
Algorithmica (2026) 88:7
https://doi.org/10.1007/s00453-025-01343-7

Abstract
The d-Cut problem is to decide whether a graph has an edge cut such that each
vertex has at most d neighbours on the opposite side of the cut. If d = 1, we ob-
tain the intensively studied Matching Cut problem. The d-Cut problem has been
studied as well, but a systematic study for special graph classes was lacking. We
initiate such a study and consider classes of bounded diameter, bounded radius
and H-free graphs. We prove that for all d ≥ 2, d-Cut is polynomial-time solvable
for graphs of diameter 2, (P3 + P4)-free graphs and P5-free graphs. These results
extend known results for d = 1. However, we also prove several NP-hardness re-
sults for d-Cut that contrast known polynomial-time results for d = 1. Our results
lead to full dichotomies for bounded diameter and bounded radius and to almost-
complete dichotomies for H-free graphs.

Keywords  Matching cut · d-cut · Diameter · Radius · H-free graph

Received: 29 October 2024 / Accepted: 11 October 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2025

Finding d-Cuts in Graphs of Bounded Diameter, Graphs of
Bounded Radius and H-Free Graphs

Felicia Lucke1 · Ali Momeni2 · Daniël Paulusma3 · Siani Smith4

An extended abstract of this paper has appeared in the proceedings of WG 2024 [24].

	
 Felicia Lucke
felicia.lucke@ens-lyon.fr

Ali Momeni
ali.momeni@univie.ac.at

Daniël Paulusma
daniel.paulusma@durham.ac.uk

Siani Smith
s.smith16@lboro.ac.uk

1	 LIP, ENS Lyon, Lyon, France
2	 Faculty of Computer Science, UniVie Doctoral School Computer Science DoCS,

University of Vienna, Vienna, Austria
3	 Department of Computer Science, Durham University, Durham, UK
4	 Department of Computer Science, Loughborough University, Loughborough, UK

1 3

https://doi.org/10.1007/s00453-025-01343-7
http://orcid.org/0000-0002-9860-2928
http://orcid.org/0009-0009-8280-7847
http://orcid.org/0000-0001-5945-9287
http://orcid.org/0000-0003-0797-0512
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-025-01343-7&domain=pdf&date_stamp=2025-11-12

Algorithmica (2026) 88:7

1  Introduction

We consider the generalization d-Cut of a classic graph problem Matching Cut
(1-Cut). First, we explain the original graph problem. Consider a connected graph
G = (V, E), and let M ⊆ E be a subset of edges of G. The set M is an edge cut of G
if it is possible to partition V into two non-empty sets B (set of blue vertices) and R
(set of red vertices) in such a way that M is the set of all edges with one end-vertex in
B and the other one in R. Now, suppose that M is in addition also a matching, that is,
no two edges in M have a common end-vertex. Then M is said to be a matching cut.
See Fig. 1 for an example.

Graphs with matching cuts were introduced in the context of number theory [16]
and have various other applications [2, 11, 14, 29]. The Matching Cut problem is
to decide if a connected graph has a matching cut. This problem was shown to be
NP-complete by Chvátal [9]. Several variants and generalizations of matching cuts
are known. In particular, a perfect matching cut is a matching cut that is a perfect
matching, whereas a disconnected perfect matching is a perfect matching containing
a matching cut. The corresponding decision problems Perfect Matching Cut [17]
and Disconnected Perfect Matching [7] are also NP-complete; see [4, 13, 20, 22,
26] for more complexity results for these two problems. The optimization versions
Maximum Matching Cut and Minimum Matching Cut are to find a matching cut
of maximum and minimum size in a connected graph, respectively; see [21, 27] for
more details.

Our Focus Matching cuts have also been generalized as follows. For an inte-
ger d ≥ 1 and a connected graph G = (V, E), a set M ⊆ E is a d-cut of G if it is
possible to partition V into two non-empty sets B and R, such that: (i) the set M is
the set of all edges with one end-vertex in B and the other one in R; and (ii) every
vertex in B has at most d neighbours in R, and vice versa (see also Fig. 1). Note that
a 1-cut is a matching cut. We consider the d-Cut problem: does a connected graph
have a d-cut? Here, d ≥ 1 is a fixed integer, so not part of the input. Note that 1-Cut
is Matching Cut. The d-Cut problem was introduced by Gomes and Sau [15] who
proved its NP-completeness for all d ≥ 1.

Our Goal To get a better understanding of the hardness of an NP-complete graph
problem, it is natural to restrict the input to belong to some special graph classes. We
will first give a brief survey of the known complexity results for Matching Cut and
d-Cut for d ≥ 2 under input restrictions. As we will see, for Matching Cut many
more results are known than for d-Cut with d ≥ 2. Our goal is to obtain the same
level of understanding of the d-Cut problem for d ≥ 2. This requires a currently

Fig. 1  Left: a graph with a matching cut (i.e., a 1-cut). Middle: a graph with a 3-cut but no d-cut for
d ≤ 2. Right: the graph H∗

i

1 3

 7   Page 2 of 27

Algorithmica (2026) 88:7

lacking systematic study into the complexity of this problem. We therefore consider
the following research question:

For which graph classes G does the complexity of d-Cut,restricted to graphs from
G, change if d ≥ 2 instead of d = 1?

As testbeds we take classes of graphs of bounded diameter, graphs of bounded
radius, and H-free graphs. The distance between two vertices u and v in a connected
graph G is the length (number of edges) of a shortest path between u and v in G. The
eccentricity of a vertex u is the maximum distance between u and any other vertex of
G. The diameter of G is the maximum eccentricity over all vertices of G, whereas the
radius of G is the minimum eccentricity over all vertices of G. A graph G is H-free if
G does not contain a graph H as an induced subgraph, that is, G cannot be modified
into H by vertex deletions.

Existing Results We focus on classical complexity results; see [3, 15] for exact and
parameterized complexity results for d-Cut. Let K1,r denote the (r+1)-vertex star,
which has vertex set {u, v1, . . . , vr} and edges uvi for i ∈ {1, . . . , r}. Chvátal [9]
showed that Matching Cut is NP-complete even for K1,4-free graphs of maximum
degree 4, but polynomial-time solvable for graphs of maximum degree at most 3.
Gomes and Sau [15] extended these results by proving that for every d ≥ 2, d-Cut is
NP-complete for (2d + 2)-regular graphs, but polynomial-time solvable for graphs
of maximum degree at most d + 2. Feghali et al. [13] proved that for every d ≥ 1
and every g ≥ 3, there is a function f(d), such that d-Cut is NP-complete for bipartite
graphs of girth at least g and maximum degree at most f(d). The girth of a graph G
that is not a forest is the length of a shortest induced cycle in G. It is also known that
Matching Cut is polynomial-time solvable for graphs of diameter at most 2 [6, 19],
and even radius at most 2 [25], while being NP-complete for graphs of diameter 3
[19], and thus radius at most 3 (for a survey of other results, see [8]). Hence, we
obtain:

Theorem 1  ([19, 25]]) For r ≥ 1 , Matching Cut is polynomial-time solvable for
graphs of diameter r and graphs of radius r if r ≤ 2 and NP-complete if r ≥ 3 .

To study a problem in a systematic way on graph classes that can be character-
ized by forbidden induced subgraphs, an often used approach is to first focus on the
classes of H-free graphs. As Matching Cut is NP-complete for graphs of girth g for
every g ≥ 3 [13] and for K1,4-free graphs [9], Matching Cut is NP-complete for
H-free graphs whenever H has a cycle or is a forest with a vertex of degree at least 4.
What about when H is a forest of maximum degree 3?

We let Pt be the path on t vertices. We denote the disjoint union of two vertex-
disjoint graphs G1 + G2 by G1 + G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We
let sG be the disjoint union of s copies of G. Feghali [12] proved the existence of
an integer t such that Matching Cut is NP-complete for Pt-free graphs, which was
narrowed down to (3P5, P15)-free graphs in [26] and to (3P6, 2P7, P14)-free graphs
in [20]. Let H∗

1 be the “H”-graph, which has vertices u, v, w1, w2, x1, x2 and edges
uv, uw1, uw2, vx1, vx2. For i ≥ 2, let H∗

i be the graph obtained from H∗
1 by sub-

dividing uv exactly i − 1 times; see Fig. 1. It is known that Matching Cut is NP-

1 3

Page 3 of 27  7

Algorithmica (2026) 88:7

complete for (H∗
1 , H∗

3 , H∗
5 , . . .)-free bipartite graphs [28] and for (H∗

1 , . . . , H∗
i)-free

graphs for every i ≥ 1 [13].
On the positive side, Matching Cut is polynomial-time solvable for claw-free

graphs (K1,3-free graphs) and for P6-free graphs [26]. Moreover, if Matching Cut
is polynomial-time solvable for H-free graphs for some graph H, then it is so for
(H + P3)-free graphs [26].

For two graphs H and H ′, we write H ⊆i H ′ if H is an induced subgraph of H ′.
Combining the above yields a partial classification (see also [13, 27]):

Theorem 2  ([5, 9, 13, 20, 25, 26, 28]) For a graph H, Matching Cut on H-free
graphs is

	● Polynomial-time solvable if H ⊆i sP3 + K1,3 or sP3 + P6 for some s ≥ 0;
	● NP-complete if H ⊇i K1,4, P14, 2P7, 3P5, Cr for some r ≥ 3, or H∗

i for some
i ≥ 1.

Our Results We first note that also for every d ≥ 2, d-Cut is straightforward to
solve for graphs of radius 1 (i.e., graphs with a dominating vertex). We will prove
that for every d ≥ 2, d-Cut is also polynomial-time solvable for diameter 2 but NP-
complete for graphs of diameter 3 and radius 2. This leads to the following extensions
of Theorem 1:

Theorem 3  Let d ≥ 2 . For r ≥ 1 , d-Cut is polynomial-time solvable for graphs of
diameter r if r ≤ 2 and NP-complete if r ≥ 3 .

Theorem 4  Let d ≥ 2 . For r ≥ 1 , d-Cut is polynomial-time solvable for graphs of
radius r if r ≤ 1 and NP-complete if r ≥ 2 .

Comparing Theorem 1 with Theorems 3 and 4 shows no difference in complexity
for diameter but a complexity jump from d = 1 to d = 2 for radius.

For d ≥ 2, we also give polynomial-time algorithms for d-Cut for (P3 + P4)-free
graphs and P5-free graphs. Our proof techniques use novel arguments, as we can
no longer rely on a polynomial-time algorithm for radius 2 or a reduction to 2-SAT
as for d = 1 [19, 25]. Moreover, we show that for d ≥ 2, d-Cut is polynomial-time
solvable for (H + P1)-free graphs whenever d-Cut is so for H-free graphs, thus the
cases {H + sP1 | s ≥ 0} are all (polynomially) equivalent. All these results extend
the known results for d = 1, as can be seen from Theorem 2.

As negative results, we prove that for all d ≥ 2, d-Cut is NP-complete for 3P2
-free graphs, and that for every d ≥ 3, d-Cut is NP-complete for line graphs, and thus
for K1,3-free graphs. Recently, Ahn et al. [1] proved that 2-Cut is NP-complete for
K1,3-free graphs. The NP-completeness for graphs of large girth from [13] implies
that for d ≥ 2, d-Cut is NP-complete for H-free graphs if H has a cycle. Hence, by
combining the above results, we obtain the following partial complexity classifica-
tion for d ≥ 2:

Theorem 5  Let d ≥ 2 . For a graph H, d-Cut on H-free graphs is

1 3

 7   Page 4 of 27

Algorithmica (2026) 88:7

	● Polynomial-time solvable if H ⊆i sP1 + P3 + P4 or sP1 + P5 for some s ≥ 0;
	● NP-complete if H ⊇i K1,3, 3P2, or Cr for some r ≥ 3.

Theorem 5 leaves only three non-equivalent open cases for every d ≥ 2, namely
when H = 2P4, H = P6 and H = P7. From Theorems 2 and 5 we observe that there
are complexity jumps from d = 1 to d = 2 for sP2-free graphs when s = 3 and for
K1,3-free graphs.

We prove our polynomial-time results in Sect. 3 and our NP-completeness results
in Sect. 4. We finish our paper with some open problems in Sect. 5. We start with
providing some basic results in Sect. 2.

2  Preliminaries

Throughout the paper, we only consider finite, undirected graphs without multiple
edges and self-loops. We first define some general graph terminology.

Let G = (V, E) be a graph. The line graph L(G) of G has the edges of G as its
vertices, with an edge between two vertices in L(G) if and only if the corresponding
edges in G share an end-vertex. Let u ∈ V . The set N(u) = {v ∈ V | uv ∈ E} is
the neighbourhood of u, and |N(u)| is the degree of u. Let S ⊆ V . The (open) neigh-
bourhood of S is the set N(S) =

∪
u∈S N(u) \ S, and the closed neighbourhood

N [S] = N(S) ∪ S. We let G[S] denote the subgraph of G induced by S, which is
obtained from G by deleting the vertices not in S. We let G − S = G[V \ S]. If no
two vertices in S are adjacent, then S is an independent set of G. If every two vertices
in S are adjacent, then S is a clique of G. If every vertex of V \ S has a neighbour in S,
then S is a dominating set of G. We also say that G[S] dominates G. The domination
number of G is the size of a smallest dominating set of G. Let T ⊆ V \ S. The sets S
and T are complete to each other if every vertex of S is adjacent to every vertex of T.

Let u be a vertex in a connected graph G. We denote the distance of u to some
other vertex v in G by distG(u, v). Recall that the eccentricity of u is the maxi-
mum distance between u and any other vertex of G. Recall also that the diameter
diameter(G) of G is the maximum eccentricity over all vertices of G and that the
radius radius(G) of G is the minimum eccentricity over all vertices of G. Note that
radius(G) ≤ diameter(G) ≤ 2 · radius(G).

We now generalize some colouring terminology that was used in the context of
matching cuts (see, e.g., [12, 25]). A red-blue colouring of a graph G assigns every
vertex of G either the colour red or blue. For d ≥ 1, a red-blue colouring is a red-blue
d-colouring if every blue vertex has at most d red neighbours; every red vertex has
at most d blue neighbours; and both colours red and blue are used at least once. See
Fig. 1 for examples of a red-blue 1-colouring and a red-blue 3-colouring.

We make the following observation.

Observation 6  For every d ≥ 1 , a connected graph G has a d-cut if and only if it has
a red-blue d-colouring.

1 3

Page 5 of 27  7

Algorithmica (2026) 88:7

If every vertex of a set S ⊆ V has the same colour (either red or blue) in a red-blue
colouring, then S, and also G[S], are monochromatic. An edge with a blue and a red
end-vertex is bichromatic. Note that for every d ≥ 1, the graph K2d+1 is monochro-
matic in every red-blue d-colouring, and that every connected graph with a red-blue
d-colouring contains a bichromatic edge.

We now generalize a known lemma for Matching Cut (see, e.g., [25]).

Lemma 7  For every d, g ≥ 1 , it is possible to find in O(2 gndg+2)-time a red-blue
d-colouring (if it exists) of a graph G with n vertices and domination number g.

Proof  Let d, g ≥ 1 and G be a graph on n vertices with domination number g. Let D
be a dominating set D of G that has size at most g.

We consider all 2|D| ≤ 2g options of giving the uncoloured vertices of D either
colour red or blue. For each red-blue colouring of D we do as follows. For every red
vertex of D, we consider all O(nd) options of colouring at most d of its uncoloured
neighbours blue, and we colour all of its other uncoloured neighbours red. Similarly,
for every blue vertex of D, we consider all O(nd) options of colouring at most d of
its uncoloured neighbours red, and we colour all of its other uncoloured neighbours
blue. As D dominates G, we obtained a red-blue colouring c of the whole graph G.
We discard the option if c is not a red-blue d-colouring of G.

We note that any red-blue d-colouring of G, if it exists, will be found by the above
algorithm. As the total number of options is O(2gndg) and checking if a red-blue
colouring is a red-blue d-colouring takes O(n2) time, our algorithm has total running
time O(2gndg+2). � □

Let d ≥ 1. Let G = (V, E) be a connected graph and S, T ⊆ V be two disjoint
sets. A red-blue (S, T)-d-colouring of G is a red-blue d-colouring of G that colours all
the vertices of S red and all the vertices of T blue. We call (S, T) a precoloured pair of
(G, d) which is colour-processed if every vertex of V \ (S ∪ T) is adjacent to at most
d vertices of S and to at most d vertices of T.

By the next lemma, we may assume without loss of generality that a precoloured
pair (S, T) is always colour-processed.

Lemma 8  Let G be a connected graph with a precoloured pair (S, T). It is possible,
in polynomial time, to either colour-process (S, T) or to find that G has no red-blue
(S, T)-d-colouring.

Proof  We apply the following rules on G. Let Z = V \ (S ∪ T). If v is adjacent to
d + 1 vertices in S, then move v from Z to S. If v is adjacent to d + 1 vertices in T,
then move v from Z to T. Return no if a vertex v ∈ Z at some point becomes adja-
cent to d + 1 vertices in S as well as to d + 1 vertices in T. We apply these three rules
exhaustively. It is readily seen that each of these rules is safe to use, and moreover,
can be verified and applied in polynomial time. After each application of a rule, we
either stop or have decreased the size of Z by at least one vertex. Hence, the proce-
dure is correct and takes polynomial time. � □

1 3

 7   Page 6 of 27

Algorithmica (2026) 88:7

3  Polynomial-Time Results

We now show our polynomial-time results for d-Cut for d ≥ 2. These results com-
plement the corresponding known polynomial-time results for d = 1 that we men-
tioned in Sect. 1 (and the proofs of the new results yield alternative proofs for the
known results if we set d = 1).

We first consider the class of graphs of diameter at most 2.

Theorem 9  For every d ≥ 2 , the d-Cut problem is polynomial-time solvable for
graphs of diameter at most 2.

Proof  Let G = (V, E) be a graph of diameter at most 2. Note that this implies that
G is connected. As d-Cut is trivial for graphs of diameter 1, we assume that G has
diameter 2. By Observation 6, we have proven the theorem if we can decide in poly-
nomial time if G has a red-blue d-colouring.

Let v ∈ V . Without loss of generality we may colour v red. Since v has at most d
blue neighbours in any red-blue d-colouring, we can branch over all O(nd) options
to colour the neighbourhood of v. In the case where all neighbours of v are red, we
branch over all O(n) options to colour some vertex x of G blue. We consider each
option separately.

Let R and B be the set of red and blue vertices, respectively. Let
S′ = {v} ∪ {u | u ∈ N(v), u ∈ R} and let T ′ = {u | u ∈ N(v), u ∈ B}. We
colour-process (S′, T ′), resulting in a pair (S, T). Let Z = V \ (S ∪ T) be the set of
uncoloured vertices. As (S, T) is colour-processed, every vertex in Z has at most d
red neighbours and at most d blue neighbours and thus in total at most 2d coloured
neighbours. We distinguish between the following two cases:

Case 1. G[Z] consists of at least two connected components.
Let Z1, . . . , Zr be the connected components of G[Z]. By assumption, we have

that r ≥ 2. Let v1 ∈ V (Z1) and v2 ∈ V (Z2). Since G has diameter 2, we know that
v1 has a common neighbour with every vertex in Z2, . . . , Zr. Let N1 be the set of all
vertices that are adjacent to v1 as well as to a vertex in V (Z2) ∪ · · · ∪ V (Zr). Note
that N1 ⊆ S ∪ T and that every vertex of V (Z2) ∪ · · · ∪ V (Zr) has at least one neigh-
bour in N1. Moreover, as v1 has at most 2d coloured neighbours and N1 ⊆ S ∪ T ,
we find that |N1| ≤ 2d. By the same arguments, we find a set N2 ⊆ S ∪ T , with
|N2| ≤ 2d consisting of the common neighbours of v2 and Z1, such that every vertex
of Z1 has at least one neighbour in N2. See also Fig. 2.

In a red-blue d-colouring, every vertex in N1 ∪ N2 has at most d neighbours
of the other colour. Thus, we can try all O(n4d2) options to colour the uncoloured
neighbours of N1 ∪ N2. If in the resulting colouring any vertex has more than d
neighbours of the other colour we discard it. Suppose not. Then, as every vertex of
V (Z1) ∪ · · · ∪ V (Zr) is a neighbour of at least one vertex in N1 ∪ N2, we found a
red-blue d-colouring of G.

1 3

Page 7 of 27  7

Algorithmica (2026) 88:7

Case 2. G[Z] is connected.
We first assume that G[Z] has radius at least 3. We let z ∈ Z, and we let

	 U = {u ∈ Z : distG[Z](z, u) ≥ 3}.

Observe that U ̸= ∅, as G[Z] has radius at least 3. For an illustration of U, see Fig. 2.
As G has diameter 2, we find that z has a common neighbour with every vertex of
U. As the common neighbours of z and the vertices in U are not in Z, they belong to
S ∪ T , meaning they are coloured red or blue. As z was not coloured after the colour-
processing, we find that z has at most 2d coloured neighbours. Each of these coloured
neighbours of z can have at most d neighbours of the other colour. So we can branch
over all O(n2d2) options to colour U.

For each of the O(n2d2) branches, we do as follows. If some vertex of U, which
is now coloured, has more than d neighbours of the other colour, then we discard
the branch. Else, we consider the graph G[Z \ U], which consists of all uncoloured
vertices and which has radius at most 2. Let Z := Z \ U .

Let z ∈ Z such that distG[Z](z, u) ≤ 2 for all u ∈ Z. We branch over all O(nd)
colourings of {z} ∪ NG[Z](z). As distG[Z](z, u) ≤ 2 for all u ∈ Z, it holds that
{z} ∪ NG[Z](z) is a dominating set of G[Z]. Hence, every uncoloured vertex has
now at least one newly coloured neighbour.

We now colour-process the pair of red and blue sets. If there is a vertex with d + 1
neighbours of the other colour or an uncoloured vertex with more than d neighbours
of each colour, then we discard the branch. Otherwise, we redefine Z to be the new
set of uncoloured vertices.

We now proceed by checking if Case 1 applies. If so, we apply the algorithm under
Case 1, and else we proceed according to Case 2 again. Note that if at some point
we apply Case 1, then we are done: we either found a red-blue d-colouring of G, or
we have discarded the branch. We also recall that every time we apply Case 2, all
vertices that remain uncoloured will have at least one newly coloured neighbour. This
observation is crucial, as it means that we only need to apply Case 2 at most 2d times
(should we apply Case 2 at some point 2d times, every uncoloured vertex will have

Fig. 2  Cases 1 (left) and 2 (right) in the proof of Theorem 9

1 3

 7   Page 8 of 27

Algorithmica (2026) 88:7

at least 2d coloured neighbours and thus, they are coloured after we colour-processed
the sets of red and blue vertices).

The correctness of our algorithm follows from its description. We now discuss its
running time. We always have O(nd) branches at the start of our algorithm when we
colour a specific vertex v and its neighbourhood (and possibly one more vertex x). In
each of these branches, we may colour-process once, which takes polynomial time
by Lemma 8. One application of Case 1 gives O(n4d2) branches and one application
of Case 2 gives O(n2d2+d) branches. Recall that the algorithm terminates after one
application of Case 1 and that we apply Case 2 at most 2d times. This means that the
total number of branches is

	
O

(
nd ·

(
n2d2+d

)2d

· n
2
)

,

which is a polynomial number and which also bounds the number of times we colour-
process in a branch. As the latter takes polynomial time by Lemma 8, we conclude
that our algorithm runs in polynomial time. � □

We now consider two classes of H-free graphs, starting with the case H = P5.

Theorem 10  For every d ≥ 2 , the d-Cut problem is polynomial-time solvable for
P5 -free graphs.

Proof  Let d ≥ 2. Let G = (V, E) be a connected P5-free graph on n vertices. As
G is P5-free and connected, G has a dominating set D, such that either D induces
a cycle on five vertices or D is a clique [23]. Moreover, we find such a dominat-
ing set D in O(n3) time [18]. If |D| ≤ 3d, then we apply Lemma 7. Now assume
that |D| ≥ 3d + 1 ≥ 7, and thus D is a clique. If D = V , then G has no d-cut, as
|D| ≥ 3d + 1 and D is a clique. Assume that D ⊊ V , so G − D has at least one con-
nected component. Below we explain how to find in polynomial time a d-cut of G,
or to conclude that G does not have a d-cut. By Observation 6, we need to decide in
polynomial time if G has a red-blue d-colouring.

We first enter the blue phase of our algorithm. As |D| ≥ 3d + 1 and D is a clique,
D is monochromatic in any red-blue d-colouring of G. Hence, we may colour, with-
out loss of generality, all the vertices of D blue, and we may colour all vertices of
every connected component of G − D except one connected component blue as well.
We branch over all O(n) options of choosing the connected component L1 of G − D
that will contain a red vertex.1 For each option, we are going to repeat the process of
colouring vertices blue until we colour at least one vertex red. We first explain how
this process works if we do not do this last step.

1 For d = 1, up to now, the same approach is used for P5-free graphs [12]. But the difference is that
for d = 1, the algorithm and analysis is much shorter: one only has to check, in this stage, if there is a
component of G − D, whose vertices can all be safely coloured red. Then one either finds a matching
cut, or G has no matching cut.

1 3

Page 9 of 27  7

Algorithmica (2026) 88:7

As L1 is connected and P5-free, we find in O(n3) time (using the algorithm of
[18]) a dominating set D1 of L1 that is either a cycle on five vertices or a clique. We
colour the vertices of D1 blue. As we have not used the colour red yet, we colour all
vertices of every connected component of L1 − D1 except one connected component
blue. So, we branch over all O(n) options of choosing the connected component L2
of L1 − D1 that will contain a red vertex. Note that every uncoloured vertex of G,
which belongs to L2, has both a neighbour in D (as D dominates G) and a neighbour
in D1 (as D1 dominates L1). We now find a dominating set D2 of L2 and a connected
component L3 of G − D2 with a dominating set D3, and so on. See also Fig. 3.

If we repeat the above process more than d times, we have either coloured every
vertex of G blue, or we found d + 1 pairwise disjoint, blue sets D, D1, . . . , Dd, such
that every uncoloured vertex u has a neighbour in each of them. The latter implies
that u has d + 1 blue neighbours, so u must be coloured blue as well. Hence, in each
branch, we would eventually end up with the situation where all vertices of G will
be coloured blue. To prevent this from happening, we must colour, in each branch,
at least one vertex of Di red, for some 1 ≤ i ≤ d − 1. As soon as we do this, we end
the blue phase for the branch under consideration, and our algorithm enters the red
phase.

Each time we have O(n) options to select a connected component Li and, as argued
above, we do this at most d times. Hence, we enter the red phase for O(nd) branches
in total. From now on, we call these branches the main branches of our algorithm.
For a main branch, we say that we quit the blue phase at level i if we colour at least
one vertex of Di red. If we quit the blue phase for a main branch at level i, for some
1 ≤ i ≤ d − 1, then we have constructed, in polynomial time, pairwise disjoint sets
D, D1, . . . , Di and graphs L1, . . . , Li, such that:

	● For every h ∈ {1, . . . , i − 1}, Lh+1 is a connected component of Lh − Dh;
	● Every vertex of G that does not belong to Li has been coloured blue;
	● For every h ∈ {1, . . . , i}, Dh induces a cycle on five vertices or is a clique;
	● D dominates G, so, in particular, D dominates Li; and
	● For every h ∈ {1, . . . , i}, Dh dominates Lh.

We now prove the following claim, which shows that we branched correctly. � □

Fig. 3  The graph G in the blue phase (left) and in the red phase: Case 2 (right)

1 3

 7   Page 10 of 27

Algorithmica (2026) 88:7

Claim 10.1  The graph G has a red-blue d-colouring that colours every vertex of D
blue if and only if we have quit a main branch at level i for some 1 ≤ i ≤ d − 1, such
that G has a red-blue d-colouring that colours at least one vertex of Di red and all
vertices not in Li blue.

Proof of the Claim. Suppose G has a red-blue d-colouring c that colours every
vertex of D blue (the reverse implication is immediate). By definition, c has coloured
at least one vertex u in G − D red. As we branched in every possible way, there
is a main branch that quits the blue phase at level i, such that u belongs to Li for
some 1 ≤ i ≤ d − 1. We pick a main branch with largest possible i, so u is not in
Li+1. Hence, u ∈ Di. We also assume that no vertex u′ that belongs to some Dh
with h < i is coloured red by c, as else we could take u′ instead of u. Hence, c has
coloured every vertex in D1 ∪ . . . ∪ Di−1 (if i ≥ 2) blue. Therefore, we may assume
that every vertex v /∈ D ∪ D1 ∪ . . . ∪ Di−1 ∪ V (Li) has been coloured blue by c. If
not, may just recolour all such vertices v blue for the following reasons: u is still red
and no neighbour of v is red, as after a possible recolouring all red vertices belong
to Li, while v belongs to a different component of G − (D ∪ D1 ∪ · · · ∪ Di−1) than
Li. So, we proved the claim.

Claim 10.1 allows us to do some specific branching once we quit the blue phase
for a certain main branch at level i. Namely, all we have to do is to consider all
options to colour at least one vertex of Di red. We call these additional branches side
branches. We distinguish between the following two cases:

Case 1. |Di| ≤ 2d + 1.
We consider each of the at most 22d+1 options to colour the vertices of Di either

red or blue, such that at least one vertex of Di is coloured red. Next, for each vertex
u ∈ Di, we consider all O(nd) options to colour at most d of its uncoloured neigh-
bours blue if u is red, or red if u is blue. Note that the total number of side branches
is O(22d+1nd(2d+1)). As Di dominates Li and the only uncoloured vertices were in
Li, we obtained a red-blue colouring c of G. We check in polynomial time if c is a
red-blue d-colouring of G. If so, we stop and return c. If none of the side branches
yields a red-blue d-colouring of G, then by Claim 10.1 we can safely discard the main
branch under consideration.

Case 2. |Di| ≥ 2d + 2.
Recall that Di either induces a cycle on five vertices or is a clique. As

|Di| ≥ 2d + 2 ≥ 6, we find that Di is a clique. As |Di| ≥ 2d + 2, this means that
Di must be monochromatic, and thus every vertex of Di must be coloured red. We
check in polynomial time if Di contains a vertex with more than d neighbours in D
(which are all coloured blue), or if D contains a vertex with more than d neighbours
in Di (which are all coloured red). If so, we may safely discard the main branch under
consideration due to Claim 10.1.

From now on, assume that every vertex in Di has at most d neighbours in D, and
vice versa. By construction, every uncoloured vertex belongs to Li − Di. Hence, if
V (Li) = Di, we have obtained a red-blue colouring c of G. We check, in polynomial
time, if c is also a red-blue d-colouring of G. If so, we stop and return c. Otherwise,
we may safely discard the main branch due to Claim 10.1.

1 3

Page 11 of 27  7

Algorithmica (2026) 88:7

Now assume V (Li) ⊋ Di. We colour all vertices in Li − Di that are adjacent to at
least d + 1 vertices in D blue; we have no choice as the vertices in D are all coloured
blue. If there are no uncoloured vertices left, we check in polynomial time if the
obtained red-blue colouring is a red-blue d-colouring of G. If so, we stop and return
it; else we may safely discard the main branch due to Claim 10.1.

Assume that we still have uncoloured vertices left. We recall that these vertices
belong to Li − Di, and that by construction they have at most d neighbours in D.
Consider an uncoloured vertex w1. As Di dominates Li, we find that w1 has a neigh-
bour x1 in Di. As D dominates G, we find that x1 is adjacent to some vertex y1 ∈ D.
We consider all O(n2d) possible ways to colour the uncoloured neighbours of x1 and
y1, such that x1 (which is red) has at most d blue neighbours, and y1 (which is blue)
has at most d red neighbours. If afterwards there is still an uncoloured vertex w2,
then we repeat this process: we choose a neighbour x2 of w2 in Di (so x2 is coloured
red). We now branch again by colouring the uncoloured neighbours of x2. If we find
an uncoloured vertex w3, then we find a neighbour x3 of w3 in Di and so on. So,
we repeat this process until there are no more uncoloured vertices. This gives us 2p
distinct vertices w1, . . . , wp, x1, . . . , xp for some integer p ≥ 1, together with vertex
y1.The total number of side branches for the main branch is O(n2pd).

We claim that p ≤ d. For a contradiction, assume that p ≥ d + 1 ≥ 3. Let
2 ≤ j ≤ p. As Di is a clique that contains x1 and xj , we find that x1 and xj are
adjacent. Hence, G contains the 4-vertex path wjxjx1y1. By construction, wj was
uncoloured after colouring the neighbours of x1 and y1, so wj is neither adjacent to
x1 nor to y1. This means that wjxjx1y1 is an induced P4 if and only if xj is not adja-
cent to y1. Recall that wj and every vertex of Di, so including x1 and xj , has at most
d neighbours in D. As |D| ≥ 3d + 1, this means that D contains a vertex z that is not
adjacent to any of wj , xj , x1. As D is a clique, z is adjacent to y1. Hence, xj must be
adjacent to y1, as otherwise wjxjx1y1z is an induced P5; see also Fig. 3. The latter
is not possible as G is P5-free. We now find that y1 is adjacent to x1, . . . , xp, which
all belong to Di. As we assumed that p ≥ d + 1 and every vertex of D, including y1,
is adjacent to at most d vertices of Di, this yields a contradiction. We conclude that
p ≤ d.

As p ≤ d, the total number of side branches is O(n2d2). Each side branch yields a
red-blue colouring of G. We check in polynomial time if it is a red-blue d-colouring
of G. If so, then we stop and return it; else we can safely discard the side branch, and
eventually the associated main branch, due to Claim 10.1.

The correctness of our algorithm follows from its description. We now analyze
its running time. We started the algorithm with searching for a set D. If D has size
at most 3d, then we applied Lemma 7, which takes polynomial time. Otherwise we
argue as follows. The total number of main branches is O(nd). For each main branch
we have either O(22d+1nd(2d+1)) side branches (Case 1) or O(n2d2) side branches
(Case 2). Hence, the total number of branches is O(nd22d+1nd(2d+1)). As d is fixed,
this number is polynomial. As processing each branch takes polynomial time (includ-
ing the construction of the Di-sets and Li-graphs), we conclude that our algorithm
runs in polynomial time. This completes the proof. � □

1 3

 7   Page 12 of 27

Algorithmica (2026) 88:7

We now consider the case H = P3 + P4.

Theorem 11  For every d ≥ 2 , the d-Cut problem is polynomial-time solvable for
(P3 + P4)-free graphs.

Proof  Let d ≥ 2 and recall that throughout the proof we assume that d is a constant.
Let G be a connected (P3 + P4)-free graph on n vertices. We may assume that G
contains at least one induced P4, else we apply Theorem 10. Throughout our proof
we make repeatedly use of the following claim. � □

Claim 11.1  Let P be an induced P4 of G. Every connected component F in
G − N [V (P)] is a complete graph and has only a constant number (namely at most
22d) of distinct red-blue colourings.

Proof of the Claim. As P is an induced P4, we find that G − N [V (P)] is P3-free.
Hence, every connected component F in G − N [V (P)] is a complete graph. As F
is a complete graph, F must be monochromatic in any red-blue d-colouring of G if
|V (F)| ≥ 2d + 1. Hence, F has at most 22d possible red-blue colourings, which is a
constant number, as d is constant.

We now divide the proof into two cases. First, we decide in polynomial time
whether there exists a red-blue d-colouring of G in which some induced P4 is mono-
chromatic. If we do not find such a red-blue d-colouring, then we search in polyno-
mial time for a red-blue d-colouring in which every induced P4 is bichromatic. By
Observation 6 this proves the theorem.

Step 1. Decide if G has a red-blue d-colouring, for which some induced P4 of G
is monochromatic.

Our algorithm performs Step 1 as follows. We branch over all induced P4s of G.
As there are at most O(n4) induced P4s in G, this yields O(n4) branches. For each
branch, we do as follows. Let P be the current induced P4 of G, which we assume is
monochromatic. We assume without loss of generality that every vertex of P is blue.
Let

	 N1 = N(V (P)) and N2 = V (G) \ N [V (P)].

By Claim 11.1, every connected component of G[N2] is a complete graph. By defini-
tion, every vertex will have at most d neighbours of the other colour in every red-blue
d-colouring of G. We branch over all O(n4d) possible ways to colour the vertices
of N1.

For each branch we do as follows. First suppose that V (P) ∪ N1 is monochromatic.
As the vertices of P are all blue, this means that all vertices of N1 are blue. We observe
that G has a red-blue d-colouring in which all vertices of V (P) ∪ N1 are blue if and
only if there is a connected component F of G[N2] such that G[V (P) ∪ N1 ∪ V (F)]
has a red-blue d-colouring. The reason for this is that if we find such a connected
component F of G[N2], then we can safely colour the vertices of all other connected
components of G[N2] blue. For each connected component F of G[N2] we do as fol-
lows. By Claim 11.1, the number of distinct red-blue d-colourings of F is constant.

1 3

Page 13 of 27  7

Algorithmica (2026) 88:7

We branch by trying each such colouring. If some colouring of V(F) yields a red-
blue d-colouring of G[V (P) ∪ N1 ∪ V (F)], then we are done. If after considering
all O(n) connected components of G[N2] we have not found a red-blue d-colouring,
then we discard this branch.

Now assume that V (P) ∪ N1 is not monochromatic in our current branch. This
means that the set of red vertices in N1, which we denote by S, is nonempty. Observe
that S contains at most 4d vertices, as S ⊆ N(V (P)) and every vertex of P is blue.
We now branch over all O(n4d2) possible colourings of N(S) \ V (P).

For each branch we do as follows. We colour-process the pair of current sets of red
and blue vertices. Observe that connected components of G[N2] may now contain red
vertices, but if they do, then they contain at least one red vertex that is adjacent to a
vertex in S, i.e., to a red vertex in N1. We now make a crucial update:

We move every new blue vertex from N2 to N1, while we let every new red vertex
stay in N2(so the only red vertices in N1 are still those that belong to S).

We call this update an N1-update. Note that after an N1-update, the new con-
nected components of G[N2] are still complete graphs, but now they consist of only
red vertices and uncoloured vertices. Moreover, every uncoloured vertex belongs to
N2 and only has blue neighbours in N1 (as the red vertices in N1 belong to S and all
vertices of N(S) are coloured).

For every connected component F of G[N2] that consists of uncoloured vertices
only we do as follows. Recall that uncoloured vertices in N2 only have blue neigh-
bours in N1. Thus, we may safely colour all vertices of F blue and apply an N1
-update. So, after this procedure, every connected component F of G[N2] with an
uncoloured vertex contains a red vertex. Recall that at least one red vertex of F must
have a red neighbour in S ⊆ N1,

For every connected component F of G[N2] that has an uncoloured vertex and that
has size at least 2d + 1, we do as follows. As F is a complete graph on at least 2d + 1
vertices, F is monochromatic in every red-blue d-colouring of G. From the above,
we know that F also contains a red vertex. Hence, we must colour every uncoloured
vertex of F red. Afterwards, all connected components of G[N2] with an uncoloured
vertex have size at most 2d.

For every connected component F of G[N2] with an uncoloured vertex we also
check if all the uncoloured vertices of F only have red or uncoloured neighbours
(note that the latter belong to F as well). If so, then we safely colour all uncoloured
vertices of F red. If afterwards there are no uncoloured vertices anymore, we check
if the resulting colouring is a red-blue d-colouring of G. If so, we are done, and oth-
erwise we discard the branch. Suppose there are still uncoloured vertices left. Then
these uncoloured vertices must belong to N2, and we denote the connected compo-
nents of G[N2] that contain at least one uncoloured vertex by F1, . . . , Fq for some
q ≥ 1. In summary, we have proven:

Claim 11.2  Every Fi is a complete graph of size at most 2d that

(i)	 Contains a red vertex with a red neighbour in S ⊆ N1;
(ii)	 Contains an uncoloured vertex with a blue neighbour in N1;

1 3

 7   Page 14 of 27

Algorithmica (2026) 88:7

(iii)	Does not contain any blue vertices; and
(iv)	Does not contain any uncoloured vertices that have a red neighbour in N1.

By Claim 11.2, there exists at least one red vertex in N1 that has a red neighbour
in some connected component Fi. We now distinguish between two cases.

Case 1. There exists a red vertex r ∈ N1 that has a red neighbour in two distinct
connected components Fi and Fj , say in F1 and F2.

Let r1 ∈ V (F1) be a red neighbour of r in F1, and let u ∈ V (F1) be an uncoloured
vertex in F1. Similarly, let r2 ∈ V (F2) be a red neighbour of r in F2. By Claim 11.2,
we have that F1 is a complete graph, so r1 and u are adjacent, and thus G contains the
4-vertex path Q = u1r1rr2.

As r is red, Claim 11.2 tells us that u is not adjacent to r. As u and r2 are in dif-
ferent connected components of G[N2], we also have that u is not adjacent to r2. For
the same reason, r1 and r2 are not adjacent. Hence, Q is in fact an induced P4 of G.

As G is (P3 + P4)-free and Q is an induced P4, any induced P3 in G contains a
vertex that is adjacent to at least one vertex of Q. In particular, this implies that every
blue vertex in N1 that has some uncoloured neighbour in at least two connected com-
ponents of {F3, . . . , Fq} (if q ≥ 4) has a neighbour in Q. The reason is that these two
uncoloured neighbours cannot be adjacent to red vertices in N1 (by Claim 11.2) or to
vertices in connected components of G[N2] to which they do not belong. See Fig. 4
for an illustration.

Since the vertices of Q are either red or uncoloured, they may have at most d blue
neighbours (as else they would have been coloured blue due to the colour-process-
ing). Hence, we find that there are at most 4d blue vertices in N1 with uncoloured
neighbours in at least two connected components of {F3, . . . , Fq}. We denote this
particular set of blue vertices in N1 by T, so we have that |T | ≤ 4d.

By Claim 11.2, every Fi has at most 2d vertices (so a constant number). Hence,
|V (F1)| ≤ 2d and |V (F2)| ≤ 2d. Let U be the set of uncoloured vertices in
V (F1) ∪ V (F2). We branch over all O(24dn4d2) colourings of G[N(T) ∪ U].

For each branch we do as follows. We first observe that every uncoloured vertex
x must belong to V (Fi) for some i ∈ {3, . . . , q}. The neighbours of x in N1 cannot
belong to S ∪ T , as we already coloured all vertices of N(S ∪ T). Hence, any neigh-

Fig. 4  Illustration of Case 1. As Q = u1r1rr2
is induced, the displayed P3 + P4 cannot be
induced. White vertices indicate uncoloured
vertices

1 3

Page 15 of 27  7

Algorithmica (2026) 88:7

bour y of x in N1 must be in N1 \ (S ∪ T), so in particular y /∈ S and thus y must be
blue. Moreover, as y does not belong to T either, any other uncoloured neighbours of
y must all belong to Fi as well (this follows from the definition of T).

Let W consist of all vertices coloured so far. From the above, we conclude that it is
enough to decide if we can extend for each i ∈ {3, . . . , q}, the current red-blue colour-
ing of G[W] to a red-blue d-colouring of G[W ∪ V (Fi)]. For each i ∈ {3, . . . , q},
this leads to another 22d branches, as Fi has size at most 2d by Claim 11.2. So, as we
can consider the colourings of every Fi (i ≥ 3) independently, the total number of
new branches is 22dq = O(n). If for all i ∈ {3, . . . , q} we can find an extended red-
blue d-colouring of G[W ∪ V (Fi)], then we have obtained a red-blue d-colouring of
G. Otherwise we discard the branch.

Case 2. Every red vertex in N1 has red neighbours in at most one connected com-
ponent of {F1, . . . , Fq}.

By definition, every Fi has at least one uncoloured vertex. By Claim 11.2, every
Fi also has at least one red vertex with a red neighbour in N1. Consider F1. Let x be
an uncoloured vertex of F1, and let r1 be a red vertex of F1 with a red neighbour r in
N1, so r ∈ S. Recall that F1 is a complete graph by Claim 11.2. Hence, x and r1 are
adjacent, and thus xr1r is a P3. However, x and r are non-adjacent, since r ∈ S and
the neighbourhood of S is coloured. This means that J is even an induced P3 in G.

By definition of a red-blue d-colouring and due to the colour-processing, at most
3d blue vertices in G can have a neighbour on J. Let Γ be the set of these blue verti-
ces, so |Γ| ≤ 3d. We now branch by considering all colourings of the uncoloured ver-
tices of N(Γ) ∪ V (F1). As |Γ| ≤ 3d and F1 has at most 2d vertices by Claim 11.2,
the number of colourings to consider is at most O(22dn3d2).

For each branch we do as follows. We first colour-process the pair of sets of red
vertices and blue vertices. We then perform an N1-update, such that afterwards every
Fi again only contains red and uncoloured vertices. Again we colour the uncoloured
vertices of some Fi red if none of them has a blue neighbour in N1. Moreover, we
recall that if some Fi consists of only uncoloured vertices, then – as uncoloured ver-
tices in N2 only have blue neighbours in N1 – we may safely colour all vertices of
Fi blue and apply an N1-update. So, again it holds that every Fi with an uncoloured
vertex contains a red vertex.

Assume we still have at least one uncoloured vertex left (otherwise we are done).
As we coloured the vertices of F1, we find that there exists some Fi with i ≥ 2, say
F2, that contains at least one uncoloured vertex. As we did not colour all vertices of
F2 red, we find that F2 contains an uncoloured vertex u with a blue neighbour b in
N1. We note that b does not belong to Γ, as we coloured all vertices of N(Γ).

First suppose that b has an uncoloured neighbour v in some Fi with i ≥ 3, say
in F3, and also that b also has a non-neighbour r2 (that is either red or uncoloured) in
F2 or F3, say in F2. As F2 is a complete graph, u and r2 are adjacent. Hence, r2ubv
is an induced P4 of G.

We note that b is not adjacent to any vertex of {r, r1, x}, as b does not belong to
Γ. Note also that u and v are not adjacent to r1 and x, as r1 and x are in a different
connected component of G[N2] than u and v. Moreover, as r is red, Claim 11.2 tells
us that u and v are not adjacent to r either.

1 3

 7   Page 16 of 27

Algorithmica (2026) 88:7

Finally, we consider r2. We note that r2 is not adjacent to r. Namely, if r2 is red,
then this holds by the Case 2 assumption. If r2 is uncoloured, then this holds due to
Claim 11.2. Moreover, r2 is not adjacent to r1 and x, as r1 and x belong to a different
connected component of G[N2] than r2. However, we now find an induced P3 + P4
of G consisting of {r, r1, x} and {r2, u, b, v}, see Fig. 5. As G is (P3 + P4)-free, this
is not possible.

From the above we conclude that the following holds for every blue vertex
b′′ ∈ N1 that has an uncoloured neighbour:

(i)	 Vertex b′ has only uncoloured neighbours in at most one Fi, or
(ii)	 Vertex b′ is adjacent to every vertex of every Fi, in which b′ has an uncoloured

neighbour.

If case (i) holds, then we say that b is of type (i). If case (ii) holds, then we say that
b is of type (ii).

Recall that any uncoloured vertex, which must belong to N2, only has blue neigh-
bours in N1 by Claim 11.2. We say that a connected component Fi with an unco-
loured vertex is an individual component of G[N2] if the uncoloured vertices of Fi
have only blue neighbours of type (i) in N1; else we say that Fi is a collective com-
ponent of G[N2].

Suppose b is a blue vertex of N1 that has an uncoloured neighbour and that is of
type (ii). As b is blue, b is has at most d − 1 red neighbours, else its remaining neigh-
bours would have been coloured blue by the colour-processing, and hence, b would
not have an uncoloured neighbour. As b is of type (ii), it follows that b is adjacent to
every vertex of every Fi that contains an uncoloured neighbour of b. Recall that every
Fi that has an uncoloured vertex also contains a red vertex. Hence, we find that b has
uncoloured neighbours in at most d − 1 collective components. As d ≥ 2, the same
statement also holds if b is of type (i). Hence, we have proven the following claim:

Claim 11.3  Every blue vertex in N1 has uncoloured neighbours in at most d − 1 col-
lective components.

Fig. 5  Illustration of Case 2. As J = rr1u
is induced, the displayed P3 + P4 cannot be
induced. White vertices indicate uncoloured
vertices

1 3

Page 17 of 27  7

Algorithmica (2026) 88:7

Now suppose there exist two blue vertices b1 and b2 in N1 that are both of type (ii)
and connected components Fh, Fi and Fj with h, i, j ≥ 2 such that:

	● b1 has an uncoloured neighbour u in Fh, whereas b2 has no neighbour in Fh;
	● b1 and b2 both have an uncoloured neighbour in Fi, which we may assume to be

the same neighbour as b1 and b2 are of type (ii); we denote this common uncol-
oured neighbour by v;

	● b2 has an uncoloured neighbour w in Fj , whereas b1 has no neighbour in Fj .

See Fig. 6 for an illustration. Recall that b1 and b2 do not belong to Γ, as else they
would not have an uncoloured neighbour. This implies the following. If b1 and b2 are
not adjacent, then J, together with {u, b1, v, b2}, induces a P3 + P4 in G. If b1 and b2
are adjacent, then J, together with {u, b1, b2, w}, induces a P3 + P4 in G. Both cases
are not possible due to (P3 + P4)-freeness of G. Hence, we conclude that such verti-
ces b1 and b2, and such connected components Fh, Fi, Fj do not exist.

We assume that without loss of generality the connected components with an
uncoloured vertex are F2, . . . , Fr for some r ≥ 2. Suppose G[N2] has collective
components. Then, due to the above and Claim 11.3, we can now partition the col-
lective components of {F2, . . . , Fr} in blocks D1, . . . , Dp for some p ≥ 1, such that
the following holds:

	● For i = 1, . . . , p, there exists a blue vertex bi in N1 that is adjacent to all vertices
of every collective component of Di;

	● For i = 1, . . . , p, every Di contains at most d − 1 collective components, each of
which contain at most 2d vertices by Claim 11.2; and

	● Every blue vertex in N1 is adjacent to vertices of collective components of at
most one Di.

Let W be the set of vertices of G that have already been coloured. Let
D = {D1, . . . , Dp}. We add every individual component F that does not belong to
some block in D to D as a block {F}. Note that by definition, every blue vertex in
N1 that is of type (i) has uncoloured neighbours in only one individual component.
Hence, due to the above, G has a red-blue d-colouring that extends the colouring of

Fig. 6  Illustration of Case 2 where we show
that two vertices b1 and b2 of type (ii) must
have either disjoint neighbourhoods in N2 or
one neighbourhood in N2 must be contained in
the other. White vertices indicate uncoloured
vertices

1 3

 7   Page 18 of 27

Algorithmica (2026) 88:7

G[W] if and only if for every D ∈ D it holds that G[W ∪
∪

F ∈D V (F)] has a red-
blue d-colouring. Therefore, we can consider each D ∈ D separately as follows. We
consider all colourings of the uncoloured vertices in G[V (Di)] and for each of these
colourings we check if we obtained a red-blue d-colouring of G[W ∪

∪
F ∈D V (F)].

As Di contains at most d − 1 components, each with at most 2d vertices, the number
of these colourings is at most 22d(d−1). Note that there are at most p ≤ n number of
blocks that we must consider.

If the above leads to a red-blue d-colouring of G, then we are done. Else, we dis-
card the branch.

Suppose we have not found a red-blue d-colouring of G after processing all the
branches. If G is still a yes-instance, then in any red-blue d-colouring of G, every
induced P4 of G is bichromatic. Therefore, our algorithm will perform the following
step:

Step 2. Decide if G has a red-blue d-colouring, for which every induced P4 of G
is bichromatic.

We first prove a structural claim. Assume G has a red-blue d-colouring. Let B be the
set of blue vertices. Let R be the set of red vertices. Assume that G[B] has connected
components DB

1 , . . . , DB
p for some p ≥ 1 and that G[R] has connected components

DR
1 , . . . , DR

q for some q ≥ 1. If q ≥ 2, then we obtain another red-blue d-colouring
of G by changing the colour of every vertex in every DR

h with h ∈ {2, . . . , r} from
red to blue. Hence, we may assume q = 1. Suppose p ≥ 2. As G is connected, every
DB

i contains a vertex that is adjacent to a vertex in DR
1 . Hence, we obtain another

red-blue d-colouring of G by changing the colour of every vertex in every DB
i with

i ∈ {2, . . . , p} from blue to red. So we may also assume p = 1. Recall that we have
ruled out the case where G has a red-blue d-colouring in which some induced P4 of
G is monochromatic. This means that both G[B] and G[R] have diameter at most 2,
else we would have a monochromatic P4. So we have shown the following claim:

Claim 11.4  If G has a red-blue d-colouring, then G has a red-blue d-colouring in
which the sets of blue and red vertices, respectively, each induce subgraphs of G that
have diameter at most 2.

By Claim 11.4, we will now search for a red-blue d-colouring of G in which the
sets of blue and red vertices, respectively, each induce subgraphs of G that have
diameter at most 2. We say that such a red-blue d-colouring has diameter at most 2.

Recall that G is not P4-free. Hence, we can find an induced path P on four vertices
in O(n4) time by brute force. We now branch over all O(n4d) colourings of N[V(P)].
Let N2 = V (G) \ N [V (P)]. If N2 = ∅, then we check if we obtained a red-blue
d-colouring of G. If so, then we are done, and else we discard the branch.

Suppose N2 ̸= ∅. As G is (P3 + P4)-free, every connected component of G[N2]
is a complete graph. Let F1, . . . , Fk, for some integer k ≥ 1, be the connected com-
ponents of G[N2]. We colour-process the pair consisting of the current sets of blue
and red vertices.

If all vertices are coloured, then we check if we obtained a red-blue d-colouring of
G. If so, then we are done, and else we discard the branch. Suppose not every vertex

1 3

Page 19 of 27  7

Algorithmica (2026) 88:7

is coloured. This means there exists some Fi, say F1, with an uncoloured vertex x.
As we colour-processed and x has not been coloured, we find that x has at most d red
neighbours and at most d blue neighbours. Let Bx ⊆ N1 be the set of blue neighbours
of x in N1 and Rx ⊆ N1 be the set of red neighbours of x in N1. By Claim 11.1, the
number of red-blue colourings of the uncoloured vertices of F1 is constant (at most
22d). Let U be the set of uncoloured vertices of F. We branch over all O(n2d2) colour-
ings of G[N(Bx ∪ Rx) ∪ U].

We now colour the remaining uncoloured vertices, which must all belong to
N2 \ V (F1) as follows. If x is blue, then any blue vertex of N2 \ V (F1) must have a
neighbour in Bx in any red-blue d-colouring of G that has diameter at most 2 and that
is an extension of the current red-blue colouring. As we already coloured all vertices
in N(Bx), this means that we must colour any uncoloured vertex of N2 red. Simi-
larly, if x is red, then we must colour any uncoloured vertex of N2 blue. We check if
the resulting colouring is a red-blue d-colouring of G. If yes, we have found a solu-
tion, otherwise we discard the branch.

In the end we either found a red-blue d-colouring of G, or we have discarded every
branch. In that case, the algorithm returns that G has no red-blue d-colouring. This
completes the description of our algorithm.

The correctness of the algorithm follows from its description. The maximum num-
ber of branches in Step 1 is

	
O

(
n4 · n4d ·

(
n + n4d2

·
(

n4d2
· n + n3d2

· n
)))

,

and in Step 2, it is O(n4 · n4d · n2d2). So, in total we have at most nO(d3) branches
and each branch can be processed in polynomial time (in particular, colour-process-
ing takes polynomial time due to Lemma 8; N1-updates can be done in polynomial
time; and we can also check in polynomial time if a red-blue colouring of G is a red-
blue d-colouring). Thus, the running time of our algorithm is polynomial. � □

As our final result in this section, we prove the following.

Theorem 12  For every graph H and every d ≥ 2 , if d-Cut is polynomial-time solv-
able for H-free graphs, then it is so for (H + P1)-free graphs.

Proof  Suppose that d-Cut is polynomial-time solvable for H-free graphs. Let G be a
connected (H + P1)-free graph. If G is H-free, the result follows by assumption. If
G is not H-free, then V(G) contains a set U such that G[U] is isomorphic to H. As G
is (H + P1)-free, U dominates G. As H is fixed, |U | = |V (H)| is a constant. Hence,
in this case we can apply Lemma 7. � □

4  NP-Completeness Results

In this section we show our NP-completeness results for d-Cut for d ≥ 2. As d-Cut
is readily seen to be in NP for each d ≥ 1, we only show NP-hardness in our proofs.

1 3

 7   Page 20 of 27

Algorithmica (2026) 88:7

We first focus on the case where d ≥ 3. For this, we need some additional termi-
nology. An edge colouring of a graph G = (V, E) with colours red and blue is called
a red-blue edge colouring of G, which is a red-blue edge d-colouring of G if every
edge of G is adjacent to at most d edges of the other colour and both colours are used
at least once. Now, G has a red-blue edge d-colouring if and only if L(G) has a red-
blue d-colouring. A set S ⊆ V is monochromatic if all edges of G[S] are coloured
alike.

Theorem 13  For every d ≥ 3 , the d-Cut problem is NP-complete for line graphs.

Proof  We first define the known NP-complete problem we reduce from. Let
X = {x1, x2, . . . , xn} be a set of logical variables and C = {C1, C2, . . . , Cm} be
a set of clauses over X. The problem Not-All-Equal Satisfiability asks whether
(X, C) has a satisfying not-all-equal truth assignment ϕ that is, ϕ sets at least one literal
true and at least one literal false in each Ci. This problem remains NP-complete even
if each clause consists of three distinct literals that are all positive [30]. Let (X, C)
be such an instance, where X = {x1, x2, . . . , xn} and C = {C1, C2, . . . , Cm}. We
construct, in polynomial time, a graph G; see also Fig. 7:

	● Build a clique S = {vS
x1

, . . . , vS
xn

} ∪ {vc1
1 , . . . , vc1

d−2} ∪ · · · ∪ {vcm
1 , . . . , vcm

d−2}.

	● Build a clique S = {vS
x1

, . . . , vS
xn

} ∪ {uc1
1 , . . . , uc1

d−2} ∪ · · · ∪ {ucm
1 , . . . , ucm

d−2}.
	● For every x ∈ X , add cliques Vx = {vx

1 , . . . , vx
d−1} and Vx = {vx

1 , . . . , vx
d−1}.

	● For every x ∈ X , add a vertex vx with edges vxvS
x , vxvS

x , vxvx
1 , . . . , vxvx

d−1,
vxvx

1 , . . . , vxvx
d−1.

	● For every C ∈ C, add a clause vertex vc with edges vcvc
1, . . . , vcvc

d−2,
vcuc

1, . . . , vcuc
d−2, and if C = {xi, xj , xk}, also add a vertex vxi

c to Vxi , a vertex
v

xj
c to Vxj and a vertex vxk

c to Vxk , and add the edges vcvxi
c , vcv

xj
c , vcvxk

c .
	● Add, if needed, some auxiliary vertices to S, S, Vx1 , . . . , Vxn

, Vx1 , . . . , Vxn , such
that in the end all these sets are cliques of size at least 2d + 2.

We claim that (X, C) has a satisfying not-all-equal truth assignment if and only if
the line graph L(G) has a d-cut. Recall that, by Observation 6, L(G) has a d-cut if and

Fig. 7  An example of vertices in the reduction related to clause C = {xi, xj , xk}

1 3

Page 21 of 27  7

Algorithmica (2026) 88:7

only if L(G) has a red-blue d-colouring. Furthermore, L(G) has a red-blue d-colouring
if and only if G has a red-blue edge d-colouring. Hence, we will show that (X, C)
has a satisfying not-all-equal truth assignment if and only if G has a red-blue edge
d-colouring.

First suppose (X, C) has a satisfying not all-equal truth assignment. We colour all
edges in S red and in S blue. For every x ∈ X set to true, we colour the edges in Vx
red and those in Vx blue. For every x ∈ X set to false, we colour the edges in Vx blue
and those in Vx red. Consider an edge uv, with v ∈ {vx, vc | x ∈ X, c ∈ C}. Then u
is contained in a clique D ∈ {S, S, Vx1 , Vx1 , . . . , Vxn

, Vxn
}. Colour uv with the same

colour as the edges of D.
Now, let D ∈ {S, S, Vx1 , Vx1 , . . . , Vxn

, Vxn
}. Every uu′ ∈ E(D) is adjacent to

only edges of the same colour. For u ∈ V (D) and v ∈ {vx, vc | x ∈ X, c ∈ C}, the
edge uv has the same colour as all edges in D. Since S and S have different colours
and Vx and Vx have different colours for every x ∈ X , uv has at most d adjacent
edges of each colour. Hence, we obtained a red-blue edge d-colouring of G.

Now suppose that G has a red-blue edge d-colouring. We prove a series of claims:
� □

Claim 13.1  Every clique D ∈ {S, S, Vx1 , Vx1 , . . . , Vxn
, Vxn

} is monochromatic.

Proof of the Claim. First assume G[D] has a red edge uv and a blue edge uw. As
|D| ≥ 2d + 2, we know that u is incident to at least 2d + 1 edges. Hence, we may
assume without loss of generality that u is incident to at least d + 1 red edges. How-
ever, now the blue edge uw is adjacent to d + 1 red edges, a contradiction. As every
u ∈ D is incident to only edges of the same colour and D is a clique, it follows that
D is monochromatic.

By Claim 13.1, we can speak about the colour (either red or blue) of a clique D if
D belongs to {S, S, Vx1 , Vx1 , . . . , Vxn

, Vxn
}.

Claim 13.2  For each x ∈ X and c ∈ C, each edge from vx or vc to a vertex in a clique
D ∈ {S, S, Vx1 , Vx1 , . . . , Vxn

, Vxn
} has the same colour as D.

Proof of the Claim. This follows directly from the fact that |D| ≥ 2d + 1.

Claim 13.3  The cliques S and S have different colours if and only if for every variable
x ∈ X , it holds that Vx and Vx have different colours.

Proof of the Claim. First suppose S and S have different colours, say S is red and
S is blue. For a contradiction, assume there exists a variable x ∈ X , such that Vx and
Vx have the same colour, say blue. By Claim 13.2, we have that the 2d − 2 edges
between vx and Vx ∪ Vx and the edge vxvS

x are all blue, while vxvS
x is red. Hence,

the red edge vxvS
x is adjacent to at least 2d − 1 ≥ d + 1 blue edges, a contradiction.

Now suppose that for all x ∈ X , Vx and Vx have different colours, say Vx is red
and Vx is blue. For a contradiction, assume that S and S have the same colour, say
blue. Let x ∈ X . By Claim 13.2, we have that the edges between vx and Vx are red,

1 3

 7   Page 22 of 27

Algorithmica (2026) 88:7

while all other edges incident to vx are blue. Now every (red) edge between vx and
Vx is incident to d + 1 blue edges, a contradiction.

Claim 13.4  The cliques S and S have different colours.

Proof of the Claim. For a contradiction, assume S and S have the same colour,
say blue. By Claim 13.2, we have that vxvS

x is blue. By Claim 13.3, we find that for
every x ∈ X , Vx and Vx have the same colour. If Vx and Vx are both red, then the
2d − 2 edges between vx and Vx ∪ Vx are red due to Claim 13.2. Consequently, the
blue edge vxvS

x is adjacent to 2d − 2 ≥ d + 1 red edges. This is not possible. Hence,
Vx and Vx are blue, and by Claim 13.2, all edges between vx and Vx ∪ Vx are blue as
well. This means that every edge of G is blue, a contradiction.

Claim 13.5  For every clause C = {xi, xj , xk} in C, the cliques Vxi , Vxj and Vxk do
not all have the same colour.

Proof of the Claim. For a contradiction, assume Vxi , Vxj and Vxk have the same
colour, say blue. By Claim 13.4, S and S are coloured differently, say S is red and S
is blue. By Claim 13.2, we have that the three edges vcvxi

c , vcv
xj
c and vcvxk

c are all
blue, just like the d − 2 edges between vc and S, while every edge between vc and
S is red. Consider such a red edge e. We find that e is adjacent to d + 1 blue edges, a
contradiction.

For each variable x, if the clique Vx is coloured red, then set x to true, and else to
false. By Claim 13.5, this yields a satisfying not-all-equal truth assignment. � □

We now show that the case H = 3P2 is hard. The gadget in our NP-hardness
reduction is neither 2P4-free nor P6-free nor P7-free.

Theorem 14  For every d ≥ 2 , the d-Cut problem is NP-complete for 3P2 -free
graphs of radius 2 and diameter 3.

Proof  We first define the known NP-complete problem we reduce from. Let
X = {x1, x2, · · · , xn} be a set of variables. Let C = {C1, C2, · · · , Cm} be a set
of clauses over X. The 3-Satisfiability problem asks whether (X, C) has a satisfy-
ing truth assignment ϕ, that is, ϕ sets at least one literal true in each Ci. Darmann
and Döcker [10] proved that 3-Satisfiability is NP-complete even for instances in
which:

1.	 Each variable occurs as a positive literal in exactly two clauses and as a negative
literal in exactly two other clauses, and

2.	 Each clause consists of three distinct literals that are either all positive or all
negative.

Let X = {x1, x2, . . . , xn} for some n ≥ 1 and C = {C1, . . . , Cp, D1, . . . , Dq}
where each Cj consists of three distinct positive literals, and each Dj consists of
three distinct negative literals. We may assume without loss of generality that p ≥ 4
and q ≥ 4, as otherwise the problem is trivial to solve by using brute force.

1 3

Page 23 of 27  7

Algorithmica (2026) 88:7

From (X, C), we construct a graph G = (V, E) as follows. We introduce two verti-
ces C and D and let the other vertices of G represent either variables or clauses. That
is, we introduce a clique K = {C1, . . . , Cp, C}; a clique K ′ = {D1, . . . , Dq, D}
and an independent set I = {x1, . . . , xn}, such that K, K ′, I are pairwise disjoint
and V = K ∪ K ′ ∪ I . For every h ∈ {1, . . . , n} and every i ∈ {1, . . . , p}, we add
an edge between xh and Ci if and only if xh occurs as a literal in Ci. For every
h ∈ {1, . . . , n} and every j ∈ {1, . . . , q}, we add an edge between xh and Dj if
and only if xh occurs as a literal in Dj . We also add the edge CD. See Fig. 8 for an
example.

As every edge must have at least one end-vertex in K or K ′, and K and K ′ are
cliques, we find that G is 3P2-free. Moreover, G has radius 2, as the distance from
C or D to any other vertex in G is at most 2. In addition, the distance from a vertex
in I ∪ (K \ {C}) ∪ (K ′ \ {D}) to any other vertex in G is at most 3. Hence, G has
diameter at most 3.

We claim that (X, C) has a satisfying truth assignment if and only if G has a 2-cut.
First suppose that (X, C) has a satisfying truth assignment ϕ. In I, we colour for

h ∈ {1, . . . , n}, vertex xh red if ϕ sets xh to be true and blue if ϕ sets xh to be false.
We colour all the vertices in K red and the vertices in K ′ blue.

Consider a vertex xh in I. First suppose that xh is coloured red. As each literal
appears in exactly two clauses from {D1, . . . , Dq}, we find that xh has only two blue
neighbours (which all belong to K ′). Now suppose that xh is coloured blue. As each
literal appears in exactly two clauses from {C1, . . . , Cp}, we find that xh has only
two red neighbours (which all belong to K). Now consider a vertex Ci in K, which
is coloured red. As Ci consists of three distinct positive literals and ϕ sets at least
one positive literal of Ci to be true, we find that Ci is adjacent to at most two blue
vertices in I. Hence, every Ci is adjacent to at most two blue vertices. Now consider
a vertex Dj in K ′, which is coloured blue. As Dj consists of three distinct negative
literals and ϕ sets at least one negative literal of Dj to be true, we find that Dj is
adjacent to at most two red vertices in I. Hence, every Dj is adjacent to at most two
red vertices. Finally, we note that C, which is coloured red, is adjacent to exactly one
blue neighbour, namely D, while D has only one red neighbour, namely C. The above

Fig. 8  The graph G for X ={x1, . . . , x6} and C ={{x1, x2, x3}, {x1, x3, x4},
{x2, x5, x6}, {x4, x5, x6}, {x1, x2, x4},{x1, x3, x5}, {x2, x4, x6},{x3, x5, x6}}.
For readability the edges inside the cliques K and K ′ are not shown

1 3

 7   Page 24 of 27

Algorithmica (2026) 88:7

means that we obtained a red-blue 2-colouring of G. By Observation 6, this means
that G has a 2-cut.

Now suppose G has a 2-cut. By Observation 6, this means that G has a red-blue
2-colouring c. As |K| = p + 1 ≥ 5 and |K ′| = q + 1 ≥ 5, both K and K ′ are mono-
chromatic. Say c colours every vertex of K red. For a contradiction, assume c colours
every vertex of K ′ red as well. As c must colour at least one vertex of G blue, this
means that I contains a blue vertex xh. As each variable occurs as a positive literal in
exactly two clauses and as a negative literal in exactly two other clauses, we now find
that a blue vertex, xi, has two red neighbours in K and two red neighbours in K ′, so
four red neighbours in total, a contradiction. We conclude that c must colour every
vertex of K ′ blue.

Recall that every Ci and every Dj consists of three literals. Hence, every vertex
in K ∪ K ′ has three neighbours in I. As every vertex Ci in K is red, this means that
at least one neighbour of Ci in I must be red. As every vertex Dj in K ′ is blue, this
means that at least one neighbour of Dj in I must be blue. Hence, setting xi to true if
xi is red in G and to false if xi is blue in G gives us the desired truth assignment for X.

Now, we consider the case where d ≥ 3. We adjust G as follows. We first mod-
ify K into a larger clique by adding for each xh, a set Lh of d − 3 new vertices.
We also modify K ′ into a larger clique by adding for each xh, a set L′

h of d − 3
vertices. For each h ∈ {1, . . . , n} we make xh complete to both Lh and to L′

h.
Finally, we add additional edges between vertices in K ∪ L1 ∪ . . . ∪ Ln and ver-
tices in K ′ ∪ L′

1 ∪ . . . ∪ L′
n, in such a way that every vertex in K \ {C} has d − 2

neighbours in K ′ \ {D}, and vice versa. The modified graph G is still 3P2-free, has
radius 2 and diameter 3, and also still has size polynomial in m and n. The remainder
of the proof uses the same arguments as before. � □

5  Conclusions

We considered the natural generalization of Matching Cut to d-Cut[15] and proved
dichotomies for graphs of bounded diameter and graphs of bounded radius. We also
started a systematic study on the complexity of d-Cut for H-free graphs. While for
d = 1, there still exists an infinite number of non-equivalent open cases, we were able
to obtain for every d ≥ 2, an almost-complete complexity classification of d-Cut
for H-free graphs, with only three non-equivalent open cases left if d ≥ 3. We finish
our paper with some open problems on H-free graphs resulting from our systematic
study.

We recall that 1-Cut is polynomial-time solvable for claw-free graphs [5], while
we showed that d-Cut is NP-complete even for line graphs if d ≥ 3. We also recall
the recent result of Ahn et al. [1] who proved that 2-Cut is NP-complete for claw-free
graphs. What is the computational complexity of 2-Cut for line graphs?

Finally, we recall the only three non-equivalent open cases H = 2P4, H = P6,
H = P7 for d-Cut on H-free graphs for d ≥ 2. We aim to address these cases as
future work.

Acknowledgements  We thank Carl Feghali and Édouard Bonnet for fruitful discussions.

1 3

Page 25 of 27  7

Algorithmica (2026) 88:7

Author Contributions  All four authors contributed to the paper.

Funding  Felicia Lucke and Daniël Paulusma received support from EPSRC (Grant EP/X01357X/1).

Data Availability  No datasets were generated or analysed during the current study.

Declarations

Conflict of interest  The authors declare no Conflict of interest.

References

1.	 Ahn, J., Eagling-Vose, T., Lucke, F., Paulusma, D., Smith, S.: Finding d-cuts in claw-free graphs.
Proc. ISAAC 2025, LIPIcs to appear (2025)

2.	 Araújo, J., Cohen, N., Giroire, F., Havet, F.: Good edge-labelling of graphs. Discret. Appl. Math. 160,
2502–2513 (2012)

3.	 Aravind, N.R., Saxena, R.: An FPT algorithm for Matching Cut and d-Cut. Proc. IWOCA 2021.
LNCS 12757, 531–543 (2021)

4.	 Bonnet, E., Chakraborty, D., Duron, J.: Cutting barnette graphs perfectly is hard. Theoretical Com-
puter Science 114701 (2024)

5.	 Bonsma, P.S.: The complexity of the matching-cut problem for planar graphs and other graph classes.
J. Graph Theory 62, 109–126 (2009)

6.	 Borowiecki, M., Jesse-Józefczyk, K.: Matching cutsets in graphs of diameter 2. Theoret. Comput.
Sci. 407, 574–582 (2008)

7.	 Bouquet, V., Picouleau, C.: The complexity of the perfect matching-cut problem. J. Graph Theory
108, 120 (2025)

8.	 Chen, C., Hsieh, S., Le, H., Le, V.B., Peng, S.: Matching cut in graphs with large minimum degree.
Algorithmica 83, 1238–1255 (2021)

9.	 Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8, 51–53 (1984)
10.	 Darmann, A., Döcker, J.: On simplified NP-complete variants of monotone 3-Sat. Discret. Appl.

Math. 292, 45–58 (2021)
11.	 Farley, A.M., Proskurowski, A.: Networks immune to isolated line failures. Networks 12, 393–403

(1982)
12.	 Feghali, C.: A note on matching-cut in Pt-free graphs. Inf. Process. Lett. 179, 106294 (2023)
13.	 Feghali, C., Lucke, F., Paulusma, D., Ries, B.: Matching cuts in graphs of high girth and H -free

graphs. Algorithmica 87, 1199–1221 (2025)
14.	 Golovach, P.A., Paulusma, D., Song, J.: Computing vertex-surjective homomorphisms to partially

reflexive trees. Theoret. Comput. Sci. 457, 86–100 (2012)
15.	 Gomes, G., Sau, I.: Finding cuts of bounded degree: complexity, FPT and exact algorithms, and

kernelization. Algorithmica 83, 1677–1706 (2021)
16.	 Graham, R.L.: On primitive graphs and optimal vertex assignments. Ann. N. Y. Acad. Sci. 175, 170–

186 (1970)
17.	 Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nordic J. Comput. 5,

128–142 (1998)
18.	 van’t Hof, P., Paulusma, D.: A new characterization of P6-free graphs. Discret. Appl. Math. 158,

731–740 (2010)
19.	 Le, H.O., Le, V.B.: A complexity dichotomy for matching cut in (bipartite) graphs of fixed diameter.

Theoret. Comput. Sci. 770, 69–78 (2019)
20.	 Le, H., Le, V.B.: Complexity results for matching cut problems in graphs without long induced paths.

Proc. WG 2023, LNCS 14093, 417–431 (2023)
21.	 Le, V.B., Lucke, F., Paulusma, D., Ries, B.: Maximizing matching cuts. Encyclopedia of Optimiza-

tion to appear (2024)
22.	 Le, V.B., Telle, J.A.: The perfect matching cut problem revisited. Theoret. Comput. Sci. 931, 117–

130 (2022)

1 3

 7   Page 26 of 27

Algorithmica (2026) 88:7

23.	 Liu, J., Zhou, H.: Dominating subgraphs in graphs with some forbidden structures. Discret. Math.
135, 163–168 (1994)

24.	 Lucke, F., Momeni, A., Paulusma, D., Smith, S.: Finding d-cuts in graphs of bounded diameter,
graphs of bounded radius and H -free graphs. Proc. WG 2024, LNCS 14760, 415–429 (2025)

25.	 Lucke, F., Paulusma, D., Ries, B.: On the complexity of matching cut for graphs of bounded radius
and H -free graphs. Theoret. Comput. Sci. 936, 33–42 (2022)

26.	 Lucke, F., Paulusma, D., Ries, B.: Finding matching cuts in H -free graphs. Algorithmica 85, 3290–
3322 (2023)

27.	 Lucke, F., Paulusma, D., Ries, B.: Dichotomies for maximum matching cut: H -freeness, bounded
diameter, bounded radius. Theoret. Comput. Sci. 1017, 114795 (2024)

28.	 Moshi, A.M.: Matching cutsets in graphs. J. Graph Theory 13, 527–536 (1989)
29.	 Patrignani, M., Pizzonia, M.: The complexity of the Matching-Cut problem. Proc. WG 2001, LNCS

2204, 284–295 (2001)
30.	 Schaefer, T.J.: The complexity of satisfiability problems. Proc. Stoc 1978, 216–226 (1978)

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and appli-
cable law.

1 3

Page 27 of 27  7

	﻿Finding ﻿d﻿-Cuts in Graphs of Bounded Diameter, Graphs of Bounded Radius and ﻿H﻿-Free Graphs
	﻿Abstract
	﻿﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Preliminaries
	﻿﻿3﻿ ﻿Polynomial-Time Results
	﻿﻿4﻿ ﻿NP-Completeness Results
	﻿﻿5﻿ ﻿Conclusions
	﻿References

