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Abstract
The d-Cut problem is to decide whether a graph has an edge cut such that each 
vertex has at most d neighbours on the opposite side of the cut. If d = 1, we ob-
tain the intensively studied Matching Cut problem. The d-Cut problem has been 
studied as well, but a systematic study for special graph classes was lacking. We 
initiate such a study and consider classes of bounded diameter, bounded radius 
and H-free graphs. We prove that for all d ≥ 2, d-Cut is polynomial-time solvable 
for graphs of diameter 2, (P3 + P4)-free graphs and P5-free graphs. These results 
extend known results for d = 1. However, we also prove several NP-hardness re-
sults for d-Cut that contrast known polynomial-time results for d = 1. Our results 
lead to full dichotomies for bounded diameter and bounded radius and to almost-
complete dichotomies for H-free graphs.
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1  Introduction

We consider the generalization d-Cut of a classic graph problem Matching Cut 
(1-Cut). First, we explain the original graph problem. Consider a connected graph 
G = (V, E), and let M ⊆ E be a subset of edges of G. The set M is an edge cut of G 
if it is possible to partition V into two non-empty sets B (set of blue vertices) and R 
(set of red vertices) in such a way that M is the set of all edges with one end-vertex in 
B and the other one in R. Now, suppose that M is in addition also a matching, that is, 
no two edges in M have a common end-vertex. Then M is said to be a matching cut. 
See Fig. 1 for an example.

Graphs with matching cuts were introduced in the context of number theory [16] 
and have various other applications [2, 11, 14, 29]. The Matching Cut problem is 
to decide if a connected graph has a matching cut. This problem was shown to be 
NP-complete by Chvátal [9]. Several variants and generalizations of matching cuts 
are known. In particular, a perfect matching cut is a matching cut that is a perfect 
matching, whereas a disconnected perfect matching is a perfect matching containing 
a matching cut. The corresponding decision problems Perfect Matching Cut [17] 
and Disconnected Perfect Matching [7] are also NP-complete; see [4, 13, 20, 22, 
26] for more complexity results for these two problems. The optimization versions 
Maximum Matching Cut and Minimum Matching Cut are to find a matching cut 
of maximum and minimum size in a connected graph, respectively; see [21, 27] for 
more details.

Our Focus Matching cuts have also been generalized as follows. For an inte-
ger d ≥ 1 and a connected graph G = (V, E), a set M ⊆ E is a d-cut of G if it is 
possible to partition V into two non-empty sets B and R, such that: (i) the set M is 
the set of all edges with one end-vertex in B and the other one in R; and (ii) every 
vertex in B has at most d neighbours in R, and vice versa (see also Fig. 1). Note that 
a 1-cut is a matching cut. We consider the d-Cut problem: does a connected graph 
have a d-cut? Here, d ≥ 1 is a fixed integer, so not part of the input. Note that 1-Cut 
is Matching Cut. The d-Cut problem was introduced by Gomes and Sau [15] who 
proved its NP-completeness for all d ≥ 1.

Our Goal To get a better understanding of the hardness of an NP-complete graph 
problem, it is natural to restrict the input to belong to some special graph classes. We 
will first give a brief survey of the known complexity results for Matching Cut and 
d-Cut for d ≥ 2 under input restrictions. As we will see, for Matching Cut many 
more results are known than for d-Cut with d ≥ 2. Our goal is to obtain the same 
level of understanding of the d-Cut problem for d ≥ 2. This requires a currently 

Fig. 1  Left: a graph with a matching cut (i.e., a 1-cut). Middle: a graph with a 3-cut but no d-cut for 
d ≤ 2. Right: the graph H∗

i

 

1 3

    7   Page 2 of 27



Algorithmica            (2026) 88:7 

lacking systematic study into the complexity of this problem. We therefore consider 
the following research question:

For which graph classes G does the complexity of d-Cut,restricted to graphs from 
G, change if d ≥ 2 instead of d = 1?

As testbeds we take classes of graphs of bounded diameter, graphs of bounded 
radius, and H-free graphs. The distance between two vertices u and v in a connected 
graph G is the length (number of edges) of a shortest path between u and v in G. The 
eccentricity of a vertex u is the maximum distance between u and any other vertex of 
G. The diameter of G is the maximum eccentricity over all vertices of G, whereas the 
radius of G is the minimum eccentricity over all vertices of G. A graph G is H-free if 
G does not contain a graph H as an induced subgraph, that is, G cannot be modified 
into H by vertex deletions.

Existing Results We focus on classical complexity results; see [3, 15] for exact and 
parameterized complexity results for d-Cut. Let K1,r denote the (r+1)-vertex star, 
which has vertex set {u, v1, . . . , vr} and edges uvi for i ∈ {1, . . . , r}. Chvátal [9] 
showed that Matching Cut is NP-complete even for K1,4-free graphs of maximum 
degree 4, but polynomial-time solvable for graphs of maximum degree at most 3. 
Gomes and Sau [15] extended these results by proving that for every d ≥ 2, d-Cut is 
NP-complete for (2d + 2)-regular graphs, but polynomial-time solvable for graphs 
of maximum degree at most d + 2. Feghali et al. [13] proved that for every d ≥ 1 
and every g ≥ 3, there is a function f(d), such that d-Cut is NP-complete for bipartite 
graphs of girth at least g and maximum degree at most f(d). The girth of a graph G 
that is not a forest is the length of a shortest induced cycle in G. It is also known that 
Matching Cut is polynomial-time solvable for graphs of diameter at most 2 [6, 19], 
and even radius at most 2 [25], while being NP-complete for graphs of diameter 3 
[19], and thus radius at most 3 (for a survey of other results, see [8]). Hence, we 
obtain:

Theorem 1  ([19, 25]]) For r ≥ 1 , Matching Cut is polynomial-time solvable for 
graphs of diameter r and graphs of radius r if r ≤ 2  and NP-complete if r ≥ 3 .

To study a problem in a systematic way on graph classes that can be character-
ized by forbidden induced subgraphs, an often used approach is to first focus on the 
classes of H-free graphs. As Matching Cut is NP-complete for graphs of girth g for 
every g ≥ 3 [13] and for K1,4-free graphs [9], Matching Cut is NP-complete for 
H-free graphs whenever H has a cycle or is a forest with a vertex of degree at least 4. 
What about when H is a forest of maximum degree 3?

We let Pt be the path on t vertices. We denote the disjoint union of two vertex-
disjoint graphs G1 + G2 by G1 + G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We 
let sG be the disjoint union of s copies of G. Feghali [12] proved the existence of 
an integer t such that Matching Cut is NP-complete for Pt-free graphs, which was 
narrowed down to (3P5, P15)-free graphs in [26] and to (3P6, 2P7, P14)-free graphs 
in [20]. Let H∗

1  be the “H”-graph, which has vertices u, v, w1, w2, x1, x2 and edges 
uv, uw1, uw2, vx1, vx2. For i ≥ 2, let H∗

i  be the graph obtained from H∗
1  by sub-

dividing uv exactly i − 1 times; see Fig. 1. It is known that Matching Cut is NP-
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complete for (H∗
1 , H∗

3 , H∗
5 , . . .)-free bipartite graphs [28] and for (H∗

1 , . . . , H∗
i )-free 

graphs for every i ≥ 1 [13].
On the positive side, Matching Cut is polynomial-time solvable for claw-free 

graphs (K1,3-free graphs) and for P6-free graphs [26]. Moreover, if Matching Cut 
is polynomial-time solvable for H-free graphs for some graph H, then it is so for 
(H + P3)-free graphs [26].

For two graphs H and H ′, we write H ⊆i H ′ if H is an induced subgraph of H ′. 
Combining the above yields a partial classification (see also [13, 27]):

Theorem 2  ([5, 9, 13, 20, 25, 26, 28]) For a graph H, Matching Cut on H-free 
graphs is

	● Polynomial-time solvable if H ⊆i sP3 + K1,3 or sP3 + P6 for some s ≥ 0;
	● NP-complete if H ⊇i K1,4, P14, 2P7, 3P5, Cr for some r ≥ 3, or H∗

i  for some 
i ≥ 1.

Our Results We first note that also for every d ≥ 2, d-Cut is straightforward to 
solve for graphs of radius 1 (i.e., graphs with a dominating vertex). We will prove 
that for every d ≥ 2, d-Cut is also polynomial-time solvable for diameter 2 but NP-
complete for graphs of diameter 3 and radius 2. This leads to the following extensions 
of Theorem 1:

Theorem 3  Let d ≥ 2 . For r ≥ 1 , d-Cut is polynomial-time solvable for graphs of 
diameter r if r ≤ 2  and NP-complete if r ≥ 3 .

Theorem 4  Let d ≥ 2 . For r ≥ 1 , d-Cut is polynomial-time solvable for graphs of 
radius r if r ≤ 1  and NP-complete if r ≥ 2 .

Comparing Theorem 1 with Theorems 3 and 4 shows no difference in complexity 
for diameter but a complexity jump from d = 1 to d = 2 for radius.

For d ≥ 2, we also give polynomial-time algorithms for d-Cut for (P3 + P4)-free 
graphs and P5-free graphs. Our proof techniques use novel arguments, as we can 
no longer rely on a polynomial-time algorithm for radius 2 or a reduction to 2-SAT 
as for d = 1 [19, 25]. Moreover, we show that for d ≥ 2, d-Cut is polynomial-time 
solvable for (H + P1)-free graphs whenever d-Cut is so for H-free graphs, thus the 
cases {H + sP1 | s ≥ 0} are all (polynomially) equivalent. All these results extend 
the known results for d = 1, as can be seen from Theorem 2.

As negative results, we prove that for all d ≥ 2, d-Cut is NP-complete for 3P2
-free graphs, and that for every d ≥ 3, d-Cut is NP-complete for line graphs, and thus 
for K1,3-free graphs. Recently, Ahn et al. [1] proved that 2-Cut is NP-complete for 
K1,3-free graphs. The NP-completeness for graphs of large girth from [13] implies 
that for d ≥ 2, d-Cut is NP-complete for H-free graphs if H has a cycle. Hence, by 
combining the above results, we obtain the following partial complexity classifica-
tion for d ≥ 2:

Theorem 5  Let d ≥ 2 . For a graph H, d-Cut on H-free graphs is
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	● Polynomial-time solvable if H ⊆i sP1 + P3 + P4 or sP1 + P5 for some s ≥ 0;
	● NP-complete if H ⊇i K1,3, 3P2, or Cr for some r ≥ 3.

Theorem 5 leaves only three non-equivalent open cases for every d ≥ 2, namely 
when H = 2P4, H = P6 and H = P7. From Theorems 2 and 5 we observe that there 
are complexity jumps from d = 1 to d = 2 for sP2-free graphs when s = 3 and for 
K1,3-free graphs.

We prove our polynomial-time results in Sect. 3 and our NP-completeness results 
in Sect. 4. We finish our paper with some open problems in Sect. 5. We start with 
providing some basic results in Sect. 2.

2  Preliminaries

Throughout the paper, we only consider finite, undirected graphs without multiple 
edges and self-loops. We first define some general graph terminology.

Let G = (V, E) be a graph. The line graph L(G) of G has the edges of G as its 
vertices, with an edge between two vertices in L(G) if and only if the corresponding 
edges in G share an end-vertex. Let u ∈ V . The set N(u) = {v ∈ V | uv ∈ E} is 
the neighbourhood of u, and |N(u)| is the degree of u. Let S ⊆ V . The (open) neigh-
bourhood of S is the set N(S) =

∪
u∈S N(u) \ S, and the closed neighbourhood 

N [S] = N(S) ∪ S. We let G[S] denote the subgraph of G induced by S, which is 
obtained from G by deleting the vertices not in S. We let G − S = G[V \ S]. If no 
two vertices in S are adjacent, then S is an independent set of G. If every two vertices 
in S are adjacent, then S is a clique of G. If every vertex of V \ S has a neighbour in S, 
then S is a dominating set of G. We also say that G[S] dominates G. The domination 
number of G is the size of a smallest dominating set of G. Let T ⊆ V \ S. The sets S 
and T are complete to each other if every vertex of S is adjacent to every vertex of T.

Let u be a vertex in a connected graph G. We denote the distance of u to some 
other vertex v in G by distG(u, v). Recall that the eccentricity of u is the maxi-
mum distance between u and any other vertex of G. Recall also that the diameter 
diameter(G) of G is the maximum eccentricity over all vertices of G and that the 
radius radius(G) of G is the minimum eccentricity over all vertices of G. Note that 
radius(G) ≤ diameter(G) ≤ 2 · radius(G).

We now generalize some colouring terminology that was used in the context of 
matching cuts (see, e.g., [12, 25]). A red-blue colouring of a graph G assigns every 
vertex of G either the colour red or blue. For d ≥ 1, a red-blue colouring is a red-blue 
d-colouring if every blue vertex has at most d red neighbours; every red vertex has 
at most d blue neighbours; and both colours red and blue are used at least once. See 
Fig. 1 for examples of a red-blue 1-colouring and a red-blue 3-colouring.

We make the following observation.

Observation 6  For every d ≥ 1 , a connected graph G has a d-cut if and only if it has 
a red-blue d-colouring.

1 3
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If every vertex of a set S ⊆ V  has the same colour (either red or blue) in a red-blue 
colouring, then S, and also G[S], are monochromatic. An edge with a blue and a red 
end-vertex is bichromatic. Note that for every d ≥ 1, the graph K2d+1 is monochro-
matic in every red-blue d-colouring, and that every connected graph with a red-blue 
d-colouring contains a bichromatic edge.

We now generalize a known lemma for Matching Cut (see, e.g., [25]).

Lemma 7  For every d, g ≥ 1 , it is possible to find in O(2 gndg+2 )-time a red-blue 
d-colouring (if it exists) of a graph G with n vertices and domination number g.

Proof  Let d, g ≥ 1 and G be a graph on n vertices with domination number g. Let D 
be a dominating set D of G that has size at most g.

We consider all 2|D| ≤ 2g  options of giving the uncoloured vertices of D either 
colour red or blue. For each red-blue colouring of D we do as follows. For every red 
vertex of D, we consider all O(nd) options of colouring at most d of its uncoloured 
neighbours blue, and we colour all of its other uncoloured neighbours red. Similarly, 
for every blue vertex of D, we consider all O(nd) options of colouring at most d of 
its uncoloured neighbours red, and we colour all of its other uncoloured neighbours 
blue. As D dominates G, we obtained a red-blue colouring c of the whole graph G. 
We discard the option if c is not a red-blue d-colouring of G.

We note that any red-blue d-colouring of G, if it exists, will be found by the above 
algorithm. As the total number of options is O(2gndg) and checking if a red-blue 
colouring is a red-blue d-colouring takes O(n2) time, our algorithm has total running 
time O(2gndg+2). � □

Let d ≥ 1. Let G = (V, E) be a connected graph and S, T ⊆ V  be two disjoint 
sets. A red-blue (S, T)-d-colouring of G is a red-blue d-colouring of G that colours all 
the vertices of S red and all the vertices of T blue. We call (S, T) a precoloured pair of 
(G, d) which is colour-processed if every vertex of V \ (S ∪ T ) is adjacent to at most 
d vertices of S and to at most d vertices of T.

By the next lemma, we may assume without loss of generality that a precoloured 
pair (S, T) is always colour-processed.

Lemma 8  Let G be a connected graph with a precoloured pair (S, T). It is possible, 
in polynomial time, to either colour-process (S, T) or to find that G has no red-blue 
(S, T)-d-colouring.

Proof  We apply the following rules on G. Let Z = V \ (S ∪ T ). If v is adjacent to 
d + 1 vertices in S, then move v from Z to S. If v is adjacent to d + 1 vertices in T, 
then move v from Z to T. Return no if a vertex v ∈ Z at some point becomes adja-
cent to d + 1 vertices in S as well as to d + 1 vertices in T. We apply these three rules 
exhaustively. It is readily seen that each of these rules is safe to use, and moreover, 
can be verified and applied in polynomial time. After each application of a rule, we 
either stop or have decreased the size of Z by at least one vertex. Hence, the proce-
dure is correct and takes polynomial time. � □
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3  Polynomial-Time Results

We now show our polynomial-time results for d-Cut for d ≥ 2. These results com-
plement the corresponding known polynomial-time results for d = 1 that we men-
tioned in Sect. 1 (and the proofs of the new results yield alternative proofs for the 
known results if we set d = 1).

We first consider the class of graphs of diameter at most 2.

Theorem 9  For every d ≥ 2 , the d-Cut problem is polynomial-time solvable for 
graphs of diameter at most 2.

Proof  Let G = (V, E) be a graph of diameter at most 2. Note that this implies that 
G is connected. As d-Cut is trivial for graphs of diameter 1, we assume that G has 
diameter 2. By Observation 6, we have proven the theorem if we can decide in poly-
nomial time if G has a red-blue d-colouring.

Let v ∈ V . Without loss of generality we may colour v red. Since v has at most d 
blue neighbours in any red-blue d-colouring, we can branch over all O(nd) options 
to colour the neighbourhood of v. In the case where all neighbours of v are red, we 
branch over all O(n) options to colour some vertex x of G blue. We consider each 
option separately.

Let R and B be the set of red and blue vertices, respectively. Let 
S′ = {v} ∪ {u | u ∈ N(v), u ∈ R} and let T ′ = {u | u ∈ N(v), u ∈ B}. We 
colour-process (S′, T ′), resulting in a pair (S, T). Let Z = V \ (S ∪ T ) be the set of 
uncoloured vertices. As (S, T) is colour-processed, every vertex in Z has at most d 
red neighbours and at most d blue neighbours and thus in total at most 2d coloured 
neighbours. We distinguish between the following two cases:

Case 1. G[Z] consists of at least two connected components.
Let Z1, . . . , Zr be the connected components of G[Z]. By assumption, we have 

that r ≥ 2. Let v1 ∈ V (Z1) and v2 ∈ V (Z2). Since G has diameter 2, we know that 
v1 has a common neighbour with every vertex in Z2, . . . , Zr. Let N1 be the set of all 
vertices that are adjacent to v1 as well as to a vertex in V (Z2) ∪ · · · ∪ V (Zr). Note 
that N1 ⊆ S ∪ T  and that every vertex of V (Z2) ∪ · · · ∪ V (Zr) has at least one neigh-
bour in N1. Moreover, as v1 has at most 2d coloured neighbours and N1 ⊆ S ∪ T , 
we find that |N1| ≤ 2d. By the same arguments, we find a set N2 ⊆ S ∪ T , with 
|N2| ≤ 2d consisting of the common neighbours of v2 and Z1, such that every vertex 
of Z1 has at least one neighbour in N2. See also Fig. 2.

In a red-blue d-colouring, every vertex in N1 ∪ N2 has at most d neighbours 
of the other colour. Thus, we can try all O(n4d2) options to colour the uncoloured 
neighbours of N1 ∪ N2. If in the resulting colouring any vertex has more than d 
neighbours of the other colour we discard it. Suppose not. Then, as every vertex of 
V (Z1) ∪ · · · ∪ V (Zr) is a neighbour of at least one vertex in N1 ∪ N2, we found a 
red-blue d-colouring of G.

1 3
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Case 2. G[Z] is connected.
We first assume that G[Z] has radius at least 3. We let z ∈ Z, and we let

	 U = {u ∈ Z : distG[Z](z, u) ≥ 3}.

Observe that U ̸= ∅, as G[Z] has radius at least 3. For an illustration of U, see Fig. 2. 
As G has diameter 2, we find that z has a common neighbour with every vertex of 
U. As the common neighbours of z and the vertices in U are not in Z, they belong to 
S ∪ T , meaning they are coloured red or blue. As z was not coloured after the colour-
processing, we find that z has at most 2d coloured neighbours. Each of these coloured 
neighbours of z can have at most d neighbours of the other colour. So we can branch 
over all O(n2d2) options to colour U.

For each of the O(n2d2) branches, we do as follows. If some vertex of U, which 
is now coloured, has more than d neighbours of the other colour, then we discard 
the branch. Else, we consider the graph G[Z \ U ], which consists of all uncoloured 
vertices and which has radius at most 2. Let Z := Z \ U .

Let z ∈ Z such that distG[Z](z, u) ≤ 2 for all u ∈ Z. We branch over all O(nd) 
colourings of {z} ∪ NG[Z](z). As distG[Z](z, u) ≤ 2 for all u ∈ Z, it holds that 
{z} ∪ NG[Z](z) is a dominating set of G[Z]. Hence, every uncoloured vertex has 
now at least one newly coloured neighbour.

We now colour-process the pair of red and blue sets. If there is a vertex with d + 1 
neighbours of the other colour or an uncoloured vertex with more than d neighbours 
of each colour, then we discard the branch. Otherwise, we redefine Z to be the new 
set of uncoloured vertices.

We now proceed by checking if Case 1 applies. If so, we apply the algorithm under 
Case 1, and else we proceed according to Case 2 again. Note that if at some point 
we apply Case 1, then we are done: we either found a red-blue d-colouring of G, or 
we have discarded the branch. We also recall that every time we apply Case 2, all 
vertices that remain uncoloured will have at least one newly coloured neighbour. This 
observation is crucial, as it means that we only need to apply Case 2 at most 2d times 
(should we apply Case 2 at some point 2d times, every uncoloured vertex will have 

Fig. 2  Cases 1 (left) and 2 (right) in the proof of Theorem 9
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at least 2d coloured neighbours and thus, they are coloured after we colour-processed 
the sets of red and blue vertices).

The correctness of our algorithm follows from its description. We now discuss its 
running time. We always have O(nd) branches at the start of our algorithm when we 
colour a specific vertex v and its neighbourhood (and possibly one more vertex x). In 
each of these branches, we may colour-process once, which takes polynomial time 
by Lemma 8. One application of Case 1 gives O(n4d2) branches and one application 
of Case 2 gives O(n2d2+d) branches. Recall that the algorithm terminates after one 
application of Case 1 and that we apply Case 2 at most 2d times. This means that the 
total number of branches is

	
O

(
nd ·

(
n2d2+d

)2d

· n
2
)

,

which is a polynomial number and which also bounds the number of times we colour-
process in a branch. As the latter takes polynomial time by Lemma 8, we conclude 
that our algorithm runs in polynomial time. � □

We now consider two classes of H-free graphs, starting with the case H = P5.

Theorem 10  For every d ≥ 2 , the d-Cut problem is polynomial-time solvable for 
P5 -free graphs.

Proof  Let d ≥ 2. Let G = (V, E) be a connected P5-free graph on n vertices. As 
G is P5-free and connected, G has a dominating set D, such that either D induces 
a cycle on five vertices or D is a clique [23]. Moreover, we find such a dominat-
ing set D in O(n3) time [18]. If |D| ≤ 3d, then we apply Lemma 7. Now assume 
that |D| ≥ 3d + 1 ≥ 7, and thus D is a clique. If D = V , then G has no d-cut, as 
|D| ≥ 3d + 1 and D is a clique. Assume that D ⊊ V , so G − D has at least one con-
nected component. Below we explain how to find in polynomial time a d-cut of G, 
or to conclude that G does not have a d-cut. By Observation 6, we need to decide in 
polynomial time if G has a red-blue d-colouring.

We first enter the blue phase of our algorithm. As |D| ≥ 3d + 1 and D is a clique, 
D is monochromatic in any red-blue d-colouring of G. Hence, we may colour, with-
out loss of generality, all the vertices of D blue, and we may colour all vertices of 
every connected component of G − D except one connected component blue as well. 
We branch over all O(n) options of choosing the connected component L1 of G − D 
that will contain a red vertex.1 For each option, we are going to repeat the process of 
colouring vertices blue until we colour at least one vertex red. We first explain how 
this process works if we do not do this last step.

1 For d = 1, up to now, the same approach is used for P5-free graphs [12]. But the difference is that 
for d = 1, the algorithm and analysis is much shorter: one only has to check, in this stage, if there is a 
component of G − D, whose vertices can all be safely coloured red. Then one either finds a matching 
cut, or G has no matching cut.
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As L1 is connected and P5-free, we find in O(n3) time (using the algorithm of 
[18]) a dominating set D1 of L1 that is either a cycle on five vertices or a clique. We 
colour the vertices of D1 blue. As we have not used the colour red yet, we colour all 
vertices of every connected component of L1 − D1 except one connected component 
blue. So, we branch over all O(n) options of choosing the connected component L2 
of L1 − D1 that will contain a red vertex. Note that every uncoloured vertex of G, 
which belongs to L2, has both a neighbour in D (as D dominates G) and a neighbour 
in D1 (as D1 dominates L1). We now find a dominating set D2 of L2 and a connected 
component L3 of G − D2 with a dominating set D3, and so on. See also Fig. 3.

If we repeat the above process more than d times, we have either coloured every 
vertex of G blue, or we found d + 1 pairwise disjoint, blue sets D, D1, . . . , Dd, such 
that every uncoloured vertex u has a neighbour in each of them. The latter implies 
that u has d + 1 blue neighbours, so u must be coloured blue as well. Hence, in each 
branch, we would eventually end up with the situation where all vertices of G will 
be coloured blue. To prevent this from happening, we must colour, in each branch, 
at least one vertex of Di red, for some 1 ≤ i ≤ d − 1. As soon as we do this, we end 
the blue phase for the branch under consideration, and our algorithm enters the red 
phase.

Each time we have O(n) options to select a connected component Li and, as argued 
above, we do this at most d times. Hence, we enter the red phase for O(nd) branches 
in total. From now on, we call these branches the main branches of our algorithm. 
For a main branch, we say that we quit the blue phase at level i if we colour at least 
one vertex of Di red. If we quit the blue phase for a main branch at level i, for some 
1 ≤ i ≤ d − 1, then we have constructed, in polynomial time, pairwise disjoint sets 
D, D1, . . . , Di and graphs L1, . . . , Li, such that:

	● For every h ∈ {1, . . . , i − 1}, Lh+1 is a connected component of Lh − Dh;
	● Every vertex of G that does not belong to Li has been coloured blue;
	● For every h ∈ {1, . . . , i}, Dh induces a cycle on five vertices or is a clique;
	● D dominates G, so, in particular, D dominates Li; and
	● For every h ∈ {1, . . . , i}, Dh dominates Lh.

We now prove the following claim, which shows that we branched correctly. � □

Fig. 3  The graph G in the blue phase (left) and in the red phase: Case 2 (right)
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Claim 10.1  The graph G has a red-blue d-colouring that colours every vertex of D 
blue if and only if we have quit a main branch at level i for some 1 ≤ i ≤ d − 1, such 
that G has a red-blue d-colouring that colours at least one vertex of Di red and all 
vertices not in Li blue.

Proof of the Claim. Suppose G has a red-blue d-colouring c that colours every 
vertex of D blue (the reverse implication is immediate). By definition, c has coloured 
at least one vertex u in G − D red. As we branched in every possible way, there 
is a main branch that quits the blue phase at level  i, such that u belongs to Li for 
some 1 ≤ i ≤ d − 1. We pick a main branch with largest possible  i, so u is not in 
Li+1. Hence, u ∈ Di. We also assume that no vertex u′ that belongs to some Dh 
with h < i is coloured red by c, as else we could take u′ instead of u. Hence, c has 
coloured every vertex in D1 ∪ . . . ∪ Di−1 (if i ≥ 2) blue. Therefore, we may assume 
that every vertex v /∈ D ∪ D1 ∪ . . . ∪ Di−1 ∪ V (Li) has been coloured blue by c. If 
not, may just recolour all such vertices v blue for the following reasons: u is still red 
and no neighbour of v is red, as after a possible recolouring all red vertices belong 
to Li, while v belongs to a different component of G − (D ∪ D1 ∪ · · · ∪ Di−1) than 
Li. So, we proved the claim.

Claim 10.1 allows us to do some specific branching once we quit the blue phase 
for a certain main branch at level  i. Namely, all we have to do is to consider all 
options to colour at least one vertex of Di red. We call these additional branches side 
branches. We distinguish between the following two cases:

Case 1. |Di| ≤ 2d + 1.
We consider each of the at most 22d+1 options to colour the vertices of Di either 

red or blue, such that at least one vertex of Di is coloured red. Next, for each vertex 
u ∈ Di, we consider all O(nd) options to colour at most d of its uncoloured neigh-
bours blue if u is red, or red if u is blue. Note that the total number of side branches 
is O(22d+1nd(2d+1)). As Di dominates Li and the only uncoloured vertices were in 
Li, we obtained a red-blue colouring c of G. We check in polynomial time if c is a 
red-blue d-colouring of G. If so, we stop and return c. If none of the side branches 
yields a red-blue d-colouring of G, then by Claim 10.1 we can safely discard the main 
branch under consideration.

Case 2. |Di| ≥ 2d + 2.
Recall that Di either induces a cycle on five vertices or is a clique. As 

|Di| ≥ 2d + 2 ≥ 6, we find that Di is a clique. As |Di| ≥ 2d + 2, this means that 
Di must be monochromatic, and thus every vertex of Di must be coloured red. We 
check in polynomial time if Di contains a vertex with more than d neighbours in D 
(which are all coloured blue), or if D contains a vertex with more than d neighbours 
in Di (which are all coloured red). If so, we may safely discard the main branch under 
consideration due to Claim 10.1.

From now on, assume that every vertex in Di has at most d neighbours in D, and 
vice versa. By construction, every uncoloured vertex belongs to Li − Di. Hence, if 
V (Li) = Di, we have obtained a red-blue colouring c of G. We check, in polynomial 
time, if c is also a red-blue d-colouring of G. If so, we stop and return c. Otherwise, 
we may safely discard the main branch due to Claim 10.1.
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Now assume V (Li) ⊋ Di. We colour all vertices in Li − Di that are adjacent to at 
least d + 1 vertices in D blue; we have no choice as the vertices in D are all coloured 
blue. If there are no uncoloured vertices left, we check in polynomial time if the 
obtained red-blue colouring is a red-blue d-colouring of G. If so, we stop and return 
it; else we may safely discard the main branch due to Claim 10.1.

Assume that we still have uncoloured vertices left. We recall that these vertices 
belong to Li − Di, and that by construction they have at most d neighbours in D. 
Consider an uncoloured vertex w1. As Di dominates Li, we find that w1 has a neigh-
bour x1 in Di. As D dominates G, we find that x1 is adjacent to some vertex y1 ∈ D. 
We consider all O(n2d) possible ways to colour the uncoloured neighbours of x1 and 
y1, such that x1 (which is red) has at most d blue neighbours, and y1 (which is blue) 
has at most d red neighbours. If afterwards there is still an uncoloured vertex w2, 
then we repeat this process: we choose a neighbour x2 of w2 in Di (so x2 is coloured 
red). We now branch again by colouring the uncoloured neighbours of x2. If we find 
an uncoloured vertex w3, then we find a neighbour x3 of w3 in Di and so on. So, 
we repeat this process until there are no more uncoloured vertices. This gives us 2p 
distinct vertices w1, . . . , wp, x1, . . . , xp for some integer p ≥ 1, together with vertex 
y1.The total number of side branches for the main branch is O(n2pd).

We claim that p ≤ d. For a contradiction, assume that p ≥ d + 1 ≥ 3. Let 
2 ≤ j ≤ p. As Di is a clique that contains x1 and xj , we find that x1 and xj  are 
adjacent. Hence, G contains the 4-vertex path wjxjx1y1. By construction, wj  was 
uncoloured after colouring the neighbours of x1 and y1, so wj  is neither adjacent to 
x1 nor to y1. This means that wjxjx1y1 is an induced P4 if and only if xj  is not adja-
cent to y1. Recall that wj  and every vertex of Di, so including x1 and xj , has at most 
d neighbours in D. As |D| ≥ 3d + 1, this means that D contains a vertex z that is not 
adjacent to any of wj , xj , x1. As D is a clique, z is adjacent to y1. Hence, xj  must be 
adjacent to y1, as otherwise wjxjx1y1z is an induced P5; see also Fig. 3. The latter 
is not possible as G is P5-free. We now find that y1 is adjacent to x1, . . . , xp, which 
all belong to Di. As we assumed that p ≥ d + 1 and every vertex of D, including y1, 
is adjacent to at most d vertices of Di, this yields a contradiction. We conclude that 
p ≤ d.

As p ≤ d, the total number of side branches is O(n2d2). Each side branch yields a 
red-blue colouring of G. We check in polynomial time if it is a red-blue d-colouring 
of G. If so, then we stop and return it; else we can safely discard the side branch, and 
eventually the associated main branch, due to Claim 10.1.

The correctness of our algorithm follows from its description. We now analyze 
its running time. We started the algorithm with searching for a set D. If D has size 
at most 3d, then we applied Lemma 7, which takes polynomial time. Otherwise we 
argue as follows. The total number of main branches is O(nd). For each main branch 
we have either O(22d+1nd(2d+1)) side branches (Case 1) or O(n2d2) side branches 
(Case 2). Hence, the total number of branches is O(nd22d+1nd(2d+1)). As d is fixed, 
this number is polynomial. As processing each branch takes polynomial time (includ-
ing the construction of the Di-sets and Li-graphs), we conclude that our algorithm 
runs in polynomial time. This completes the proof. � □
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We now consider the case H = P3 + P4.

Theorem 11  For every d ≥ 2 , the d-Cut problem is polynomial-time solvable for 
(P3 + P4 )-free graphs.

Proof  Let d ≥ 2 and recall that throughout the proof we assume that d is a constant. 
Let G be a connected (P3 + P4)-free graph on n vertices. We may assume that G 
contains at least one induced P4, else we apply Theorem 10. Throughout our proof 
we make repeatedly use of the following claim. � □

Claim 11.1  Let P be an induced P4 of G. Every connected component F in 
G − N [V (P )] is a complete graph and has only a constant number (namely at most 
22d) of distinct red-blue colourings.

Proof of the Claim. As P is an induced P4, we find that G − N [V (P )] is P3-free. 
Hence, every connected component F in G − N [V (P )] is a complete graph. As F 
is a complete graph, F must be monochromatic in any red-blue d-colouring of G if 
|V (F )| ≥ 2d + 1. Hence, F has at most 22d possible red-blue colourings, which is a 
constant number, as d is constant.

We now divide the proof into two cases. First, we decide in polynomial time 
whether there exists a red-blue d-colouring of G in which some induced P4 is mono-
chromatic. If we do not find such a red-blue d-colouring, then we search in polyno-
mial time for a red-blue d-colouring in which every induced P4 is bichromatic. By 
Observation 6 this proves the theorem.

Step 1. Decide if G has a red-blue d-colouring, for which some induced P4 of G 
is monochromatic.

Our algorithm performs Step 1 as follows. We branch over all induced P4s of G. 
As there are at most O(n4) induced P4s in G, this yields O(n4) branches. For each 
branch, we do as follows. Let P be the current induced P4 of G, which we assume is 
monochromatic. We assume without loss of generality that every vertex of P is blue. 
Let

	 N1 = N(V (P )) and N2 = V (G) \ N [V (P )].

By Claim 11.1, every connected component of G[N2] is a complete graph. By defini-
tion, every vertex will have at most d neighbours of the other colour in every red-blue 
d-colouring of G. We branch over all O(n4d) possible ways to colour the vertices 
of N1.

For each branch we do as follows. First suppose that V (P ) ∪ N1 is monochromatic. 
As the vertices of P are all blue, this means that all vertices of N1 are blue. We observe 
that G has a red-blue d-colouring in which all vertices of V (P ) ∪ N1 are blue if and 
only if there is a connected component F of G[N2] such that G[V (P ) ∪ N1 ∪ V (F )] 
has a red-blue d-colouring. The reason for this is that if we find such a connected 
component F of G[N2], then we can safely colour the vertices of all other connected 
components of G[N2] blue. For each connected component F of G[N2] we do as fol-
lows. By Claim 11.1, the number of distinct red-blue d-colourings of F is constant. 
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We branch by trying each such colouring. If some colouring of V(F) yields a red-
blue d-colouring of G[V (P ) ∪ N1 ∪ V (F )], then we are done. If after considering 
all O(n) connected components of G[N2] we have not found a red-blue d-colouring, 
then we discard this branch.

Now assume that V (P ) ∪ N1 is not monochromatic in our current branch. This 
means that the set of red vertices in N1, which we denote by S, is nonempty. Observe 
that S contains at most 4d vertices, as S ⊆ N(V (P )) and every vertex of P is blue. 
We now branch over all O(n4d2) possible colourings of N(S) \ V (P ).

For each branch we do as follows. We colour-process the pair of current sets of red 
and blue vertices. Observe that connected components of G[N2] may now contain red 
vertices, but if they do, then they contain at least one red vertex that is adjacent to a 
vertex in S, i.e., to a red vertex in N1. We now make a crucial update:

We move every new blue vertex from N2 to N1, while we let every new red vertex 
stay in N2(so the only red vertices in N1 are still those that belong to S).

We call this update an N1-update. Note that after an N1-update, the new con-
nected components of G[N2] are still complete graphs, but now they consist of only 
red vertices and uncoloured vertices. Moreover, every uncoloured vertex belongs to 
N2 and only has blue neighbours in N1 (as the red vertices in N1 belong to S and all 
vertices of N(S) are coloured).

For every connected component F of G[N2] that consists of uncoloured vertices 
only we do as follows. Recall that uncoloured vertices in N2 only have blue neigh-
bours in N1. Thus, we may safely colour all vertices of F blue and apply an N1
-update. So, after this procedure, every connected component F of G[N2] with an 
uncoloured vertex contains a red vertex. Recall that at least one red vertex of F must 
have a red neighbour in S ⊆ N1,

For every connected component F of G[N2] that has an uncoloured vertex and that 
has size at least 2d + 1, we do as follows. As F is a complete graph on at least 2d + 1 
vertices, F is monochromatic in every red-blue d-colouring of G. From the above, 
we know that F also contains a red vertex. Hence, we must colour every uncoloured 
vertex of F red. Afterwards, all connected components of G[N2] with an uncoloured 
vertex have size at most 2d.

For every connected component F of G[N2] with an uncoloured vertex we also 
check if all the uncoloured vertices of F only have red or uncoloured neighbours 
(note that the latter belong to F as well). If so, then we safely colour all uncoloured 
vertices of F red. If afterwards there are no uncoloured vertices anymore, we check 
if the resulting colouring is a red-blue d-colouring of G. If so, we are done, and oth-
erwise we discard the branch. Suppose there are still uncoloured vertices left. Then 
these uncoloured vertices must belong to N2, and we denote the connected compo-
nents of G[N2] that contain at least one uncoloured vertex by F1, . . . , Fq for some 
q ≥ 1. In summary, we have proven:

Claim 11.2  Every Fi is a complete graph of size at most 2d that 

(i)	 Contains a red vertex with a red neighbour in S ⊆ N1;
(ii)	 Contains an uncoloured vertex with a blue neighbour in N1;
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(iii)	Does not contain any blue vertices; and
(iv)	Does not contain any uncoloured vertices that have a red neighbour in N1.

By Claim 11.2, there exists at least one red vertex in N1 that has a red neighbour 
in some connected component Fi. We now distinguish between two cases.

Case 1. There exists a red vertex r ∈ N1 that has a red neighbour in two distinct 
connected components Fi and Fj , say in F1 and F2.

Let r1 ∈ V (F1) be a red neighbour of r in F1, and let u ∈ V (F1) be an uncoloured 
vertex in F1. Similarly, let r2 ∈ V (F2) be a red neighbour of r in F2. By Claim 11.2, 
we have that F1 is a complete graph, so r1 and u are adjacent, and thus G contains the 
4-vertex path Q = u1r1rr2.

As r is red, Claim 11.2 tells us that u is not adjacent to r. As u and r2 are in dif-
ferent connected components of G[N2], we also have that u is not adjacent to r2. For 
the same reason, r1 and r2 are not adjacent. Hence, Q is in fact an induced P4 of G.

As G is (P3 + P4)-free and Q is an induced P4, any induced P3 in G contains a 
vertex that is adjacent to at least one vertex of Q. In particular, this implies that every 
blue vertex in N1 that has some uncoloured neighbour in at least two connected com-
ponents of {F3, . . . , Fq} (if q ≥ 4) has a neighbour in Q. The reason is that these two 
uncoloured neighbours cannot be adjacent to red vertices in N1 (by Claim 11.2) or to 
vertices in connected components of G[N2] to which they do not belong. See Fig. 4 
for an illustration.

Since the vertices of Q are either red or uncoloured, they may have at most d blue 
neighbours (as else they would have been coloured blue due to the colour-process-
ing). Hence, we find that there are at most 4d blue vertices in N1 with uncoloured 
neighbours in at least two connected components of {F3, . . . , Fq}. We denote this 
particular set of blue vertices in N1 by T, so we have that |T | ≤ 4d.

By Claim 11.2, every Fi has at most 2d vertices (so a constant number). Hence, 
|V (F1)| ≤ 2d and |V (F2)| ≤ 2d. Let U be the set of uncoloured vertices in 
V (F1) ∪ V (F2). We branch over all O(24dn4d2) colourings of G[N(T ) ∪ U ].

For each branch we do as follows. We first observe that every uncoloured vertex 
x must belong to V (Fi) for some i ∈ {3, . . . , q}. The neighbours of x in N1 cannot 
belong to S ∪ T , as we already coloured all vertices of N(S ∪ T ). Hence, any neigh-

Fig. 4  Illustration of Case 1. As Q = u1r1rr2 
is induced, the displayed P3 + P4 cannot be 
induced. White vertices indicate uncoloured 
vertices
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bour y of x in N1 must be in N1 \ (S ∪ T ), so in particular y /∈ S and thus y must be 
blue. Moreover, as y does not belong to T either, any other uncoloured neighbours of 
y must all belong to Fi as well (this follows from the definition of T).

Let W consist of all vertices coloured so far. From the above, we conclude that it is 
enough to decide if we can extend for each i ∈ {3, . . . , q}, the current red-blue colour-
ing of G[W] to a red-blue d-colouring of G[W ∪ V (Fi)]. For each i ∈ {3, . . . , q}, 
this leads to another 22d branches, as Fi has size at most 2d by Claim 11.2. So, as we 
can consider the colourings of every Fi (i ≥ 3) independently, the total number of 
new branches is 22dq = O(n). If for all i ∈ {3, . . . , q} we can find an extended red-
blue d-colouring of G[W ∪ V (Fi)], then we have obtained a red-blue d-colouring of 
G. Otherwise we discard the branch.

Case 2. Every red vertex in N1 has red neighbours in at most one connected com-
ponent of {F1, . . . , Fq}.

By definition, every Fi has at least one uncoloured vertex. By Claim 11.2, every 
Fi also has at least one red vertex with a red neighbour in N1. Consider F1. Let x be 
an uncoloured vertex of F1, and let r1 be a red vertex of F1 with a red neighbour r in 
N1, so r ∈ S. Recall that F1 is a complete graph by Claim 11.2. Hence, x and r1 are 
adjacent, and thus xr1r is a P3. However, x and r are non-adjacent, since r ∈ S and 
the neighbourhood of S is coloured. This means that J is even an induced P3 in G.

By definition of a red-blue d-colouring and due to the colour-processing, at most 
3d blue vertices in G can have a neighbour on J. Let Γ be the set of these blue verti-
ces, so |Γ| ≤ 3d. We now branch by considering all colourings of the uncoloured ver-
tices of N(Γ) ∪ V (F1). As |Γ| ≤ 3d and F1 has at most 2d vertices by Claim 11.2, 
the number of colourings to consider is at most O(22dn3d2).

For each branch we do as follows. We first colour-process the pair of sets of red 
vertices and blue vertices. We then perform an N1-update, such that afterwards every 
Fi again only contains red and uncoloured vertices. Again we colour the uncoloured 
vertices of some Fi red if none of them has a blue neighbour in N1. Moreover, we 
recall that if some Fi consists of only uncoloured vertices, then – as uncoloured ver-
tices in N2 only have blue neighbours in N1 – we may safely colour all vertices of 
Fi blue and apply an N1-update. So, again it holds that every Fi with an uncoloured 
vertex contains a red vertex.

Assume we still have at least one uncoloured vertex left (otherwise we are done). 
As we coloured the vertices of F1, we find that there exists some Fi with i ≥ 2, say 
F2, that contains at least one uncoloured vertex. As we did not colour all vertices of 
F2 red, we find that F2 contains an uncoloured vertex u with a blue neighbour b in 
N1. We note that b does not belong to Γ, as we coloured all vertices of N(Γ).

First suppose that b has an uncoloured neighbour v in some Fi with i ≥ 3, say 
in F3, and also that b also has a non-neighbour r2 (that is either red or uncoloured) in 
F2 or F3, say in F2. As F2 is a complete graph, u and r2 are adjacent. Hence, r2ubv 
is an induced P4 of G.

We note that b is not adjacent to any vertex of {r, r1, x}, as b does not belong to 
Γ. Note also that u and v are not adjacent to r1 and x, as r1 and x are in a different 
connected component of G[N2] than u and v. Moreover, as r is red, Claim 11.2 tells 
us that u and v are not adjacent to r either.
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Finally, we consider r2. We note that r2 is not adjacent to r. Namely, if r2 is red, 
then this holds by the Case 2 assumption. If r2 is uncoloured, then this holds due to 
Claim 11.2. Moreover, r2 is not adjacent to r1 and x, as r1 and x belong to a different 
connected component of G[N2] than r2. However, we now find an induced P3 + P4 
of G consisting of {r, r1, x} and {r2, u, b, v}, see Fig. 5. As G is (P3 + P4)-free, this 
is not possible.

From the above we conclude that the following holds for every blue vertex 
b′′ ∈ N1 that has an uncoloured neighbour: 

(i)	 Vertex b′ has only uncoloured neighbours in at most one Fi, or
(ii)	 Vertex b′ is adjacent to every vertex of every Fi, in which b′ has an uncoloured 

neighbour.

If case (i) holds, then we say that b is of type (i). If case (ii) holds, then we say that 
b is of type (ii).

Recall that any uncoloured vertex, which must belong to N2, only has blue neigh-
bours in N1 by Claim 11.2. We say that a connected component Fi with an unco-
loured vertex is an individual component of G[N2] if the uncoloured vertices of Fi 
have only blue neighbours of type (i) in N1; else we say that Fi is a collective com-
ponent of G[N2].

Suppose b is a blue vertex of N1 that has an uncoloured neighbour and that is of 
type (ii). As b is blue, b is has at most d − 1 red neighbours, else its remaining neigh-
bours would have been coloured blue by the colour-processing, and hence, b would 
not have an uncoloured neighbour. As b is of type (ii), it follows that b is adjacent to 
every vertex of every Fi that contains an uncoloured neighbour of b. Recall that every 
Fi that has an uncoloured vertex also contains a red vertex. Hence, we find that b has 
uncoloured neighbours in at most d − 1 collective components. As d ≥ 2, the same 
statement also holds if b is of type (i). Hence, we have proven the following claim:

Claim 11.3  Every blue vertex in N1 has uncoloured neighbours in at most d − 1 col-
lective components.

Fig. 5  Illustration of Case 2. As J = rr1u 
is induced, the displayed P3 + P4 cannot be 
induced. White vertices indicate uncoloured 
vertices
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Now suppose there exist two blue vertices b1 and b2 in N1 that are both of type (ii) 
and connected components Fh, Fi and Fj  with h, i, j ≥ 2 such that:

	● b1 has an uncoloured neighbour u in Fh, whereas b2 has no neighbour in Fh;
	● b1 and b2 both have an uncoloured neighbour in Fi, which we may assume to be 

the same neighbour as b1 and b2 are of type (ii); we denote this common uncol-
oured neighbour by v;

	● b2 has an uncoloured neighbour w in Fj , whereas b1 has no neighbour in Fj .

See Fig. 6 for an illustration. Recall that b1 and b2 do not belong to Γ, as else they 
would not have an uncoloured neighbour. This implies the following. If b1 and b2 are 
not adjacent, then J, together with {u, b1, v, b2}, induces a P3 + P4 in G. If b1 and b2 
are adjacent, then J, together with {u, b1, b2, w}, induces a P3 + P4 in G. Both cases 
are not possible due to (P3 + P4)-freeness of G. Hence, we conclude that such verti-
ces b1 and b2, and such connected components Fh, Fi, Fj  do not exist.

We assume that without loss of generality the connected components with an 
uncoloured vertex are F2, . . . , Fr for some r ≥ 2. Suppose G[N2] has collective 
components. Then, due to the above and Claim 11.3, we can now partition the col-
lective components of {F2, . . . , Fr} in blocks D1, . . . , Dp for some p ≥ 1, such that 
the following holds:

	● For i = 1, . . . , p, there exists a blue vertex bi in N1 that is adjacent to all vertices 
of every collective component of Di;

	● For i = 1, . . . , p, every Di contains at most d − 1 collective components, each of 
which contain at most 2d vertices by Claim 11.2; and

	● Every blue vertex in N1 is adjacent to vertices of collective components of at 
most one Di.

Let W be the set of vertices of G that have already been coloured. Let 
D = {D1, . . . , Dp}. We add every individual component F that does not belong to 
some block in D to D as a block {F}. Note that by definition, every blue vertex in 
N1 that is of type (i) has uncoloured neighbours in only one individual component. 
Hence, due to the above, G has a red-blue d-colouring that extends the colouring of 

Fig. 6  Illustration of Case 2 where we show 
that two vertices b1 and b2 of type (ii) must 
have either disjoint neighbourhoods in N2 or 
one neighbourhood in N2 must be contained in 
the other. White vertices indicate uncoloured 
vertices
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G[W] if and only if for every D ∈ D it holds that G[W ∪
∪

F ∈D V (F )] has a red-
blue d-colouring. Therefore, we can consider each D ∈ D separately as follows. We 
consider all colourings of the uncoloured vertices in G[V (Di)] and for each of these 
colourings we check if we obtained a red-blue d-colouring of G[W ∪

∪
F ∈D V (F )]. 

As Di contains at most d − 1 components, each with at most 2d vertices, the number 
of these colourings is at most 22d(d−1). Note that there are at most p ≤ n number of 
blocks that we must consider.

If the above leads to a red-blue d-colouring of G, then we are done. Else, we dis-
card the branch.

Suppose we have not found a red-blue d-colouring of G after processing all the 
branches. If G is still a yes-instance, then in any red-blue d-colouring of G, every 
induced P4 of G is bichromatic. Therefore, our algorithm will perform the following 
step:

Step 2. Decide if G has a red-blue d-colouring, for which every induced P4 of G 
is bichromatic.

We first prove a structural claim. Assume G has a red-blue d-colouring. Let B be the 
set of blue vertices. Let R be the set of red vertices. Assume that G[B] has connected 
components DB

1 , . . . , DB
p  for some p ≥ 1 and that G[R] has connected components 

DR
1 , . . . , DR

q  for some q ≥ 1. If q ≥ 2, then we obtain another red-blue d-colouring 
of G by changing the colour of every vertex in every DR

h  with h ∈ {2, . . . , r} from 
red to blue. Hence, we may assume q = 1. Suppose p ≥ 2. As G is connected, every 
DB

i  contains a vertex that is adjacent to a vertex in DR
1 . Hence, we obtain another 

red-blue d-colouring of G by changing the colour of every vertex in every DB
i  with 

i ∈ {2, . . . , p} from blue to red. So we may also assume p = 1. Recall that we have 
ruled out the case where G has a red-blue d-colouring in which some induced P4 of 
G is monochromatic. This means that both G[B] and G[R] have diameter at most 2, 
else we would have a monochromatic P4. So we have shown the following claim:

Claim 11.4  If G has a red-blue d-colouring, then G has a red-blue d-colouring in 
which the sets of blue and red vertices, respectively, each induce subgraphs of G that 
have diameter at most 2.

By Claim 11.4, we will now search for a red-blue d-colouring of G in which the 
sets of blue and red vertices, respectively, each induce subgraphs of G that have 
diameter at most 2. We say that such a red-blue d-colouring has diameter at most 2.

Recall that G is not P4-free. Hence, we can find an induced path P on four vertices 
in O(n4) time by brute force. We now branch over all O(n4d) colourings of N[V(P)]. 
Let N2 = V (G) \ N [V (P )]. If N2 = ∅, then we check if we obtained a red-blue 
d-colouring of G. If so, then we are done, and else we discard the branch.

Suppose N2 ̸= ∅. As G is (P3 + P4)-free, every connected component of G[N2] 
is a complete graph. Let F1, . . . , Fk, for some integer k ≥ 1, be the connected com-
ponents of G[N2]. We colour-process the pair consisting of the current sets of blue 
and red vertices.

If all vertices are coloured, then we check if we obtained a red-blue d-colouring of 
G. If so, then we are done, and else we discard the branch. Suppose not every vertex 
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is coloured. This means there exists some Fi, say F1, with an uncoloured vertex x. 
As we colour-processed and x has not been coloured, we find that x has at most d red 
neighbours and at most d blue neighbours. Let Bx ⊆ N1 be the set of blue neighbours 
of x in N1 and Rx ⊆ N1 be the set of red neighbours of x in N1. By Claim 11.1, the 
number of red-blue colourings of the uncoloured vertices of F1 is constant (at most 
22d). Let U be the set of uncoloured vertices of F. We branch over all O(n2d2) colour-
ings of G[N(Bx ∪ Rx) ∪ U ].

We now colour the remaining uncoloured vertices, which must all belong to 
N2 \ V (F1) as follows. If x is blue, then any blue vertex of N2 \ V (F1) must have a 
neighbour in Bx in any red-blue d-colouring of G that has diameter at most 2 and that 
is an extension of the current red-blue colouring. As we already coloured all vertices 
in N(Bx), this means that we must colour any uncoloured vertex of N2 red. Simi-
larly, if x is red, then we must colour any uncoloured vertex of N2 blue. We check if 
the resulting colouring is a red-blue d-colouring of G. If yes, we have found a solu-
tion, otherwise we discard the branch.

In the end we either found a red-blue d-colouring of G, or we have discarded every 
branch. In that case, the algorithm returns that G has no red-blue d-colouring. This 
completes the description of our algorithm.

The correctness of the algorithm follows from its description. The maximum num-
ber of branches in Step 1 is

	
O

(
n4 · n4d ·

(
n + n4d2

·
(

n4d2
· n + n3d2

· n
)))

,

and in Step 2, it is O(n4 · n4d · n2d2). So, in total we have at most nO(d3) branches 
and each branch can be processed in polynomial time (in particular, colour-process-
ing takes polynomial time due to Lemma 8; N1-updates can be done in polynomial 
time; and we can also check in polynomial time if a red-blue colouring of G is a red-
blue d-colouring). Thus, the running time of our algorithm is polynomial. � □

As our final result in this section, we prove the following.

Theorem 12  For every graph H and every d ≥ 2 , if d-Cut is polynomial-time solv-
able for H-free graphs, then it is so for (H + P1 )-free graphs.

Proof  Suppose that d-Cut is polynomial-time solvable for H-free graphs. Let G be a 
connected (H + P1)-free graph. If G is H-free, the result follows by assumption. If 
G is not H-free, then V(G) contains a set U such that G[U] is isomorphic to H. As G 
is (H + P1)-free, U dominates G. As H is fixed, |U | = |V (H)| is a constant. Hence, 
in this case we can apply Lemma 7. � □

4  NP-Completeness Results

In this section we show our NP-completeness results for d-Cut for d ≥ 2. As d-Cut 
is readily seen to be in NP for each d ≥ 1, we only show NP-hardness in our proofs.
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We first focus on the case where d ≥ 3. For this, we need some additional termi-
nology. An edge colouring of a graph G = (V, E) with colours red and blue is called 
a red-blue edge colouring of G, which is a red-blue edge d-colouring of G if every 
edge of G is adjacent to at most d edges of the other colour and both colours are used 
at least once. Now, G has a red-blue edge d-colouring if and only if L(G) has a red-
blue d-colouring. A set S ⊆ V  is monochromatic if all edges of G[S] are coloured 
alike.

Theorem 13  For every d ≥ 3 , the d-Cut problem is NP-complete for line graphs.

Proof  We first define the known NP-complete problem we reduce from. Let 
X = {x1, x2, . . . , xn} be a set of logical variables and C = {C1, C2, . . . , Cm} be 
a set of clauses over X. The problem Not-All-Equal Satisfiability asks whether 
(X, C) has a satisfying not-all-equal truth assignment ϕ that is, ϕ sets at least one literal 
true and at least one literal false in each Ci. This problem remains NP-complete even 
if each clause consists of three distinct literals that are all positive [30]. Let (X, C) 
be such an instance, where X = {x1, x2, . . . , xn} and C = {C1, C2, . . . , Cm}. We 
construct, in polynomial time, a graph G; see also Fig. 7:

	● Build a clique S = {vS
x1

, . . . , vS
xn

} ∪ {vc1
1 , . . . , vc1

d−2} ∪ · · · ∪ {vcm
1 , . . . , vcm

d−2}.

	● Build a clique S = {vS
x1

, . . . , vS
xn

} ∪ {uc1
1 , . . . , uc1

d−2} ∪ · · · ∪ {ucm
1 , . . . , ucm

d−2}.
	● For every x ∈ X , add cliques Vx = {vx

1 , . . . , vx
d−1} and Vx = {vx

1 , . . . , vx
d−1}.

	● For every x ∈ X , add a vertex vx with edges vxvS
x , vxvS

x , vxvx
1 , . . . , vxvx

d−1, 
vxvx

1 , . . . , vxvx
d−1.

	● For every C ∈ C, add a clause vertex vc with edges vcvc
1, . . . , vcvc

d−2, 
vcuc

1, . . . , vcuc
d−2, and if C = {xi, xj , xk}, also add a vertex vxi

c  to Vxi , a vertex 
v

xj
c  to Vxj  and a vertex vxk

c  to Vxk , and add the edges vcvxi
c , vcv

xj
c , vcvxk

c .
	● Add, if needed, some auxiliary vertices to S, S, Vx1 , . . . , Vxn

, Vx1 , . . . , Vxn , such 
that in the end all these sets are cliques of size at least 2d + 2.

We claim that (X, C) has a satisfying not-all-equal truth assignment if and only if 
the line graph L(G) has a d-cut. Recall that, by Observation 6, L(G) has a d-cut if and 

Fig. 7  An example of vertices in the reduction related to clause C = {xi, xj , xk}
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only if L(G) has a red-blue d-colouring. Furthermore, L(G) has a red-blue d-colouring 
if and only if G has a red-blue edge d-colouring. Hence, we will show that (X, C) 
has a satisfying not-all-equal truth assignment if and only if G has a red-blue edge 
d-colouring.

First suppose (X, C) has a satisfying not all-equal truth assignment. We colour all 
edges in S red and in S blue. For every x ∈ X  set to true, we colour the edges in Vx 
red and those in Vx blue. For every x ∈ X  set to false, we colour the edges in Vx blue 
and those in Vx red. Consider an edge uv, with v ∈ {vx, vc | x ∈ X, c ∈ C}. Then u 
is contained in a clique D ∈ {S, S, Vx1 , Vx1 , . . . , Vxn

, Vxn
}. Colour uv with the same 

colour as the edges of D.
Now, let D ∈ {S, S, Vx1 , Vx1 , . . . , Vxn

, Vxn
}. Every uu′ ∈ E(D) is adjacent to 

only edges of the same colour. For u ∈ V (D) and v ∈ {vx, vc | x ∈ X, c ∈ C}, the 
edge uv has the same colour as all edges in D. Since S and S have different colours 
and Vx and Vx have different colours for every x ∈ X , uv has at most d  adjacent 
edges of each colour. Hence, we obtained a red-blue edge d-colouring of G.

Now suppose that G has a red-blue edge d-colouring. We prove a series of claims: 
� □

Claim 13.1  Every clique D ∈ {S, S, Vx1 , Vx1 , . . . , Vxn
, Vxn

} is monochromatic.

Proof of the Claim. First assume G[D] has a red edge uv and a blue edge uw. As 
|D| ≥ 2d + 2, we know that u is incident to at least 2d + 1 edges. Hence, we may 
assume without loss of generality that u is incident to at least d + 1 red edges. How-
ever, now the blue edge uw is adjacent to d + 1 red edges, a contradiction. As every 
u ∈ D is incident to only edges of the same colour and D is a clique, it follows that 
D is monochromatic.

By Claim 13.1, we can speak about the colour (either red or blue) of a clique D if 
D belongs to {S, S, Vx1 , Vx1 , . . . , Vxn

, Vxn
}.

Claim 13.2  For each x ∈ X  and c ∈ C, each edge from vx or vc to a vertex in a clique 
D ∈ {S, S, Vx1 , Vx1 , . . . , Vxn

, Vxn
} has the same colour as D.

Proof of the Claim. This follows directly from the fact that |D| ≥ 2d + 1.

Claim 13.3  The cliques S and S have different colours if and only if for every variable 
x ∈ X , it holds that Vx and Vx have different colours.

Proof of the Claim. First suppose S and S have different colours, say S is red and 
S is blue. For a contradiction, assume there exists a variable x ∈ X , such that Vx and 
Vx have the same colour, say blue. By Claim 13.2, we have that the 2d − 2 edges 
between vx and Vx ∪ Vx and the edge vxvS

x  are all blue, while vxvS
x  is red. Hence, 

the red edge vxvS
x  is adjacent to at least 2d − 1 ≥ d + 1 blue edges, a contradiction.

Now suppose that for all x ∈ X , Vx and Vx have different colours, say Vx is red 
and Vx is blue. For a contradiction, assume that S and S have the same colour, say 
blue. Let x ∈ X . By Claim 13.2, we have that the edges between vx and Vx are red, 
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while all other edges incident to vx are blue. Now every (red) edge between vx and 
Vx is incident to d + 1 blue edges, a contradiction.

Claim 13.4  The cliques S and S have different colours.

Proof of the Claim. For a contradiction, assume S and S have the same colour, 
say blue. By Claim 13.2, we have that vxvS

x  is blue. By Claim 13.3, we find that for 
every x ∈ X , Vx and Vx have the same colour. If Vx and Vx are both red, then the 
2d − 2 edges between vx and Vx ∪ Vx are red due to Claim 13.2. Consequently, the 
blue edge vxvS

x  is adjacent to 2d − 2 ≥ d + 1 red edges. This is not possible. Hence, 
Vx and Vx are blue, and by Claim 13.2, all edges between vx and Vx ∪ Vx are blue as 
well. This means that every edge of G is blue, a contradiction.

Claim 13.5  For every clause C = {xi, xj , xk} in C, the cliques Vxi , Vxj  and Vxk  do 
not all have the same colour.

Proof of the Claim. For a contradiction, assume Vxi , Vxj  and Vxk  have the same 
colour, say blue. By Claim 13.4, S and S are coloured differently, say S is red and S 
is blue. By Claim 13.2, we have that the three edges vcvxi

c , vcv
xj
c  and vcvxk

c  are all 
blue, just like the d − 2 edges between vc and S, while every edge between vc and 
S is red. Consider such a red edge e. We find that e is adjacent to d + 1 blue edges, a 
contradiction.

For each variable x, if the clique Vx is coloured red, then set x to true, and else to 
false. By Claim 13.5, this yields a satisfying not-all-equal truth assignment. � □

We now show that the case H = 3P2 is hard. The gadget in our NP-hardness 
reduction is neither 2P4-free nor P6-free nor P7-free.

Theorem 14  For every d ≥ 2 , the d-Cut problem is NP-complete for 3P2 -free 
graphs of radius 2 and diameter 3.

Proof  We first define the known NP-complete problem we reduce from. Let 
X = {x1, x2, · · · , xn} be a set of variables. Let C = {C1, C2, · · · , Cm} be a set 
of clauses over X. The 3-Satisfiability problem asks whether (X, C) has a satisfy-
ing truth assignment ϕ, that is, ϕ sets at least one literal true in each Ci. Darmann 
and Döcker [10] proved that 3-Satisfiability is NP-complete even for instances in 
which: 

1.	 Each variable occurs as a positive literal in exactly two clauses and as a negative 
literal in exactly two other clauses, and

2.	 Each clause consists of three distinct literals that are either all positive or all 
negative.

Let X = {x1, x2, . . . , xn} for some n ≥ 1 and C = {C1, . . . , Cp, D1, . . . , Dq} 
where each Cj  consists of three distinct positive literals, and each Dj  consists of 
three distinct negative literals. We may assume without loss of generality that p ≥ 4 
and q ≥ 4, as otherwise the problem is trivial to solve by using brute force.
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From (X, C), we construct a graph G = (V, E) as follows. We introduce two verti-
ces C and D and let the other vertices of G represent either variables or clauses. That 
is, we introduce a clique K = {C1, . . . , Cp, C}; a clique K ′ = {D1, . . . , Dq, D} 
and an independent set I = {x1, . . . , xn}, such that K, K ′, I are pairwise disjoint 
and V = K ∪ K ′ ∪ I . For every h ∈ {1, . . . , n} and every i ∈ {1, . . . , p}, we add 
an edge between xh and Ci if and only if xh occurs as a literal in Ci. For every 
h ∈ {1, . . . , n} and every j ∈ {1, . . . , q}, we add an edge between xh and Dj  if 
and only if xh occurs as a literal in Dj . We also add the edge CD. See Fig. 8 for an 
example.

As every edge must have at least one end-vertex in K or K ′, and K and K ′ are 
cliques, we find that G is 3P2-free. Moreover, G has radius 2, as the distance from 
C or D to any other vertex in G is at most 2. In addition, the distance from a vertex 
in I ∪ (K \ {C}) ∪ (K ′ \ {D}) to any other vertex in G is at most 3. Hence, G has 
diameter at most 3.

We claim that (X, C) has a satisfying truth assignment if and only if G has a 2-cut.
First suppose that (X, C) has a satisfying truth assignment ϕ. In I, we colour for 

h ∈ {1, . . . , n}, vertex xh red if ϕ sets xh to be true and blue if ϕ sets xh to be false. 
We colour all the vertices in K red and the vertices in K ′ blue.

Consider a vertex xh in I. First suppose that xh is coloured red. As each literal 
appears in exactly two clauses from {D1, . . . , Dq}, we find that xh has only two blue 
neighbours (which all belong to K ′). Now suppose that xh is coloured blue. As each 
literal appears in exactly two clauses from {C1, . . . , Cp}, we find that xh has only 
two red neighbours (which all belong to K). Now consider a vertex Ci in K, which 
is coloured red. As Ci consists of three distinct positive literals and ϕ sets at least 
one positive literal of Ci to be true, we find that Ci is adjacent to at most two blue 
vertices in I. Hence, every Ci is adjacent to at most two blue vertices. Now consider 
a vertex Dj  in K ′, which is coloured blue. As Dj  consists of three distinct negative 
literals and ϕ sets at least one negative literal of Dj  to be true, we find that Dj  is 
adjacent to at most two red vertices in I. Hence, every Dj  is adjacent to at most two 
red vertices. Finally, we note that C, which is coloured red, is adjacent to exactly one 
blue neighbour, namely D, while D has only one red neighbour, namely C. The above 

Fig. 8  The graph G for X ={x1, . . . , x6} and C ={{x1, x2, x3}, {x1, x3, x4}, 
{x2, x5, x6}, {x4, x5, x6}, {x1, x2, x4},{x1, x3, x5}, {x2, x4, x6},{x3, x5, x6}}. 
For readability the edges inside the cliques K and K ′ are not shown
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means that we obtained a red-blue 2-colouring of G. By Observation 6, this means 
that G has a 2-cut.

Now suppose G has a 2-cut. By Observation 6, this means that G has a red-blue 
2-colouring c. As |K| = p + 1 ≥ 5 and |K ′| = q + 1 ≥ 5, both K and K ′ are mono-
chromatic. Say c colours every vertex of K red. For a contradiction, assume c colours 
every vertex of K ′ red as well. As c must colour at least one vertex of G blue, this 
means that I contains a blue vertex xh. As each variable occurs as a positive literal in 
exactly two clauses and as a negative literal in exactly two other clauses, we now find 
that a blue vertex, xi, has two red neighbours in K and two red neighbours in K ′, so 
four red neighbours in total, a contradiction. We conclude that c must colour every 
vertex of K ′ blue.

Recall that every Ci and every Dj  consists of three literals. Hence, every vertex 
in K ∪ K ′ has three neighbours in I. As every vertex Ci in K is red, this means that 
at least one neighbour of Ci in I must be red. As every vertex Dj  in K ′ is blue, this 
means that at least one neighbour of Dj  in I must be blue. Hence, setting xi to true if 
xi is red in G and to false if xi is blue in G gives us the desired truth assignment for X.

Now, we consider the case where d ≥ 3. We adjust G as follows. We first mod-
ify K into a larger clique by adding for each xh, a set Lh of d − 3 new vertices. 
We also modify K ′ into a larger clique by adding for each xh, a set L′

h of d − 3 
vertices. For each h ∈ {1, . . . , n} we make xh complete to both Lh and to L′

h. 
Finally, we add additional edges between vertices in K ∪ L1 ∪ . . . ∪ Ln and ver-
tices in K ′ ∪ L′

1 ∪ . . . ∪ L′
n, in such a way that every vertex in K \ {C} has d − 2 

neighbours in K ′ \ {D}, and vice versa. The modified graph G is still 3P2-free, has 
radius 2 and diameter 3, and also still has size polynomial in m and n. The remainder 
of the proof uses the same arguments as before. � □

5  Conclusions

We considered the natural generalization of Matching Cut to d-Cut[15] and proved 
dichotomies for graphs of bounded diameter and graphs of bounded radius. We also 
started a systematic study on the complexity of d-Cut for H-free graphs. While for 
d = 1, there still exists an infinite number of non-equivalent open cases, we were able 
to obtain for every d ≥ 2, an almost-complete complexity classification of d-Cut 
for H-free graphs, with only three non-equivalent open cases left if d ≥ 3. We finish 
our paper with some open problems on H-free graphs resulting from our systematic 
study.

We recall that 1-Cut is polynomial-time solvable for claw-free graphs [5], while 
we showed that d-Cut is NP-complete even for line graphs if d ≥ 3. We also recall 
the recent result of Ahn et al. [1] who proved that 2-Cut is NP-complete for claw-free 
graphs. What is the computational complexity of 2-Cut for line graphs?

Finally, we recall the only three non-equivalent open cases H = 2P4, H = P6, 
H = P7 for d-Cut on H-free graphs for d ≥ 2. We aim to address these cases as 
future work.
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