. This
may be of particular importance for patient-derived cell lines,
which require a solid definition of protocol-driven cells as con-
trols. It also allows us to predict the potential of new cell lines
to cover the full spectrum of cell types found in vivo.

To facilitate easy access to our data, we implemented a data
explorer that visualizes the expression of protocol markers or
GO-term-specific gene sets over time, protocol, and cell lines
and also in the day 120 scRNA-seq data. The explorer is avail-
able at https://vienna-brain-organoid-explorer.vbc.ac.at and al-
lows users to identify marker genes for the formation of specific
cell types as well as to choose the right protocol for a specific
scientific question.

Limitations of the study

There are several limitations of our study. For example, our cur-
rent data covers only eight cell lines per protocol. Therefore,
future efforts should be geared toward extending the number
of cell lines across multiple protocols further. Another limitation
is that only four protocols are characterized in-depth. Other
studies'®?" consider larger number of growth conditions but
use fewer cell lines and earlier analysis time points, and it will
be interesting to cross-compare cell generation across these
studies.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will
be fulfilled by the lead contact, Jirgen Knoblich (juergen.knoblich@imba.
oeaw.ac.at).

Materials availability

This study did not generate unique reagents. WA01 (H1) and WA09 (H9) cell lines
may be obtained from WiCell (https://www.wicell.org). SCCF-176J clone#1
(abbreviated 176), SCCF-177J clone#8 (abbreviated 177), and SCCF-178J
clone#5 (abbreviated 178) iPSC lines are available via the IMBA iPSC Biobank
Webshop (https://shop.vbc.ac.at/ipsc_biobank). Human-induced pluripotent
stem cell lines Rozh_5, Uofv_1, and Xuja_2 are available from the HipSci con-
sortium (https://www.hipsci.org).

Data and code availability

® Raw single-cell and time course bulk RNA-seq data generated in this
work have been deposited at the European Genome-phenome Archive
(EGA), which is hosted by the EBI and the CRG, under series numbers
EGA: EGAS50000000662 and EGA: EGAS50000000663, respectively.
They are available under controlled access, provided by the Data Ac-
cess Committee for IMBA (ethics@imba.oeaw.ac.at); see the Data Ac-
cess Policy at the respective EGA entries.

® Processed single-cell and time course bulk RNA-seq data have been
deposited and are publicly available on NCBI Gene Expression
Omnibus (GEO) via series numbers GEO: GSE277968 and GEO:
GSE277967.

® This paper analyzes existing, publicly available gene expression count
matrices from Braun et al.,’* accessible at https:/github.com/
linnarsson-lab/developing-human-brain/; from Bhaduri et al.,?® acces-
sible at The Neuroscience Multi-omic Data Archive (NeMO) (RRID:
SCR_002001) via https://data.nemoarchive.org/biccn/grant/u01_devhu/
kriegstein/transcriptome/scell/10x_v2/human/processed/counts/;
from Amin et al.,'® accessible at GEO via series number GEO:
GSE233574; and 3D expression maps from Fleck et al.,>' accessible
on Mendeley: https://doi.org/10.17632/g4xg38mwcn.2.
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® R scripts and corresponding source data to reproduce all figures
and tables presented in the manuscript are deposited and are publicly
available on GitHub (https://github.com/jn-goe/brain_organoids_four
protocols) and Zenodo: https://doi.org/10.5281/zenodo.13742634.

® Functionalities of the NEST-Score are publicly available as R package on
GitHub (https://github.com/jn-goe/NESTScore) and Zenodo: https://
doi.org/10.5281/zenodo.13974434.

® The Shiny App*’ for data exploration is publicly available on https://
vienna-brain-organoid-explorer.vbc.ac.at/.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Chemicals, peptides, and recombinant proteins

Essential 8 Medium
Vitronectin

DPBS —/—
Accutase
RevitaCell

96-well ultra-low-attachment U-bottom plate
Matrigel

CHIR

BDNF

GDNF

db-cAMP

SAG

IWP-2

Noggin

SB431542

FGF-8

DMEM/F12

N2 Supplement
GlutaMAX-|
MEM-NEAA
Heparin

PenStrep
Neurobasal

B27—-A

insulin
Antibiotic-Antimycotic

Thermo Fisher Scientific
Stem Cell Technologies
Gibco

Sigma-Aldich

Thermo Fisher Scientific
Sigma-Aldich

Corning

Merck

Stemcell Technologies
Stemcell Technologies
Santa Cruz Biotechnology
Merck

Sigma-Aldich

R&D Systems
Stemgent

R&D Systems
Invitrogen

Thermo Fisher Scientific
Thermo Fisher Scientific
Sigma-Aldrich
Sigma-Aldrich
Sigma-Aldrich

Gibco

Thermo Fisher Scientific
Sigma-Aldrich

Thermo Fisher Scientific

cat. no. A1517001
cat. no. 100-0763
cat. no. 14190-250
cat. no. A6964

cat. no. A2644501
cat. no. CLS7007
cat. no. 356235
cat. no. 361571

cat. no. 78005.3
cat. no. 78057.3
cat. no. sc-201567C
cat. no. US1566660
cat. no. 10536

cat. no. 6057

cat. no. 04-0010-10
cat. no. 5057-FF
cat. no. 11330-057
cat. no. 17502001
cat. no. 35050-038
cat. no. M7145

cat. no. H3149

cat. no. P4333

cat. no. 21103049
cat. no. 12587010
cat. no. 19278

cat. no. 156240062

B27 + A Thermo Fisher Scientific cat. no. 17504044
Vitamin C Sigma-Aldrich cat. no. A4544

sodium bicarbonate Sigma-Aldrich cat. no. S5761

BrainPhys Stemcell Technologies cat. no. 05790

CD Lipid Concentrate Thermo Fisher Scientific cat. no. 11905031

10x Trypsin Gibco cat. no. 15400
TurboDNase Thermo Fisher Scientific cat. no. AM2238

BSA Biostatus cat. no. DR70250
TotalSeq™-A antibodies Biolegend cat. no. 399907

Buffer RLT Qiagen cat. no. 79216

Critical commercial assays

Quantseq sequencing kit Lexogen cat. no. 015.384
Quantseq UMI kit Lexogen cat. no. 081.96
Deposited data

raw organoid in vitro single-cell RNA-seq data This paper EGA: EGAS50000000662
raw organoid in vitro time-course bulk RNA-seq data This paper EGA: EGAS50000000663
processed organoid in vitro single-cell RNA-seq data This paper GEO: GSE277968

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

processed organoid in vitro time-course This paper GEO: GSE277967

bulk RNA-seq data

processed human in vivo single-cell RNA-seq data Braun et al.** https://github.com/linnarsson-lab/

processed human in vivo single-cell RNA-seq data

Bhaduri et al.”®

developing-human-brain/

NeMO (RRID: SCR_002001),
https://data.nemoarchive.org/biccn/grant/
u01_devhu/kriegstein/transcriptome/
scell/10x_v2/human/processed/counts/

processed organoid in vitro single-cell RNA-seq data Amin et al."® GEO: GSE233574
processed mouse in vivo 3D expression maps Fleck et al.*" Mendeley: https://doi.org/
(Allen Developing Mouse Brain Atlas) 10.17632/g4xg38mwcn.2
Experimental models: Cell lines

Human: H1: embryonic stem cell (hESCs) line WAO1 WiCell hESCs line WAO1

Human: H9: embryonic stem cell (hESCs) line WA09 WiCell hESCs line WAQ9

Human: Rozh_5: induced pluripotent

stem cell (HipSci) line HPSI0114i-rozh_5 (ECACC 77650043)

Human: Xuja_2: induced pluripotent

stem cell (HipSci) line HPSI1213i-xuja_2 (ECACC 77650087)

Human: Uofv_1: induced pluripotent

stem cell (HipSci) line HPSI1113i-uofv_1 (ECACC 77650078)

Human: 176: induced pluripotent stem cell
(HipSci) line SCCF-176J clone#1
(Ethics Approval Number EK 1596/2017)

Human: 177: induced pluripotent stem cell
(HipSci) line SCCF-177J clone#8

(Ethics Approval Number EK 1596/2017)
Human: 178: induced pluripotent stem cell
(HipSci) line SCCF-178J clone#5

(Ethics Approval Number EK 1596/2017)

HipSci consortium

HipSci consortium

HipSci consortium

IMBA iPSC Biobank
Webshop

IMBA iPSC Biobank
Webshop

IMBA iPSC Biobank
Webshop

cat. no. 77650043

cat. no. 77650087

cat. no. 77650078

HipSci line SCCF-176J clone#1

HipSci line SCCF-177J clone#8

HipSci line SCCF-178J clone#5

Software and algorithms

Cell Ranger (v3.0.2)

Bowtie (v2.3.4.1)
Souporcell (V2.4)
R (version 4.4.0)

Seurat (v5.0.1)
scrublet (v0.2.3)
VoxHunt (v1.1.0)
NEST-Score (v.1.0.0)

limma (v3.60.0)

variancePartition (v1.34.0)

10X Genomics

Langmead et al.®®
Heaton et al.>®

The R Foundation for
Statistical Computing
Hao et al.>*

Wolock et al.>®

Fleck et al.®

This paper
Ritchie et al.*®

Hoffman et al.®®

https://www.10xgenomics.com/
support/software/cell-ranger

https://github.com/BenLangmead/bowtie2
https://github.com/wheaton5/souporcell
https://cran.r-project.org

https://cran.r-project.org/package=Seurat
https://github.com/swolock/scrublet
https://github.com/quadbio/VoxHunt
https://github.com/jn-goe/NESTScore; Zenodo:
https://doi.org/10.5281/zenodo.13974434
https://bioconductor.org/packages/
release/bioc/html/limma.html

https://bioconductor.org/packages/
release/bioc/html/variancePartition.html

DESeq?2 (v1.44.0) Love et al.*® https://www.bioconductor.org/packages/
release/bioc/html/DESeqg2.html

shiny (v1.9.1) Chang et al.*’ https://cran.r-project.org/package=shiny

Brain Organoid Explorer This paper https://vienna-brain-organoid-explorer.vbc.ac.at/

Other

Source data and scripts related to the This paper https://github.com/jn-goe/

analysis of brain organoid transcriptomic data (v2)

brain_organoids_four_protocols; Zenodo:
https://doi.org/10.5281/zenodo.13742634
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics approval and consent to participate

The study was approved by the local institutional review board (IRB) of the Medical University of Vienna EK 1596/2017. Informed con-
sent from donors providing material for iPSC generation (IMBA iPSC biobank, see below) was obtained from patients and/or their
legal representatives.

METHOD DETAILS

Cell culture

Human embryonic stem cell (hESCs) lines WAO1 (H1, male) and WAQ09 (H9, female) were obtained from WiCell (https://www.wicell.
org). Human induced pluripotent stem cell lines SCCF-176J clone#1 (abbreviated 176, female), SCCF-177J clone#8 (abbreviated
177, female) and SCCF-178J clone#5 (abbreviated 178, male) were obtained from IMBA iPSC biobank (https://shop.vbc.ac.at/
ipsc_biobank/). Human induced pluripotent stem cell lines HPSIO114i-rozh_5 (abbreviated Rozh_5, female, cat. no. 77650043),
HPSI1113i-uofv_1 (abbreviated Uofv_1, male, cat. no. 77650078) and HPSI1213i-xuja_2 (abbreviated Xuja_2, female, cat. no.
77650087) were obtained from the HipSci consortium (https://www.hipsci.org). All lines were contamination free, STR verified and
regularly tested for mycoplasma. Cell lines were maintained according to HipSci recommendations on Vitronectin (Stem Cell Tech-
nologies, cat. no. 100-0763) coated plates with Essential 8 Medium (Thermo Fisher Scientific, cat. no. A1517001 or produced in-
house). All cells were maintained in a 5% CO, incubator at 37°C. Cells were either split using DPBS —/— (Gibco, cat. no. 14190-
250) or Accutase (Sigma, cat. no. A6964) and plated in Essential 8 Medium supplemented with RevitaCell Supplement (Thermo Fisher
Scientific, cat. no. A2644501).

Brain organoid generation

Brain organoids were generated as previously described.'®*® Media compositions are given below. Pluripotent cells were grown to
60-80% confluency and single cell suspensions were obtained using Accutase. Pelleted cells were resuspended in E8 media sup-
plemented with RevitaCell and counted. 8 000-10 000 cells were seeded to form embryoid bodies in a 96-well ultra-low-attachment
U-bottom plate (Sigma, cat. no. CLS7007).

Dorsal protocol

Day 0: Seeding in 150 pL E8 supplemented with RevitaCell. Day 3: E8 media. Days 6, 7, 8, 9: Neural induction media (NI), Day 10: 1%
Matrigel in NI media (Corning, cat. no. 356235) and transfer to 10 cm plates coated with anti-adherence rinsing solution (Stemcell
Technologies, cat. no. 07010). Day 13, 14: NI media supplemented with 3 mM CHIR (Merck, cat. no. 361571), Days 16, 19, 22:
Improved-A media with transfer to shaker on day 19. Days 25-40 every 3-4 days: Improved+A media. Days 40-60 every 3—
4 days: Improved+A media supplemented with 1% Matrigel, Day 62: 75% Improved+A media mixed with 25% Brainphys media
supplemented with 1% Matrigel. Day 65: 50% Improved+A media mixed with 50% Brainphys media supplemented with 1%
Matrigel. Day 69: 25% Improved+A media mixed with 75% Brainphys media supplemented with 1% Matrigel. Days 72-120 every
3-4 days: Brainphys media supplemented with 1% Matrigel, 20 ng mL~" BDNF (Stemcell Technologies, cat. no. 78005.3),
20 ng mL~! GDNF (Stemcell Technologies, cat. no. 78057.3), 1 mM db-cAMP (Santa Cruz Biotechnology, cat. no. sc-201567C).

Ventral protocol

Day 0: Seeding in 150 pL E8 supplemented with RevitaCell. Day 3: E8 media. Days 5, 7, 9, 10: Neural induction media (NI) supple-
mented with 100 nM SAG (Merck, cat. no. US1566660) and 2.5 pM IWP-2 (Sigma-Aldrich, cat. no. 10536) with 1% Matrigel added at
day 10. Days 13, 15, 17: Improved-A supplemented with 100 nM SAG and 2.5 pM IWP-2. Organoid maturation from day 19 on as in
dorsal protocol.

Midbrain protocol

Days 0, 2:150 pL NI supplemented with RevitaCell, 200 ng mL~" Noggin (R&D Systems, cat. no. 6057), 10 uM SB431542 (Stemgent,
cat. no. 04-0010-10) and 0.8 pM CHIR. Day 4: NI supplemented with 200 ng mL~" Noggin, 10 uM SB431542, 0.8 uM CHIR, 300 nM
SAG and 100 ng mL~" FGF-8 (fibroblast growth factor 8; R&D Systems, cat. no. 5057-FF). Day 6: NI supplemented with 300 nM SAG
and 100 ng mL~" FGF-8. Day 8: Improved-A supplemented with 300 nM SAG, 100 ng mL~" FGF-8, 2% Matrigel. Transfer to a 10cm
dish. Day 10: Improved-A supplemented with 2% Matrigel. Day 13: Improved-A. Days 16-25 every 3-4 days: Improved+A media.
Organoid maturation from day 25 on as in dorsal protocol.

Striatum protocol

Days 0, 2:150 pL NI supplemented with RevitaCell, 10 nM SAG, 2.5 uM IWP-2. Day 4: NI supplemented with 10 nM SAG, 2.5 yM
IWP-2. Day 6: NI, Day 8: Day 8: Improved-A supplemented with 2% Matrigel. Transfer to a 10cm dish. Day 10: Improved-A supple-
mented with 2% Matrigel. Day 13: Improved-A. Days 16-25 every 3—4 days: Improved+A media. Organoid maturation from day 25 on
as in dorsal protocol.
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Organoid media

Neural induction medium (NI)

DMEM/F12 (Invitrogen, cat. no. 11330-057), 1% N2 Supplement (Thermo Fisher, cat. no. 17502001), 1% GlutaMAX-I (Thermo Fisher,
cat. no. 35050-038), 1% MEM-NEAA (Sigma-Aldrich, M7145), 1:1000 heparin solution (Sigma-Aldrich, cat. no. H3149-100KU), 1%
PenStrep (Sigma-Aldrich, cat. no. P4333).

Improved—A medium

50:50 DMEM/F12: Neurobasal (Gibco, cat. no. 21103049), 0.5% N2 supplement, 2% B27—A (Thermo Fisher, cat. no. 12587010),
1:4000 insulin (Sigma-Aldrich, cat. no. 19278), 1% GlutaMAX, 0.5% MEM-NEAA, 1% Antibiotic-Antimycotic (Thermo Fisher, cat.
no. 15240062).

Improved+A medium

50:50 DMEM/F12: Neurobasal. 0.5% N2 Supplement, 2% B27 + A (Thermo Fisher, cat. no. 17504044), 1:4000 insulin, 1% GlutaMAX,
0.5% MEM-NEAA, 1% Antibiotic-Antimycotic, 1% vitamin C solution (40 mM stock in DMEM/F12) (Vitamin C: Sigma-Aldrich, cat. no.
A4544), 1 g L™ sodium bicarbonate (Sigma-Aldrich, cat. no. S5761).

Brainphys
BrainPhys Neuronal Medium (Stemcell Technologies, cat. no. 05790), 2% B27 + A, 1% N2 Supplement, 1% CD Lipid Concentrate
(Thermo Fisher Scientific, cat. no.11905031), 1% Antibiotic-Antimycotic, 1:147 20% glucose solution.

scRNA-sequencing

Organoids were dissociated at day 120 by incubation in a 9:1 mixture of Accutase (Sigma Aldrich, cat. no. A6954) and 10x Trypsin
(Gibco, cat. no. 15400) at 37°C on a Thermo-shaker (800 rpm) for approximately two hours and four units of TurboDNase (Thermo cat.
no. AM2238) were added after 30 min. After enzymatic dissociation, cells were filtered through a 35 pm strainer followed by dilution
with 1% BSA in DPBS—/— (Biostatus; cat. no. DR70250, 0.3 mM), counted and labeled (hashed) with TotalSeg-A antibodies
(Biolegend) as required to allow demultiplexing of 4 samples either by genetic background or hash information per single cell tran-
scriptomic reaction. For hashing, cells were stained for 30 min on ice, washed twice with 1% BSA in DPBS—/—. After flow cytometry
sorting a pool of equal cell numbers for each of the 4 samples was used as input for the Chromium Next GEM Single Cell 3' Gene
Expression (v3.1) following the 10x Genomics user guide (one experiment of H9 cells in the ventral condition and one sample in
177, dorsal condition failed leading to only three cell lines being loaded in these instances). Sequencing of gene expression and
hash libraries was performed on an lllumina NovaSeq S4 lane.

Bulk RNA-sequencing

RNA samples were extracted from organoids collected in Buffer RLT (Qiagen, cat. no. 79216) using the RNA isolation kit provided by
VBC core facilities. The kit uses carboxylate-modified Sear-Mag Speed beads and was applied using the Kingfisher instrument
(Thermo). For RNA sequencing Lexogen’s Quantseq kit was used, including the UMI extension (Lexogen, cat. no. 015.384,
081.96). Sequencing was performed on lllumina NextSeq High Output 75 cycle lanes and lllumina Novaseqg S1 100 cycle lanes
and reads combined. All kits were used according to manufacturers’ instructions. Samples were collected at crucial times during
protocols (days 13, 25, 40, 80, 120 for dorsal and ventral, and days 16, 40, 80, 120 for midbrain and striatum).

QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq sample pooling and demultiplexing

Sequencing data of 10X libraries was processed using Cell Ranger software (v3.0.2, 10X Genomics) using reference genome
GRCh38. Cells were demultiplexed by cell line genotype using Souporcell (v2.4)>® and two replicate organoids per cell line and pro-
tocol pooled for analysis. In experiments containing hash information, hash information was used for demultiplexing.

Pre-processing and downstream analysis

Per sample resulting cell-by-gene, unique molecular identifier (UMI) count matrices were analyzed in R (v4.4.0) using Seurat®
(v5.0.1). We observed high cell-wise expression levels of MALAT1 which is known to be a non-informative sequencing artifact in
scRNA-seq data, dominating total number of UMIs in some cells and influencing gene expression normalization and subsequent
downstream analysis. Hence, we discarded cells, in which more than 10% of all UMIs were assigned to only one gene and subse-
quently deleted MALAT1 from the count matrices of all in vitro datasets. Then, we filtered for high-quality cells based on doublet
detection performed with Python Package scrublet®® (v0.2.3, loaded via R Package reticulate (v1.38.0)), number of uniquely detected
genes (‘nFeature’) between 500 and 5,000, number of UMIs (‘nCount’) between 500 and 10,000, percentage of mitochondrial reads
between 0.1% and 15% and percentage of ribosomal reads between 0.1% and 50%.

Counts across all replicates, cell lines and protocols were merged, and genes expressed in less than 10 cells were discarded. After
cell-wise count log-normalization (‘LogNormalize’), 3,000 highly variable genes were identified (‘FindVariableFeatures’) and ribo-
somal and mitochondrial genes were removed from the list of highly variable genes. Next, we performed cell-wise cell cycle anno-
tation by Seurat’s function ‘CellCycleScoring’ and gene list ‘cc.gene’. Data was scaled (‘ScaleData’) whilst regressing out cell cycle
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biases (vars.to.regress = ¢(‘S.Score’, ‘G2M.Score’) and Principal Component Analysis was performed (‘RunPCA’). The shared near-
est neighbor graph (‘FindNeighbors’) and the Louvain clustering algorithm (‘FindClusters’, with resolution 3.5) as well as the UMAP
embedding (‘RunUMAP’) were computed on the first 40 Principal Components. 40 Principal Components were chosen due to flat-
tening of an Elbow Plot showing explained variance against number of Principal Components and because well-known clusters and
differentiation trajectories became apparent in the subsequent UMAP visualization. Positively differentially expressed genes per clus-
ter were identified using Seurat’s function ‘FindAllMarkers’ (using the default Wilcoxon Rank-Sum test) and genes were retained
based on an average log fold change larger than 1 and an adjusted p-value below 0.01 (by default Bonferroni corrected;
Table S1). Clusters were annotated based on expression of marker genes and hierarchically aggregated to a coarser cell type anno-
tation (Table S2).

VoxHunt correlation analysis

For comparison of the scRNA-seq organoid data with spatial gene expression data on a mouse brain slice (Allen Developing Mouse
Brain Atlas®"), we used VoxHunt*® (v1.1.0) and the provided sample of embryonic day 13 (‘E13?).°" For the Spearman correlation anal-
ysis with subsets of the scRNA-seq organoid atlas, we pooled the top 15 (based on the provided Area under the Curve value, AUC)
genes based on the sample’s respective annotation level ‘custom_2’ using VoxHunt’s function ‘structure_markers’.

Measure cell neighborhood homogeneity: NEST-score

The NEST-Score was computed for each protocol separately, hence for one protocol, the data was subset to all cells generated in
this specific protocol. The concept of the NEST-Score will be explained with respect to the 8 different cell lines that contribute to the
dorsal, midbrain and striatum protocol. For the ventral protocol, only 7 contributing cell lines are present, and the different number of
cell lines results in a different range of NEST-Scores as can be seen in Figure 2B.

For each subset, downstream analysis was re-computed with Seurat, in more detail, the computation of the most variable 2,000
features (‘FindVariableFeatures’), data scaling (‘ScaleData’), Principal Component Analysis (‘RunPCA’) and nearest neighbor search
(‘FindNeighbors’, based on Euclidean distance in the space spanned by the first 40 Principal Components).

Subsequently, for a cell i and its k nearest neighbors N¥, we count how often each cell line x occurs. The resulting 8-dimensional
vector (since 8 cell lines are considered) is then divided by k to obtain the local cell line distribution

_INFnL ]
- k
for celli and cell line x, where L, is the set of all cells from cell line x. The local cell line distribution vector f,"’ca’ is then entry-wise divided

by the global cell line distribution vector f9°02 i e., the vector of relative frequencies of cell lines across all cells within the considered
protocol:

filocal ( X)

L]
fglobal — | X .
() = 5
where M = Y |L4| is the number of all cells in the considered protocol. This yields the scaled local cell line distribution
X
f_/ocal
fealed (x) = ¢ ). for cell and cell line X,
fglobal(X)

where c is a constant such that >~ 75°#69(x) = 1.
X€Ly

Finally, the NEST-Score N(i) for cell i is defined as negative Kullback-Leibler divergence® of fscaled and the 8-dimensional uniform

frequency vector funiform = (1 1):

i scaled || funiform scaled fl_scaled (X )
N(i) = 7DKL(f,- Hf ) = — Z f (x) log ) ’
x ecell lines f (X )

for cell i.
The minus provides a more intuitive interpretation: In case the neighborhood of a cell is perfectly resembled by all considered cell

lines, the local cell line distribution coincides with the global cell line distribution, yielding 5%;,((’% = 1 for all cell lines x. Accordingly,

scaled scaled
fecaled (x F30209 (x)

f,sca/ed becomes a uniform distribution and hence also W =1 for all cell lines x. Since log (W) =log(1) = 0, the NEST-Score

reaches its upper bound ‘0’ in this scenario. In our application we interpret this as the expression state of (and around) cell i is pro-
duced by multiple cell lines and hence consistently recovered in the considered protocol.

To binarily classify a cell as either protocol-driven (=well-mixed neighborhood with respect to cell line abundances) or cell line-
driven, we computed a NEST-Score threshold as following: As a minimum requirement to identify a cell state as protocol-driven,
we want to observe at least three different cell lines in the respective cell’s neighborhood. Hence, we compute the NEST-Score
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for an artificial scaled local cell line distribution f,“"”’e", which would appear if a cell’s neighborhood would only consist of two cell lines
with equal frequencies, i.e.,

11
scaled _ [ _
fooaled _ (2,2,0, ...,o).
For the eight cell lines (in dorsal, midbrain and striatum protocol), this results in the threshold of — Dy (f§e@€?||funformy = — 2. Since

only 7 cell lines contribute to the ventral protocol, the threshold computation results in a value of around —1.8. A cell is then classified
as protocol-driven, as soon as its NEST-Score is strictly greater than the protocol-specific threshold.

For all presented analysis, we choose k = 100 neighbors, since we observe a decreasing NEST-Score for k € {1,...,99} and a
more or less constant NEST-Score for k € {100, ...,200}. This is shown in Figure S2A for the dorsal protocol, where we compute
the NEST-Scores across multiple k € {1,...,200} for each cell, resulting in cell-wise NEST-Score lines. Those lines are colored ac-
cording to our binary assignment of cells as cell line- or protocol-driven based using k = 100 and the above introduced NEST-Score
threshold of — 2.

For the analysis of mixedness between in vivo and in vitro datasets, we consider the two sample conditions in vivo and in vitro
instead of different cell lines. Again, the computation of a cell’s 100 nearest neighbors was performed in principle Component space
after batch correction (50 Principal Components to be consistent with the downstream analysis of the integrated data). For the pro-
tocol-wise analysis, the integrated data was subset to in vivo and in vitro data of only the considered protocol. Since during Seurat
CCA integration expression matrices are already subset to highly variable features, we only re-computed the Principal Component
Analysis and subsequent nearest neighbor search (‘FindNeighbors’, based on Euclidean distance in the space spanned by the first
50 Principal Components) for the respective, batch-corrected subset. For a similar binary classification scheme as above, we
computed a NEST-Score threshold based on the scenario that a cell’s scaled neighborhood only originates from one of the two con-
ditions. In more detail we compute the NEST-Score using

fiscaled — (1 , 0) and funiform — (057 05)

resulting in value of — Dy (f§ea/ed||funiform) = — 1, which is also the minimal NEST-Score that can be attained in this setting. If a cell’s
NEST-Score was strictly larger than this threshold, i.e., if at least one cell from each condition was present in the neighborhood, the
cell was labeled as matched. Otherwise, it was labeled as in vivo/in vitro-specific, depending on whether the cell is of in vivo or in vitro
origin.

For pairwise comparisons of cell line y and cell line x, we compute the average of scaled contributions of x to a cell’s neighborhood,
i.e., the average of f5°#9(x), across all cells i originating from cell line y. This is plotted as a heatmap, where y corresponds to a heat-
map row and x to a heatmap column. Due to the normalization constant ¢, which is used for the computation of £°@9(x), the row
sums of the corresponding heatmaps are 1.

Module Score based on bulk RNA-seq differentially expressed marker genes

Per protocol, the top 50 differentially expressed genes (ranked by adjusted p-value) based on the bulk RNA-seq data across all
considered experimental time points were input into Seurat’s ‘AddModuleScore’ function®” which calculates their average expres-
sion and rescales it with respect to a random control gene set.

Gene Ontology scores for scRNA-seq
For one Gene Ontology term, genes attributed to this term were downloaded using the function ‘select’ of R package AnnotationDbi
(v1.66.0) and package GO.db (v3.19.1) and input into Seurat’s ‘AddModuleScore’ function.

Integration of in vivo and in vitro scRNA-seq data

For fetal brain data published in Braun et al.,>* we merged already quality controlled samples that were sequenced in post-concep-
tional week 14 without any batch correction procedure as provided on https://github.com/linnarsson-lab/developing-human-brain
(last access on July 16™ 2024). Then, we followed a similar downstream analysis as for the in vitro data. We identified the most
3,000 highly variable genes, removed ribosomal and mitochondrial genes and MALAT1 from this list. Next, the in vivo and in vitro
data were integrated using Seurat CCA: 1. Integration features (‘SelectintegrationFeatures’, excluding mitochondrial and ribosomal
genes and MALAT1) and subsequently integration anchors (‘FindIintegrationAnchors’, based on canonical correlation analysis ‘CCA’)
were determined. After integrating the data with ‘IntegrateData’, downstream analysis was performed as described above to obtain
the in vitro pan-protocol and pan-cell line UMAP embedding using the default of all 50 Principal Components. For visualization of
clusters, we combined information of metadata ‘Subregion’ and ‘CellClass’ (Table S2). The alluvial plot in Figure 3F was plotted
with R packages ggplot2 (v3.5.1) and ggalluvial (v0.12.5).

For fetal brain data published in Bhaduri et al.,”® we integrated high-quality cells from Gestational Weeks 14, 17 and 18 and
excluded cells not listed in or labeled as ‘Outlier’ in the provided metadata. We randomly (stratified by cell type) subsampled
46,171 cells from the around 205,000 high-quality cells in Gestational Week 18, such that all considered in vivo cells in total
add up to 70,000 cells roughly matching our in vitro dataset size. The in vivo was integrated with our in vitro data as described
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above, but due to visible batch effects between individuals, we split the considered in vivo data per individual (‘14’, ‘17’, ‘18,
‘18_2’) and treated the respective 4 datasets as separate batches. Integration anchors (‘FindIintegrationAnchors’) were then
computed by setting in vitro data as reference dataset. For visualization of clusters, we combined information of metadata ‘struc-
ture’ and ‘cell_type’ (Table S2). For a straight-forward comparison with our in vitro dataset, brain region and cell type annotations
of both in vivo datasets were aggregated hierarchically and renamed into simpler and coarser annotation names (Table S2).

Time course bulk RNA-seq analysis

Reads were preprocessed using umi2index (Lexogen) to add the UMI sequence to the read identifier, and trimmed using BBDuk
(v38.06) (ref = polyA.fa.gz,truseq.fa.gz k = 13 ktrim = r useshortkmers =t mink = 5 gtrim = r trimg = 10 minlength = 20). Reads mapping
to abundant sequences included in the iGenomes UCSC hg38 reference (human rDNA, human mitochondrial chromosome, phiX174
genome, adapter) were removed using bowtie2°? (v2.3.4.1) alignment. Remaining reads were analyzed using genome and gene
annotation for the GRCh38/hg38 assembly obtained from Homo sapiens Ensembil release 94. Reads were aligned to the genome
using star (v2.6.0c), alignments were processed using collapse_UMI_bam (Lexogen) and reads in genes were counted with featur-
eCounts (subread v1.6.2) using strand-specific read counting (-s 1).

Pre-processing and downstream analysis

For all bulk RNA-seq analysis, R (v4.4.0) was used. To address variable sequencing depths across samples we included only samples
with more than 100,000 reads as high-quality samples in the analysis of the bulk RNA-seq data. For PCA read counts were normalized
for library size to transcripts per million (TPM) and log2 transformed. Then the 2,000 most variable genes were selected and PCA was
performed using the ‘prcomp’ command from the R package ‘stats’ (v4.4.0).

Explained variance by experimental condition

To understand how much the individual factors influence gene expression, we first normalized the count data using the ‘voom’ func-
tion from limma®® (v3.60.0). To ensure reliable analysis, genes with low expression were filtered out from the count matrix: Only genes
that exhibited a counts-per-million (CPM) value of 5 or more in at least 20 samples were kept for subsequent normalization. With the R
package variancePartition®® (v1.34.0) and its function “itExtractVarPartModel’ we then obtained estimates for how much variation of
each gene was explained by the individual factors time, protocol and cell line. We multiplied the proportional explained variance of
each gene for the different factors with the variance of the respective genes across the samples resulting in the fraction of explained
variance per gene. Finally, to gauge the total impact of each factor on gene expression, we added up these individual contributions
(fractional explained variance) per factor for all genes. For computing the explained variance of the factors over time we did the same
as described above only for each time point individually.

Gene expression heatmaps and sample clustering

For creating the heatmaps of the expression data counts were variance-stabilized using the ‘vst’ function from DESeq2°° (v1.44.0),
then mitochondrial and ribosomal genes were excluded from the variance-stabilized data and the plots created using the pheatmap
package (v1.0.12) based on the 2,000 most variable genes.

Gene Ontology scores for bulk RNA-seq

Bulk samples were stored as a merged Seurat Object and genes were retained if expressed in more than 10 samples. Default down-
stream analysis was performed (treating one bulkRNA-seq sample as one ‘cell’), i.e., log-normalization, determination of 2,000 highly
variable genes and scaling. For one Gene Ontology term, genes attributed to this term were downloaded using the function ’select’ of
R package AnnotationDbi (v1.66.0) and package GO.db (v3.19.1) and input into Seurat’s ‘AddModuleScore’ function.

Protocol-specific marker genes

In order to find specific genes which are uniquely or predominantly expressed in each experimental protocol, we performed differ-
ential expression analysis on the voom normalized expression data. Using the R package limma (v3.60.0) we tested the expression of
each gene in a given protocol across all cell lines against the average expression of the gene in all other protocols. We performed
moderated t-tests, corrected the p-values via the Benjamini-Hochberg method and for each protocol considered the top 2,000 genes
with adjusted p-value smaller 0.01. Genes were retained if the average log fold change was larger than 0.2. For a refined analysis of
protocol-specific marker genes at day 40, we subset samples to day 40 and, for each protocol, tested cell lines yielding a minimum of
75% protocol-driven cells against remaining cell lines in this protocol and all cell lines in the other three protocols.
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