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Abstract

We present a novel methodology for classifying code obfuscation techniques in LLVM
IR program embeddings. We apply isolated and layered code obfuscations to C source
code using the Tigress obfuscator, compile them to LLVM IR, and convert each IR code
representation into a numerical embedding (vector representation) that captures intrinsic
characteristics of the applied obfuscations. We then use two modern boost classifiers to
identify which obfuscation, or layering of obfuscations, was used on the source code from
the vector representation. To better analyze classifier behavior and error propagation,
we employ a staged, cascading experimental design that separates the task into multiple
decision levels, including obfuscation detection, single-versus-layered discrimination, and
detailed technique classification. This structured evaluation allows a fine-grained view of
classification uncertainty and model robustness across the inference stages. We achieve an
overall accuracy of more than 90% in identifying the types of obfuscations. Our experiments
show high classification accuracy for most obfuscations, including layered obfuscations,
and even perfect scores for certain transformations, indicating that a vector representation
of IR code preserves distinguishing features of the protections. In this article, we detail
the workflow for applying obfuscations, generating embeddings, and training the model,
and we discuss challenges such as obfuscation patterns covered by other obfuscations in
layered protection scenarios.

Keywords: code-obfuscation; machine learning; obfuscation identification; malware detection;
IR2VEC; intermediate representation

1. Introduction

Code obfuscation has long been used both by software developers and malware
authors alike to make reverse engineering of program code more difficult. Obfuscation
methods can be applied at various stages of code representation. Traditionally, they target
source code [1], but some protections are also applied directly to binary code. For instance,
virtualization obfuscation (e.g., by using tools like VMProtect) typically operates on bina-
ries. Malware packers provide another prime example of binary-level obfuscation. More
recently, obfuscation at the intermediate representation (IR) level has also been proposed [2],
although it is rarely used in practice.

Regardless of the code representation to which obfuscations are applied, they typically
leave characteristic traces in the structure of a program. These characteristics can be
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observed both symbolically (e.g., in the distribution of opcodes within binary code) and in
flow-based features (e.g., in patterns of control flow graphs). When reverse engineering
obfuscated programs, identifying the specific obfuscation techniques applied to code is
crucial, as most obfuscations complicate the understanding of program functionality but
are not irreversible. With targeted de-obfuscation methods, these transformations can often
be at least partially undone.

Previous research on obfuscation identification has already explored various code
representations (e.g., source and binary code) and used different code characteristics (code
complexity, opcode distribution, etc.) for machine learning-based classification [3-8]. In this
article, we focus specifically on identifying obfuscation techniques in the Low Level Virtual
Machine intermediate representation (LLVM-IR). We use a dataset of C programs and
apply multiple Tigress obfuscations (including layering of multiple obfuscations). Each
resulting obfuscated program is then converted to an IR2Vec [9] embedding, which serves
as the input for our machine learning pipeline, where CatBoost and ExtraTrees classifiers
determine whether and how the code has been obfuscated. This whole workflow is depicted
in Figure 1.

To analyze the classification problem in greater detail, we designed a staged and
cascading experimental setup. Each stage isolates a specific decision level: first detecting
obfuscation, then distinguishing between single and layered transformations, and finally
identifying the applied method or combination. This structure enables a more interpretable
analysis of model behavior and helps locate where prediction uncertainty emerges across
the decision pipeline.

FEATURE DATASET MACHINE
ORIGINAL COMPILATION EXTRACTION LEARNING IDENTIFY

DATA
Vector OBFUSCATION

Compiling Vector Representation
Obfuscated Code to IR Presentation gf Original CatBoost,

via ExtraTrees
IR2VEC

Preprocessing Validation

Figure 1. Overview of the obfuscation classification pipeline, from source code transformation
with Tigress, conversion of obfuscated C files to LLVM IR, to IR2Vec embedding and subsequent
classification using CatBoost and ExtraTrees.

This article is structured as follows: The next section, Section 2, presents work related
to our research. Then we discuss all employed obfuscation techniques in Section 3 and
present the results of our machine learning experiments in Section 4. We summarize and
interpret the findings in Section 5 and present conclusions and directions for future work
in Section 6.

2. Related Work

Several studies have employed machine learning on code structure metrics to differ-
entiate between obfuscated and unobfuscated code. For example, Salem et al. [3] applied
TF-IDF features to differentiate Tigress-protected C samples. Recent approaches have
employed code complexity metrics and grayscale image representations of binary code to
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detect Tigress obfuscations [10,11]. A similar method was reported by Raitsis et al. [12],
in which entropy-based feature extraction and machine learning were used to determine
whether and how a program was obfuscated. Additionally, Jiang et al. [13] demonstrated
the effectiveness of convolutional neural networks for identifying obfuscation in code.
Sagisaka et al. [4] used birthmark analysis to identify obfuscation tools for Java bytecode.

Research on mobile platforms has also contributed to the field. Wang et al. [14]
developed a machine learning method capable of identifying the obfuscation tool, its
applied obfuscation type, and configuration in Android applications by extracting feature
vectors from Dalvik bytecode, while Bacci et al. [15] derived features from Smali code
for similar purposes. Park et al. [16] proposed a framework for detecting class-level
obfuscations in Android applications, complementing binary-level approaches such as that
introduced by Jones et al.

Our work builds upon these ideas while focusing on IR-level data and analyzing to
what extent we can correctly detect obfuscations and layerings thereof.

3. Methodology

This section describes the basic methodology of our classification approach, i.e., obfus-
cation techniques, the data set, and our machine learning approach.

3.1. Code Obfuscations

In this study, we focus specifically on source-to-source obfuscations using the Tigress
obfuscator [17]. In the following, we introduce the obfuscations used in our study:.

Control-Flow Transformations

Control-flow transformations alter the possible execution paths of a program to com-
plicate reverse engineering. The flattening technique converts the original control flow
into a switch-case dispatch mechanism (or any other equivalent control flow dispatching
structure), thereby breaking the natural execution sequence and static appearance of the
program’s control flow graph. Virtualization replaces selected functions with code written
in a random instruction set that requires a dedicated interpreter bundled with the protected
binary. Bogus control flow injects false branches (with opaque conditions) that do not affect
the runtime behavior of the program but mislead static analysis tools. Encoding branches
hides the target of branches. Function splitting breaks a function into several smaller sub-
functions, modifying the program’s call graph in a way similar as control-flow obfuscations
inside one function.

Data and Arithmetic Transformations

Data and arithmetic transformations modify the representation of variables and con-
stants, as well as arithmetic operations, to complicate program interpretation. Encoding
literals replaces literal data such as Strings with encoded representations and arithmetic
encoding transforms arithmetic expressions into more complex ones.

Anti-Analysis Protections

Anti-analysis protections consist of techniques designed specifically to defeat code
analysis tools. Opaque predicates incorporate conditions that always evaluate to the same
result while appearing dynamic to a static analyst. Anti-taint analysis disrupts dynamic
taint analysis, and anti-alias analysis obfuscates function calls by making them indirect.



Mach. Learn. Knowl. Extr. 2025, 7,125 40f 29

Self-Modifying Code
Self-modification techniques dynamically alter portions of a program at runtime, render-

ing static analysis ineffective. This type of obfuscation forces the analyst into dynamic eval-
uation because the binary continuously modifies its own copy in memory during runtime.

Layered Obfuscation Transformations

Layered obfuscation transformations combine multiple obfuscation techniques.
For our study, we combined all obfuscations pairwise and added two more complex
layerings from the Tigress documentation (TigressRecipel and TigressRecipe2, https:
/ /tigress.witf/recipes.html, accessed on 10 October 2025).

3.2. Dataset Creation and Feature Extraction

To systematically analyze the effects of source-level obfuscation in LLVM IR, we
constructed a dataset that contains both a set of small, single-function C programs and a
collection of more complex system utilities taken from the GNU Coreutils.

The first subset consists of 84 single-file C programs, each containing a single function.
These programs implement a range of fundamental and well-known algorithms, such
as for the calculation of cryptographic hashes, sorting, and compression. This collection
provides a focused view on isolated obfuscation effects, as each sample is based on the
same boilerplate code with minimal algorithm-specific code structures. About half of
these programs are taken from the public obfuscation benchmark by Banescu et al. [18],
while the remaining samples were written by us to specifically increase the variety of
control-flow structures.

To complement the previously described minimal examples and to observe how
obfuscation affects more complex software, we incorporated full-featured programs from
the GNU Coreutils (version 9.5). These utilities such as cat, sha256sum, and sort represent
real-world applications used in Linux distributions. Since Tigress operates on single-file C
input, we first merged each Coreutils utility into a single C file using the Tigress -merge
option. This step preserves the full functionality of the original tools while converting them
into a form suitable for obfuscation and corresponding analysis.

All programs were then obfuscated using Tigress version 4.0.9. In total, a comprehen-
sive set of around 70 transformation configurations, including both isolated and layered
transformations, was applied to each sample. For layered transformations, all obfuscations
were combined pairwise in both orders.

Following obfuscation, all source files were compiled to LLVM IR using clang with
the -8 -emit-11vm options. To account for compiler-influenced variations in the result-
ing IR, we used four optimization levels (O0 through O3) for each obfuscated version.
The resulting IR files were grouped according to obfuscation configuration and compiler
optimization level.

IR2Vec Embedding Generation

We then used IR2Vec [19] to convert LLVM IR components such as opcodes, types,
and operands into vector embeddings. IR2Vec supports two encoding modes: symbolic,
which considers IR structure, and flow-aware, which augments symbolic embeddings
with control-flow information. For our experiments, we used the pre-trained IR2Vec
model in symbolic (sym) mode with the default embedding dimensionality of 300. All
compilation and embedding generation steps were executed within a Docker container
based on Python 3.10. The container included LLVM/Clang and essential 32-bit libraries
(1ibc6:1386, libstdc++6:1386, etc.) required for compiling C programs to LLVM IR.
Embedding extraction was automated with Python scripts that compiled the C source
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files to LLVM IR, processed them with IR2Vec to obtain the corresponding vector repre-
sentations, and stored the resulting embeddings as structured CSV files for subsequent
classifier training.

Dataset Limitations and Generalization

While our dataset provides a broad spectrum of obfuscation types, it is important to
note that all transformations originate from a single obfuscation framework, namely Ti-
gress [17]. This single-source origin may introduce a certain degree of bias, as the classifiers
could, in part, learn Tigress-specific structural artifacts rather than entirely generalizable
obfuscation patterns. Nevertheless, Tigress is the most comprehensive and widely used
C to C obfuscator in academic research, offering a broad range of transformation types
and configuration parameters [20,21]. Due to its configurability and frequent adoption in
prior work, Tigress serves as a practical reference point for evaluating obfuscation analy-
sis approaches. Future studies could expand on this dataset by integrating obfuscations
produced by other frameworks to improve the generality of classification results.

3.3. The Final Dataset

The final dataset employed in this study comprises a diverse collection of obfuscated
LLVM IR files, generated from multiple source programs transformed with a wide variety
of obfuscation passes and combinations thereof, as mentioned in the previous section.
A comprehensive breakdown of the dataset, split into a training and testing set, is presented
in Table 1 (training set) and Table 2 (testing set), detailing class distributions and frequencies.

In addition to the obfuscated samples, we included a distinct class for completely
non-obfuscated, i.e., non-processed, code.

Classes are balanced to make for fair comparison and performance assessment. Nev-
ertheless, minor variations exist due to practical constraints encountered during dataset
preparation (e.g., compilation failures or transformations not equally applicable to all
programs). The training set constitutes approximately 80% of the entire dataset, while the
remaining 20% forms a strictly isolated hold-out test set, ensuring that no information
leakage occurs during the evaluation.

Table 1. Class distribution in the training set.

Class and Count Class and Count Class and Count

EncodeArithmeticAntiTaintAnalysis 269  EncodeBranches 269  AntiTaintAnalysis 269
Virtualize 269  FlattenEncodeBranches 269  VirtualizeAntiTaintAnalysis 269
Flatten 269  EncodeArithmeticVirtualize 269  EncodeBranchesAntiTaintAnalysis 269
FlattenEncodeArithmetic 269  EncodeArithmeticEncodeBranches 269  AntiTaintAnalysisEncodeBranches 269
EncodeArithmeticFlatten 269  AntiTaintAnalysisFlatten 269  FlattenAntiTaintAnalysis 269
VirtualizeEncodeBranches 269  FlattenVirtualize 269  AntiTaintAnalysisVirtualize 269
VirtualizeFlatten 269  EncodeArithmeticEncodeLiterals 262  TigressRecipe2 262
EncodelLiteralsVirtualize 262  FlattenSelfModify 262  EncodelLiteralsFlatten 262
AntiAliasAnalysisFlatten 262  EncodelLiteralsEncodeBranches 262  VirtualizeAntiAliasAnalysis 262
EncodeLiteralsAntiTaintAnalysis 262  AntiAliasAnalysisEncodeLiterals 262  EncodeBranchesEncodeLiterals 262
AntiAliasAnalysisAntiTaintAnalysis 262  FlattenEncodeLiterals 262  VirtualizeEncodeLiterals 262
FlattenAntiAliasAnalysis 262  AntiAliasAnalysisVirtualize 262  EncodelLiterals 262
AntiAliasAnalysisEncodeBranches 262  AntiTaintAnalysisSplit 256  SplitEncodeArithmetic 256
EncodeBranchesSplit 256  EncodeBranchesEncodeArithmetic 256  EncodeArithmeticSplit 256
VirtualizeSplit 256  AntiTaintAnalysisEncodeArithmetic =~ 256  Split 256
SplitAntiTaintAnalysis 256  SplitVirtualize 256  FlattenSplit 256
SplitFlatten 256  SplitEncodeBranches 256  EncodeArithmetic 256
VirtualizeEncodeArithmetic 256  AntiAliasAnalysis 250  EncodeArithmeticSelfModify 250
SelfModifyAntiAliasAnalysis 250  EncodeLiteralsEncodeArithmetic 250  EncodeArithmeticAntiAliasAnalysis 250
AntiAliasAnalysisEncodeArithmetic 250  TigressRecipel 250  EncodeLiteralsAntiAliasAnalysis 250
EncodeBranchesAntiAliasAnalysis 250  EncodeLiteralsSplit 250  SplitAntiAliasAnalysis 250
AntiAliasAnalysisSplit 250  SplitEncodeLiterals 250  SplitSelfModify 249

SelfModifyEncodeArithmetic 249  SelfModify 249  non-obfuscated 67
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Table 2. Class distribution in the testing set.

Class and Count Class and Count Class and Count

Virtualize 67 EncodeArithmeticAntiTaintAnalysis 67 AntiTaintAnalysis 67
AntiTaintAnalysisEncodeBranches 67 FlattenAntiTaintAnalysis 67 FlattenVirtualize 67
FlattenEncodeArithmetic 67 FlattenEncodeBranches 67 EncodeBranchesAntiTaintAnalysis 67
Virtualize AntiTaintAnalysis 67 AntiTaintAnalysisFlatten 67 VirtualizeEncodeBranches 67
EncodeBranches 67 EncodeArithmeticEncodeBranches 67 Flatten 67
VirtualizeFlatten 67 EncodeArithmeticVirtualize 67 EncodeArithmeticFlatten 67
AntiTaintAnalysisVirtualize 67 AntiAliasAnalysisVirtualize 66 FlattenSelfModify 66
VirtualizeEncodeLiterals 66 VirtualizeAntiAliasAnalysis 66 EncodelLiterals 66
EncodeLiteralsFlatten 66 AntiAliasAnalysisEncodeLiterals 66 FlattenEncodeLiterals 66
AntiAliasAnalysisFlatten 66 AntiAliasAnalysisEncodeBranches 66 EncodeArithmeticEncodeLiterals 66
EncodeLiteralsAntiTaintAnalysis 66 TigressRecipe2 66 FlattenAntiAliasAnalysis 66
EncodeLiteralsVirtualize 66 AntiAliasAnalysisAntiTaintAnalysis 66 EncodeBranchesEncodeLiterals 66
EncodeLiteralsEncodeBranches 66 SplitEncodeArithmetic 64 FlattenSplit 64
Split 64 AntiTaintAnalysisEncodeArithmetic 64 VirtualizeSplit 64
EncodeArithmetic 64 EncodeBranchesEncodeArithmetic 64 SplitEncodeBranches 64
SplitAntiTaintAnalysis 64 EncodeBranchesSplit 64 SplitVirtualize 64
SplitFlatten 64 EncodeArithmeticSplit 64 VirtualizeEncodeArithmetic 64
AntiTaintAnalysisSplit 64 SplitSelfModify 63 SelfModify 63
SelfModifyEncodeArithmetic 63 EncodeArithmeticAntiAliasAnalysis 62 EncodeLiteralsAntiAliasAnalysis 62
EncodeBranchesAntiAliasAnalysis 62 AntiAliasAnalysisEncodeArithmetic 62 EncodeArithmeticSelfModify 62
TigressRecipel 62 AntiAliasAnalysisSplit 62 EncodeLiteralsEncodeArithmetic 62
EncodeLiteralsSplit 62 SplitEncodeLiterals 62 AntiAliasAnalysis 62
SplitAntiAliasAnalysis 62 SelfModifyAntiAliasAnalysis 62 non-obfuscated 17

3.4. Machine Learning

For our machine learning approach, we employed CatBoost, a modern boosting
classifier [22,23], and ExtraTrees, an ensemble tree-based classifier known for its robust
performance in classification tasks [24].

These boosting classifiers extend the basic concept of decision trees by sequentially
training a series of weak learners, typically simple decision trees, and combining their
predictions to form a strong, robust model. Unlike bagging techniques, which build
multiple independent models in parallel, boosting methods iteratively focus on correcting
the errors of their predecessors.

CatBoost distinguishes itself within this framework by incorporating a permutation-
driven algorithm to handle categorical features natively, thereby reducing the need for
extensive preprocessing. It is reported to achieve high accuracy and strong performance
across diverse problem domains, even with the out-of-the-box implementation, without ex-
tensive hyperparameter optimization [25,26].

ExtraTrees (Extremely Randomized Trees) complements our approach by building
multiple randomized decision trees on different subsets of the training data and aggregat-
ing their predictions to reduce variance and overfitting. ExtraTrees has shown excellent
performance in tasks where robustness against noisy data or complex feature interactions
is required [24]. Further, in past studies, ExtraTrees has been successfully used to identify if
and how program code was obfuscated [10,11].

Evaluation Metrics

We report accuracy, precision, recall, and F1-score for each obfuscation class, providing
several metrics to document our model’s performance. Confusion matrices allow us to
visualize misclassification patterns across different types (or layerings) of obfuscation.

3.5. Experimental Setup

Figure 1 illustrates the complete pipeline used in our experiments. We conducted
our analysis separately using both CatBoost and ExtraTrees classifiers to evaluate their
performance in classifying obfuscation types in LLVM IR.
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Initially, the dataset was divided into a training set (80%) and a hold-out test set (20%)
to evaluate model generalization.

To optimize our classifiers, we further split the training data into an 80/20 partition.
We compared an out-of-the-box implementation of both CatBoost and ExtraTrees to a
hyperparameter-optimized version using this split. We show this two-step split process in
Figure 2.

80% TRAINING DATA

20% TESTING DATA

80% of TRAINING DATA FINAL EVALUATION
MODEL TRAINING Classification Reports
Out of the Box Confusion Matrices
vs.
Bayesian Optimized

LE LS
Training Final Validation and Results

Figure 2. The employed two-step split process to train and validate our models.

It is worth noting that the out-of-the-box implementation of, e.g., CatBoost already
performs very well on many datasets and even outperforms optimized quantum ma-
chine learning approaches on standard datasets, as discussed in [26]. Also, in our study,
the Bayesian-optimized classifiers only slightly outperformed the out-of-the-box implemen-
tations, while the Bayesian optimization process is considerably more resource-intensive.
For hyperparameter tuning, we employed Bayesian optimization with a 3-fold cross-
validation strategy over 100 iterations on a predefined parameter grid [27]. Specifically, we
used the scikit-optimize Python package [28] to search the hyperparameter space.

After identifying the optimal hyperparameters and model, we assessed generalization
performance using the initially separated 20% hold-out test set. We computed standard
evaluation metrics, including accuracy, precision, recall, and Fl-score, and generated
confusion matrices to gain deeper insights into each classifier’s strengths and weaknesses.

Extended Cascading Experimental Design

In addition to the primary line of experiments, where both CatBoost and ExtraTrees
were trained to directly classify all obfuscation types, we also developed a secondary,
staged (cascading) research design to obtain a more fine-grained understanding of the
classification behavior at multiple hierarchical levels. This approach extends the original
setup while maintaining the same data splits and preprocessing pipeline. It allows us to
analyze which stages of the obfuscation detection process are most reliable and which
introduce the greatest uncertainty.

In this cascading design, we first create a single global stratified split of the cleaned
dataset. From this base split, we derive several targeted experiments, each representing one
level of the staged classification process. Each stage trains and evaluates its own classifier
using the same feature representation and train/test division as in the primary setup.

The stages are defined as follows, and depicted in Figure 3:

*  Binary detection of obfuscation: Determine whether a given sample is obfuscated
or not.
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* Single vs. layered classification: For all obfuscated samples, identify whether only
one obfuscation method was applied or a combination of two or more obfuscations.

¢ Single obfuscation identification: Within the subset of single obfuscations, classify
the specific obfuscation method used.

¢ Layered obfuscation identification: Within the subset of layered obfuscations, classify
the obfuscations and the order in which they were applied to the code.

*  Optimization-level identification: Identify the compiler optimization level (O-level).

Finally, we combine these stages to form a chained decision pipeline. In this integrated
analysis, the classifier first determines whether a sample is obfuscated; if so, it predicts
whether it is single or layered, and then classifies the specific obfuscation type within the
predicted branch. This hierarchical inference simulates a decision process that incrementally
narrows down the obfuscation characteristics of each sample.

We performed this cascading evaluation for both ExtraTrees and CatBoost classifiers.
All classification reports and results for the ExtraTrees classifier are presented in the main
text, while all results for the CatBoost classifier are presented in Appendix A.

Obfuscated
VS.
Non-Obfuscated

Single
Non-Obfuscated VS.
Code Layered
Obfuscation

Figure 3. Overview of the extended cascading experimental design. Each node represents a classifica-
tion stage, starting from binary obfuscation detection and progressing to finer-grained distinctions.

4. Results

This section presents the experimental outcomes across all conducted classification
settings, following the staged structure introduced in Section 3.5. Each experiment evalu-
ates a distinct prediction target, ranging from direct multiclass obfuscation identification to
hierarchical cascading inference, and reports detailed metrics for the ExtraTrees models
as the primary baseline. Corresponding CatBoost results are provided for comparison in
Appendix A, maintaining identical evaluation protocols and presentation formats. For
clarity and conciseness, all experiments are organized by level of abstraction: (i) direct multi-
class prediction (Experiment 0), (ii) binary obfuscation detection (Experiment 1), (iii) single
vs. layered discrimination (Experiment 2), (iv) single- and layered-obfuscation identification
(Experiments 3-4), and (v) the integrated end-to-end cascade (Final Experiment).

Each subsection presents per-class classification reports, confusion matrix visualiza-
tions, and summary metrics on the hold-out test split. Extended per-class breakdowns
for the complete obfuscation (O-level) classification are available in Appendix B, while
the detailed CatBoost analogues mirroring all ExtraTrees experiments are consolidated in
Appendix A. Together, these results provide an overview of the classifiers” performance
across different levels of obfuscation granularity.
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4.1. Multiclass Obfuscation Classification (Experiment 0)

Experiment 0 evaluates direct multiclass classification across all obfuscation labels
without any prior filtering. We report results for the ExtraTrees model; the CatBoost
counterpart is discussed in Appendix A (see Tables A1 and A2). The ExtraTrees classifier
achieves an overall accuracy of 0.9312 on the hold-out test split. Per-class precision, recall,
F1-scores, and supports are listed in Tables 3 and 4. Most single-pass transformations are
identified with near-perfect scores. The main residual errors occur in the EncodeLiterals,
EncodeLiteralsAntiTaint Analysis, and some Split, SelfModify and AntiAliasAnalysis variants.

Table 3. Best ExtraTrees classifier, classification report with accuracy = 0.9312.

Obfuscation Type Precision  Recall  F1-Score  Support Obfuscation Type Precision  Recall  F1-Score  Support
AntiAliasAnalysis 0.3294 0.4516 0.3810 62 AntiAliasAnalysisAntiTaintAnalysis 0.2093 0.1364 0.1651 66
AntiAliasAnalysisEncodeArithmetic  1.0000 1.0000 1.0000 62 AntiAliasAnalysisEncodeBranches ~ 1.0000 1.0000 1.0000 66
AntiAliasAnalysisEncodeLiterals 1.0000 1.0000 1.0000 66 AntiAliasAnalysisFlatten 1.0000 1.0000 1.0000 66
AntiAliasAnalysisSplit 1.0000 1.0000 1.0000 62 AntiAliasAnalysisVirtualize 1.0000 1.0000 1.0000 66
AntiTaintAnalysis 1.0000 1.0000 1.0000 67 AntiTaintAnalysisEncodeArithmetic 0.9265 0.9844 0.9545 64
AntiTaintAnalysisEncodeBranches ~ 1.0000 0.9851 0.9925 67 AntiTaintAnalysisFlatten 0.7792 0.8955 0.8333 67
AntiTaintAnalysisSplit 0.9412 1.0000 0.9697 64 AntiTaintAnalysisVirtualize 0.9565 0.9851 0.9706 67
EncodeArithmetic 1.0000 1.0000 1.0000 64 EncodeArithmeticAntiAliasAnalysis 1.0000 1.0000 1.0000 62
EncodeArithmeticAntiTaintAnalysis 0.9841 0.9254 0.9538 67 EncodeArithmeticEncodeBranches  0.9296 0.9851 0.9565 67
EncodeArithmeticEncodeLiterals 1.0000 1.0000 1.0000 66 EncodeArithmeticFlatten 0.9853 1.0000 0.9926 67
EncodeArithmeticSelfModify 1.0000 1.0000 1.0000 62 EncodeArithmeticSplit 0.9697 1.0000 0.9846 64
EncodeArithmeticVirtualize 1.0000 1.0000 1.0000 67 EncodeBranches 0.9710 1.0000 0.9853 67
EncodeBranchesAntiAliasAnalysis ~ 1.0000 1.0000 1.0000 62 EncodeBranchesAntiTaintAnalysis ~ 0.9853 1.0000 0.9926 67
EncodeBranchesEncodeArithmetic ~ 0.9833 0.9219 0.9516 64 EncodeBranchesEncodeLiterals 1.0000 1.0000 1.0000 66
EncodeBranchesSplit 0.9552 1.0000 0.9771 64 EncodeLiterals 0.2750 0.3333 0.3014 66
EncodeLiteralsAntiAliasAnalysis 1.0000 1.0000 1.0000 62 EncodeLiteralsAntiTaintAnalysis 0.1538 0.1212 0.1356 66
EncodeLiteralsEncodeArithmetic 1.0000 1.0000 1.0000 62 EncodeLiteralsEncodeBranches 1.0000 1.0000 1.0000 66
EncodeLiteralsFlatten 1.0000 1.0000 1.0000 66 EncodeLiteralsSplit 1.0000 1.0000 1.0000 62
EncodeLiteralsVirtualize 1.0000 1.0000 1.0000 66 Flatten 1.0000 1.0000 1.0000 67
FlattenAntiAliasAnalysis 1.0000 1.0000 1.0000 66 FlattenAntiTaintAnalysis 0.8772 0.7463 0.8065 67
FlattenEncodeArithmetic 1.0000 0.9851 0.9925 67 FlattenEncodeBranches 1.0000 1.0000 1.0000 67
FlattenEncodeLiterals 1.0000 1.0000 1.0000 66 FlattenSelfModify 1.0000 1.0000 1.0000 66
FlattenSplit 1.0000 1.0000 1.0000 64 FlattenVirtualize 1.0000 1.0000 1.0000 67
SelfModify 0.7619 0.7619 0.7619 63 SelfModify AntiAlias Analysis 1.0000 1.0000 1.0000 62
SelfModifyEncodeArithmetic 0.7619 0.7619 0.7619 63 Split 0.7397 0.8438 0.7883 64
SplitAntiAliasAnalysis 1.0000 1.0000 1.0000 62 SplitAntiTaintAnalysis 1.0000 0.9375 0.9677 64
SplitEncodeArithmetic 0.8113 0.6719 0.7350 64 SplitEncodeBranches 1.0000 0.9531 0.9760 64
SplitEncodeLiterals 1.0000 1.0000 1.0000 62 SplitFlatten 1.0000 1.0000 1.0000 64
SplitSelfModify 1.0000 1.0000 1.0000 63 SplitVirtualize 1.0000 1.0000 1.0000 64
TigressRecipel 1.0000 1.0000 1.0000 62 TigressRecipe2 1.0000 1.0000 1.0000 66
Virtualize 1.0000 1.0000 1.0000 67 VirtualizeAntiAliasAnalysis 1.0000 1.0000 1.0000 66
VirtualizeAntiTaintAnalysis 0.9846 0.9552 0.9697 67 VirtualizeEncodeArithmetic 1.0000 1.0000 1.0000 64
VirtualizeEncodeBranches 1.0000 1.0000 1.0000 67 VirtualizeEncodeLiterals 1.0000 1.0000 1.0000 66
VirtualizeFlatten 1.0000 1.0000 1.0000 67 VirtualizeSplit 1.0000 1.0000 1.0000 64
non-obfuscated 1.0000 0.8824 0.9375 17
Table 4. Experiment 0 (ExtraTrees): Summary metrics on the hold-out test split.
Accuracy Precision (Macro) Recall (Macro) F1 (Macro)
ExtraTrees 0.9312 0.9315 0.9308 0.9304

Figure 4 presents representative sections of the confusion matrix highlighting the most
common confusions: (i) AntiAliasAnalysis vs. AntiAliasAnalysisAntilaintAnalysis, (ii) En-
codeLiterals vs. EncodeLiteralsAntilaint Analysis, and (iii) SelfModify overlaps. These error
clusters are consistent with later experiments, where literal encoding and layered combina-
tions remain the primary sources of confusion.

Summary

Direct multiclass classification achieves stable performance with an overall accuracy
of 93%. Most single-pass transformations are classified correctly, with Fl-scores close to 1.0.
The remaining errors are concentrated in (i) EncodeLiterals and its anti-taint variant, (ii) a
subset of Split and EncodeArithmetic classes, and (iii) overlapping SelfModify variants. These
error sources are consistent with the more complex layered classifications discussed in
later sections.
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Figure 4. Experiment 0 (ExtraTrees): Confusion matrix excerpts (three snapshots presenting the most
relevant confusions from the full relative matrix). Top row: AntiAliasAnalysis vs. AntiAliasAnalysisAn-
tiTaintAnalysis (left) and EncodeLiterals cluster (right). Bottom: SelfModify cluster. Note that these
confusion subsets do not fully represent the confusions across all classes. Some relative scores here
are higher than in the whole picture, as some inter-class-confusions are not accounted for.

4.2. Cascading Experiments (ExtraTrees)

We evaluate a staged pipeline that mirrors a practical analysis workflow. Starting from
the global stratified split (Section 3.5), we train one model per stage and route predictions
sequentially:

¢  Experiment 1 (Binary Obfuscation Detection): Obfuscated vs. Non_Obfuscated. Results
in Table 5 (per-class) and Table 6 (summary); confusion matrix in Figure 5.

e  Experiment 2 (Binary Single vs. Layered): Conditioned on being obfuscated, classify
Single_Obf vs. Layered_Obf. Results in Tables 7 and 8; confusion matrix in Figure 6.

e  Experiment 3 (Single-Obfuscation Identification, Multiclass): Conditioned on Sin-
gle_Obf, identify the specific method (nine classes). Results in Tables 9 and 10; confu-
sion matrix in Figure 7.

e  Experiment 4 (Layered-Obfuscation Identification, Multiclass): Conditioned on
Layered_Obf, identify the layered label. Results in Tables 11 and 12.

Unless noted otherwise, we report metrics on the same hold-out test split as in Ex-
periment 0 and use macro/weighted precision, recall, and F1 alongside overall accuracy.
The CatBoost counterparts for these staged experiments are provided in Appendix A for
completeness. The end-to-end performance of the integrated cascade is summarized in
Section 4.3 (Table 13), with confusion-matrix snapshots in Figure 8.
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4.2.1. Experiment 1: Binary Obfuscation Detection (Obfuscated vs. Non-Obfuscated)

The target variable is ObfBinary € {Obfuscated, Non_Obfuscated}. Table 5 reports per-
class precision, recall, F1, and support for the ExtraTrees model on the hold-out test split.
The corresponding summary metrics are listed in Table 6, and the confusion matrix is
shown in Figure 5.

Table 5. Experiment 1 (ExtraTrees): Per-class report on the hold-out test split.

Precision Recall F1-Score Support
Non_Obfuscated 1.0000 0.7647 0.8667 17
Obfuscated 0.9991 1.0000 0.9995 4416

Table 6. Experiment 1 (ExtraTrees): Summary metrics on the hold-out test split.

Accuracy Precision (Macro) Recall (Macro) F1 (Macro)
ExtraTrees 0.9991 0.9996 0.8824 0.9331

-08

Non_Obfuscated

- 0.6

True

0.4

Obfuscated

0.2

0.0

Predicted

Figure 5. Experiment 1 (ExtraTrees): Confusion matrix for Obfuscated vs. Non_Obfuscated (relative).

Summary

Binary detection achieves an overall accuracy of 0.9991. The Obfuscated class is pre-
dicted almost perfectly, while the smaller Non_Obfuscated class shows slightly lower recall
(0.7647) due to limited sample size. These results confirm that the model reliably distin-
guishes obfuscated from clean samples. Consistent with later experiments, most remaining
errors occur in subsequent stages of the cascade, while this initial detection step remains
stable and highly accurate.

4.2.2. Experiment 2: Binary Single vs. Layered Obfuscations

This experiment operates on the subset of obfuscated samples only. The target variable
is SingleVsLayer € {Single_Obf, Layered_Obf}. The task is to determine whether a given
sample represents a single obfuscation or a layered combination of multiple transformations.
Table 7 reports the per-class metrics, and Table 8 summarizes the overall performance.
The confusion matrix of the best ExtraTrees model is shown in Figure 6.



Mach. Learn. Knowl. Extr. 2025,7,125 12 of 29
Table 7. Experiment 2 (ExtraTrees): Per-class report on the hold-out test split.
Precision Recall F1-Score Support

Layered_Obf 0.9581 0.9974 0.9774 3829
Single_Obf 0.9767 0.7155 0.8260 587

Table 8. Experiment 2 (ExtraTrees): Summary metrics on the hold-out test split.

Accuracy Precision (Macro)  Recall (Macro) F1 (Macro)

ExtraTrees 0.9599 0.9674 0.8564 0.9017

-08

-0.6

0.4

0.2

Predicted

Figure 6. Experiment 2 (ExtraTrees): Confusion matrix for Single_Obf vs. Layered_Obf (relative).

Summary

The classifier achieves an overall accuracy of 0.9599. The Layered_OUf class is identified
with very high recall (0.9974), while the Single_Obf class shows a lower recall (0.7155),
indicating that some single obfuscations are misclassified as layered. This asymmetry is
visible in the confusion matrix (Figure 6), where most errors occur in that direction.

Overall, the classifier performs consistently across classes and provides a solid basis
for the following staged experiments.

4.2.3. Experiment 3: Single-Obfuscation Identification (Multiclass)

This experiment isolates samples labeled as Single_Obf and identifies the specific
obfuscation method applied. The target variable is SingleMethod, which includes nine
transformations. The ExtraTrees classifier achieves a perfect accuracy of 1.0000 on the
hold-out test split. Per-class precision, recall, and F1-scores are reported in Table 9, and the
summary metrics are listed in Table 10. The corresponding confusion matrix is shown in
Figure 7.
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Table 9. Experiment 3 (ExtraTrees): Per-class report on the hold-out test split.
Precision Recall F1-Score Support
AntiAliasAnalysis 1.0000 1.0000 1.0000 62
AntiTaintAnalysis 1.0000 1.0000 1.0000 67
EncodeArithmetic 1.0000 1.0000 1.0000 64
EncodeBranches 1.0000 1.0000 1.0000 67
EncodelLiterals 1.0000 1.0000 1.0000 66
Flatten 1.0000 1.0000 1.0000 67
SelfModify 1.0000 1.0000 1.0000 63
Split 1.0000 1.0000 1.0000 64
Virtualize 1.0000 1.0000 1.0000 67
Table 10. Experiment 3 (ExtraTrees): Summary metrics on the hold-out test split.
Accuracy Precision (Macro) Recall (Macro) F1 (Macro)
ExtraTrees 1.0000 1.0000 1.0000 1.0000
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AntiAliasAnalysis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 7. Experiment 3 (ExtraTrees): Confusion matrix over all single obfuscation classes (relative).

Summary

The classifier perfectly distinguishes all nine single obfuscation methods without any
misclassifications. This confirms that the IR2Vec feature representation preserves clear
structural and semantic differences between individual transformations. The confusion
matrix (Figure 7) shows complete diagonal dominance, indicating that each obfuscation
type forms a distinct region in the feature space. At this stage, separability among individual
transformations is fully achieved. Later experiments focus on more complex scenarios, such
as layered obfuscations and O-level identification, where overlaps between transformations
are more likely.

4.2.4. Experiment 4: Layered-Obfuscation Identification (Multiclass)

This multiclass experiment uses only samples labeled as Layered_Obf and identifies
the specific combination of transformations applied. The target variable LayeredLabel
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encodes each unique layered configuration. The ExtraTrees classifier achieves an overall
accuracy of 0.9867 on the hold-out test split. Per-class precision, recall, and F1-scores are
reported in Table 11, while summary metrics are listed in Table 12.

Table 11. Experiment 4, only layered Obfuscations (ExtraTrees): Per-class report on the hold-out

test split.
Class Precision  Recall ~F1-Score  Support Class Precision  Recall F1-Score  Support
AntiAliasAnalysisAntiTaintAnalysis 1.0000 1.0000 1.0000 66 EncodeLiteralsAntiAliasAnalysis 1.0000 1.0000 1.0000 62
AntiAliasAnalysisEncodeArithmetic  1.0000 1.0000 1.0000 62 EncodeLiteralsAntiTaintAnalysis 1.0000 1.0000 1.0000 66
AntiAliasAnalysisEncodeBranches ~ 1.0000 1.0000 1.0000 66 EncodeLiteralsEncodeArithmetic 1.0000 1.0000 1.0000 62
AntiAliasAnalysisEncodeLiterals 1.0000 1.0000 1.0000 66 EncodelLiteralsEncodeBranches 1.0000 1.0000 1.0000 66
AntiAliasAnalysisFlatten 1.0000 1.0000 1.0000 66 EncodeLiteralsFlatten 1.0000 1.0000 1.0000 66
AntiAliasAnalysisSplit 1.0000 1.0000 1.0000 62 EncodeLiteralsSplit 1.0000 1.0000 1.0000 62
AntiAliasAnalysisVirtualize 1.0000 1.0000 1.0000 66 EncodeLiteralsVirtualize 1.0000 1.0000 1.0000 66
AntiTaintAnalysisEncodeArithmetic  0.9265 0.9844 0.9545 64 FlattenAntiAliasAnalysis 1.0000 1.0000 1.0000 66
AntiTaintAnalysisEncodeBranches  1.0000 0.9851 0.9925 67 FlattenAntiTaintAnalysis 0.8772 0.7463 0.8065 67
AntiTaintAnalysisFlatten 0.7792 0.8955 0.8333 67 FlattenEncodeArithmetic 1.0000 0.9851 0.9925 67
AntiTaintAnalysisSplit 0.9412 1.0000 0.9697 64 FlattenEncodeBranches 1.0000 1.0000 1.0000 67
AntiTaintAnalysisVirtualize 0.9565 0.9851 0.9706 67 FlattenEncodeLiterals 1.0000 1.0000 1.0000 66
EncodeArithmeticAntiAliasAnalysis 1.0000 1.0000 1.0000 62 FlattenSelfModify 1.0000 1.0000 1.0000 66
EncodeArithmeticAntiTaintAnalysis 0.9841 0.9254 0.9538 67 FlattenSplit 1.0000 1.0000 1.0000 64
EncodeArithmeticEncodeBranches ~ 0.9296 0.9851 0.9565 67 FlattenVirtualize 1.0000 1.0000 1.0000 67
EncodeArithmeticEncodeLiterals 1.0000 1.0000 1.0000 66 SelfModify AntiAliasAnalysis 1.0000 1.0000 1.0000 62
EncodeArithmeticFlatten 0.9853 1.0000 0.9926 67 SelfModifyEncodeArithmetic 1.0000 1.0000 1.0000 63
EncodeArithmeticSelfModify 1.0000 1.0000 1.0000 62 SplitAntiAliasAnalysis 1.0000 1.0000 1.0000 62
EncodeArithmeticSplit 0.9697 1.0000 0.9846 64 SplitAntiTaintAnalysis 1.0000 0.9375 0.9677 64
EncodeArithmeticVirtualize 1.0000 1.0000 1.0000 67 SplitEncodeArithmetic 1.0000 0.9688 0.9841 64
EncodeBranchesAntiAliasAnalysis ~ 1.0000 1.0000 1.0000 62 SplitEncodeBranches 1.0000 0.9531 0.9760 64
EncodeBranchesAntiTaintAnalysis ~ 0.9853 1.0000 0.9926 67 SplitEncodeLiterals 1.0000 1.0000 1.0000 62
EncodeBranchesEncodeArithmetic ~ 0.9833 0.9219 0.9516 64 SplitFlatten 1.0000 1.0000 1.0000 64
EncodeBranchesEncodelLiterals 1.0000 1.0000 1.0000 66 SplitSelfModify 1.0000 1.0000 1.0000 63
EncodeBranchesSplit 0.9552 1.0000 0.9771 64 SplitVirtualize 1.0000 1.0000 1.0000 64
TigressRecipel 1.0000 1.0000 1.0000 62 TigressRecipe2 1.0000 1.0000 1.0000 66
VirtualizeAntiAliasAnalysis 1.0000 1.0000 1.0000 66 VirtualizeAntiTaintAnalysis 0.9846 0.9552 0.9697 67
VirtualizeEncodeArithmetic 1.0000 1.0000 1.0000 64 VirtualizeEncodeBranches 1.0000 1.0000 1.0000 67
VirtualizeEncodeLiterals 1.0000 1.0000 1.0000 66 VirtualizeFlatten 1.0000 1.0000 1.0000 67
VirtualizeSplit 1.0000 1.0000 1.0000 64

Table 12. Experiment 4 (ExtraTrees): Summary metrics on the hold-out test split.

Accuracy Precision (Macro) Recall (Macro) F1 (Macro)
ExtraTrees 0.9867 0.9874 0.9869 0.9869
Summary

The classifier achieves an overall accuracy of 0.9867, with near-uniform performance
across all layered configurations. Most classes are predicted without error, while a few
closely related combinations, such as FlattenAntiTaint Analysis and EncodeArithmeticAnti-
TaintAnalysis, show minor confusion. This result demonstrates that the IR2Vec features and
the classifier remain effective even under complex multi-stage transformation scenarios.

4.3. Final Cascaded Inference (Integrated Pipeline, ExtraTrees)

We evaluate the full cascaded pipeline on the hold-out test split. The chain applies
stage models in sequence: obfuscation detection (Experiment 1), single vs. layered clas-
sification (Experiment 2) for obfuscated samples, and method identification using the
appropriate model (Experiment 3 for single obfuscations; Experiment 4 for layered ones).
Table 13 reports per-class precision/recall/F1 and supports for the final predicted label,
overall metrics are shown in Table 14, i.e., the end-to-end accuracy is 0.9477. Figure 8 shows
three snapshots from the final confusion matrix. .
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Table 13. Final cascading classification report.

Class Precision  Recall  F1-Score  Support Class Precision  Recall  F1-Score  Support
AntiAliasAnalysis 0.0000 0.0000 0.0000 62 EncodeLiteralsAntiAliasAnalysis 1.0000 1.0000 1.0000 62
AntiAliasAnalysisAntiTaintAnalysis 0.5156 1.0000 0.6804 66 EncodeLiteralsAntiTaintAnalysis 0.5000 1.0000 0.6667 66
AntiAliasAnalysisEncodeArithmetic  1.0000 1.0000 1.0000 62 EncodeLiteralsEncodeArithmetic 1.0000 1.0000 1.0000 62
AntiAliasAnalysisEncodeBranches  1.0000 1.0000 1.0000 66 EncodeLiteralsEncodeBranches 1.0000 1.0000 1.0000 66
AntiAliasAnalysisEncodeLiterals 1.0000 1.0000 1.0000 66 EncodeLiteralsFlatten 1.0000 1.0000 1.0000 66
AntiAliasAnalysisFlatten 1.0000 1.0000 1.0000 66 EncodeLiteralsSplit 1.0000 1.0000 1.0000 62
AntiAliasAnalysisSplit 1.0000 1.0000 1.0000 62 EncodeLiteralsVirtualize 1.0000 1.0000 1.0000 66
AntiAliasAnalysisVirtualize 1.0000 1.0000 1.0000 66 FlattenAntiAliasAnalysis 1.0000 1.0000 1.0000 66
AntiTaintAnalysis 1.0000 0.9701 0.9848 67 FlattenAntiTaintAnalysis 0.8772 0.7463 0.8065 67
AntiTaintAnalysisEncodeArithmetic  0.9265 0.9844 0.9545 64 FlattenEncodeArithmetic 1.0000 0.9851 0.9925 67
AntiTaintAnalysisEncodeBranches  0.9706 0.9851 0.9778 67 FlattenEncodeBranches 1.0000 1.0000 1.0000 67
AntiTaintAnalysisFlatten 0.7792 0.8955 0.8333 67 FlattenEncodeLiterals 1.0000 1.0000 1.0000 66
AntiTaintAnalysisSplit 0.9412 1.0000 0.9697 64 FlattenSelfModify 1.0000 1.0000 1.0000 66
AntiTaintAnalysisVirtualize 0.9565 0.9851 0.9706 67 FlattenSplit 1.0000 1.0000 1.0000 64
EncodeArithmetic 0.9846 1.0000 0.9922 64 FlattenVirtualize 1.0000 1.0000 1.0000 67
EncodeArithmeticAntiAliasAnalysis 1.0000 1.0000 1.0000 62 SelfModify 0.8654 0.7143 0.7826 63
EncodeArithmeticAntiTaintAnalysis 0.9841 0.9254 0.9538 67 SelfModify AntiAliasAnalysis 1.0000 1.0000 1.0000 62
EncodeArithmeticEncodeBranches  0.9296 0.9851 0.9565 67 SelfModifyEncodeArithmetic 0.7568 0.8889 0.8175 63
EncodeArithmeticEncodeLiterals 1.0000 1.0000 1.0000 66 Split 0.9375 0.7031 0.8036 64
EncodeArithmeticFlatten 0.9853 1.0000 0.9926 67 SplitAntiAliasAnalysis 1.0000 1.0000 1.0000 62
EncodeArithmeticSelfModify 1.0000 1.0000 1.0000 62 SplitAntiTaintAnalysis 1.0000 0.9375 0.9677 64
EncodeArithmeticSplit 0.9697 1.0000 0.9846 64 SplitEncodeArithmetic 0.7867 0.9219 0.8489 64
EncodeArithmeticVirtualize 1.0000 1.0000 1.0000 67 SplitEncodeBranches 0.9683 0.9531 0.9606 64
EncodeBranches 0.9571 1.0000 0.9781 67 SplitEncodeLiterals 1.0000 1.0000 1.0000 62
EncodeBranchesAntiAliasAnalysis ~ 1.0000 1.0000 1.0000 62 SplitFlatten 1.0000 1.0000 1.0000 64
EncodeBranchesAntiTaintAnalysis ~ 0.9853 1.0000 0.9926 67 SplitSelfModify 1.0000 1.0000 1.0000 63
EncodeBranchesEncodeArithmetic ~ 0.9833 0.9219 0.9516 64 SplitVirtualize 1.0000 1.0000 1.0000 64
EncodeBranchesEncodeLiterals 1.0000 1.0000 1.0000 66 TigressRecipel 1.0000 1.0000 1.0000 62
EncodeBranchesSplit 0.9412 1.0000 0.9697 64 TigressRecipe2 1.0000 1.0000 1.0000 66
EncodeLiterals 0.0000 0.0000 0.0000 66 Virtualize 1.0000 1.0000 1.0000 67
Flatten 1.0000 1.0000 1.0000 67 VirtualizeAntiAliasAnalysis 1.0000 1.0000 1.0000 66
VirtualizeAntiTaintAnalysis 0.9846 0.9552 0.9697 67 VirtualizeEncodeArithmetic 1.0000 1.0000 1.0000 64
VirtualizeEncodeBranches 1.0000 1.0000 1.0000 67 VirtualizeEncodeLiterals 1.0000 1.0000 1.0000 66
VirtualizeFlatten 1.0000 1.0000 1.0000 67 VirtualizeSplit 1.0000 1.0000 1.0000 64
non-obfuscated 1.0000 0.7647 0.8667 17
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Figure 8. Final cascaded inference (ExtraTrees): selected confusion matrix regions showing the

most relevant end-to-end misclassifications in the integrated pipeline. Top left: confusion between
AntiAliasAnalysis and its layered variant AntiAliasAnalysisAntiTaintAnalysis. Top right: EncodeLiterals
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family with misclassifications propagated from the single-versus-layered decision stage. Bottom:
confusion cluster in the SelfModify and Split families. These regions illustrate how localized stage
errors propagate through the cascade, while overall class separability remains high. Note that these
confusion subsets do not fully represent the confusions across all classes. Some relative scores here
are higher than in the whole picture, as some inter-class-confusions are not accounted for.

Table 14. Experiment 4 (ExtraTrees): Summary metrics on the hold-out test split.

Accuracy Precision (Macro) Recall (Macro) F1 (Macro)
ExtraTrees 0.9477 0.9346 0.9453 0.9366

Summary

The cascaded pipeline reaches 94.77% accuracy. Most layered and many single-pass
classes remain highly accurate end-to-end. Persistent errors align with earlier observations:
base EncodeLiterals and AntiAliasAnalysis show low recall in the final output (both are
challenging upstream), while Non_Obfuscated retains the same recall as in Experiment 1
(0.7647) due to its small support. Overall macro/weighted metrics (Macro F1 = 0.9366,
Weighted F1 = 0.9377) are consistent with the stage-wise results, confirming that the
pipeline composes well in practice.

5. Discussion

Across all stages, both classifiers, ExtraTrees and CatBoost, perform strongly on IR2Vec
embeddings of Tigress—obfuscated LLVM IR. The staged/cascaded evaluations show that
most errors appear in a few predictable areas, mainly in base EncodeLiterals, AntiAliasAnaly-
sis, and some Split/ SelfModify variants, while the remaining labels are classified reliably.

ExtraTrees (ET) performs slightly better than CatBoost (CB) in most settings, usually by
about one to two percentage points. In the flat multiclass task (Experiment 0), ET reaches an
accuracy of 0.9312 compared to 0.9269 for CB. Confusions occur in similar places for both,
such as between EncodeLiterals, EncodeLiterals Antilnint Analysis, and certain Split / SelfModify
combinations. In binary obfuscation detection (Experiment 1), both models are nearly
perfect with accuracies of 0.9991 for ET and 0.9993 for CB. The only consistent weakness is
recall on Non_Obfuscated samples, mainly due to the smaller number of clean examples.

In the binary classification between Single_Obf and Layered_Obf (Experiment 2), ET
reaches 0.9599 accuracy, and CB 0.9522. Both models show lower recall for Single_Obf
(ET 0.7155, CB 0.6729), as some single transformations, such as Flatten or EncodeLiterals,
resemble layered obfuscations.

For identifying single obfuscation methods (Experiment 3), both classifiers reach
1.0000 across all nine transformations. The embeddings preserve clear distinctions between
transformation types, confirming that IR2Vec captures characteristic structural patterns.
In the layered-obfuscation task (Experiment 4), both models maintain high performance (ET
0.9867, CB 0.9851). Small confusions appear in combinations involving AntiTaintAnalysis,
Flatten, or EncodeArithmetic.

The decision pipeline integrates several individually trained models, each specialized
for a distinct decision stage. The first stage determines whether a sample is obfuscated at
all, effectively separating clean IR from transformed IR. The second stage, trained only on
obfuscated samples, decides whether the code was modified by a single transformation or
by a layered combination. The third and fourth stages then specialize on their respective
domains: one model identifies the specific single obfuscation method, while the other
identifies the layered combination. This modular setup allows the system to narrow down
uncertainty step by step, reducing the complexity of each decision. The output from one
stage serves as the input domain for the next, creating a structured inference chain that
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resembles a multi-step diagnostic process. Although this design introduces the possibility
of error propagation between stages, it improves interpretability and isolates where specific
classification difficulties arise. In practice, nearly all residual misclassifications in the final
output can be traced to errors introduced in one of the intermediate stages, particularly in
the single-versus-layered split.

The final cascaded pipeline combines all stages into an integrated inference chain.
Here, ET reaches an overall accuracy of 0.9477 (Macro F1 0.9366), while CB reaches 0.9276
(Macro F1 0.9179). The general accuracy difference remains consistent, but the cascaded
design highlights where specific misclassifications originate. The main residual issues
correspond to upstream weaknesses:

*  Base EncodeLiterals still shows very low recall for both classifiers due to its overlap
with layered variants.

*  The pair AntiAliasAnalysis and AntiAliasAnalysisAntiTnint Analysis remains difficult. ET
achieves 100% recall for the layered form but misses all base samples, while CB shows
similar behavior with slightly lower precision and recall.

*  For Virtualize and VirtualizeAntilnintAnalysis, CB loses some recall (around 0.85-0.87),
whereas ET remains stable.

*  Split and SelfModify also degrade slightly in the cascaded setup compared to their
isolated performance.

Each stage contributes differently to the final accuracy. The first classifier, which
detects obfuscation, filters the input almost perfectly and prevents contamination from
clean samples. The second classifier is the most critical, as errors here directly propagate
and determine whether a sample is sent to the correct downstream model. Its 95% accuracy
ensures stable routing but still accounts for most of the residual confusion in the cascade.
The third and fourth classifiers perform with near-perfect precision within their subdo-
mains, showing that once a sample is correctly routed, the specialized models can identify
transformation signatures almost without error. Together, these results demonstrate that
most of the cascading loss stems from misrouting rather than model uncertainty within
each stage.

The cascaded model slgihtly exceeds the flat multiclass accuracy but keeps perfor-
mance high while making the model’s behavior easier to interpret. Because the binary
obfuscation stage (Experiment 1) and single-method classification (Experiment 3) are nearly
perfect, most end-to-end losses originate from the single-versus-layered distinction (Experi-
ment 2) and a few difficult layered combinations in Experiment 4.

Across all experiments, the main trends remain stable. IR2Vec embeddings are highly
discriminative at the method level and robust for layered transformations. Remaining errors
occur in the same few areas across both classifiers and are mainly due to class imbalance
and overlapping transformation effects. ET performs slightly better in Experiments 0, 2,
4, and in the final cascade, while CB matches or slightly exceeds ET in Experiment 1 and
performs equally in Experiment 3.

In summary, IR-level obfuscation classification with IR2Vec embeddings achieves
strong and consistent results across both classifiers. The cascaded setup preserves accuracy
(ET 0.9477, CB 0.9276) comparable to the flat baseline (ET 0.9312, CB 0.9269) while making
stage-specific error sources visible. Adding targeted post hoc checks for known overlaps,
such as between EncodeLiterals and its layered variants or between AntiAliasAnalysis and
AntiAliasAnalysisAntiTaint Analysis, could reduce residual ambiguity without changing the
embedding or classifier setup.
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6. Conclusion and Future Work

This study showed that IR2Vec embeddings combined with ensemble classifiers,
specifically ExtraTrees and CatBoost, can effectively identify a broad range of obfuscation
transformations. Both models achieved consistently high accuracy across all experimental
stages, demonstrating that structural and semantic information in IR2Vec embeddings is
sufficient for reliable obfuscation detection. The results confirm that even simple machine
learning models can accurately separate obfuscated from non-obfuscated code, distinguish
single from layered transformations, and identify individual obfuscation methods with
high precision.

Across all experiments, ExtraTrees achieved slightly higher accuracy than CatBoost,
typically by one to two percentage points, while CatBoost matched or exceeded Extra-
Trees in binary detection tasks. The cascaded decision pipeline, which combines several
specialized classifiers trained for distinct sub-tasks, reached an overall accuracy of 0.9477
for ExtraTrees and 0.9276 for CatBoost. This design allows classification uncertainty to
be isolated and traced to individual decision stages. Errors primarily originate in the
single-versus-layered classification step, while the preceding obfuscation detector and
downstream specialized classifiers perform nearly perfectly. The cascading approach there-
fore improves interpretability without compromising accuracy, providing insight into how
uncertainty propagates through the decision process.

Single obfuscation methods were identified with perfect accuracy by both classifiers,
confirming that IR2Vec embeddings capture unique structural and semantic signatures
for each transformation. Layered combinations were also recognized with high precision,
though certain overlaps, particularly between AntiAliasAnalysis and AntiTaintAnalysis,
or between literal and arithmetic encodings, remain challenging. These confusions stem
from structural similarity in the intermediate representation. Still, even in these cases,
classification performance remains above 95% accuracy, showing the robustness of the
embedding—classifier combination.

While the flat multiclass setup already performs strongly (ET 0.9312, CB 0.9269),
the staged design offers a clear analytical advantage by decomposing complex classification
decisions into smaller, interpretable subproblems. It provides a transparent view of how
individual classification steps interact and where errors originate, making it more suitable
for applied analysis scenarios where reliability and explainability are as important as
raw accuracy.

Since intermediate representations can be reconstructed from compiled binaries, ap-
plying this workflow to lifted IR from real-world executables would broaden its practical
applicability in future work and enable automated classification of obfuscation directly
from binary code.

All machine learning experiments and data are presented in a corresponding repository,
https:/ /github.com/Raubkatz/IR2Vec_Obfuscation_Identification (accessed on 10 October 2025).
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Appendix A. CatBoost Results for Cascading Experiments
Appendix A.1. Multiclass Obfuscation Classification (Experiment 0)

Experiment 0 evaluates direct multiclass classification across all obfuscation labels
without prior filtering. Here we report the CatBoost model; ExtraTrees results are provided
in the main text (Section 4) for comparison. CatBoost attains an overall accuracy of 0.9269
on the hold-out test split. Per-class precision, recall, F1, and supports are summarized in
Tables Al and A2, corresponding confusion matrix excerpts are given in Figure Al. As with
ExtraTrees, most single-pass and many layered classes are near-perfect. The main errors
remain in EncodeLiterals and related variants, AntiAliasAnalysis, and a subset of Split. Com-
pared with ExtraTrees, CatBoost shows slightly lower recall for VirtualizeAntiTaint Analysis
and slightly higher recall for non-obfuscated.

Summary

CatBoost achieves an overall accuracy of 92.69%. Most single-pass and many-layered
classes are predicted correctly (F1 near 1.0). Errors concentrate in EncodeLiterals and En-
codeLiterals AntiTuint Analysis, AntiAliasAnalysis, and selected Split cases. Compared with
ExtraTrees, CatBoost shows lower recall for VirtualizeAntiTaint Analysis (0.8806) and higher
recall for non-obfuscated (0.9412).

Table A1. Best CatBoost classifier, per-class report.

Class Precision  Recall F1-Score  Support Class Precision  Recall ~F1-Score  Support
AntiAliasAnalysis 0.2623 0.2581 0.2602 62 AntiAliasAnalysisAntiTaintAnalysis 0.3134 0.3182 0.3158 66
AntiAliasAnalysisEncodeArithmetic  1.0000 1.0000 1.0000 62 AntiAliasAnalysisEncodeBranches  1.0000 1.0000 1.0000 66
AntiAliasAnalysisEncodeLiterals 1.0000 1.0000 1.0000 66 AntiAliasAnalysisFlatten 1.0000 1.0000 1.0000 66
AntiAliasAnalysisSplit 1.0000 1.0000 1.0000 62 AntiAliasAnalysisVirtualize 1.0000 1.0000 1.0000 66
AntiTaintAnalysis 1.0000 1.0000 1.0000 67 AntiTaintAnalysisEncodeArithmetic  0.9265 0.9844 0.9545 64
AntiTaintAnalysisEncodeBranches ~ 0.9545 0.9403 0.9474 67 AntiTaintAnalysisFlatten 0.8028 0.8507 0.8261 67
AntiTaintAnalysisSplit 0.8649 1.0000 0.9275 64 AntiTaintAnalysisVirtualize 0.8919 0.9851 0.9362 67
EncodeArithmetic 1.0000 1.0000 1.0000 64 EncodeArithmeticAntiAliasAnalysis 1.0000 1.0000 1.0000 62
EncodeArithmeticAntiTaintAnalysis 0.9841 0.9254 0.9538 67 EncodeArithmeticEncodeBranches  0.9296 0.9851 0.9565 67
EncodeArithmeticEncodeLiterals 1.0000 1.0000 1.0000 66 EncodeArithmeticFlatten 0.9853 1.0000 0.9926 67
EncodeArithmeticSelfModify 1.0000 1.0000 1.0000 62 EncodeArithmeticSplit 0.9697 1.0000 0.9846 64
EncodeArithmeticVirtualize 1.0000 1.0000 1.0000 67 EncodeBranches 0.9853 1.0000 0.9926 67
EncodeBranchesAntiAliasAnalysis ~ 1.0000 1.0000 1.0000 62 EncodeBranchesAntiTaintAnalysis ~ 0.9412 0.9552 0.9481 67
EncodeBranchesEncodeArithmetic ~ 0.9833 0.9219 0.9516 64 EncodeBranchesEncodelLiterals 1.0000 1.0000 1.0000 66
EncodeBranchesSplit 0.9692 0.9844 0.9767 64 EncodelLiterals 0.2273 0.2273 0.2273 66
EncodeLiteralsAntiAliasAnalysis 1.0000 1.0000 1.0000 62 EncodeLiteralsAntiTaintAnalysis 0.2273 0.2273 0.2273 66
EncodeLiteralsEncodeArithmetic 1.0000 1.0000 1.0000 62 EncodeLiteralsEncodeBranches 1.0000 1.0000 1.0000 66
EncodeLiteralsFlatten 1.0000 1.0000 1.0000 66 EncodeLiteralsSplit 1.0000 1.0000 1.0000 62
EncodelLiteralsVirtualize 1.0000 1.0000 1.0000 66 Flatten 1.0000 1.0000 1.0000 67
FlattenAntiAliasAnalysis 1.0000 1.0000 1.0000 66 FlattenAntiTaintAnalysis 0.8413 0.7910 0.8154 67
FlattenEncodeArithmetic 1.0000 0.9851 0.9925 67 FlattenEncodeBranches 1.0000 1.0000 1.0000 67
FlattenEncodeLiterals 1.0000 1.0000 1.0000 66 FlattenSelfModify 1.0000 1.0000 1.0000 66
FlattenSplit 1.0000 1.0000 1.0000 64 FlattenVirtualize 1.0000 1.0000 1.0000 67
SelfModify 0.7619 0.7619 0.7619 63 SelfModify AntiAliasAnalysis 1.0000 1.0000 1.0000 62
SelfModifyEncodeArithmetic 0.7619 0.7619 0.7619 63 Split 0.7692 0.7812 0.7752 64
SplitAntiAliasAnalysis 1.0000 1.0000 1.0000 62 SplitAntiTaintAnalysis 1.0000 0.8438 0.9153 64
SplitEncodeArithmetic 0.7705 0.7344 0.7520 64 SplitEncodeBranches 0.9841 0.9688 0.9764 64
SplitEncodeLiterals 1.0000 1.0000 1.0000 62 SplitFlatten 1.0000 1.0000 1.0000 64
SplitSelfModify 1.0000 1.0000 1.0000 63 SplitVirtualize 1.0000 1.0000 1.0000 64
TigressRecipel 1.0000 1.0000 1.0000 62 TigressRecipe2 1.0000 1.0000 1.0000 66
Virtualize 0.9571 1.0000 0.9781 67 VirtualizeAntiAliasAnalysis 1.0000 1.0000 1.0000 66
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Table A1. Cont.
Class Precision  Recall  F1-Score  Support Class Precision  Recall  F1-Score  Support
VirtualizeAntiTaintAnalysis 0.9833 0.8806 0.9291 67 VirtualizeEncodeArithmetic 1.0000 1.0000 1.0000 64
VirtualizeEncodeBranches 1.0000 0.9552 0.9771 67 VirtualizeEncodeLiterals 1.0000 1.0000 1.0000 66
VirtualizeFlatten 1.0000 1.0000 1.0000 67 VirtualizeSplit 1.0000 1.0000 1.0000 64
non-obfuscated 1.0000 0.9412 0.9697 17
Table A2. Experiment 0 (CatBoost): Summary metrics on the hold-out test split.
Accuracy Precision (Macro)  Recall (Macro) F1 (Macro)
CatBoost 0.9269 0.9282 0.9271 0.9273
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Figure A1. Experiment 0 (CatBoost): Confusion matrix excerpts (three snapshots from the full relative
matrix). Top row: AntiAliasAnalysis vs. AntiAliasAnalysisAntiTaintAnalysis (left) and the EncodeLiterals
cluster (right). Bottom: SelfModify cluster. Note that these confusion subsets do not fully represent
the confusions across all classes. Some relative scores here are higher than in the whole picture, as
some inter-class-confusions are not accounted for.

Appendix A.2. Cascading Experiments (CatBoost)

We repeat the staged inference workflow from the main text using CatBoost. Each
model is trained on the same stratified split as in the ExtraTrees experiments and evaluated
on the hold-out test set. The stages are identical:

e Experiment 1: Binary detection (Obfuscated vs. Non_Obfuscated).
e Experiment 2: Binary classification (Single_Obf vs. Layered_Obf).
e Experiment 3: Multiclass identification for Single_OUf.

e Experiment 4: Multiclass identification for Layered_OUf.

Performance metrics follow the same structure as in the ExtraTrees result (accuracy,
precision, recall, and F1). All confusion matrices and detailed per-class reports are provided
in the following . The final integrated pipeline results are summarized in Appendix A.3.
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Appendix A.2.1. Experiment 1: Binary Obfuscation Detection (Obfuscated vs.
Non-Obfuscated, CatBoost)

This binary classification has target ObfBinary € {Obfuscated, Non_Obfuscated}. Per-
class precision, recall, and F1 are listed in Table A3, summarized results in Table A4 and the
corresponding confusion matrix is shown in Figure A2.

Table A3. Experiment 1 (CatBoost): Per-class report on the hold-out test split.

Precision Recall F1-Score Support
Non_Obfuscated 1.0000 0.8235 0.9032 17
Obfuscated 0.9993 1.0000 0.9997 4416

Table A4. Experiment 1 (CatBoost): Summary metrics on the hold-out test split.

Accuracy Precision (Macro)  Recall (Macro) F1 (Macro)
CatBoost 0.9993 0.9997 0.9118 0.9514

Non_Obfuscated

True

> >
(:;)@/ (:5@/
N N
o o
Q Ve
éo
Predicted

Figure A2. Experiment 1 (CatBoost): Confusion matrix for Obfuscated vs. Non_Obfuscated (relative).

Summary

CatBoost achieves an overall accuracy of 0.9993. The Obfuscated class is detected
with perfect recall, while the smaller Non_Obfuscated class achieves a recall of 0.8235. This
confirms that CatBoost, like ExtraTrees, cleanly separates obfuscated from non-obfuscated
code, forming a reliable first stage in the cascading pipeline.

Appendix A.2.2. Experiment 2: Binary Single vs. Layered Obfuscations (CatBoost)

This experiment uses only obfuscated samples, targeting SingleVsLayer € {Single_Obf,
Layered_OUf}. Per-class results are listed in Table A5, summarized results in Table A6 and the
confusion matrix is shown in Figure A3.

Table A5. Experiment 2 (CatBoost): Per-class report on the hold-out test split.

Precision Recall F1-Score Support

Layered_Obf 0.9520 0.9950 0.9731 3829
Single_Obf 0.9541 0.6729 0.7892 587
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Table A6. Experiment 2 (CatBoost): Summary metrics on the hold-out test split.

Accuracy Precision (Macro)  Recall (Macro) F1 (Macro)
CatBoost 0.9522 0.9531 0.8340 0.8811

Layered_Obf- 1.00

True

Single_Obf 0.67

606\ (®) 5

Z N4

\\QJ@ =

V4 °
Predicted

Figure A3. Experiment 2 (CatBoost): Confusion matrix for Single_Obf vs. Layered_Obf (relative).

Summary

CatBoost achieves an overall accuracy of 0.9522. The model detects Layered_Obf
samples with high recall (0.9950), while Single_Obf shows lower recall (0.6729). Most
misclassifications occur when single obfuscations are mistaken for layered ones. This
asymmetry is consistent with ExtraTrees and reflects the stronger signal of layered transfor-
mations compared to certain single methods, especially those with control-flow or literal
encoding effects.

Appendix A.2.3. Experiment 3: Single-Obfuscation Identification (Multiclass, CatBoost)

This experiment isolates all samples labeled as Single_Obf and identifies the specific
transformation applied. The target variable SingleMethod covers nine canonical obfusca-
tion techniques. Per-class metrics are reported in Tables A7 and A8, and the confusion
matrix is shown in Figure A4.

Table A7. Experiment 3 (CatBoost): Per-class report on the hold-out test split.

Precision Recall F1-Score Support
AntiAliasAnalysis 1.0000 1.0000 1.0000 62
AntiTaintAnalysis 1.0000 1.0000 1.0000 67
EncodeArithmetic 1.0000 1.0000 1.0000 64
EncodeBranches 1.0000 1.0000 1.0000 67
EncodelLiterals 1.0000 1.0000 1.0000 66
Flatten 1.0000 1.0000 1.0000 67
SelfModify 1.0000 1.0000 1.0000 63
Split 1.0000 1.0000 1.0000 64
Virtualize 1.0000 1.0000 1.0000 67

Table A8. Experiment 3 (CatBoost): Summary metrics on the hold-out test split.

Accuracy Precision (Macro)  Recall (Macro) F1 (Macro)
CatBoost 1.0000 1.0000 1.0000 1.0000
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Figure A4. Experiment 3 (CatBoost): Confusion matrix over all single obfuscation classes (relative).

Summary

CatBoost achieves perfect accuracy (1.0000) across all nine single obfuscation types,
matching the performance of ExtraTrees. All classes show full precision, recall, and F1, con-
firming complete separability in the IR2Vec feature space. The confusion matrix (Figure A4)
exhibits a clean diagonal structure, indicating that each transformation produces distinct
feature patterns.

Appendix A.2.4. Experiment 4: Layered-Obfuscation Identification (Multiclass, CatBoost)

This experiment uses only samples labeled as Layered_Obf and identifies the specific
combination of transformations applied. The target variable LayeredLabel encodes each
unique layered configuration. Per-class precision, recall, and Fl-scores are shown in
Table A9, while sumamry results are given in Table A10.

Summary

CatBoost achieves an overall accuracy of 0.9851, showing stable and near-uniform
results across all layered configurations. Most combinations are identified without error,
while minor confusion occurs between closely related variants such as FlattenAntiTaintAnal-
ysis and EncodeArithmeticAntiTaint Analysis.

Table A9. Experiment 4 (CatBoost): Per-class report on the hold-out test split.

Class Precision  Recall  F1-Score  Support Class Precision  Recall  F1-Score  Support
AntiAliasAnalysisAntiTaintAnalysis 1.0000 1.0000 1.0000 66 EncodeBranchesEncodeArithmetic ~ 0.9833 0.9219 0.9516 64
AntiAliasAnalysisEncodeArithmetic  1.0000 1.0000 1.0000 62 EncodeBranchesEncodeLiterals 1.0000 1.0000 1.0000 66
AntiAliasAnalysisEncodeBranches  1.0000 1.0000 1.0000 66 EncodeBranchesSplit 0.9692 0.9844 0.9767 64
AntiAliasAnalysisEncodeLiterals 1.0000 1.0000 1.0000 66 EncodeLiteralsAntiAliasAnalysis 1.0000 1.0000 1.0000 62
AntiAliasAnalysisFlatten 1.0000 1.0000 1.0000 66 EncodeLiteralsAntiTaintAnalysis 1.0000 1.0000 1.0000 66
AntiAliasAnalysisSplit 1.0000 1.0000 1.0000 62 EncodelLiteralsEncodeArithmetic 1.0000 1.0000 1.0000 62
AntiAliasAnalysisVirtualize 1.0000 1.0000 1.0000 66 EncodeLiteralsEncodeBranches 1.0000 1.0000 1.0000 66
AntiTaintAnalysisEncodeArithmetic 0.9265 0.9844 0.9545 64 EncodeLiteralsFlatten 1.0000 1.0000 1.0000 66
AntiTaintAnalysisEncodeBranches  1.0000 0.9851 0.9925 67 EncodelLiteralsSplit 1.0000 1.0000 1.0000 62
AntiTaintAnalysisFlatten 0.7945 0.8657 0.8286 67 EncodeLiteralsVirtualize 1.0000 1.0000 1.0000 66
AntiTaintAnalysisSplit 0.9014 1.0000 0.9481 64 FlattenAntiAliasAnalysis 1.0000 1.0000 1.0000 66
AntiTaintAnalysisVirtualize 0.9167 0.9851 0.9496 67 FlattenAntiTaintAnalysis 0.8525 0.7761 0.8125 67
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Table A9. Cont.

Class Precision  Recall  F1-Score  Support Class Precision  Recall  F1-Score  Support
EncodeArithmeticAntiAliasAnalysis  1.0000 1.0000 1.0000 62 FlattenEncodeArithmetic 1.0000 0.9851 0.9925 67
EncodeArithmeticAntiTaintAnalysis 0.9841 0.9254 0.9538 67 FlattenEncodeBranches 1.0000 1.0000 1.0000 67
EncodeArithmeticEncodeBranches  0.9296 0.9851 0.9565 67 FlattenEncodelLiterals 1.0000 1.0000 1.0000 66
EncodeArithmeticEncodeLiterals 1.0000 1.0000 1.0000 66 FlattenSelfModify 1.0000 1.0000 1.0000 66
EncodeArithmeticFlatten 0.9853 1.0000 0.9926 67 FlattenSplit 1.0000 1.0000 1.0000 64
EncodeArithmeticSelfModify 1.0000 1.0000 1.0000 62 FlattenVirtualize 1.0000 1.0000 1.0000 67
EncodeArithmeticSplit 0.9697 1.0000 0.9846 64 SelfModify AntiAlias Analysis 1.0000 1.0000 1.0000 62
EncodeArithmeticVirtualize 1.0000 1.0000 1.0000 67 SelfModifyEncodeArithmetic 1.0000 1.0000 1.0000 63
EncodeBranchesAntiAliasAnalysis ~ 1.0000 1.0000 1.0000 62 SplitAntiAliasAnalysis 1.0000 1.0000 1.0000 62
EncodeBranchesAntiTaintAnalysis ~ 0.9853 1.0000 0.9926 67 SplitAntiTaintAnalysis 1.0000 0.8906 0.9421 64
TigressRecipel 1.0000 1.0000 1.0000 62 SplitEncodeArithmetic 1.0000 0.9688 0.9841 64
TigressRecipe2 1.0000 1.0000 1.0000 66 SplitEncodeBranches 0.9841 0.9688 0.9764 64
VirtualizeAntiAlias Analysis 1.0000 1.0000 1.0000 66 VirtualizeAntiTaintAnalysis 0.9839 0.9104 0.9457 67
VirtualizeEncodeArithmetic 1.0000 1.0000 1.0000 64 VirtualizeEncodeBranches 1.0000 1.0000 1.0000 67
VirtualizeEncodeLiterals 1.0000 1.0000 1.0000 66 VirtualizeFlatten 1.0000 1.0000 1.0000 67
VirtualizeSplit 1.0000 1.0000 1.0000 64
Table A10. Experiment 4 (CatBoost): Summary metrics on the hold-out test split.
Accuracy Precision (Macro) Recall (Macro) F1 (Macro)
CatBoost 0.9851 0.9859 0.9854 0.9853
Appendix A.3. Final Cascaded Inference (Integrated Pipeline, CatBoost)

We evaluate the full CatBoost cascade on the same hold-out split. The pipeline applies
stage models in sequence: obfuscation detection, single vs. layered (for obfuscated samples),
and method identification using the corresponding single/layered model. Table A11 lists
the per-class report in a compact two-panel layout; summaries are in Table A12. Figure A5
shows three confusion-matrix excerpts.

Table A11. Final cascading classification report (CatBoost).

Class Precision  Recall  F1-Score  Support Class Precision  Recall  F1-Score  Support
AntiAliasAnalysis 0.0000 0.0000 0.0000 62 AntiAliasAnalysisAntiTaintAnalysis 0.4672 0.8636 0.6064 66
AntiAliasAnalysisEncodeArithmetic  1.0000 1.0000 1.0000 62 AntiAliasAnalysisEncodeBranches ~ 0.8571 0.9091 0.8824 66
AntiAliasAnalysisEncodeLiterals 1.0000 1.0000 1.0000 66 AntiAliasAnalysisFlatten 1.0000 1.0000 1.0000 66
AntiAliasAnalysisSplit 1.0000 1.0000 1.0000 62 AntiAliasAnalysisVirtualize 1.0000 1.0000 1.0000 66
AntiTaintAnalysis 1.0000 0.7910 0.8833 67 AntiTaintAnalysisEncodeArithmetic 0.8873 0.9844 0.9333 64
AntiTaintAnalysisEncodeBranches ~ 0.8400 0.9403 0.8873 67 AntiTaintAnalysisFlatten 0.7941 0.8060 0.8000 67
AntiTaintAnalysisSplit 0.8000 1.0000 0.8889 64 AntiTaintAnalysisVirtualize 0.8649 0.9552 0.9078 67
EncodeArithmetic 0.9688 0.9688 0.9688 64 EncodeArithmeticAntiAliasAnalysis 1.0000 1.0000 1.0000 62
EncodeArithmeticAntiTaintAnalysis 0.9833 0.8806 0.9291 67 EncodeArithmeticEncodeBranches ~ 0.9041 0.9851 0.9429 67
EncodeArithmeticEncodeLiterals 1.0000 1.0000 1.0000 66 EncodeArithmeticFlatten 0.9853 1.0000 0.9926 67
EncodeArithmeticSelfModify 0.9841 1.0000 0.9920 62 EncodeArithmeticSplit 0.9697 1.0000 0.9846 64
EncodeArithmeticVirtualize 0.9710 1.0000 0.9853 67 EncodeBranches 0.9853 1.0000 0.9926 67
EncodeBranchesAntiAliasAnalysis ~ 1.0000 1.0000 1.0000 62 EncodeBranchesAntiTaintAnalysis ~ 0.8767 0.9552 0.9143 67
EncodeBranchesEncodeArithmetic ~ 0.9833 0.9219 0.9516 64 EncodeBranchesEncodeLiterals 1.0000 1.0000 1.0000 66
EncodeBranchesSplit 0.9048 0.8906 0.8976 64 EncodeLiterals 0.0000 0.0000 0.0000 66
EncodeLiteralsAntiAliasAnalysis 1.0000 1.0000 1.0000 62 EncodeLiteralsAntiTaintAnalysis 0.4848 0.9697 0.6465 66
EncodeLiteralsEncodeArithmetic 1.0000 1.0000 1.0000 62 EncodelLiteralsEncodeBranches 0.9697 0.9697 0.9697 66
EncodeLiteralsFlatten 1.0000 1.0000 1.0000 66 EncodeLiteralsSplit 1.0000 1.0000 1.0000 62
EncodeLiteralsVirtualize 1.0000 1.0000 1.0000 66 Flatten 1.0000 1.0000 1.0000 67
FlattenAntiAliasAnalysis 1.0000 1.0000 1.0000 66 FlattenAntiTaintAnalysis 0.8030 0.7910 0.7970 67
FlattenEncodeArithmetic 1.0000 0.9851 0.9925 67 FlattenEncodeBranches 1.0000 1.0000 1.0000 67
FlattenEncodeLiterals 1.0000 1.0000 1.0000 66 FlattenSelfModify 1.0000 1.0000 1.0000 66
FlattenSplit 1.0000 1.0000 1.0000 64 FlattenVirtualize 1.0000 1.0000 1.0000 67
SelfModify 0.8333 0.7143 0.7692 63 SelfModify AntiAliasAnalysis 1.0000 1.0000 1.0000 62
SelfModifyEncodeArithmetic 0.7606 0.8571 0.8060 63 Split 0.8431 0.6719 0.7478 64
SplitAntiAliasAnalysis 1.0000 1.0000 1.0000 62 SplitAntiTaintAnalysis 1.0000 0.7500 0.8571 64
SplitEncodeArithmetic 0.7826 0.8438 0.8120 64 SplitEncodeBranches 0.8732 0.9688 0.9185 64
SplitEncodeLiterals 1.0000 1.0000 1.0000 62 SplitFlatten 1.0000 1.0000 1.0000 64
SplitSelfModify 1.0000 1.0000 1.0000 63 SplitVirtualize 1.0000 1.0000 1.0000 64
TigressRecipel 1.0000 1.0000 1.0000 62 TigressRecipe2 1.0000 1.0000 1.0000 66
Virtualize 1.0000 0.8657 0.9280 67 VirtualizeAntiAliasAnalysis 1.0000 1.0000 1.0000 66
VirtualizeAntiTaintAnalysis 0.9500 0.8507 0.8976 67 VirtualizeEncodeArithmetic 1.0000 1.0000 1.0000 64
VirtualizeEncodeBranches 0.9054 1.0000 0.9504 67 VirtualizeEncodeLiterals 1.0000 1.0000 1.0000 66
VirtualizeFlatten 1.0000 1.0000 1.0000 67 VirtualizeSplit 1.0000 1.0000 1.0000 64
non-obfuscated 1.0000 0.8235 0.9032 17
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Table A12. Final cascade summary (CatBoost).
Accuracy Precision (Macro)  Recall (Macro) F1 (Macro)
CatBoost 0.9276 0.9164 0.9263 0.9179
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Figure A5. Final cascade (CatBoost): Confusion-matrix excerpts (relative). Top: AntiAliasAnalysis
vs. AntiAliasAnalysisAntiTaintAnalysis (left) and EncodeLiterals cluster (right). Bottom: SelfModify
cluster. Note that these confusion subsets do not fully represent the confusions across all classes.
Some relative scores here are higher than in the whole picture, as some inter-class-confusions are not
accounted for.

Summary

The CatBoost cascade attains 92.76% accuracy (macro F1 0.9179). Most layered and
many single-pass classes remain strong. Weak classes mirror earlier trends: AntiAliasAnaly-
sis and base EncodeLiterals show near-zero recall, and Virtualize and AntiTaint Analysis have
reduced recall compared to ExtraTrees. Non_Obfuscated recall is 0.8235 on its small support.
Opverall, the end-to-end performance is consistent with the CatBoost stage results and lower
than ExtraTrees, but the pipeline composes reliably.

Appendix B. O-Level Identification (Experiment 5)

This appendix presents the results for Experiment 5, where the goal is to identify com-
piler optimization levels (O-levels) from LLVM IR samples. The experiment is designed to
test whether optimization levels (01, 02, 03) can be reliably detected and distinguished from
non-optimized (No_0) samples. The task is treated as a multiclass classification problem
using the same train/test split and preprocessing pipeline as all previous experiments.

We report results separately for the ExtraTrees and CatBoost classifiers. Each subsec-
tion provides a preliminary classification report with placeholder performance values and
a confusion matrix visualization.
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Appendix B.1. ExtraTrees Classifier (O-Level Identification)

This experiment evaluates the capability of the ExtraTrees classifier to identify compiler
optimization levels (00-03) and distinguish them from samples compiled without explicit
optimization (No_0). The classification report is summarized in Table A13, while overall
metrics are presented in Table A14. The corresponding confusion matrix for the best-
performing ExtraTrees model is shown in Figure A6.

Table A13. Experiment 5 (ExtraTrees): Per-class report on the hold-out test split.

Precision Recall F1-Score Support
No_O 1.0000 0.1765 0.3000 17
00 0.2135 0.3803 0.2735 1099
o1 0.0405 0.0027 0.0051 1106
02 0.0448 0.0026 0.0049 1147
03 0.2051 0.4492 0.2816 1064

Table A14. Experiment 5 (ExtraTrees): Summary metrics on the hold-out test split.

Accuracy Precision (Macro)  Recall (Macro) F1 (Macro)
ExtraTrees 0.2042 0.3008 0.2023 0.1730

Summary

The classifier achieves an overall accuracy of only 20.42%, indicating that identifying
compiler optimization levels is substantially more challenging than detecting obfuscation
types. Although the model partially separates the extremes (No_O and O3) confusions
between intermediate levels (O0-O2) dominate (Figure A6). This pattern suggests that,
in contrast to obfuscation detection, optimization-level identification lacks distinct IR-level
cues and is therefore not reliably solvable with the same representation and feature set.

-0.8

No_O 0.82
-0.7
-0.6

00 0.58
~-0.5

[9)

é 01 0.53 ™"
0.3

02 0.54
0.2
03 0.45 o
0.0

J )¢ ¥ I

N
Predicted

Figure A6. Experiment 5 (ExtraTrees): Confusion matrix for O-level identification (No_O, OO0, O1,
02, 03).
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Appendix B.2. CatBoost Classifier (O-Level Identification)

The CatBoost model was trained under identical conditions as the ExtraTrees baseline
and evaluated on the same hold-out test split. This experiment again targets compiler
optimization levels (00-03) and the non-optimized class (No_0). The detailed per-class
metrics are listed in Table A15, overall performance metrics are shown in Table A16, and the
confusion matrix is presented in Figure A7.

Table A15. Experiment 5 (CatBoost): Per-class report on the hold-out test split.

Precision Recall F1-Score Support
No_O 1.0000 0.8824 0.9375 17
00 0.0236 0.0255 0.0245 1099
o1 0.0170 0.0163 0.0167 1106
02 0.0178 0.0157 0.0167 1147
03 0.0188 0.0207 0.0197 1064

Table A16. Experiment 5 (CatBoost): Summary metrics on the hold-out test split.

Accuracy Precision (Macro)  Recall (Macro) F1 (Macro)
CatBoost 0.0228 0.2155 0.1921 0.2030

No_O -08

-0.7

00

-0.6

o1

True

02

03

7

Predicted

Figure A7. Experiment 5 (CatBoost): Confusion matrix for O-level identification (No_O, 00, O1,
02, 03).

Summary

The CatBoost classifier performs significantly worse than the ExtraTrees model for
O-level identification, reaching an overall accuracy of only 2.28%. Although No_O samples
are detected with relatively high recall (0.88), all optimization-level classes (O0-O3) are
essentially indistinguishable, with near-random classification performance. This outcome
further confirms that the IR-level representation contains insufficient structural variation to
capture compiler optimization differences. Consequently, both CatBoost and ExtraTrees
fail to generalize meaningfully for O-level prediction, supporting the conclusion that this
task cannot be reliably solved in the current feature space.
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