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In recent decades, many bioinformatics tools have been de-
veloped to reconstruct trajectories of biological processes,
e.g., cell differentiation, using single-cell RNA-sequencing
(scRNA-seq) data. Most tools tacitly assume that a cell’s an-
cestral transcriptomic profile can be approximated by means
of its neighboring cells in an embedded gene expression
space. However, many scRNA-seq datasets lack ancestral
information due to missing early or transient states at the
time of sequencing. We introduce CellREST, a bioinformat-
ics tool that reformulates trajectory reconstruction as a phy-
logenetic inference problem. It infers trees linking cells that
are assumed to share a common ancestral expression state.
Using maximum likelihood tree inference, CellREST uncov-
ers multiple different aspects of the transcriptomic land-
scape underlying a single scRNA-seq dataset, which can
be visualized and combined into a single-cell network. We
showcase CellREST’s performance on simulated and exper-
imental scRNA-seq data and recover circular processes as
well as cell type converging differentiation scenarios. By
introducing and adapting phylogenetic concepts, CellREST
provides a framework for interpreting transcriptomic rela-
tionships between cells within scRNA-seq data.
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Introduction
Single-cell RNA sequencing (scRNA-seq) provides in-
depth insights into transcriptomic profiles of individual
cells, enabling detailed analysis of heterogeneity within
and between different cell types. However, one scRNA-
seq dataset captures gene expression only as a snapshot,
limiting the direct observation of ongoing or past dynamical
processes, e.g., cell type differentiation.

To infer the transcriptomic history of a cell many bioin-
formatics methods have been developed, for example
Monocle1-3 (1–3), Slingshot (4), Palantir (5), STREAM (6),
CellRank1 and 2 (7, 8) or scFates (9). While extensive ef-
forts have been made to evaluate the performance and
applicability of such tools (10), most rely on approximat-
ing a cell’s ancestral gene expression profile using those
of its neighbors within method-specific embeddings. This
approach implicitly assumes that transcriptomically similar

cells follow the same differentiation trajectory, which is a
reasonable premise when the process is continuously and
evenly sampled. However, in practice, early or transient
states are often underrepresented due to rapid progres-
sion or limited sampling. In such cases, embedding-based
distance measures may fail to relate cells with shared tran-
scriptomic histories if they appear distant in the chosen
embedding space.

This key limitation of scRNA-seq data, namely the lack of
explicit ancestral information, has long been addressed in
phylogenomics. Phylogenomics aims to infer evolutionary
relationships between biological entities, typically species,
by analyzing observed heritable traits, such as morpho-
logical characteristics or molecular sequences. Relation-
ships are typically visualized as phylogenetic trees, group-
ing species to indicate a shared common ancestor.

There are two principal approaches to infer a phylogenetic
tree. Distance-based methods, as for example Neighbor
Joining (NJ) (11) or BIONJ (12), construct trees by group-
ing species based on their pairwise distances. In con-
trast, character-based methods, such as Maximum Like-
lihood (ML) (13), model the evolution of individual charac-
ter states, for example, nucleotide bases A, C, G, and T.
Maximum Likelihood infers the tree that best explains the
observed data, where branch lengths represent the extent
of genetic change over time.

Tree reconstruction methods based on distances of ex-
pression profiles of cells or (pseudo-)bulks have already
been used to analyze transcriptomic data (14–16). How-
ever, like the above mentioned trajectory reconstruction
methods, they share the limitation to depend on prede-
fined distance or similarity measures. More recently, also
ML-based (17) and Brownian motion–based tree recon-
struction methods (18) have been applied to scRNA-seq
data. These available methods either compare transcrip-
tomic trees to those derived from single-nucleotide poly-
morphisms (SNPs) (17), or mix information on the evolu-
tion of species with transcriptomic changes (18). While
species evolution, cell division into lineages, and transcrip-
tomic changes are undoubtedly interdependent (19, 20),
we argue that these processes cannot be fully represented
within a single tree. Furthermore, methods that rely solely
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on a single tree structure are insufficient to capture non-
tree-like features of the transcriptomic landscape, i.e., the
manifold formed by gene expression profiles of cells un-
dergoing a biological process.

To close this gap, we introduce CellREST (Cellular
Relationships in Expression-state-based Single-cell
Trees), a phylogenetic paradigm for the analysis of
single-cell transcriptomic data. CellREST uses a
character-based phylogenetic framework for inferring
gene expression state transitions between cells in scRNA-
seq data. It reconstructs a collection of single-cell-labeled
Maximum Likelihood trees that capture alternative and
potentially coexisting trajectories. Inferred trees are
combined into a single-cell network that displays complex,
non-tree-like transcriptomic landscapes in a noise-robust
manner. Implemented as an R package, CellREST
integrates with the Seurat workflow (21), allowing further
data-driven exploration.

Results
A Phylogenetic Paradigm for Exploring Transcrip-
tional Landscapes. To address the problem of analyzing
trajectories on scRNA-seq data in phylogenetic terms, the
pre-processed, log-normalized count matrix of a scRNA-
seq dataset (Methods M.1) is subset to highly variable
genes and transformed into a pseudo-alignment. For each
gene, expression levels are discretized into four categor-
ical expression states: Zero expression values are as-
signed to a ‘no expression’ state and remaining positive
expression values are uniformly divided into three bins rep-
resenting ‘low expression’, ‘medium expression’, and ‘high
expression’ states (Methods M.2.1). Fig. S1A shows that
there is no substantial difference between UMAP (22, 23)
embeddings for discretized data (in the exemplary down-
stream analysis encoded as ordered integers 0, 1, 2,
and 3) and non-discretized data. This suggests that dis-
cretization does not reduce biologically meaningful vari-
ation in the data. To enable character-based phyloge-
netic inference, the four expression states are encoded as
pseudo-nucleotides T (no expression), G (low expression),
C (medium expression), and A (high expression) (Fig. 1A
1-2). This results in a pseudo-alignment in which each col-
umn (‘pseudo-site’) corresponds to a gene and each row
represents a cell (‘pseudo-taxon’). Encoding expression
states as pseudo-nucleotides does not preserve their low
to high ordering, but enables the estimation of transition
dynamics through phylogenetic inference.

A phylogenetic tree is inferred from the pseudo-alignment
(Methods M.2.2) using the maximum likelihood approach
implemented in IQ-TREE2 (24). The resulting single-cell-
labeled Maximum Likelihood tree (scML-tree) represents
likely ancestral transcriptomic relationships among individ-
ual cells. In this scML-tree, branch lengths reflect the num-
ber of inferred expression state changes and thus serves
as a proxy for development time (Fig. 1A 3). For any pair of

cells, the sum of the branch lengths along the connecting
path defines their patristic distance.

Across all datasets analyzed in this study, we observed
that inferred average transition rates were highest be-
tween neighboring expression states, i.e., transitions from
no to low, low to medium, and medium to high expres-
sion (Fig. S1B). This pattern suggests that tree infer-
ence primarily captures gradual changes in gene expres-
sion across cells, while still allowing occasional transitions
from, e.g., no to medium expression.

Unlike typical studies of species evolution, single-cell tran-
scriptomic data can introduce additional complexities that
can make reliance on a single phylogenetic tree potentially
inadequate. These include:

1. Non-tree-like dynamics: Dynamical processes, as
e.g. the cell cycle (25) or convergent cell type
differentiation, can involve non-tree-like topologies
(Fig. 1B 1), which cannot be captured by a single
tree. As a result, any tree must introduce an artifi-
cial ‘cut’ to represent a cycle. The position of this cut
depends on both the data support and the heuristics
applied during tree reconstruction, leading different
trees to resolve the cycle at different locations. This
leads to inconsistent placement of cells – in phylo-
genetic terms known as rogue taxa – whose place-
ments vary across trees due to limited phylogenetic
support.

2. Multiple cell lineages: Multiple cell lineages may
follow the same dynamical process and are not
distinguishable based on transcriptomic information
alone (Fig. 1B 2). Ideally, such cells would be repre-
sented as polytomies – unresolved branches reflect-
ing shared, indistinct transcriptomic histories. How-
ever, since IQ-TREE returns fully bifurcating trees
by default, these relationships are resolved arbitrar-
ily, which can misrepresent the underlying transcrip-
tomic structure.

3. Unrelated processes: A scRNA-seq dataset may
contain cells originating from distinct biological pro-
cesses (Fig. 1B 3). Incorporating these unrelated
cells into a single phylogenetic tree can result in
rogue taxa or subtrees, often connected by dispro-
portionately long branches.

4. Data sparsity and technical noise: The inher-
ent sparsity of scRNA-seq data that is caused by
dropouts and low sequencing depth (26) can affect
the inferred tree. In particular, technical zeros are
misinterpreted as true biological zeros, introducing
artificial expression state transitions. This results in
longer branch lengths, especially for branches that
are connected to the tips of a tree (Fig. S1C). To
account for this effect, we apply Adaptively Thresh-
olded Low-Rank Approximation (ALRA) imputation
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Fig. 1. A Phylogenetic view on scRNA-seq data. A CellREST 1. subsets the scRNA-seq log-normalized cell-times-gene matrix to highly variable genes, 2. transforms the
resulting data into a pseudo-alignment and 3. infers single-cell-labeled Maximum Likelihood trees (scML-trees). B A single tree topology is insufficient to display 1. non-tree-
like dynamics, 2. multiple cell lineages, or 3. unrelated processes, leading to phylogenetic challenges such as polytomies and rogue taxa / subtrees. C CellREST reconstructs
multiple scML-trees and 1. evaluates their variability via pairwise tree-distances and corresponding tree-embeddings, and 2. transforms all or a subset of scML-trees into
nn-tree-graphs and combines them into a unified single-cell network (sc-network). The sc-network defines the CellREST distance as the shortest path-distance between cells
given the edge lengths of the network. D Visualization of different B thresholds used in constructing nn-tree-graphs.
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(27) to log-normalized count matrices prior to bin-
ning (Fig. S1D, Methods M.1), which aims to as-
sign positive expression values to technical zeros.
This leads to a reduction in branch lengths overall
(Fig. S1E).

To overcome the limitations caused by relying on a single
phylogenetic tree, we infer multiple scML-trees per dataset
(ntrees = 100 for all analyses). In contrast to deterministic
methods such as NJ, repeated ML tree inference can re-
cover alternative topologies: This diversity arises from the
stochasticity of the tree search, which may converge on
different, equally plausible trees depending on initial con-
ditions and local optima in the likelihood space. This is
particularly relevant when the data reflect non-tree-like tra-
jectories, where no single optimal topology can fully cap-
ture the biological complexity. Each tree thus captures dif-
ferent aspects of the underlying transcriptomic landscape,
offering a more nuanced representation of uncertainty in
single-cell transcriptomic data.

To explore both the variability across different scML-trees
and the complementary information they provide, we con-
sider two approaches:

In the first approach (Fig. 1C 2), we quantify similarities
and differences between pairs of scML-trees using a path-
based correlation measure (28), which we will refer to as
patristic-correlation (Methods M.2.3). This measure cap-
tures how similarly two trees encode distances between
cells. The resulting tree-distance-matrix is visualized us-
ing dimensionality reduction techniques such as Princi-
pal Coordinates Analysis (PCoA) and UMAP (29–32). In
these tree-embeddings, scML-trees with similar topologies
and branch lengths cluster together, revealing how many
scML-trees support similar parts of the underlying tran-
scriptomic landscape (Fig. 1C 2).

In the second approach (Fig. 1C 3), we use a nearest
neighbor (nn) strategy to construct a noise-robust repre-
sentation of a collection of scML-trees. To do so, each
scML-tree is transformed into an nn-tree-graph by con-
necting cells separated by at most B branches (Methods
M.2.4). For example, if B = 2, only tips that share a di-
rect ancestor are connected (cherries). To capture slightly
broader local structures as links between adjacent cher-
ries we use B = 4 in all analyses presented here (Fig. 1D).
For a collection of scML-trees respective nn-tree-graphs
are combined into a single-cell network (sc-network) by
including any edge that appears in at least one of the nn-
tree-graphs (Methods M.2.4). Each edge in the sc-network
is assigned the following attributes: The edge weight re-
flects how often the edge occurred across the nn-tree-
graphs and can be interpreted as a stability score. The
edge length is defined as the minimum patristic distance
between cells that are connected via an edge across all
nn-tree-graphs. The edge length hence represents the ex-
tent of tree-informed changes in expression profiles. Alter-
natively, users may choose other distances, e.g., the count

of branches between cells, or different summary statistics
than the minimum for the attribution of edge lengths.

We define CellREST distance as the shortest path dis-
tance between cells in the sc-network, measured using
edge lengths. This distance metric offers two key advan-
tages over a conventional Euclidean distance between em-
bedded expression profiles: (1) it relies on model-inferred
branch lengths rather than geometric proximity, and (2) as
shortest path distance, it more accurately approximates
curved trajectories. Both CellREST distances and alterna-
tive shortest path distances can serve as inputs for down-
stream analyses including cell embeddings, clusterings,
and other exploratory tasks.

Recovering Complex Trajectories from Simulated scR-
NA-seq Data. To assess the ability of CellREST to recon-
struct non-tree-like trajectories, we simulated scRNA-seq
data following a circular topology, such as it occurs, e.g.,
for cells in cell cycle with respect to cycling genes (25). To
do so, we used dyngen (33), which simulates gene expres-
sion dynamics over continuous time scale using Gillespie’s
stochastic simulation algorithm (34). For a clear and inter-
pretable comparison to the ground truth, we restricted the
simulation to a single circular loop (450 cells) and rescaled
the simulation time to the interval [0,1] (Fig. 2A, Methods
M.3.1).

Following standard pre-processing and dimensionality re-
duction using Seurat (Methods M.1), the underlying circu-
lar topology was already visible in the UMAP embedding
(Fig. 2B). However, we also observed uneven data sup-
port across simulation time, with notably lower density in
certain regions.

Applying CellREST, we inferred 100 scML-trees, each
representing a plausible scenario with similar likelihoods
(Fig. S2A, Methods M.2.5). The tree embedding based on
patristic-correlation revealed three distinct tree-clusters,
each cutting the circular trajectory in a different but con-
sistent region (Fig. 2C). This grouping of scML-trees could
not be resolved using splits-based Robinson-Foulds (RF)
distances alone (Fig. S2B), highlighting the importance of
incorporating branch length information. A tip instability
analysis (35), computed within each tree-cluster, enabled
localization of the cutting locations through the identifica-
tion of rogue taxa (see also Fig. 1B 3, Methods M.2.3).
These cutting locations coincided with areas of reduced
data support (Fig. 2D). When combining all 100 scML-
trees into a single sc-network, the full circular trajectory
was successfully reconstructed, as visible in a UMAP em-
bedding based on CellREST distances (Fig. 2E). Notably,
logarithmized edge lengths in the sc-network closely fol-
lowed a normal distribution (Fig. S2C, Methods M.2.4).

To quantify how well CellREST distances reflect the sim-
ulated ground truth, we conducted a rank-based correla-
tion analysis. Since gene expression changes nonlinearly
over simulation time (Fig. S2D), we used Kendall’s tau to
compare the relative ordering of cells. For each cell, we
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Fig. 2. CellREST recovers non-tree-like dynamics in circular trajectories. Abbreviations: dist = distances. A Dyngen (33) simulation of a circular differentiation process,
restricted to a single loop with simulation time rescaled to the interval [0,1]. Variation in data support across the trajectory is visible as changes in cell density. B Standard
UMAP embedding computed on PC space distances. C UMAP tree-embedding of 100 scML-trees based on patristic-correlation, with representative tree and cutting location
visualized. D Tip instability analysis for tree-clusters from panel C. E UMAP visualizations of sc-network based on CellREST distances (top) and shortest path distances
using minimal branch counts between cells across nn-tree-graphs (bottom); edge widths reflect edge weights. F Comparison of Kendall’s tau correlations between simulation
time and distances derived from various embeddings, with circular time correction.

ranked all other cells by both simulation time and Cell-
REST distance, accounting for the circular nature of the
trajectory, i.e., treating time differences between 0 and
1 as zero (Methods M.3.2). CellREST distances consis-
tently yielded higher Kendall’s tau correlations with sim-
ulation time than corresponding analyses with Euclidean
distances computed from log-normalized expression pro-
files or cells in PC space, or UMAP embeddings. Addition-
ally, CellREST outperformed shortest path distances de-
rived from both nearest neighbor (NN) and shared nearest
neighbor (SNN) graphs (Fig. S2E, Methods M.1).

Recovering Missing Transient States from Simulated
scRNA-seq Data. Real-world datasets often lack cover-
age of the entire trajectory. Hence, we further tested Cell-
REST’s robustness by removing cells from two simulation
time intervals, I1 = (0.45,0.55) and I2 = (0.15,0.95), to
mimic missing transient states (Fig. 3A, Methods M.3.3).
The standard UMAP embedding of the remaining cells
failed to preserve the original circular topology, indicating
its susceptibility in capturing the global structure in case of
incomplete data (Fig. 3B).

Applying CellREST to the remaining cells, we again in-
ferred 100 scML-tree topologies and identified two dis-
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Fig. 3. CellREST recovers non-tree-like dynamics under incomplete sampling. A The simulated circular differentiation process is sub-sampled by removing cells from
two time intervals to mimic missing transient states. B Standard UMAP embedding of the remaining cells suggests an almost linear arrangement of cells. C UMAP tree-
embedding of 100 scML-trees based on patristic-correlation; representative tree topologies highlight coverage of different trajectory segments. D UMAP visualizations of
sc-network based on CellREST distances, with outlier edges (exceeding the quantile threshold) shown in red. E Histogram of logarithmized edge lengths in the sc-network
with fitted normal distribution (top) and 99.99% quantile marked in red; edge weight vs length plot (bottom). F UMAP visualizations of the pruned sc-network based on
CellREST distances (left) and shortest path distances using minimal branch counts between cells across nn-tree-graphs (right), with edge widths scaled by edge weight.

tinct tree-clusters. Each cluster effectively bridged one
of the artificially introduced gaps (Fig. 3C, Fig. S3A). For
the larger gap I2, trees attained noticeably longer inter-
nal branches to connect distant cell groups. As a result,
the gap remained visible in the UMAP embedding based
on CellREST distances. Nevertheless, the sc-network
correctly reconnected the circular structure, unlike SNN-
based graphs, which failed to capture the underlying topol-
ogy (Fig. 3D, Fig. S3B). Notably, four logarithmized edge
lengths in the sc-network exceeded the 99.99% quantile
of the fitted normal distribution (Fig. 3E, Methods M.2.4).
Crucially, removing these outlier edges preserved the gap-
spanning connections and left CellREST distances un-
changed, thereby leading to the same UMAP embed-
ding (Fig. 3F). CellREST distances again achieved high
Kendall’s tau correlations in comparison with simulation
time (Fig. S3C).

The analyses of the simulated circular process and its sub-
set demonstrate that scML-trees successfully approximate
different parts of the underlying transcriptomic landscape
(Fig. S3D). Together, these trees enable the reconstruction
of trajectories that are non-tree-like or incompletely sam-
pled.

In datasets containing unrelated cell populations (Fig. S4,

Methods M.3.4), CellREST may generate connecting
edges, as it does not enforce separation by design. How-
ever, such edges are typically among the longest in the
sc-network, and hence can be identified as their lengths
exceed the 99.99% quantile of the fitted normal distribu-
tion, as we show in a corresponding simulation scenario
(Fig. S4D). These edges also tend to have low weights, in-
dicating limited support across the nn-tree-graphs. This
characteristic provides a practical strategy for filtering
or down-weighting unreliable connections in downstream
analyses.

Experimental scRNA-seq Data. Simulated scRNA-seq
data cannot fully capture the complexity of technical noise
and biological variability present in experimental datasets
(36). To complement our simulation-based evaluation, we
applied CellREST to two benchmark datasets – mouse
pancreatic endocrinogenesis (37) and peripheral blood
mononuclear cells (PBMCs) (38) – as well as a renal cell
carcinoma scRNA-seq data (39). To ensure comparability,
each dataset was processed using the ‘standard’ Seurat
and our CellREST workflow (Methods M.1).

Developing Mouse Pancreas. The mouse endocrinogenesis
dataset (37) has become a benchmark for trajectory infer-
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Fig. 4. CellREST analysis of mouse endocrinogenesis scRNA-seq data. Abbreviations: EP = endocrine progenitor. A Standard UMAP embedding (top) and correspond-
ing SNN graph edges (bottom), computed on PC space distances. Cells are colored by cell type annotation, edge widths reflect the Jaccard index between k neighborhood
sets of connected cells. (37). B Principal Coordinates (PCo) tree-embedding of 100 scML-trees based on patristic-correlation, with representative tree visualized. C His-
togram of logarithmized edge lengths in the sc-network (top), with a fitted normal distribution and the 99.99% quantile marked; edge weight vs length plot (bottom). D UMAP
visualization of the full sc-network based on CellREST distances, with outlier edges (exceeding the quantile threshold) shown in red. E UMAP visualizations of the pruned
sc-network based on CellREST distances (left) and shortest path distances using minimal branch counts between cells across nn-tree-graphs (right), with edge widths scaled
by edge weight.

ence methods, as it is continuously sampled along the dif-
ferentiation process from endocrine progenitors (EPs) to
mature endocrine cell types Alpha, Beta, Delta, and Ep-
silon.

For the 3,696-cell dataset, we performed standard prepro-
cessing and the resulting UMAP reflected the expected
structure of the differentiation process (Fig. 4A, Methods
M.4.1). Applying CellREST using 3,000 highly variable
genes, we inferred 100 scML-trees, which revealed con-
tinuous but structured variation in a PCo tree-embedding
(Fig. 4B). One group of trees displayed caterpillar-like
topologies, reflecting a linear transition from early pro-
genitors to terminal states (tree-cluster 3). Other trees
captured alternative branching patterns, linking distinct
EP subgroups to mature cell types via longer internal
branches (tree-clusters 1,2 and 4). Tip instability analyses
per cluster indicate that these groups represent different
cutting locations in a potentially network-like transcriptomic

landscape (Fig. S5A).

When combining all 100 scML-trees into a single sc-
network, we identified a subset of outlier edges (0.42%
of all edges), whose logarithmized lengths exceeded the
99.99% quantile of a fitted normal distribution (Fig. 4C).
Following the strategy established in our simulations, we
removed these edges and proceeded with a pruned ver-
sion of the sc-network (Fig. 4D,E). Notably, some highly
supported edges connecting cells outside the main dif-
ferentiation wave remained (Fig. 4E) in the pruned sc-
network and were also present in comparable SNN graphs
(Fig. 4A, Fig. S5B). This suggests that the dataset may
capture multiple, slightly variable differentiation waves con-
verging to the same mature cell types. Visualizing the
sc-network edges within the CellREST-informed UMAPs
provides additional insight into sparsely sampled differen-
tiation waves, particularly evident in the UMAP based on
shortest path distances using minimal branch counts be-
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tween cells across nn-tree-graphs (Fig. 4E).

Cell Type Clustering of Peripheral Blood Mononuclear
Cells. We applied CellREST to a second benchmarking
scRNA-seq dataset of peripheral blood mononuclear cells
(PBMCs) (38) (Methods M.4.2), comprising distantly re-
lated cell types. In this dataset, cell types were experi-
mentally identified using antibody-coated magnetic beads
(Fig. S6A).

Following the evaluation strategy of Fu et al. (38),
we assessed whether the CellREST-derived scML-trees
(Fig. S6B) and the corresponding sc-network could be
used to perform accurate cell type clustering. For this,
we computed the Adjusted Rand Index (ARI) between ex-
perimentally identified cell types and computationally ob-
tained cell clusters. Visual inspection of the sc-network
before and after pruning of outlier edges (Fig. S6C) reveals
a clear separation of experimentally defined cell types
(Fig. S6D,E). Notably, several cell types retain dense inter-
nal connectivity within the pruned network. However, ap-
plying Louvain community detection (40) (Methods M.2.5)
to the pruned sc-network with unweighted edges, pro-
duced slightly lower ARI scores compared to clustering on
SNN graphs (Fig. S6F). This outcome might reflect the lim-
itations of typically applied community detection methods
(41), that do not take advantage of the distance informa-
tion encoded by CellREST.

Putative Cells of Origin of Renal Cell Carcinoma. Finally, we
applied CellREST to a renal cell carcinoma scRNA-seq
dataset from Zhang et al. (39) (Methods M.4.3), which
includes benign renal and tumor tissue from patients with
chromophobe renal cell carcinoma (chRCC, 1 sample) and
clear cell renal cell carcinoma (ccRCC, 7 samples). In this
study, the authors aimed to identify putative cells of origin
(P-COs) for each carcinoma type. Using gene expression
profiles of epithelial cell types, they trained a random for-
est model to assign P-COs based on maximum prediction
scores, proposing Proximal Tubule B (PT-B) cells as the
P-COs for ccRCC and Intercalated (IC) cells for chRCC.

To focus the analysis, we sub-sampled the dataset to in-
clude only tumor cells (ccRCC and chRCC) and epithelial
cell types. A standard UMAP embedding showed clear
separation between epithelial cells and tumor cells, with
the latter separating by patient origin (Fig. 5A).

Applying CellREST, we reconstructed 100 scML-trees, in
which cells from the same RCC samples were often posi-
tioned within the same subtree. Additionally, chRCC cells
consistently formed a distinct subtree, clearly separated
from ccRCC cells (Fig. 5B). After pruning outlier edges
(Fig. 5C, Fig. S7A–C) the resulting sc-network primarily
connected epithelial cells among themselves and tumor
cells within their subtype. Notably, we also observed direct
connections between ccRCC cells and PT-B cells, includ-
ing two prominent edges from patient samples SI_18855
and SI_18854 with high weights (weights 45 and weights

79, respectively) and moderate edge lengths (distances
0.251 and 0.306 and distances 0.198 and 0.223, respec-
tively) (Fig. 5D) and lower weight edges from samples
SI_19703, SI_22368 and SI_23459 (Fig. S7D). Likewise,
chRCC cells showed direct but less strongly supported
links to IC-A and IC-B cells (Fig. 5D). For two ccRCC sam-
ples (SI_22604, and SI_23843), no direct edges to epithe-
lial types remained after pruning.

Using CellREST, we obtained a sc-network in which cells
are connected if transitions between their gene expression
profiles are considered likely based on phylogenetic infer-
ence. In the context of the carcinoma dataset, connec-
tions between healthy epithelial cells and tumor cells do
not merely reflect transcriptomic similarity. Rather, they
suggest that the gene expression profile of the linked ep-
ithelial cell could plausibly evolve into that of the connected
carcinoma cell, providing a framework for identifying puta-
tive cells of origin.

Discussion
With CellREST, we introduce a phylogenetic paradigm for
analyzing single-cell transcriptomic data. CellREST im-
plements a character-based phylogenetic framework that
infers and analyzes gene expression state transitions be-
tween cells, thereby addressing a central challenge in tra-
jectory inference – the lack of explicit ancestral informa-
tion of a cell’s transcriptomic profile. Going beyond pre-
vious phylogenetic approaches (17, 18), CellREST uti-
lizes and extends phylogenetic inference to address non-
tree-like transcriptomic landscapes by evaluating and inte-
grating multiple similarly plausible single-cell-labeled Max-
imum Likelihood trees (scML-trees) into a unified single-
cell network (sc-network). An implementation of CellREST
is available as an R Package and integrates with the Seu-
rat workflow.

Through simulation studies, we demonstrate that Cell-
REST effectively recovers non-linear, circular trajectories –
capabilities beyond many conventional trajectory or single-
tree-based methods. In this context, CellREST distances
between cells more accurately reflect the underlying tem-
poral information than Euclidean distances computed from
expression profiles, PC space, or UMAP embeddings.
This improved resolution arises from their basis in model-
inferred branch lengths and their definition as shortest
paths, allowing them to follow curved transcriptomic trajec-
tories. When applied to experimental data, such as mouse
pancreatic endocrinogenesis, CellREST reveals converg-
ing differentiation waves and enhances their visualization
via sc-network edges. Moreover, by identifying direct con-
nections between cell types, CellREST can help to formu-
late hypotheses about putative progenitor cells or cells of
origin, as shown in our analysis of renal cell carcinoma
data.

The sc-network constructed by CellREST does not follow
classical phylogenetic network approaches such as Neigh-
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Fig. 5. CellREST analysis of renal cell carcinoma data. Abbreviations: PT = proximal tubule, DL = descending limb, tAL = thin ascending limb, TAL = thick ascending limb,
DCT = distal convoluted tubule, CNT = connecting duct, PC = principal cells, IC = intercalated cells, Podo = podocytes, RCC = renal cell carcinoma, cRCC = chromophobe
RCC, ccRCC = clear cell RCC. A Standard UMAP embedding generated using Seurat, with cells are colored by original cell type annotations(39). ccRCC cells are further
split by patient sample. B UMAP tree-embedding of 100 scML-trees based on patristic-correlation, with representative tree visualized. C UMAP visualizations of pruned
sc-network based on CellREST distances, edge widths scaled by edge weights. D Edge length and weight of sc-network connections between epithelial cell types and
ccRCC (left) or chRCC (right) cells from patient sample SI_18855.

bor Net (42, 43). This established method relies on prede-
fined distances and often struggles to capture circular or
noisy transcriptomic structures. Consensus Networks and
other splits-based techniques (44) are especially sensitive
to rogue taxa and noise, as demonstrated by the biolog-
ically uninformative Robinson-Foulds-based embeddings
of scML-trees. Additionally, the scale of typical single-cell
datasets exceeds the computational capabilities of many
existing phylogenetic network implementations (45).

Open questions and limitations: We are convinced that
CellREST can be extended to other types of multi-model
sequencing data through the use of phylogenetic parti-
tion models. Similarly, heterotachy models (46), which
are designed to accommodate rate variation across lin-
eages, may enhance the CellREST performance. How-
ever, the high dimensionality of the pseudo-alignments al-
ready pushes the limits of existing phylogenetic models
and algorithms, and increasing model complexity risks in-
troducing instability into tree inference. Beyond relying
on stochastic variation between repeated maximum like-
lihood tree searches, future directions could include alter-

native strategies for exploring the scML-tree space, such
as identifying terraces of quasi-likely trees (47) or employ-
ing Bayesian frameworks (48–50).

Currently, CellREST constructs pseudo-alignments by bin-
ning log-normalized gene expression values across a lim-
ited number of highly variable genes, that can be smaller
than the number of considered cells. While variability is
crucial for cell type discrimination, we suspect that includ-
ing moderately or even uniformly expressed genes could
benefit phylogenetic signal and contribute to a stable tree
inference. Optimizing gene selection, binning strategies,
and alternative normalization schemes will be important
directions for improving the utility of the resulting pseudo-
alignments.

The connectivity of the resulting sc-network is determined
by the user-defined parameter B, comparable to the role of
k in the construction of k-nearest neighbor (NN) and cor-
responding shared-nearest neighbor (SNN) graphs. How-
ever, while k is often chosen without clear interpretability,
B is more directly grounded in tree topology. Additionally,
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the current strategy for pruning outlier edges – based on
the distribution of logarithmized edge lengths – would ben-
efit from further statistical validation or refinement, such as
using alternative criteria informed by phylogenetic satura-
tion.

Our initial applications, namely CellREST-based visualiza-
tions and cell type clustering, represent only a starting
point for a refined scRNA-seq analysis. While we value
the ongoing developments in the field, such as improved
normalization strategies and embedding techniques, we
deliberately chose not to benchmark CellREST across di-
verse preprocessing pipelines. Instead, we focused on
a standard workflow to emphasize that CellREST repre-
sents a conceptual shift in single-cell analysis. Moreover,
the lack of appropriate experimental validation datasets
currently limits comprehensive benchmarking. We there-
fore invite the scientific community to explore and build
upon CellREST, particularly by utilizing its multi-layered
information structure to rethink established analysis rou-
tines. At the same time, we acknowledge that the com-
putational demands of repeated large-scale tree inference
remain a limitation. However, with ongoing advances in
scalable phylogenetic methods (51), we expect that Cell-
REST will become increasingly accessible in practice. By
fostering collaboration between the single-cell and phylo-
genetics communities, we hope to inspire the development
of new tools that more accurately reflect the complexity of
cell state transitions.
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Methods

M.1. Pre-Processing and Downstream Analysis. Af-
ter dataset dependent quality control (see Section M.3
and Section M.4), the raw count matrix of a scRNA-
seq dataset of m cells is cell-wise log-normalized
(‘LogNormalize()’) and a dataset dependent number
g of highly variable genes (‘nfeatures = g’) is iden-
tified (‘FindVariableFeatures()’) using R package
‘Seurat’ (version 5.1.0) (21). Read imputation is performed
on the complete log-normalized count matrix calling ALRA
(27) via function ‘RunALRA()’ of R package ‘SeuratWrap-
per’ (version 0.3.5). ALRA applies singular vector decom-
position on the measured count matrix to approximate it
via a low-rank matrix. By assuming, that in this low-rank
matrix, biological zeros admit values symmetrically dis-
tributed around zero, negative values can be used to com-
pute a threshold to assign close-to-zero values as biologi-
cal zeros.

After these pre-processing steps, we obtain an imputed
log-normalized count matrix of m cells, that we subset to
the g highly variable genes. Rows of the resulting matrix
C ∈Rm×g

≥0 correspond to cells and columns to genes. This
matrix serves as the starting point for the subsequent Cell-
REST workflow.

For comparative reference, additional Seurat downstream
analysis is performed, including gene-wise count scal-
ing (‘ScaleData()’) and Principal Component Analysis
(‘RunPCA()’), both performed on the selected highly vari-
able genes. If not indicated otherwise, the top 50 principal
components, spanning what we refer to the PC space, are
used for dimensionality reduction via UMAP (22, 23).

Nearest Neighbor Graphs Principal components are also
used to construct k-nearest neighbor (NN) and the
corresponding shared-nearest neighbor (SNN) graphs
(‘FindNeighbors()’). While the NN graph connects
each cell to its k-nearest neighbors (by default k = 20,
where the cell itself is counted as k = 1), the SNN only
connects cells, as soon as they share a certain number of
k-nearest neighbor. By default, only edges between cells
are included in the SNN, as soon as the Jaccard index be-
tween the k-nearest neighbor sets is greater than 1/15.
The Jaccard index is stored as edge attribute ‘weight‘ in
the resulting SNN. For the computation of shortest path
distances on NN and SNN graphs, edges were addition-
ally assigned an ‘edge length‘ attribute, namely the dis-
tance between connected cells in the PC space, in which
the graph was constructed. For clustering, by default, Lou-
vain community detection is performed on SNN graph us-
ing function ‘FindClusters()’ for a specified resolution
parameter ‘res’.
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M.2 CellREST Workflow

M.2. CellREST Workflow.

M.2.1. Transformation into a Phylogenetic Problem. For a
scRNA-seq dataset with m cells, the log-normalized count
matrix C ∈ Rm×g

≥0 is subset to g highly variable genes
and reformulated in phylogenetic terms as follows: For
each gene j, expression levels across cells c·j ∈ Rm are
uniformly binned into four discrete expression states (no,
low, medium, and high expression) and subsequently
renamed into pseudo-nucleotides (T,G,C, and A) by the
following scheme:

expression levels expression state
pseudo-

nucleotide

cij = 0 no expression T

cij ∈
(

0,Q(1
3 )

]
low expression G

cij ∈
(

Q(1
3 ),Q(2

3 )
]

medium expression C

cij ∈
(

Q(2
3 ),Q(1)

]
high expression A

for a cell i, where Q(p) = p · (maxi(cij) − mini(cij)) +
mini(cij) is the theoretical p-quantile of the uniform dis-
tribution U [mini(cij),maxi(cij)]

The resulting pseudo-alignment, which comprises m
pseudo-taxa (= cells = rows) and g pseudo-sites (= genes
= columns), is stored as a FASTA file using R package ‘se-
qinr’ (version 4.2-36) (52) and can be used for subsequent
phylogenetic inference.

M.2.2. Phylogenetic Inference. Preliminary evaluations on
test datasets indicated that the Maximum Likelihood (ML)
method is best suited for the evaluation of generated
pseudo-alignments and identified the nucleotide substitu-
tion model GTR+F+G4 as the best-fit using ModelFinder
(53), as implemented in IQ-TREE2 (24) (version 2.2.2.4).
GTR (General Time Reversible) is a flexible model that al-
lows different substitution rates between all pairs of nu-
cleotides, F (empirical base frequencies) incorporates ob-
served nucleotide frequencies from the data, and G4
(Gamma distribution with four rate categories) accounts
for rate variation across sites. To maintain consistency
and enable comparability across results, this evolutionary
model class is fixed for all analyses in this manuscript.

For each pseudo-alignment, ntrees = 100 single-cell-
labeled ML-trees (scML-trees) are inferred using IQ-
TREE2 (24) (version 2.2.2.4). This can be done by calling
the IQ-TREE option ‘--runs NUM’ or using the provided
‘run_iqtree.sh’ script in the CellREST package, which par-
allelizes the ntrees tree inference procedures. To enhance
computational efficiency, we perform tree reconstruction
using IQ-TREE’s ‘-fast’ option using a fix number of
cores (‘N_CORES’) and a pre-defined seed (‘SEED’) for re-
producibility:

iqtree2 -s FASTA_FILE -m GTR+F+G4 -nt
N_CORES -seed SEED -fast

Reconstructed trees are processed and visualized using
R packages ‘ape’ (version 5.8), ‘castor’ (version 1.8.2),
‘ggtree’ (version 3.12.0)(54) and tips are colored by data-
dependent cell annotations.

M.2.3. Comparing and Integrating scML-trees. There are
several methods for comparing phylogenetic trees, de-
pending on the specific aspect of interest – such as topol-
ogy, branch lengths, or leaf labeling. For instance, the
Robinson-Foulds (RF) distance (here computed using R
package ‘treespace’, version 1.1.4.3 (30)) measures struc-
tural differences between two trees by counting the num-
ber of splits (bipartitions) that are unique to each tree.
While the RF distance quantifies purely structural dif-
ferences, the below introduced patristic-correlation is a
pseudo-distance that incorporates branch length informa-
tion.

Patristic Correlation Tree Pseudo-Distance Given one
scML-tree, the evolutionary distance – here in the form of
expression profile changes – between two different cells
can be determined by calculating the sum of the branch
lengths along the shortest path that connects them, i.e.,
the ‘patristic’ distance. By computing the patristic dis-
tances between all pairs i and j of m cells given a tree
T , one obtains a matrix of cell-to-cell patristic distances

DT := [pathdist(i, j|T )]1≤i,j≤m ∈ Rm×m, (1)

which can be vectorized into one high-dimensional patris-
tic distance vector vec(DT ) ∈ Rm2

.

Now, to compare two trees Ti and Tj , that comprise the
same set of m cells, we first calculate their corresponding
patristic cell-distance vectors, denoted by vec(DTi

) and
vec(DTj

). Following the approach of Chen et al. (28),
we define a similarity measure based on the sample Pear-
son’s correlation coefficient between the two patristic cell-
distance vectors as

treedist(Ti,Tj) :=
√

1−|corr
(

vec(DTi
) ,vec

(
DTj

))
|.
(2)

This is a pseudo-distance since there can exist two distinct
trees Ti ̸= Tj for which treedist(Ti,Tj) = 0. By computing
the patristic-correlation between all pairs of ntrees trees,
one obtains a tree-distance-matrix

[treedist(Ti,Tj)]1≤i,j≤ntrees
∈ Rntrees×ntrees . (3)

We decided to utilize a correlation measure, since it is
more robust to outliers and noise compared to, e.g., the
Euclidean distance computed between high-dimensional
distance vectors.

Embedding and Hierarchical Clustering of scML-trees A
tree-distance-matrix computed via pairwise comparison of
all scML-trees can be used to embed the trees into a lower
dimension in order to visualize and cluster them. To do
so, one can use Principal Coordinate Analysis (PCoA, also
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called Multidimensional Scaling), which is the equivalent
of Principal Component Analysis for distances instead of
coordinates, or UMAP, which can be applied on distances
as well as on coordinates.

For the UMAP computation we use function ‘umap()’ of
R package ‘uwot’ (version 0.2.3) setting parameters as
they are the default in UMAP computations with R pack-
age ‘Seurat’, i.e., ‘n_neighbors = 30’, ‘min_dist =
1’, and ‘seed = 42’ for reproducibility.

For both PCoA and UMAP we use the first two compo-
nents for visualization and hierarchical clustering of scML-
trees with function ‘hclust()’ of R package ‘stats’ (ver-
sion 4.4.0) gaining a data-specific number of clusters ‘k’
using ‘cutree()’.

Tip-instability Measure To identify rogue taxa, that lead
to very different patristic distances across a group of scML-
trees, we compute the tip instability measure using func-
tion ‘TipInstability()’ in R package ‘Rogue’ (ver-
sion 2.1.6) by Smith et al. (35).

M.2.4. Single-cell-network Construction.

Construction of nn-tree-graphs As a noise-robust repre-
sentative of a scML-tree we suggest to transform a tree
into a nn-tree-graph. To do so, for a tree T with m cells, we
initiate a graph with corresponding m vertices. For each
cell, we add an edge from the corresponding vertex to all
vertices that are at most B branches apart. For all analy-
ses of this study, we set B = 4. The resulting nn-tree-graph
G is defined by its adjacency matrix A(G) ∈ {0,1}m×m,
where an entry A(G)ij = 1 implies an edge (i, j) connect-
ing vertices i and j.

For each edge (i, j), we additionally store the patristic dis-
tance between the two connected cells i and j as length
attribute

l(i, j|G) := pathdist(i, j|T ). (4)

Union of nn-tree-graphs into a sc-network For a group
of ntrees trees {Ti}1≤i≤ntrees defined on the same set
of cells m, we can construct the union across respective
nn-tree-graphs {Gi}1≤i≤ntrees including the same set of
vertices m. In more detail, we entry-wise sum all ad-
jacency matrices of considered nn-tree-graphs yielding a
new, weighted adjacency matrix

A(N) =
∑

1≤i≤ntrees

A(Gi) ∈ N≥ 0m×m. (5)

This defines the single-cell network (sc-network) N , where
a positive value A(N)ij > 0 again corresponds to an
edges (i, j) connecting vertices i and j. The exact value
A(N)ij determines the edge weight of edge (i, j), i.e.,
the number of nn-tree-graphs, in which this edge was ob-
served.

For each edge (i, j) of the sc-network N , we additionally
compute a representative edge length as the minimum

of edge lengths across all considered nn-tree-graphs, in
which the edge (i, j) was observed,

l(i, j|N) = min
G,s.t.(i,j)∈E(N)

l(i, j|G), (6)

where E(N) denotes the set of all edges of graph N .

CellREST Distance Finally, the edge lengths of a sc-
network can be used to compute a shortest path distance
between cells i and j in the sc-network N , which we will
refer to as CellREST distance,

CellREST (i, j) := pathdist(i, j|N). (7)

Computed between all pairs of m cells, we obtain the Cell-
REST cell-distance-matrix

[pathdist(i, j|N)]1≤i,j≤m ∈ Rm×m. (8)

Fitting a Normal Distribution to Logarithmized Edge Lengths
To fit a theoretical distribution to the empirical distribution
of edge lengths lN in sc-network N , we first log-transform
all edge lengths such that a symmetric normal distribution
can be fitted. The median of the log-transformed edge
lengths is used as an estimate for the mean of the normal
distribution

µ̂ = median(i,j)∈E(N) l(i, j|N). (9)

To ensure robustness against large outliers, we make
use of the fact that, under the normal distribution, the in-
terquantile range is proportional to the standard deviation.
Therefore, we estimate the standard deviation as

σ̂ =
IQR

(
[l(i, j|N)](i,j)∈E(N)

)
1.349 , (10)

where [l(i, j|N)](i,j)∈E(N) is the vector containing all log-
arithmized edge lengths of network N , and IQR(x) :=
Qx(3/4) − Qx(1/3) the interquartile range of a vector x
with Qx(1/4) and Qx(3/4) being the empirical lower and
upper quartiles of x, respectively.

We perform pruning on edges, that have a length greater
than the theoretical 99.99% quantile of the fitted normal
distribution N (µ̂, σ̂).

M.2.5. Sc-network-based Downstream Analysis.

Distance-based Embeddings We use the CellREST
distance-matrix for visualizations of cells via dimensional-
ity reduction methods PCoA and UMAP (as described for
the tree-distance-matrix in Section M.2.3). Using the coor-
dinates of embedded cells, corresponding network edges
can be plotted using R package ‘igraph’ (version 2.0.3)
(55) to additionally visualize the connectivity of the sc-
network. As an alternative visualization, we also include
UMAP embeddings computed on shortest path distances
after replacing the minimal patristic distance by the mini-
mal branch count between cells as an edge length attribute
in the sc-network.
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M.3 Simulation with Dyngen

Cell Clustering To perform clustering on the CellREST
sc-network, we transform the network to an unweighted
adjacency matrix (entries either 0 or 1 depending on the
existence of an edge) and store it as ‘Graph’ object in
‘obj@graphs$CellREST’ of the corresponding Seurat
object ‘obj’. Subsequently, we perform Louvain clustering
by calling Seurat function ‘FindClusters()’ specifying
‘graph.name = ‘CellREST’’.

M.3. Simulation with Dyngen. For our simulation studies
we use R package ‘dyngen’ (version 1.0.5) (33) to gen-
erate scRNA-seq data following predefined trajectories.
Dyngen integrates a gene regulatory network and a mod-
ule network that defines the ‘backbone’ topology, the main
trajectory the simulated cells will follow. To generate real-
istic gene expression levels along a continuous simulation
time scale, transcription, splicing and translation is simu-
lated in a chain of reactions via Gillespie’s stochastic sim-
ulation algorithm (34). Finally, cells and mRNA molecules
are sampled to imitate the technical procedure of sequenc-
ing.

For the CellREST binning procedure 300 highly variable
genes are used for all simulated datasets.

M.3.1. Simple Circular Process. Initially, 2,000 cells
are simulated based on the ‘cycle_simple’ backbone,
the simulation model was initialized using function
‘initialise_model()’ setting ‘num_tfs = 500’
(number of transcription factors), ‘num_targets =
500’ (number of target genes) and ‘num_hks = 1000’
(number of housekeeping genes) with seed 14 and
running 1 simulation with census interval 0.1, i.e.,
‘simulation_default(experiment_params =
simulation_type_wild_type(num_simulations
= 1), census_interval = .1)’. Since one sim-
ulation approximately covers around 2.5 repetitions of
the circle backbone, cells are subset to only one cycle
loop and sub-sampled to 150 cell from each of the three
milestone states s1,s2 and s3. Finally, the simulation time
on the remaining 450 cells is scaled to [0,1] and Seurat
downstream analysis is performed as described above.

M.3.2. Correlation of Simulation Time Differences in Circu-
lar Processes. To evaluate how well CellREST distances,
Euclidean distances in embeddings and shortest path dis-
tances on NN or SNN graphs (construction see Sec-
tion M.1) encode the simulation time, we performed a cor-
relation based evaluation.

First we start by constructing a matrix of cycle-aware sim-
ulation time differences between all m cells. To do so, we
compute differences in simulation time between all pairs of
cells and store them in matrix Dforward ∈ Rm×m. To take
into account the circular shape of the topology, i.e., the fact
that simulation time 1 and 0 coincide, we also compute
the simulation time differences on the reversed simulation
time Dbackward = −Dforward%1, using modulo operator

%. The final simulation time difference matrix Dtime is
then defined as entry-wise minimum

Dtime =
(

min
(

Dforward
ij ,Dbackward

ij

))
1≤i,j≤m

∈Rm×m.

(11)

To compare Dtime with other method-specific distance-
matrices Dmethod, for each cell i we compute the Kendall’s
correlation coefficient τ between corresponding rows of
Dtime and Dmethod

τi = τ
(

Dtime
i· ,Dmethod

i·

)
. (12)

Across all m cells this yields a set of Kendall’s correlation
coefficients {τi}1≤i≤m that can be visualized via boxplots
using ‘ggplot2’ (version 3.5.1).

M.3.3. Discontinuous Circular Process. To simulated miss-
ing ancestral information, simulated cells from a circu-
lar process are subset by deleting those cells of scaled
simulation time in intervals I1 = (0.45,0.5) and I2 =
(0.15,0.95). Downstream analysis is repeated on the re-
maining 314 cells.

M.3.4. Disconnected Cell Groups. 500 cells are
simulated based on the ‘disconnected’ back-
bone, the simulation model was initialized set-
ting ‘num_tfs = 500’, num_targets = 500’
and num_hks = 1000’ with seed 14 and run-
ning 10 simulations, i.e., ‘simulation_params =
simulation_default(experiment_params =
simulation_type_wild_type(num_simulations
= 10))’. Running several simulations mimics the biolog-
ical scenarios that multiple cell lineages follow and are
sampled along the same trajectory.

M.4. Experimental Datasets. For all experimental
datasets 3,000 highly variable genes are used for Seurat
as well as CellREST analyses. For the visualization of
trees, we additionally used function ‘groupOTU()’ of
package ‘ggtree.’

M.4.1. Mouse Pancreatic Endocrinogenesis. The ‘anndata’
object including pre-processed scRNA-seq counts and
cell type annotation of the developing mouse pan-
creas sampled from embryonic day 15.5 published
by Bastidas-Ponce et al. (37) was imported using
Python package ‘scvelo’ (version 0.3.3) (56) via function
‘scvelo.datasets.pancreas()’ and loaded into R
via package ‘anndata’ (version 0.7.5.6). A Seurat object is
initialized importing raw counts and metadata, comprising
3,696 cells.

M.4.2. Benchmark PBMC cells. Clustering benchmark
PBMC data from Fu et al. (38) was downloaded from Zen-
odo (57). A Seurat object is initialized using raw counts
imported from ‘Liu_raw_data.csv’ and cell type annotation
imported from ‘Liu_purified_celltype.csv’. Only genes that
were measured in at least one cell are retained yielding
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a dataset comprising 9,266 cells. For the comparison
of cell type annotations by Louvain community detection
obtained clusterings the Adjusted Rand Index (ARI) is
computed using R package mclust (version 6.1.1).

M.4.3. Human Renal Carcinoma Cancer. Data of clear
and chromophobe renal cell carcinoma (RCC) samples
and benign tissue published by Zhang et al. (39) were
downloaded from the National Center for Biotechnology
Information Gene Expression Omnibus (GEO) under study
number GSE159115. Per sample, genes are filtered fol-
lowing the processing described in Zhang et al. (39), i.e.,
only genes detected in at least five cells are retained and
uninformative mitochondrial, ribosomal, and sex genes
are removed. Subsequently, only high-quality cells listed
in the provided metadata ‘GSE159115_ccRCC_anno.csv’,
‘GSE159115_chRCC_anno.csv’ and
‘GSE159115_normal_anno.csv’ are kept for the sub-
sequent analysis. All samples are merged (without
batch-correction) into one Seurat object comprising
29,474 cells. Prior to Seurat downstream analysis and
application of CellREST, the dataset is subset to 5,000
randomly sampled cells, which are assigned as tumor
cells, and all 3,956 cells that are assigned as Epithelial
cells across all samples.
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Supplementary Figures

Fig. S1. Details on CellREST workflow. Abbreviations: EP= endocrine progenitor. A Expression values per genes binned into four categories and mapped to numerical
values 0,1,2,3 result in comparable UMAP to those based on log-normalized expression profiles. Exemplary UMAPs with cell type annotations (middle) and hormone
processing marker gene Cpe (right) expression of endocrinogenesis scRNA-seq data from (37). B Average transition rates of inferred GTR models for an exemplary inferred
scML-trees. C The distribution of branch lengths of scML-trees computed on log-normalized counts. D Sketch of ALRA imputation (27) and its effect on branch lengths in
scML-trees. E scML-tree branch lengths decreased after ALRA imputation.
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M.4 Experimental Datasets

Fig. S2. Additional analyses on the simulated circular process. A scML-trees ranked by likelihood. B UMAP tree-embedding based on Robinson Foulds distances. C
Cell-to-cell distance heatmaps based on differences in simulation time (cycle-aware) and method-specific distances. D Histogram of logarithmized edge lengths of sc-network
with fitted normal distribution and 99.99% quantile marked in red. E SNNs constructed across a range of k embedded using PC space distances, where edge widths are
scaled by the Jaccard index between the k neighborhood sets of connected cells.
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Fig. S3. Additional analyses on simulated subset circular process. A Tip instability analysis for tree-clusters from Fig. 3C. B SNNs constructed across a range of k

embedded using PC space distances, where edge widths are scaled by the Jaccard index between the k neighborhood sets of connected cells. C Kendall’s tau correlation
between cell orderings based on differences in simulation-time (cycle-aware) and embedding-specific distances. D Exemplary tree-graphs approximate different parts of the
trajectory network combined in the CellREST sc-network.
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M.4 Experimental Datasets

Fig. S4. Additional analyses on simulated disconnected processes. A Setup for dyngen simulation of two unrelated circular processes. B UMAP computed on PC
space distances following a typical downstream analysis. C UMAP tree-embedding of 100 scML-trees using patristic-correlation with detail on exemplary scML-tree. D
Histogram of logarithmized edge lengths in the sc-network with fitted normal distribution (top) and 99.99% quantile marked in red; edge weight vs length plot (bottom). E
UMAP visualizations of sc-network based on CellREST distances, where edges are red if their length exceeds the fitted quantile threshold. F UMAP visualizations of pruned
sc-network based on CellREST distances (left) and shortest path distances using minimal branch counts between cells across nn-tree-graphs (right), where edge widths
are scaled by the edge weight attribute. G SNN constructed across a range of k embedded using PC space distances, where edge widths are scaled by the Jaccard index
between the k neighborhood sets of connected cells.
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Fig. S5. Additional analyses on mouse endocrinogenesis data. Abbreviations: EP= endocrine progenitor. A Tip instability analysis across tree-clusters as shown in
Fig. 4C. B SNNs constructed across a range of k embedded using PC space distances, where edge widths are scaled by the Jaccard index between the k neighborhood
sets of connected cells.
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M.4 Experimental Datasets

Fig. S6. Additional analyses on blood cell data. A UMAP obtained by typical downstream analysis using Seurat color-coded by cell type annotation (38). B Tree-embedding
of 100 scML-trees using patristic-correlation. C Histogram of logarithmized edge lengths in the sc-network with fitted normal distribution (top) and 99.99% quantile marked in
red; edge weight vs length plot (bottom). D UMAP visualizations of sc-network based on CellREST distances, where edges are red if their length exceeds the fitted quantile
threshold. E UMAP visualizations of pruned sc-network based on CellREST distances (left) and shortest path distances using minimal branch counts between cells across
nn-tree-graphs (right), where edge widths are scaled by the edge weight attribute. F Adjusted rand index analysis for Louvain clusterings on SNN graphs and CellREST
sc-network across a range of clustering resolutions.
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Fig. S7. Additional analyses on renal cell carcinoma. Abbreviations: PT = proximal tubule, DL = descending limb, tAL = thin ascending limb, TAL = thick ascending limb,
DCT = distal convoluted tubule, CNT = connecting duct, PC = principal cells, IC = intercalated cells, Podo = podocytes, RCC= renal cell carcinoma, cRCC = chromophobe
RCC, ccRCC = clear cell RCC. A Histogram of logarithmized edge lengths in the sc-network with fitted normal distribution (top) and 99.99% quantile marked in red; edge
weight vs length plot (bottom). B UMAP visualizations of sc-network based on CellREST distances, where edges are red if their length exceeds the fitted quantile threshold.
C UMAP visualization of pruned sc-network based on shortest path distances using minimal branch counts between cells across nn-tree-graphs, where edge widths are
scaled by the edge weight attribute. D Length and weight of sc-network edges that connect ccRCC cells to epithelial cell type clusters.
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