
 OCL-Constraints for
UMM Business Collaborations

Birgit Hofreiter, Christian Huemer, and Werner Winiwarter

Department of Computer Science and Business Informatics
University of Vienna, Liebiggasse 4, 1010 Vienna, Austria

{birgit.hofreiter, christian.huemer, werner.winiwarter}@univie.ac.at

Abstract. Recently, a trend towards business processes in Business-to-
Business e-Commerce (B2B) is apparent. One of the most promising
approaches is UN/CEFACT’s modeling methodology (UMM) based on
UML. However, developing a new UMM model for each small variation in
a business process would lead in a multitude of “similar” business processes.
Thus, a more generic UMM model together with well-defined constraints for
different business environments is a better approach to ensure unambiguity.
In this paper we develop templates for such constraints based on an extended
version of OCL.

1 Motivation

For a long time standardization in Business-to-Business e-Commerce (B2B) followed
a pure data centric approach. Recent standardization approaches take business
processes into account. The most prominent examples include: Business Process
Execution Language (BPEL) [2], Business Process Modeling Language (BPML) [1],
and ebXML Business Process Specification Schema (BPSS) [13]. Since all of them are
XML-based, software tools are able to process the choreography and execute the
busines process. In contrast, UN/CEFACT’s modeling methodology (UMM) [16] starts
from the business requirements in order to define a choreography that meets the
business needs. UMM uses the Unified Modeling Language (UML) for describing the
business aspects of the business processes and the information exchanged. The resulting
choreography provides semantics to be expressed in the XML languages mentioned
above.

Usually, a UML diagram does not provide all relevant aspects of a specification.
There exist additional constraints that cannot be expressed in the graphical syntax. The
preferred language for specifying these constraints in UML is the Object Constraint
Language (OCL) [12]. Since UMM is based on UML it seems to be straight forward to
specify constraints in OCL. The current Revision 12 of the UMM User Guide referenc-
es and even mandates the use of OCL for specifying pre- and post-conditions, rules,
guards, etc. However, it does not show in any instance how to use OCL in UMM.

The goal of this paper is to define how to use OCL in UMM. UMM does not make
use of all existing UML features. It defines a very strict UML Profile for the specific
purpose of modeling B2B business processes, so-called business collaborations.

Inasmuch UMM puts UML into a very small corset, which needs only a limited set of
constraint types. Consequently, UMM requires only a small subset of OCL. Therefore,
we develop OCL-based templates that reflect all useful constraints for UMM business
collaborations. Since OCL originally does not focus on activity graphs and does not
mention access to tagged values, we make some necessary extensions to OCL.

The remainder of this paper is structured as follows: Section 2 concentrates on
related work in the area of business processes for B2B environments. In Section 3 we
introduce the core concepts of UMM. We keep them to a minimum necessary to
understand how our OCL-based templates will fit into. Section 4 defines OCL-based
templates for the UMM artefacts business collaboration protocol and business
transaction. The notation of our templates is an extended Backus Naur. Form A short
summary in Section 5 concludes the paper.

2 Related Work

Today different approaches exist for choreographing atomic Web Services to complex
business processes. Microsoft based XLANG [11] on the pi-calculus, whereas IBM
developed the Web Services Flow Language (WSFL) [8] on the foundation of petri
nets. The first organization to combine these two approaches was BPMI with their
Business Process Modeling Language (BPML) [1]. Later on BEA, IBM and Microsoft
started a unification of XLANG and WSFL that became known as Business Process
Execution Language (BPEL) [2,9]. Currently this approach seems to be the winner
among the competing standards. Another well know approach is W3C’s Web Services
Choreography Interface (WSCI) [18] that describes only one partner’s participation in
a business process. Similarly to Web Services, ebXML provides a stack of protocols to
standardize B2B on top of XML. The protocol for describing the choreography of
message exchanges between business partners is ebXML Business Process
Specification Schema (BPSS) [13].

All protocols mentioned above describe the behavior between Web Services and/or
the execution side of a business process. They do not consider the design of a business
process by a business process analyst. For this purpose BPMI is developing the
Business Process Modeling Notation (BPMN) [17]. This notation presents the
amalgamation of best practices in the business process modeling community. Another
option for a graphical syntax is UML. RosettaNet uses a UML-based methodology to
develop their Partner Interface Processes (PIPs) [10]. UN/CEFACT started the
development of its methodology on top of UML. During the ebXML initiative the
company EDIFECS - that owned copyright of the methodology used in RosettaNet -
transferred these copyrights to UN/CEFACT. Inasmuch the current version 12 of UMM
[16] represents also a successor of RosettaNet’s methodology.

UN/CEFACT’s vision is developing business process models for global e-business.
These business process models must not include any ambiguity. In practice, one and the
same business process varies a little bit with respect to the business environment.
Developing a new model for each variation will result in a multitude of models. Thus,
a generic model together with constraints for different business environments is a much
more effective approach to ensure unambiguity. This results in a key difference

between UMM and the XML-based approaches. The XML-based approaches describe
an executable process. Consequently, this process must be defined in a specific business
environment. In UMM a business process model is valid in more business
environments. The semantics of an executable process are derived by applying the
constraints defined for a specific business environment to the generic model. In the
future, transformation rules from UMM to BPEL, BPSS, etc., will enable to derive
executable business process from a common generic basis. This transformation goes
beyond the scope of this paper. In our paper [6] we demonstrate the transformation from
UMM to ebXML BPSS.

One option for specifying constraints is natural language which results in
ambiguity. Another option is formal languages which are often hard to understand by
businessexperts or system modelers. There exist rule based languages which have been
developed for e-business in a Web environment, e.g. Business Rules Markup Language
(BRML) [3]. Nevertheless, UMM needs a constraint language that reflects its meta-
model. Since UMM is UML-based, the preferred language for specifying constraints is
the Object Constraint Language (OCL) [12]. OCL has been developed by IBM as a
business modeling language. Later it became part of OMG’s set of UML specifications.
It is a formal language that is said to be easy to read and write by modelers.

3 UN/CEFACT’s Modeling Methodology (UMM)

UMM consists of 4 views, corresponding patterns, as well as a well-formed meta-model
which defines the syntax and semantics for each view. Due to space limitations we will
not go into the details of each view. The interested reader is referred to the UMM Meta
Model [15] and the UMM User Guide [16]. In this Section we briefly describe those
concepts of UMM needed to understand the proposed OCL-based templates. Fig. 1.
presents an overview of the most basic concepts. The diagram does not present the
UMM meta-model nor is it a class diagram. The graph is used to explain the UMM on-
tology and each box represents a concept in the UMM ontology.

A business process is defined as an organized group of related activities that
together create customer value [4]. If all the activities are performed by one
organization this leads to an intra-organizational business process. In B2B the activities
are executed by different organizations which collaborate to create value. UMM
concentrates on the unambiguous definition of an inter-organizational business
processes and calls it business collaboration.

A business collaboration is performed by two (= binary collaboration) or more
(multi-party collaboration) business partners. A business collaboration might be
complex involving a lot of activities between business partners. However, the most
basic business collaboration is a binary collaboration realized by a request from one side
and an optional response from the other side. This simple collaboration is a unit of work
that allows roll back to a defined state before it was initiated. Therefore, this special type
of collaboration is called business transaction.

Since UMM is based on UML, it uses the concept of use cases to capture
requirements. In case of a complex business collaboration the requirements are
described in a so-called business collaboration protocol use case. These requirements

lead to a choreography of activities in order to create the customer value. The activity
graph representing this choreography is called business collaboration protocol (c.f. Fig.
2). Each activity shown in a business collaboration protocol refers to exactly one
business transaction. Therefore, each activity of the business collaboration protocol is
called a business transaction activity. Each of these activities is characterized by the
tagged values timeToPerform and isConcurrent.

Business Collaboration

Business Process

is a

Business Transaction (Concept)

is a

Business Collaboration Protocol Use Case

Business Collaboration Protocol

is described by

defines choreography for

Business Transaction Activity

Business Transaction Use Case

is described by

Business Transaction (Activity Graph)

defines choreography foris composed of
n

refers to

Business Activity

Initiating Business Activity

Responding Business Activity Business Information

Information Distribution

One-way Transaction Two-way Transaction

exchanges exchanges
1 2

Notification

Query/Response

Request/Response

Request/Confirm

Commercial Transaction

is a

is a

is a

is composed of

1

1

is a

Fig. 1. UMM in a Nutshell

Real World

UML
Concept

Concept

The requirements of a business transaction are described by a business transaction
use case. Again, the requirements lead to a choreography of the business transaction.
The resulting activity graph is what is really called business transaction in UMM (c.f.
Fig. 3). One might argue, that business transaction activity and business transaction
present the same concept. Since different UML elements - an activity and an activity
graph - are required in the UML notation, these concepts are distinguished in UMM.

The activity graph of a business transaction is always composed of two business
activities, an initiating business activity performed by the initiator and reacting business
activity performed by the other business partner. In a one-way transaction business
information is exchanged only from the initiating business activity to the reacting
business activity. In case of two-way transaction the reacting business activity returns
business information to the initiating business activity. The UML notation of an object
flow is used to show the exchange of business information.

In UMM we distinguish two one-way transactions - notification and information
distribution - and four two-way transactions - query/reponse, request/confirm, request/
response and commercial transaction. These types of business transactions cover all
known legally binding interactions between two decision making applications as
defined in Open-edi [7]. Furthermore, the type of business transaction is manifested in

the defaults for the tagged values of the initiating/requesting business activity:
isAuthorizationRequired, isNonRepudiationRequired, timeToPerform, timeTo-
AcknowledgeAcceptance, isNonRepudiationOfReceiptRequired, and recurrence.

4 OCL-based Templates for UMM

Having introduced the basic concepts of UMM, it becomes evident that OCL-based
templates are useful only for certain artefacts. Use Cases capture the requirements
which result in OCL constraints. Constraints do not apply to use cases themselves.
Consequently, candidates for OCL-based templates are activity graphs for business
collaboration protocols and business transactions as well as class diagrams for business
information exchanged. In this paper, we concentrate on the choreography of the
activity graphs. Constraints on business information exchanged cannot be explained
within the page limit and will be a topic of another paper.

The following two subsections present the OCL-based templates for business
collaboration protocols and business transactions. Each template is demonstrated by an
example. These examples refer to two very simple case studies. The first one is order
management of books and the second one is order management of tourism products. For
more details on this case study we refer to our paper introducing business context
variations in UMM [5].

4.1 Constraints for Business Collaboration Protocols
The choreography of a business collaboration protocol follows a description provided
in the corresponding use case description. Fig. 2. shows the business collaboration
protocol of our example. The order management either begins by a search for product
or by the query for the reservation list. After a search it is possible to order or reserve a
product. Both activities require the customer to be registered. If the result of a search
was not satisfying another search is performed or the reserved products are queried.
After a reservation was performed the next activity is either a new search or the query
for the reserved products. Note that querying products requires customers to be
registered, because otherwise they were not able to make a reservation. After querying
the reserved products, a product might be ordered. The other choice is to perform a new
search. The business collaboration always ends after ordering a product. However, the
search for product, the reservation, and the presentation of the reserved products might
also be the last activity with the consequence that no book is ordered.

A business collaboration is valid in one or more business environments. Thus, the
business environments are specified in a tagged value of the business collaboration. The
best way to describe a business environment is by the concept of business context as
introduced by ebXML core components [14]. In this specification business context is
defined as a mechanism for qualifying and refining core components according to their
use under particular business circumstances. We enlarge the scope of this definition to
apply the mechanism not only to core components but also to any UMM artifact. The
business context in which the business collaboration takes place is specified by a set of
categories and their associated values. In ebXML eight categories have been identified:
business process, product classification, industry classification, geopolitical, official

constraints, business process role, supporting role, and system capabilities. We split the
category business process into the two categories business collaboration and business
transaction, because both exist in a UMM model and must be distinguished. The context
categories are not limited to the ones identified, but we do not recommend the use of
other categories.

Product .Offered: :NotWanted

SearchProduct
<<BTActivity>>

Product.Offered: :ReservationWanted

Register
Customer

<<BTActivity>>

Reserve Product
<<BTActivity>>

NOT Product.Ordered

Present Reserved
Product

<<BTActivity>>

Register
Customer

<<BTAct ivity>>

Product.Offered::Wanted

Order Product
<<BTActivity>>

Product.Ordered

Product.Reserved::InfoNeed

Products.Reserved::Wanted

Product .Reserved::NotWanted

Product.Need

Product.Need

Product.Need

Product.Reserved::NotWanted

Product.Reserved: :InfoNeed

[NOT CustomerInformat ion.Registered]

[CustomerInformation.Registered]
[NOT CustomerInformation.Registered]

[CustomerInformation.Registered]

Fig. 2. Business Collaboration Protocol for Order Management

The definition of a business environment is nothing else then a constraint on the
activity graph of a business collaboration protocol. Thus, the definition of an OCL
constraint seems to be straight forward. However, OCL was designed to specify
invariants of classes and pre- and post-conditions for methods. We need access to the
tagged values of an activity graph (and other UML elements). The OCL specification
[12] does not consider this type of access. OCL allows invariants for classifiers only. In
our approach, we apply invariants to other UML elements as well. The syntax is similar
to that of invariants for classifiers. In case of defining the business environment of the
business collaboration protocol, we specify the corresponding business collaboration
protocol after the OCL keyword context and followed by the keyword inv for invariants.
Instead of defining constraints on attributes of a classifier, we assign constraints to the
tagged values describing the business environment. The business environment is
defined as name-value-pairs for the context categories connected by boolean operators.

The template for defining invariants of a business collaboration protocol is defined
in BNF further below. The template is followed by an example constraint. Although our
order management collaboration seems to be rather general, we restrict it to two
business environments for demonstration purposes. The example constraint restricts our
business collaboration protocol to the book order management case and the tourism
product order management case.

BusinessCollaborationProtocolInvariant ::=
context <BusinessCollaborationProtocol> inv: <BusinessContextStatement>

BusinessContextStatement :: =
[<BusinessContext> [<BooleanOperator> <BusinessContextStatement>]? |
[(<BusinessContext> <BooleanOperator> <BusinessContextStatement>)]

BusinessContext ::= <BusinessContextDriver> <relationalOperator> “<literal>”

BusinessContextDriver ::= BusinessCollaboration | BusinessTransaction |
ProductClassification | IndustryClassification | Geopolitical |
Official Constraints | BusinessProcessRole | SupportingRole |
SystemCapabilities | <OtherBusinessContextDriver>

OtherBusinessContextDriver ::= <literal>
BooleanOperator ::= AND | OR | XOR
relationalOperator ::= = | > | < | >= | <= | <>

Example:
context OrderManagementBusinessCollaborationProtocol inv:

BusinessCollaboration = “OrderManagement”
AND (Product Classification = “Book” OR Product Classification = “Tourism Product”)
AND (IndustryClassification = “PrintMedia” OR IndustryClassification = “Tourism”)

A business collaboration protocol choreographs business transaction activities. The
business environment for each business transaction is identical to the one of the
business collaboration protocol. The tagged values of one and the same business
transaction activity - which are the concurrency flag and the time to perform - might
vary for mutually exclusive subsets of the overall business environment. In the example
below search product can happen concurrently and must be completed in 24 hours by
default. The default applies to the tourism case, whereas searching for books cannot be
concurrent and must be completed in 12 hours.

The variations in the tagged values are constraints on the business transaction
activity. Thus, we define invariants of business transaction activities. If no variations
for the tagged values exist, we simply define the values for isConcurrent and
timeToPerform. Otherwise, we use an if-statement to check the tagged value of the
business environment and set the other tagged values if appropriate. The else-clause
contains the default values. Unfortunately, OCL does not include an elsif-clause in the
if-statement. In reality there exist many different business environments resulting in
different combinations of default values. To avoid nested if statements and for reasons
of readability we have extended the OCL statement to include an elsif-clause.

BusinessTransactionActivityInvariant ::=
context <BusinessTransactionActivity> inv:

<MultipleBusinessTransactionActivityTaggedValueStatement> |
[if <BusinessContextStatement>
then <MultipleBusinessTransactionActivityTaggedValueStatement>
[elsif <BusinessContextStatement>
then <MultipleBusinessTransactionActivityTaggedValueStatement>
]*
[else <MultipleBusinessTransactionActivityTaggedValueStatement>]?
endif]

MultipleBusinessTransactionActivityTaggedValueStatement ::=
<BusinessTransactionActivityTaggedValueStatement>
[AND <MultipleBusinessTransactionActivityTaggedValueStatement>]?

BusinessTransactionActivityTaggedValueStatement ::= <BusineesTransactionActivityTaggedValue>="<literal>"

BusinessTransactionActivityTaggedValue ::= isConcurrent | timeToPerform

Example:
context SearchProduct inv:
if ProductClassification = “Book” AND IndustryClassification= “PrintMedia“
then timeToPerform = “12 hrs” AND isConcurrent = “false”
else timeToPerform = “24 hrs” AND isConcurrent = “true”

Each business transaction activity requires some preconditions to be met before execu-
tion and results in some post-conditions. OCL supports the definition of pre- and post-
conditions. According to the UMM User Guide pre- and post-conditions reflect well-
defined states in the life-cycle of business entities. For checking the state of an object
OCL provides the method oclInState which returns a boolean. In our example, order
product requires that the business entity product is either in state offered or reserved as
well as business entity customer information is in state registered. After executing or-
der product a product will be either in state ordered or order failed. However, the pre-
and post-conditions might vary again with respect to the business environment. This
fact is accomplished by using an if-clause similar to the one above for tagged value vari-
ations. In our example, we suppose that a tourism product might not be ordered without
prior reservation. Consequently, the business entity product must be in state reserved
for order product. This fact is shown in the if-statement of the example below.

BusinessTransactionActivityPreAndPostConditions ::=
context <BusinessTransactionActivity>

[[pre: <MultipleBusinessEntityStateConditions>] ?
[post: <MultipleBusinessEntityStateConditions>] ?] |

[if <BusinessContextStatement>
then

[pre: <MultipleBusinessEntityStateConditions>] ?
[post: <MultipleBusinessEntityStateConditions>] ?

rest of if-clause is truncated ###
endif]

MultipleBusinessEntityStateConditions ::=
[<BusinessEntityStateCondition> [<BooleanOperator> <MultipleBusinessEntityStateConditions>] ?] |
[(<BusinessEntityStateCondition> <BooleanOperator> <MultipleBusinessEntityStateConditions>)]

BusinessEntityStateCondition ::=
 [NOT]? <BusinessEntity>.oclInState(<BusinessEntityState>)

BusinessTransactionActivity ::= <literal>
BusinessEntity ::= <literal>
BusinessEntityState ::= <literal>

Example:
context OrderProduct

if ProductClassification = “TourismProduct” AND IndustryClassification = “Tourism”
then

pre: Product.oclInState(Reserved)
AND CustomerInformation.oclInState(Registered)
post: Product.oclInState(Ordered) XOR Product.oclInState(OrderFailed)

elsif ProductClassification = “Book” AND IndustryClassification = “PrintMedia”
then

pre: (Product.oclInState(Offered) OR Product.oclInState(Reserved))
AND CustomerInformation.oclInState(Registered)
post: Product.oclInState(Ordered) XOR Product.oclInState(OrderFailed)

endif

The last template for the business collaboration protocol specifies constraints on the
transitions between business transaction activities. The transition from one business
transaction activity to another requires not only the completion of the first activity, but

also the occurrence of an event on the initiator’s side of the next activity. For example,
the transition from search product to order product requires the completion of search
product that, hopefully, results in the state offered. However, this does not mean that the
buyer must order the product. First, the buyer has to decide that he/she wants the offered
product. This decision is modeled as an event that results in the sub-state wanted of the
parent state offered. Furthermore, an optional guard applies to transitions. Valid guards
are the context of the business environment and business entity states. In our example
the transition from search product to order product is limited to the book case, because
in tourism a reservation is required prior to ordering. Furthermore, the state of customer
information guards the transition.

BusinessTransactionAcitivityTransition ::=
context from <BusinessTransactionActivity> to <BusininessTransactionActivity>
Event: <MultipleBusinessEntityStateConditions>
Guard: <GuardStatement>

GuardStatement ::=
[<Guard> [<BooleanOperator> <GuardStatement>]? | [(<Guard> <BooleanOperator> <GuardStatement>)]

Guard :: = <BusinessContextStatement> | <MultipleBusinessEntityStateConditions>
Example:

context from SearchProduct to OrderProduct
Event: Product.oclInState(Offered::Wanted)
Guard:ProductClassification = “Book” AND IndustryClassification = “PrintMedia”

AND CustomerInformation.InOclState(Registered)

4.2 Constraints for Business Transactions
Each business transaction activity of the business collaboration protocol is refined by a
separate activity graph called a business transaction. Fig. 3 depicts the business
transaction search product. The customer performs request a search as initiating
activity that produces a search request document. This document is input to the reacting
activity perform search which is executed by the seller. The reacting activity outputs
the search result document that is returned to the initiating activity. Since there is a
response that does not immediately result in a contractual obligation and the responder
has the information (about the product) already available, the transaction is of type
query/response. The initiating activity is stereotyped accordingly.

request a search
<<QueryResponseActivity>>

 : SearchRequest

[success] [controlfail]

perform search
<<RespondingBusinessActivity>>

 : SearchResult

 : Seller : Customer

Fig. 3. Business Transaction “Search Product”

First, we define the business environment for the business transaction, which covers
both of our example cases. The constraint statement is similar to that for the business
collaboration protocol. The business environment is defined as a string of name-value-
pairs for the context categories connected by boolean operators.

BusinessTransactionContextConstraint ::=
context <BusinessTransaction> inv:<BusinessContextStatement>

Example:
context SearchProduct inv:

BusinessCollaboration = “OrderManagement” AND BusinessTransaction = “SearchProduct”
AND (Product Classification = “Book” OR Product Classification = “Tourism Product”)
AND (IndustryClassification = “PrintMedia” OR IndustryClassification = “Tourism”)

Both the initiating business activity and the responding business activity are
characterized by a well-defined set of tagged values. Again the instances of the tagged
values might vary for different subsets of the overall business environment. The code
fragments below refer to constraints for tagged values on the initiating business activity.
The ones for the responding business activity are quite similar. In our example we
define that for the book case the maximum time to perform is 4 hours. There is no need
for acknowledgments, authorization and non-repudiation. In case of control failures the
initiating activities restarts the transaction 3 times before giving up.

InitiatingBusinessActivityTaggedValuesConstraint ::=
context <InitiatingBusinessActivity> inv:

<MultipleInitiatingBusinessActivityTaggedValueStatement> |
[if <BusinessContextStatement>
then <MultipleInitiatingBusinessActivityTaggedValueStatement>
rest of if-clause is truncated ###
endif]

MultipleInitiatingBusinessActivityTaggedValueStatement ::=
<InitiatingBusinessActivityTaggedValueStatement>
[AND <MultipleInitiatingBusinessActivityTaggedValueStatement>]?

InitiatingBusinessActivityTaggedValueStatement ::=
<InitiatingBusinessActivityTaggedValue> = <literal>

InitiatingBusinessActivityTaggedValue ::= TimeToAcknowledgeReceipt |
TimeToAcknowledgeAcceptance | TimeToPerform | AuthorizationRequired |
NonRepudiationOfOriginAndContent | NonRepudiationOfReceipt | Recurrence

Example:
context RequestASearch inv:
if ProductClassification = “Book” AND IndustryClassification = “PrintMedia”
then TimeToAcknowledgeReceipt = “Null” AND TimeToAcknowledgeAcceptance = “Null” AND
TimeToPerform = “4 hrs” AND AuthorizationRequired = “false” AND NonRepudiationOfOriginAndContent = “false”
AND NonRepudiationOfReceipt = “false” AND Recurrence = “3”
else ... endif

Finally, there might exist variations in the business transaction type according to the
business environment. As mentioned above search product is by default a query/
response transaction, since there are no contractual obligations involved and the
responder has the information already available. Imagine that in tourism the
information is not already available, but must be calculated by the responder.
Accordingly, the transaction type changes to request/response. This is shown in the
example below. A more radical variation can happen in case of tacit approval when a
commercial transaction (two-way) changes to a notification (one-way).

context <BusinessTransaction> inv:
if <BusinessContextStatement>
then BusinessTransactionType = <BusinessTransactionType>
rest of if-clause truncated ###
endif

BusinessTransactionType ::= InformationDistribution | Notification | QueryResponse |
RequestConfirm | RequestResponse | CommercialTransaction

Example:
context SearchProduct inv:
if ProductClassification = “TourismProduct” AND IndustryClassification = “Tourism”
then BusinessTransactionType = “RequestResponse”
else BusinessTransactionType = “QueryResponse”

5 Summary

B2B e-Commerce standardization is more and more directed towards business
processes. Most approaches are in the area of Web Services. Their goal is to describe a
choreography for an executable business process that is assembled from a set of Web
Services. For this purpose the process must be defined in a specific business
environment. In contrary, UMM is a methodology that starts from gathering user
requirements and develops business process and information models that are
independent of the underlying B2B technology (Web Services, ebXML, EDI, etc.).
UMM’s goal are unambiguous business process models for global e-business. For the
sake of reusability, a business process model must be generic enough to adopt to
different business environments. Nevertheless, it must be specific enough to
unambiguously describe a business process execution in a given business environment.

In order to fulfill this pretension UMM must deliver generic models that exactly
define the constraints for adopting to a certain business environment. This requires a
constraint language that is adjusted to the UMM meta-model. Since UMM is UML-
based it seems to be straight forward to use OCL for this purpose. In the same way as
UMM restricts the UML meta-model, we must restrict the flexibility of OCL. Thus, this
paper defines OCL templates specially designed for UMM artefacts. The constraints for
business collaboration protocols are: (1) definitions of applicable business
environments, (2) invariants for tagged values of business transaction activities, (3) pre-
and post-conditions of business transaction activities, and (4) invariants for transitions.
The templates for business transactions are: (1) definitions of applicable business
environments, (2) invariants of tagged values for initiating and reacting business
activities (3) invariants for business transaction types.

We also started to develop OCL templates for adopting the business information
exchanged in a business transaction to different business environments. We plan to
summarize this complex topic in the near future. In our paper [6] we map UMM models
(developed for a specific business environment) to ebXML BPSS. It is our goal to
demonstrate mapping for other choreography languages as well. Moreover, we want to
show how a generic UMM model including constraint statements for multiple business
environments will map to different choreographies in the same choreography language.

References

1. Arkin, A.; Business Process Modeling Language (Version 1.0); November 2002;
http://www.bpmi.org/bpml-spec.esp

2. Andrews, T., Curbera, F., Dholakia, H., Goland Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.; Business Process Execution
Language for Web Services, Version 1.1, May 2003
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbizspec/html/bpel1-1.asp

3. Grosof, B.N., Labrou, Y.; An Approach to using XML and a Rule-based Content Language
with an Agent Communication Language"; Proceedings of the IJCAI-99 Workshop on
Agent Communication Languages (ACL-99); Stockholm (Sweden), August 1999

4. Hammer, M., Champy, J.; Reengineering the Corporation: Manifesto for Business
Revolution; Harper Business; 1993

5. Hofreiter, B., Huemer, C.; Modeling Business Collaborations in Context; Proceedings of On
The Move to Meaningful Internet Systems 2003: OTM 2003 Workshops; Springer;
November 2003

6. Hofreiter, B., Huemer; Transformation of UMM Models to ebXML BPSS; to appear in:
Proceedings of XML4BPM Workshop, Marburg (Germany) March 2003;
http://www.ifs.univie.ac.at/~ch/UMM2BPSS.pdf

7. ISO; Open-edi Reference Model; ISO/IEC JTC 1/SC30 ISO Standard 14662; 1995
8. Leymann, F.; Web Services Flow Language (WSFL 1.0); May 2001

http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
9. Leymann, F., Roller, D., Schmidt, M.-T.; Web Services and Business Process Management;

IBM Systems Journal, Vol. 41, No. 2, 2002
10. RosettaNet; RosettaNet Implementation Framework: Core Specification V02.00.01; March

2002; http://www.rosettanet.org/rnif
11. Thatte, S.; XLANG - Web Services for Business Process Design; June 2001;

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
12. OMG; Object Constraint Language Specification;

http://www.omg.org/cgi-bin/doc?formal/03-03-13
13. UN/CEFACT; ebXML - Business Process Specification Schema v1.10; October 2003;

http://www.untmg.org/downloads/General/approved/ebBPSS-v1pt10.zip
14. UN/CEFACT; Core Components Technical Specification V2.01; November 2003;

http://www.untmg.org/downloads/General/approved/CEFACT-CCTS-Version-2pt01.zip
15. UN/CEFACT; UMM Meta Model, Revision 12; January 2003;

http://www.untmg.org/downloads/General/approved/UMM-MM-V20030117.zip
16. UN/CEFACT; UMM User Guide, Revision 12; September 2003;

http://www.untmg.org/downloads/General/approved/UMM-UG-V20030922.zip
17. White, S; Business Process Modeling Notation Working Draft (1.0); August 2003;

http://www.bpmi.org/bpmn-spec.esp
18. W3C; Web Service Choreography Interface (WSCI) 1.0; August 2002;

http://www.w3.org/TR/wsci/

