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Abstract

The d-Cut problem is to decide whether a graph has an edge cut such that each
vertex has at most d neighbours on the opposite side of the cut. If d = 1, we ob-
tain the intensively studied MATCHING CuT problem. The d-Cut problem has been
studied as well, but a systematic study for special graph classes was lacking. We
initiate such a study and consider classes of bounded diameter, bounded radius
and H-free graphs. We prove that for all d > 2, d-Cur is polynomial-time solvable
for graphs of diameter 2, (P3 + Py)-free graphs and Ps-free graphs. These results
extend known results for d = 1. However, we also prove several NP-hardness re-
sults for d-Cur that contrast known polynomial-time results for d = 1. Our results
lead to full dichotomies for bounded diameter and bounded radius and to almost-
complete dichotomies for H-free graphs.
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1 Introduction

We consider the generalization d-Curt of a classic graph problem MarcHING CUT
(1-Cur). First, we explain the original graph problem. Consider a connected graph
G = (V,E), and let M C F be a subset of edges of G. The set M is an edge cut of G
if it is possible to partition ¥ into two non-empty sets B (set of blue vertices) and R
(set of red vertices) in such a way that M is the set of all edges with one end-vertex in
B and the other one in R. Now, suppose that M is in addition also a matching, that is,
no two edges in M have a common end-vertex. Then M is said to be a matching cut.
See Fig. 1 for an example.

Graphs with matching cuts were introduced in the context of number theory [16]
and have various other applications [2, 11, 14, 29]. The MATCHING CUT problem is
to decide if a connected graph has a matching cut. This problem was shown to be
NP-complete by Chvatal [9]. Several variants and generalizations of matching cuts
are known. In particular, a perfect matching cut is a matching cut that is a perfect
matching, whereas a disconnected perfect matching is a perfect matching containing
a matching cut. The corresponding decision problems PERFECT MATCHING CUT [17]
and DISCONNECTED PERFECT MATCHING [7] are also NP-complete; see [4, 13, 20, 22,
26] for more complexity results for these two problems. The optimization versions
MaAXIMUM MATCHING CUT and MINIMUM MATCHING CUT are to find a matching cut
of maximum and minimum size in a connected graph, respectively; see [21, 27] for
more details.

Our Focus Matching cuts have also been generalized as follows. For an inte-
ger d > 1 and a connected graph G = (V) E), a set M C F is a d-cut of G if it is
possible to partition V into two non-empty sets B and R, such that: (i) the set M is
the set of all edges with one end-vertex in B and the other one in R; and (ii) every
vertex in B has at most d neighbours in R, and vice versa (see also Fig. 1). Note that
a l-cut is a matching cut. We consider the d-Cut problem: does a connected graph
have a d-cut? Here, d > 1 is a fixed integer, so not part of the input. Note that 1-Cut
is MATCHING CUT. The d-Curt problem was introduced by Gomes and Sau [15] who
proved its NP-completeness for all d > 1.

Our Goal To get a better understanding of the hardness of an NP-complete graph
problem, it is natural to restrict the input to belong to some special graph classes. We
will first give a brief survey of the known complexity results for MATCHING CUT and
d-Cur for d > 2 under input restrictions. As we will see, for MATCHING CUT many
more results are known than for d-Cut with d > 2. Our goal is to obtain the same
level of understanding of the d-Cut problem for d > 2. This requires a currently
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Fig. 1 Left: a graph with a matching cut (i.e., a 1-cut). Middle: a graph with a 3-cut but no d-cut for
d < 2. Right: the graph H*
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lacking systematic study into the complexity of this problem. We therefore consider
the following research question:

For which graph classes G does the complexity of d-CUT,restricted to graphs from
G, change if d > 2 instead of d = 1?

As testbeds we take classes of graphs of bounded diameter, graphs of bounded
radius, and H-free graphs. The distance between two vertices u and v in a connected
graph G is the length (number of edges) of a shortest path between u and v in G. The
eccentricity of a vertex u is the maximum distance between u and any other vertex of
G. The diameter of G is the maximum eccentricity over all vertices of G, whereas the
radius of G is the minimum eccentricity over all vertices of G. A graph G is H-free if
G does not contain a graph H as an induced subgraph, that is, G cannot be modified
into H by vertex deletions.

Existing Results We focus on classical complexity results; see [3, 15] for exact and
parameterized complexity results for d-CuT. Let K ,- denote the (r+1)-vertex star,
which has vertex set {u,v1,...,v,.} and edges uv; for i € {1,...,r}. Chvatal [9]
showed that MaTCHING Cut is NP-complete even for K 4-free graphs of maximum
degree 4, but polynomial-time solvable for graphs of maximum degree at most 3.
Gomes and Sau [15] extended these results by proving that for every d > 2, d-Cut is
NP-complete for (2d + 2)-regular graphs, but polynomial-time solvable for graphs
of maximum degree at most d + 2. Feghali et al. [13] proved that for every d > 1
and every g > 3, there is a function f{d), such that d-Cut is NP-complete for bipartite
graphs of girth at least g and maximum degree at most f{d). The girth of a graph G
that is not a forest is the length of a shortest induced cycle in G. It is also known that
MATCHING CUT is polynomial-time solvable for graphs of diameter at most 2 [6, 19],
and even radius at most 2 [25], while being NP-complete for graphs of diameter 3
[19], and thus radius at most 3 (for a survey of other results, see [8]). Hence, we
obtain:

Theorem 1 ({19, 25]]) For r > 1, MaTCHING CUT is polynomial-time solvable for
graphs of diameter r and graphs of radius r if r < 2 and NP-complete if r > 3.

To study a problem in a systematic way on graph classes that can be character-
ized by forbidden induced subgraphs, an often used approach is to first focus on the
classes of H-free graphs. As MATCHING CuUT is NP-complete for graphs of girth g for
every g > 3 [13] and for K, 4-free graphs [9], MarcHING CuT is NP-complete for
H-free graphs whenever H has a cycle or is a forest with a vertex of degree at least 4.
What about when H is a forest of maximum degree 3?

We let P, be the path on ¢ vertices. We denote the disjoint union of two vertex-
disjoint graphs Gl + GQ by G1 + G2 = (V(Gl) U V(Gg), E(Gl) U E(GQ)) We
let sG be the disjoint union of s copies of G. Feghali [12] proved the existence of
an integer ¢ such that MATCHING CuUT is NP-complete for P;-free graphs, which was
narrowed down to (3Ps, Py5)-free graphs in [26] and to (3P, 2P;, P14)-free graphs
in [20]. Let Hy be the “H”-graph, which has vertices u, v, w1, we, x1, T2 and edges
uv, uw1, Wy, v, vT2. For ¢ > 2, let H; be the graph obtained from H; by sub-
dividing uv exactly ¢ — 1 times; see Fig. 1. It is known that MaTCHING CUT is NP-
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complete for (Hy, Hi, H,...)-free bipartite graphs [28] and for (H7, ..., H})-free
graphs for every ¢ > 1[13].

On the positive side, MATCHING CUT is polynomial-time solvable for claw-fiee
graphs (K 3-free graphs) and for Ps-free graphs [26]. Moreover, if MATCHING CuT
is polynomial-time solvable for H-free graphs for some graph H, then it is so for
(H + P;)-free graphs [26].

For two graphs H and H’, we write H C, H' if H is an induced subgraph of H’'.
Combining the above yields a partial classification (see also [13, 27]):

Theorem 2 (/5, 9, 13, 20, 25, 26, 28]) For a graph H, MATCHING CUT on H-free
graphs is

e Polynomial-time solvable if H C; sP; + K 3 or sP; + Ps for some s > 0;
e NP-complete if H D; K 4, P14, 2P;, 3P, C,. for some r > 3, or H; for some
1> 1.

Our Results We first note that also for every d > 2, d-Cur is straightforward to
solve for graphs of radius 1 (i.e., graphs with a dominating vertex). We will prove
that for every d > 2, d-CuT is also polynomial-time solvable for diameter 2 but NP-
complete for graphs of diameter 3 and radius 2. This leads to the following extensions
of Theorem 1:

Theorem 3 Let d > 2. For r > 1, d-Cur is polynomial-time solvable for graphs of
diameter v if r < 2 and NP-complete if r > 3.

Theorem 4 Let d > 2. For r > 1, d-Curt is polynomial-time solvable for graphs of
radius r if r < 1 and NP-complete if r > 2.

Comparing Theorem 1 with Theorems 3 and 4 shows no difference in complexity
for diameter but a complexity jump from d = 1 to d = 2 for radius.

For d > 2, we also give polynomial-time algorithms for d-Cur for (Ps + Py )-free
graphs and Ps-free graphs. Our proof techniques use novel arguments, as we can
no longer rely on a polynomial-time algorithm for radius 2 or a reduction to 2-SAT
as for d = 1 [19, 25]. Moreover, we show that for d > 2, d-Cur is polynomial-time
solvable for (H + P )-free graphs whenever d-Cur is so for H-free graphs, thus the
cases {H + sP; | s > 0} are all (polynomially) equivalent. All these results extend
the known results for d = 1, as can be seen from Theorem 2.

As negative results, we prove that for all d > 2, d-Cut is NP-complete for 3P
-free graphs, and that for every d > 3, d-Curt is NP-complete for line graphs, and thus
for K 3-free graphs. Recently, Ahn et al. [1] proved that 2-Cut is NP-complete for
K, 3-free graphs. The NP-completeness for graphs of large girth from [13] implies
that for d > 2, d-Curt is NP-complete for H-free graphs if H has a cycle. Hence, by
combining the above results, we obtain the following partial complexity classifica-
tion for d > 2:

Theorem5 Let d > 2. For a graph H, d-CUT on H-free graphs is
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e Polynomial-time solvable if H C; sP; + P35 + P, or sP; + P5 for some s > 0;
e NP-complete if H D; K 3, 3P, or C, for some r > 3.

Theorem 5 leaves only three non-equivalent open cases for every d > 2, namely
when H = 2P;, H = Pgand H = P;. From Theorems 2 and 5 we observe that there
are complexity jumps from d = 1 to d = 2 for sP»-free graphs when s = 3 and for
K, 3-free graphs.

We prove our polynomial-time results in Sect. 3 and our NP-completeness results
in Sect. 4. We finish our paper with some open problems in Sect. 5. We start with
providing some basic results in Sect. 2.

2 Preliminaries

Throughout the paper, we only consider finite, undirected graphs without multiple
edges and self-loops. We first define some general graph terminology.

Let G = (V, E) be a graph. The line graph L(G) of G has the edges of G as its
vertices, with an edge between two vertices in L(G) if and only if the corresponding
edges in G share an end-vertex. Let w € V. The set N(u) = {v € V |uv € E} is
the neighbourhood of u, and |N(u)| is the degree of u. Let S C V. The (open) neigh-
bourhood of S is the set N(S) = J,cg N(u) \ S, and the closed neighbourhood
N[S] = N(S)US. We let G[S] denote the subgraph of G induced by S, which is
obtained from G by deleting the vertices not in S. We let G — S = G[V \ S]. If no
two vertices in S are adjacent, then S is an independent set of G. If every two vertices
in S are adjacent, then S'is a cligue of G. If every vertex of V' \ S has a neighbour in S,
then S is a dominating set of G. We also say that G[S] dominates G. The domination
number of G is the size of a smallest dominating set of G. Let 7' C V' \ S. The sets S
and T are complete to each other if every vertex of S is adjacent to every vertex of T.

Let u be a vertex in a connected graph G. We denote the distance of u to some
other vertex v in G by distg(u,v). Recall that the eccentricity of u is the maxi-
mum distance between u and any other vertex of G. Recall also that the diameter
diameter(G) of G is the maximum eccentricity over all vertices of G and that the
radius radius(G) of G is the minimum eccentricity over all vertices of G. Note that
radius(G) < diameter(G) < 2 - radius(G).

We now generalize some colouring terminology that was used in the context of
matching cuts (see, e.g., [12, 25]). A red-blue colouring of a graph G assigns every
vertex of G either the colour red or blue. For d > 1, a red-blue colouring is a red-blue
d-colouring if every blue vertex has at most d red neighbours; every red vertex has
at most d blue neighbours; and both colours red and blue are used at least once. See
Fig. 1 for examples of a red-blue 1-colouring and a red-blue 3-colouring.

We make the following observation.

Observation 6 Forevery d > 1, a connected graph G has a d-cut if and only if it has
a red-blue d-colouring.
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If every vertex of a set S C V has the same colour (either red or blue) in a red-blue
colouring, then S, and also G[S], are monochromatic. An edge with a blue and a red
end-vertex is bichromatic. Note that for every d > 1, the graph K541 is monochro-
matic in every red-blue d-colouring, and that every connected graph with a red-blue
d-colouring contains a bichromatic edge.

We now generalize a known lemma for MaTCHING CUT (see, e.g., [25]).

Lemma 7 For every d, g > 1, it is possible to find in O(29n%9%2)-time a red-blue
d-colouring (if it exists) of a graph G with n vertices and domination number g.

Proof Letd,g > 1 and G be a graph on n vertices with domination number g. Let D
be a dominating set D of G that has size at most g.

We consider all 2/ < 29 options of giving the uncoloured vertices of D either
colour red or blue. For each red-blue colouring of D we do as follows. For every red
vertex of D, we consider all O(n?) options of colouring at most d of its uncoloured
neighbours blue, and we colour all of its other uncoloured neighbours red. Similarly,
for every blue vertex of D, we consider all O(n?) options of colouring at most d of
its uncoloured neighbours red, and we colour all of its other uncoloured neighbours
blue. As D dominates G, we obtained a red-blue colouring ¢ of the whole graph G.
We discard the option if ¢ is not a red-blue d-colouring of G.

We note that any red-blue d-colouring of G, if it exists, will be found by the above
algorithm. As the total number of options is O(29n99) and checking if a red-blue
colouring is a red-blue d-colouring takes O(n?) time, our algorithm has total running
time O(29n%9+2). O

Let d > 1. Let G = (V, E) be a connected graph and S,T C V be two disjoint
sets. A red-blue (S, T)-d-colouring of G is a red-blue d-colouring of G that colours all
the vertices of S red and all the vertices of 7' blue. We call (S, T) a precoloured pair of
(G, d) which is colour-processed if every vertex of V' \ (S U T) is adjacent to at most
d vertices of S and to at most d vertices of 7.

By the next lemma, we may assume without loss of generality that a precoloured
pair (S, 7) is always colour-processed.

Lemma 8 Let G be a connected graph with a precoloured pair (S, T). It is possible,
in polynomial time, to either colour-process (S, T) or to find that G has no red-blue
(S, T)-d-colouring.

Proof We apply the following rules on G. Let Z = V' \ (SUT). If v is adjacent to
d + 1 vertices in S, then move v from Z to S. If v is adjacent to d + 1 vertices in 7,
then move v from Z to 7. Return no if a vertex v € Z at some point becomes adja-
cent to d + 1 vertices in S as well as to d + 1 vertices in 7. We apply these three rules
exhaustively. It is readily seen that each of these rules is safe to use, and moreover,
can be verified and applied in polynomial time. After each application of a rule, we
either stop or have decreased the size of Z by at least one vertex. Hence, the proce-
dure is correct and takes polynomial time. O
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3 Polynomial-Time Results

We now show our polynomial-time results for d-Cut for d > 2. These results com-
plement the corresponding known polynomial-time results for d = 1 that we men-
tioned in Sect. 1 (and the proofs of the new results yield alternative proofs for the
known results if we set d = 1).

We first consider the class of graphs of diameter at most 2.

Theorem 9 For every d > 2, the d-Curt problem is polynomial-time solvable for
graphs of diameter at most 2.

Proof Let G = (V, E) be a graph of diameter at most 2. Note that this implies that
G is connected. As d-Cur is trivial for graphs of diameter 1, we assume that G has
diameter 2. By Observation 6, we have proven the theorem if we can decide in poly-
nomial time if G has a red-blue d-colouring.

Let v € V. Without loss of generality we may colour v red. Since v has at most d
blue neighbours in any red-blue d-colouring, we can branch over all O(n?) options
to colour the neighbourhood of v. In the case where all neighbours of v are red, we
branch over all O(n) options to colour some vertex x of G blue. We consider each
option separately.

Let R and B be the set of red and blue vertices, respectively. Let
S'={vtU{u|lue Nw),ue R} and let T'={u|ue N(v),u € B}. We
colour-process (S, T"), resulting in a pair (S, 7). Let Z = V' \ (S UT) be the set of
uncoloured vertices. As (S, T) is colour-processed, every vertex in Z has at most d
red neighbours and at most d blue neighbours and thus in total at most 2d coloured
neighbours. We distinguish between the following two cases:

Case 1. G[Z] consists of at least two connected components.

Let Z1,..., Z, be the connected components of G[Z]. By assumption, we have
that r > 2. Let v; € V(Z1) and vy € V(Z5). Since G has diameter 2, we know that
v1 has a common neighbour with every vertex in Zs, . .., Z,.. Let N7 be the set of all
vertices that are adjacent to v, as well as to a vertex in V(Z2) U --- U V(Z,.). Note
that Ny C S U T and that every vertex of V(Z3) U - - - U V(Z,.) has at least one neigh-
bour in N;. Moreover, as v has at most 2d coloured neighbours and N; C SUT,
we find that |N;| < 2d. By the same arguments, we find a set No C SUT, with
| N2| < 2d consisting of the common neighbours of v; and 71, such that every vertex
of Z; has at least one neighbour in Ns. See also Fig. 2.

In a red-blue d-colouring, every vertex in N7 U No has at most d neighbours
of the other colour. Thus, we can try all O(n4d2) options to colour the uncoloured
neighbours of N7 U Ns. If in the resulting colouring any vertex has more than d
neighbours of the other colour we discard it. Suppose not. Then, as every vertex of
V(Z1)U---UV(Z,) is a neighbour of at least one vertex in N1 U N, we found a
red-blue d-colouring of G.
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Fig.2 Cases 1 (left) and 2 (right) in the proof of Theorem 9

Case 2. G[Z] is connected.
We first assume that G[Z] has radius at least 3. We let z € Z, and we let

U={uec Z:distgz(z,u) > 3}.

Observe that U # (), as G[Z] has radius at least 3. For an illustration of U, see Fig. 2.
As G has diameter 2, we find that z has a common neighbour with every vertex of
U. As the common neighbours of z and the vertices in U are not in Z, they belong to
S U T, meaning they are coloured red or blue. As z was not coloured after the colour-
processing, we find that z has at most 2d coloured neighbours. Each of these coloured
neighbours of z can have at most d neighbours of the other colour. So we can branch

over all O(n24") options to colour U.

For each of the O(n2d2) branches, we do as follows. If some vertex of U, which
is now coloured, has more than d neighbours of the other colour, then we discard
the branch. Else, we consider the graph G[Z \ U], which consists of all uncoloured
vertices and which has radius at most 2. Let Z := Z \ U.

Let z € Z such that distg(z)(2,u) < 2 for all u € Z. We branch over all O(n4)
colourings of {z} U Ng(z)(2). As distg(z)(z,u) <2 for all v € Z, it holds that
{2} U Ngz(2) is a dominating set of G[Z]. Hence, every uncoloured vertex has
now at least one newly coloured neighbour.

We now colour-process the pair of red and blue sets. If there is a vertex with d + 1
neighbours of the other colour or an uncoloured vertex with more than d neighbours
of each colour, then we discard the branch. Otherwise, we redefine Z to be the new
set of uncoloured vertices.

We now proceed by checking if Case 1 applies. If so, we apply the algorithm under
Case 1, and else we proceed according to Case 2 again. Note that if at some point
we apply Case 1, then we are done: we either found a red-blue d-colouring of G, or
we have discarded the branch. We also recall that every time we apply Case 2, all
vertices that remain uncoloured will have at least one newly coloured neighbour. This
observation is crucial, as it means that we only need to apply Case 2 at most 2d times
(should we apply Case 2 at some point 2d times, every uncoloured vertex will have
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at least 2d coloured neighbours and thus, they are coloured after we colour-processed
the sets of red and blue vertices).

The correctness of our algorithm follows from its description. We now discuss its
running time. We always have O(n?) branches at the start of our algorithm when we
colour a specific vertex v and its neighbourhood (and possibly one more vertex x). In
each of these branches, we may colour-process once, which takes polynomial time
by Lemma 8. One application of Case 1 gives O(n4d2) branches and one application
of Case 2 gives O(n2?"+4) branches. Recall that the algorithm terminates after one
application of Case 1 and that we apply Case 2 at most 24 times. This means that the
total number of branches is

0] (nd . (n2d2+d) B : nz) )

which is a polynomial number and which also bounds the number of times we colour-

process in a branch. As the latter takes polynomial time by Lemma 8, we conclude

that our algorithm runs in polynomial time. O
We now consider two classes of H-free graphs, starting with the case H = Ps.

Theorem 10 For every d > 2, the d-Cut problem is polynomial-time solvable for
Ps-free graphs.

Proof Let d > 2. Let G = (V, E) be a connected Ps-free graph on n vertices. As
G is Ps-free and connected, G has a dominating set D, such that either D induces
a cycle on five vertices or D is a clique [23]. Moreover, we find such a dominat-
ing set D in O(n?3) time [18]. If | D| < 3d, then we apply Lemma 7. Now assume
that |D| > 3d + 1 > 7, and thus D is a clique. If D =V, then G has no d-cut, as
|D| > 3d + 1 and D is a clique. Assume that D C V, so G — D has at least one con-
nected component. Below we explain how to find in polynomial time a d-cut of G,
or to conclude that G does not have a d-cut. By Observation 6, we need to decide in
polynomial time if G has a red-blue d-colouring.

We first enter the blue phase of our algorithm. As |D| > 3d + 1 and D is a clique,
D is monochromatic in any red-blue d-colouring of G. Hence, we may colour, with-
out loss of generality, all the vertices of D blue, and we may colour all vertices of
every connected component of G — D except one connected component blue as well.
We branch over all O(n) options of choosing the connected component L; of G — D
that will contain a red vertex.' For each option, we are going to repeat the process of
colouring vertices blue until we colour at least one vertex red. We first explain how
this process works if we do not do this last step.

"For d = 1, up to now, the same approach is used for Ps-free graphs [12]. But the difference is that
for d = 1, the algorithm and analysis is much shorter: one only has to check, in this stage, if there is a
component of G — D), whose vertices can all be safely coloured red. Then one either finds a matching
cut, or G has no matching cut.
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As L; is connected and Ps-free, we find in O(n?) time (using the algorithm of
[18]) a dominating set D1 of L; that is either a cycle on five vertices or a clique. We
colour the vertices of D; blue. As we have not used the colour red yet, we colour all
vertices of every connected component of L; — D7 except one connected component
blue. So, we branch over all O(n) options of choosing the connected component Lo
of L1 — D; that will contain a red vertex. Note that every uncoloured vertex of G,
which belongs to Lo, has both a neighbour in D (as D dominates G) and a neighbour
in D4 (as Dy dominates L1). We now find a dominating set D> of Lo and a connected
component Lz of G — Ds with a dominating set D3, and so on. See also Fig. 3.

If we repeat the above process more than d times, we have either coloured every
vertex of G blue, or we found d + 1 pairwise disjoint, blue sets D, Dy, ..., Dy, such
that every uncoloured vertex u has a neighbour in each of them. The latter implies
that u has d 4 1 blue neighbours, so u must be coloured blue as well. Hence, in each
branch, we would eventually end up with the situation where all vertices of G will
be coloured blue. To prevent this from happening, we must colour, in each branch,
at least one vertex of D; red, for some 1 < i < d — 1. As soon as we do this, we end
the blue phase for the branch under consideration, and our algorithm enters the red
phase.

Each time we have O(n) options to select a connected component L; and, as argued
above, we do this at most d times. Hence, we enter the red phase for O(n?) branches
in total. From now on, we call these branches the main branches of our algorithm.
For a main branch, we say that we quit the blue phase at level i if we colour at least
one vertex of D; red. If we quit the blue phase for a main branch at level i, for some
1 <4 <d -1, then we have constructed, in polynomial time, pairwise disjoint sets
D, Dy,...,D; and graphs L4, ..., L;, such that:

e Foreveryh € {1,...,i— 1}, Ly is a connected component of L, — Dj,;

e Every vertex of G that does not belong to L; has been coloured blue;

e TForevery h € {1,...,i}, Dy induces a cycle on five vertices or is a clique;

e D dominates G, so, in particular, D dominates L;; and

e TForevery h € {1,...,i}, Dy dominates L.

We now prove the following claim, which shows that we branched correctly. O

1

| | | \
D, x; 0—\I1 D,
——h L

Li

L2 Ll

Fig. 3 The graph G in the blue phase (left) and in the red phase: Case 2 (right)
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Claim 10.1 The graph G has a red-blue d-colouring that colours every vertex of D
blue if and only if we have quit a main branch at level i for some 1 < i < d — 1, such
that G has a red-blue d-colouring that colours at least one vertex of D; red and all
vertices not in L; blue.

Proof of the Claim. Suppose G has a red-blue d-colouring ¢ that colours every
vertex of D blue (the reverse implication is immediate). By definition, ¢ has coloured
at least one vertex u in G — D red. As we branched in every possible way, there
is a main branch that quits the blue phase at level i, such that u belongs to L; for
some 1 < i < d— 1. We pick a main branch with largest possible #, so u is not in
L;11. Hence, u € D;. We also assume that no vertex u’ that belongs to some Dy
with h < 7 is coloured red by c, as else we could take v’ instead of u. Hence, ¢ has
coloured every vertex in D1 U ... U D;_; (if ¢ > 2) blue. Therefore, we may assume
that every vertex v ¢ DU Dy U ...U D;_; UV/(L;) has been coloured blue by c. If
not, may just recolour all such vertices v blue for the following reasons: u is still red
and no neighbour of v is red, as after a possible recolouring all red vertices belong
to L;, while v belongs to a different component of G — (D U Dy U ---U D;_1) than
L;. So, we proved the claim.

Claim 10.1 allows us to do some specific branching once we quit the blue phase
for a certain main branch at level i. Namely, all we have to do is to consider all
options to colour at least one vertex of D; red. We call these additional branches side
branches. We distinguish between the following two cases:

Case 1. |D;| < 2d + 1.

We consider each of the at most 22911 options to colour the vertices of D; either
red or blue, such that at least one vertex of D; is coloured red. Next, for each vertex
u € D;, we consider all O(n?) options to colour at most d of its uncoloured neigh-
bours blue if u is red, or red if u is blue. Note that the total number of side branches
is O(224+10d(24+1)) As D; dominates L; and the only uncoloured vertices were in
L;, we obtained a red-blue colouring ¢ of G. We check in polynomial time if ¢ is a
red-blue d-colouring of G. If so, we stop and return c. If none of the side branches
yields a red-blue d-colouring of G, then by Claim 10.1 we can safely discard the main
branch under consideration.

Case 2. |D;| > 2d + 2.

Recall that D; either induces a cycle on five vertices or is a clique. As
|D;| > 2d + 2 > 6, we find that D; is a clique. As |D;| > 2d + 2, this means that
D; must be monochromatic, and thus every vertex of D; must be coloured red. We
check in polynomial time if D; contains a vertex with more than d neighbours in D
(which are all coloured blue), or if D contains a vertex with more than d neighbours
in D; (which are all coloured red). If so, we may safely discard the main branch under
consideration due to Claim 10.1.

From now on, assume that every vertex in D; has at most d neighbours in D, and
vice versa. By construction, every uncoloured vertex belongs to L; — D;. Hence, if
V(L;) = D;, we have obtained a red-blue colouring ¢ of G. We check, in polynomial
time, if ¢ is also a red-blue d-colouring of G. If so, we stop and return ¢. Otherwise,
we may safely discard the main branch due to Claim 10.1.
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Now assume V' (L;) 2 D;. We colour all vertices in L; — D; that are adjacent to at
least d + 1 vertices in D blue; we have no choice as the vertices in D are all coloured
blue. If there are no uncoloured vertices left, we check in polynomial time if the
obtained red-blue colouring is a red-blue d-colouring of G. If so, we stop and return
it; else we may safely discard the main branch due to Claim 10.1.

Assume that we still have uncoloured vertices left. We recall that these vertices
belong to L; — D;, and that by construction they have at most d neighbours in D.
Consider an uncoloured vertex w1. As D; dominates L;, we find that w, has a neigh-
bour x; in D;. As D dominates G, we find that z; is adjacent to some vertex y; € D.
We consider all O(n??) possible ways to colour the uncoloured neighbours of ; and
y1, such that 1 (which is red) has at most d blue neighbours, and y; (which is blue)
has at most d red neighbours. If afterwards there is still an uncoloured vertex wo,
then we repeat this process: we choose a neighbour x5 of ws in D; (so x5 is coloured
red). We now branch again by colouring the uncoloured neighbours of zo. If we find
an uncoloured vertex ws, then we find a neighbour 3 of w3 in D; and so on. So,
we repeat this process until there are no more uncoloured vertices. This gives us 2p
distinct vertices w1, . .., wp, Z1,. .., Tp for some integer p > 1, together with vertex
y1.The total number of side branches for the main branch is O(n2P?).

We claim that p < d. For a contradiction, assume that p > d -+ 1> 3. Let
2 <j <p.As D, is a clique that contains z; and x;, we find that z; and z; are
adjacent. Hence, G contains the 4-vertex path w;x;x1y;. By construction, w; was
uncoloured after colouring the neighbours of 21 and y1, so w; is neither adjacent to
x1 nor to y1. This means that w;x ;1% is an induced Py if and only if x; is not adja-
cent to y;. Recall that w; and every vertex of D;, so including x; and x;, has at most
d neighbours in D. As |D| > 3d + 1, this means that D contains a vertex z that is not
adjacent to any of w;, z;, x1. As D is a clique, z is adjacent to y;. Hence, ; must be
adjacent to y;, as otherwise w;x;x1y12 is an induced Ps; see also Fig. 3. The latter
is not possible as G is Ps-free. We now find that ¥, is adjacent to 1, ..., xp, which
all belong to D;. As we assumed that p > d + 1 and every vertex of D, including y1,
is adjacent to at most d vertices of D;, this yields a contradiction. We conclude that
p < d.

As p < d, the total number of side branches is O(nzdz). Each side branch yields a
red-blue colouring of G. We check in polynomial time if it is a red-blue d-colouring
of G. If so, then we stop and return it; else we can safely discard the side branch, and
eventually the associated main branch, due to Claim 10.1.

The correctness of our algorithm follows from its description. We now analyze
its running time. We started the algorithm with searching for a set D. If D has size
at most 3d, then we applied Lemma 7, which takes polynomial time. Otherwise we
argue as follows. The total number of main branches is O(n?). For each main branch
we have either O(22¢+1n4(2d+1)) side branches (Case 1) or O(nde) side branches
(Case 2). Hence, the total number of branches is O(n?229+1nd(2d+1)) As d is fixed,
this number is polynomial. As processing each branch takes polynomial time (includ-
ing the construction of the D;-sets and L;-graphs), we conclude that our algorithm
runs in polynomial time. This completes the proof. (]
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We now consider the case H = P5 + Pj.

Theorem 11 For every d > 2, the d-Cut problem is polynomial-time solvable for
(Ps + P,)-free graphs.

Proof Let d > 2 and recall that throughout the proof we assume that d is a constant.
Let G be a connected (Ps + P,)-free graph on n vertices. We may assume that G
contains at least one induced Py, else we apply Theorem 10. Throughout our proof
we make repeatedly use of the following claim. O

Claim 11.1 Let P be an induced P, of G. Every connected component F in
G — N[V (P)] is a complete graph and has only a constant number (namely at most
224) of distinct red-blue colourings.

Proof of the Claim. As P is an induced P, we find that G — N[V (P)] is Ps-free.
Hence, every connected component F in G — N[V (P)] is a complete graph. As F
is a complete graph, F must be monochromatic in any red-blue d-colouring of G if
|V(F)| > 2d + 1. Hence, F has at most 22¢ possible red-blue colourings, which is a
constant number, as d is constant.

We now divide the proof into two cases. First, we decide in polynomial time
whether there exists a red-blue d-colouring of G in which some induced P, is mono-
chromatic. If we do not find such a red-blue d-colouring, then we search in polyno-
mial time for a red-blue d-colouring in which every induced Py is bichromatic. By
Observation 6 this proves the theorem.

Step 1. Decide if G has a red-blue d-colouring, for which some induced P, of G
is monochromatic.

Our algorithm performs Step 1 as follows. We branch over all induced Pys of G.
As there are at most O(n*) induced Pys in G, this yields O(n*) branches. For each
branch, we do as follows. Let P be the current induced P4 of G, which we assume is
monochromatic. We assume without loss of generality that every vertex of P is blue.
Let

N, = N(V(P)) and N, = V(G)\ N[V (P)].

By Claim 11.1, every connected component of G[N»] is a complete graph. By defini-
tion, every vertex will have at most d neighbours of the other colour in every red-blue
d-colouring of G. We branch over all O(n*?) possible ways to colour the vertices
of Nl.

For each branch we do as follows. First suppose that V' (P) U Ny is monochromatic.
As the vertices of P are all blue, this means that all vertices of Ny are blue. We observe
that G has a red-blue d-colouring in which all vertices of V' (P) U N are blue if and
only if there is a connected component F of G[Nz] such that G[V (P) U Ny UV (F)]
has a red-blue d-colouring. The reason for this is that if we find such a connected
component F of G[ N3], then we can safely colour the vertices of all other connected
components of G[N2] blue. For each connected component F of G[ N3] we do as fol-
lows. By Claim 11.1, the number of distinct red-blue d-colourings of F is constant.
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We branch by trying each such colouring. If some colouring of V(F) yields a red-
blue d-colouring of G[V(P) U Ny UV (F)], then we are done. If after considering
all O(n) connected components of G[N3] we have not found a red-blue d-colouring,
then we discard this branch.

Now assume that V(P) U N; is not monochromatic in our current branch. This
means that the set of red vertices in N1, which we denote by S, is nonempty. Observe
that S contains at most 4d vertices, as S C N(V(P)) and every vertex of P is blue.

We now branch over all O(n%?") possible colourings of N(S) \ V(P).

For each branch we do as follows. We colour-process the pair of current sets of red
and blue vertices. Observe that connected components of G[ N3] may now contain red
vertices, but if they do, then they contain at least one red vertex that is adjacent to a
vertex in S, i.e., to a red vertex in N;. We now make a crucial update:

We move every new blue vertex from Ny to N1, while we let every new red vertex
stay in Nao(so the only red vertices in Ny are still those that belong to S).

We call this update an Nj-update. Note that after an N;-update, the new con-
nected components of G[Ns] are still complete graphs, but now they consist of only
red vertices and uncoloured vertices. Moreover, every uncoloured vertex belongs to
N5 and only has blue neighbours in N (as the red vertices in NV belong to S and all
vertices of N(S) are coloured).

For every connected component F of G[Ns] that consists of uncoloured vertices
only we do as follows. Recall that uncoloured vertices in N2 only have blue neigh-
bours in V7. Thus, we may safely colour all vertices of F blue and apply an N;
-update. So, after this procedure, every connected component F of G[N5] with an
uncoloured vertex contains a red vertex. Recall that at least one red vertex of /' must
have a red neighbour in S C Ny,

For every connected component F of G[Ns] that has an uncoloured vertex and that
has size at least 2d + 1, we do as follows. As F'is a complete graph on at least 2d + 1
vertices, F' is monochromatic in every red-blue d-colouring of G. From the above,
we know that F also contains a red vertex. Hence, we must colour every uncoloured
vertex of F red. Afterwards, all connected components of G[N2] with an uncoloured
vertex have size at most 2d.

For every connected component F of G[N2] with an uncoloured vertex we also
check if all the uncoloured vertices of F only have red or uncoloured neighbours
(note that the latter belong to F as well). If so, then we safely colour all uncoloured
vertices of F' red. If afterwards there are no uncoloured vertices anymore, we check
if the resulting colouring is a red-blue d-colouring of G. If so, we are done, and oth-
erwise we discard the branch. Suppose there are still uncoloured vertices left. Then
these uncoloured vertices must belong to No, and we denote the connected compo-
nents of G[N5] that contain at least one uncoloured vertex by Fi, ..., F, for some
g > 1. In summary, we have proven:

Claim 11.2 Every F; is a complete graph of size at most 24 that

(i) Contains a red vertex with a red neighbour in S C Ny;
(i) Contains an uncoloured vertex with a blue neighbour in Ny;
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(ii1) Does not contain any blue vertices; and
(iv) Does not contain any uncoloured vertices that have a red neighbour in /V;.

By Claim 11.2, there exists at least one red vertex in N7 that has a red neighbour
in some connected component F;. We now distinguish between two cases.

Case 1. There exists a red vertex © € IV that has a red neighbour in two distinct
connected components F; and F}, say in F; and F5.

Letr; € V(F) be ared neighbour of in F, and let w € V (F}) be an uncoloured
vertex in F}. Similarly, let ro € V(F2) be a red neighbour of r in F». By Claim 11.2,
we have that F} is a complete graph, so 71 and u are adjacent, and thus G contains the
4-vertex path Q = w1779,

As ris red, Claim 11.2 tells us that u is not adjacent to r. As u and r5 are in dif-
ferent connected components of G[N2], we also have that u is not adjacent to 7. For
the same reason, r; and ry are not adjacent. Hence, Q is in fact an induced Py of G.

As G is (P3 + Py)-free and Q is an induced P, any induced P5 in G contains a
vertex that is adjacent to at least one vertex of Q. In particular, this implies that every
blue vertex in N7 that has some uncoloured neighbour in at least two connected com-
ponents of { F5s, ..., F,} (if ¢ > 4) has a neighbour in Q. The reason is that these two
uncoloured neighbours cannot be adjacent to red vertices in Ny (by Claim 11.2) or to
vertices in connected components of G[N»] to which they do not belong. See Fig. 4
for an illustration.

Since the vertices of O are either red or uncoloured, they may have at most d blue
neighbours (as else they would have been coloured blue due to the colour-process-
ing). Hence, we find that there are at most 4d blue vertices in /N7 with uncoloured
neighbours in at least two connected components of {F3, ..., F,}. We denote this
particular set of blue vertices in Ny by 7, so we have that |T'| < 4d.

By Claim 11.2, every F; has at most 2d vertices (so a constant number). Hence,
|[V(Fy)| <2d and |V (F3)| < 2d. Let U be the set of uncoloured vertices in

V(Fy) U V(F). We branch over all O(24n44") colourings of G[N (T) U U].

For each branch we do as follows. We first observe that every uncoloured vertex
x must belong to V(F;) for some ¢ € {3,...,q}. The neighbours of x in N; cannot
belong to S U T, as we already coloured all vertices of N (S U T'). Hence, any neigh-

Fig. 4 Illustration of Case 1. As Q = uyrirra P
is induced, the displayed P3 4+ P4 cannot be
induced. White vertices indicate uncoloured
vertices Ny r

7\ /\
VAR

T1 T2

N

n Fy I3 Fy
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bour y of x in N7 must be in N7 \ (S UT), so in particular y ¢ S and thus y must be
blue. Moreover, as y does not belong to 7T either, any other uncoloured neighbours of
y must all belong to F; as well (this follows from the definition of 7).

Let W consist of all vertices coloured so far. From the above, we conclude that it is
enough to decide if we can extend foreach: € {3, ..., g}, the current red-blue colour-
ing of G[W] to a red-blue d-colouring of G[W UV (F;)]. For each i € {3,...,q},
this leads to another 22 branches, as F; has size at most 2d by Claim 11.2. So, as we
can consider the colourings of every F; (¢« > 3) independently, the total number of
new branches is 22¢q = O(n). If for all i € {3,..., ¢} we can find an extended red-
blue d-colouring of G[W U V (F;)], then we have obtained a red-blue d-colouring of
G. Otherwise we discard the branch.

Case 2. Every red vertex in N7 has red neighbours in at most one connected com-
ponent of {Fi,..., Fy}.

By definition, every F; has at least one uncoloured vertex. By Claim 11.2, every
F;; also has at least one red vertex with a red neighbour in /N;. Consider F;. Let x be
an uncoloured vertex of Fi, and let 71 be a red vertex of F} with a red neighbour  in
Ny, sor € S. Recall that F; is a complete graph by Claim 11.2. Hence, x and r; are
adjacent, and thus xr17 is a P3. However, x and r are non-adjacent, since r € S and
the neighbourhood of S is coloured. This means that J is even an induced P; in G.

By definition of a red-blue d-colouring and due to the colour-processing, at most
3d blue vertices in G can have a neighbour on J. Let I' be the set of these blue verti-
ces, so |I'| < 3d. We now branch by considering all colourings of the uncoloured ver-
tices of N(T') UV (F}). As |T'| < 3d and F; has at most 2d vertices by Claim 11.2,
the number of colourings to consider is at most O(22dn3d2 ).

For each branch we do as follows. We first colour-process the pair of sets of red
vertices and blue vertices. We then perform an N7 -update, such that afterwards every
F;; again only contains red and uncoloured vertices. Again we colour the uncoloured
vertices of some F; red if none of them has a blue neighbour in IN;. Moreover, we
recall that if some F; consists of only uncoloured vertices, then — as uncoloured ver-
tices in Ny only have blue neighbours in N7 — we may safely colour all vertices of
F;; blue and apply an IN;-update. So, again it holds that every F; with an uncoloured
vertex contains a red vertex.

Assume we still have at least one uncoloured vertex left (otherwise we are done).
As we coloured the vertices of F}, we find that there exists some F; with ¢ > 2, say
F5, that contains at least one uncoloured vertex. As we did not colour all vertices of
F5 red, we find that F5 contains an uncoloured vertex u with a blue neighbour b in
N;. We note that b does not belong to T, as we coloured all vertices of N (T").

First suppose that » has an uncoloured neighbour v in some F; with ¢ > 3, say
in F3, and also that b also has a non-neighbour 75 (that is either red or uncoloured) in
F5 or F3, say in Fy. As F5 is a complete graph, u and r- are adjacent. Hence, roubv
is an induced P, of G.

We note that b is not adjacent to any vertex of {r,r1,x}, as b does not belong to
I'. Note also that u# and v are not adjacent to 7, and x, as 1 and x are in a different
connected component of G[N2] than u and v. Moreover, as r is red, Claim 11.2 tells
us that u and v are not adjacent to r either.
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Finally, we consider 2. We note that r5 is not adjacent to ». Namely, if 5 is red,
then this holds by the Case 2 assumption. If r5 is uncoloured, then this holds due to
Claim 11.2. Moreover, 75 is not adjacent to r; and x, as 1 and x belong to a different
connected component of G[N5] than r5. However, we now find an induced Ps + Py
of G consisting of {r, 1, x} and {ra, u, b, v}, see Fig. 5. As G is (P5 + Py )-free, this
is not possible.

From the above we conclude that the following holds for every blue vertex
b"” € Nj that has an uncoloured neighbour:

(i) Vertex b’ has only uncoloured neighbours in at most one F;, or
(ii) Vertex V' is adjacent to every vertex of every F;, in which b’ has an uncoloured
neighbour.

If case (i) holds, then we say that b is of type (i). If case (ii) holds, then we say that
b is of type (ii).

Recall that any uncoloured vertex, which must belong to [N, only has blue neigh-
bours in N7 by Claim 11.2. We say that a connected component F; with an unco-
loured vertex is an individual component of G[No] if the uncoloured vertices of F;
have only blue neighbours of type (i) in V1; else we say that F; is a collective com-
ponent of G[Na].

Suppose b is a blue vertex of N; that has an uncoloured neighbour and that is of
type (ii). As b is blue, b is has at most d — 1 red neighbours, else its remaining neigh-
bours would have been coloured blue by the colour-processing, and hence, b would
not have an uncoloured neighbour. As b is of type (ii), it follows that b is adjacent to
every vertex of every F; that contains an uncoloured neighbour of . Recall that every
Fj; that has an uncoloured vertex also contains a red vertex. Hence, we find that b has
uncoloured neighbours in at most d — 1 collective components. As d > 2, the same
statement also holds if b is of type (i). Hence, we have proven the following claim:

Claim 11.3 Every blue vertex in IV; has uncoloured neighbours in at most d — 1 col-
lective components.

Fig.5 TIllustration of Case 2. As J = rrju P
is induced, the displayed P3 4+ P4 cannot be
induced. White vertices indicate uncoloured
vertices Ny

\\.ﬁ
\
-

T1
T2 u

<

N

I Iy F3
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Now suppose there exist two blue vertices by and bo in N7 that are both of type (ii)
and connected components Fy, F; and F; with h, 7, j > 2 such that:

® by has an uncoloured neighbour u in F}, whereas by has no neighbour in Fj,;

e by and b; both have an uncoloured neighbour in F;, which we may assume to be
the same neighbour as b, and bs are of type (ii); we denote this common uncol-
oured neighbour by v;

® by has an uncoloured neighbour w in F};, whereas b; has no neighbour in Fj.

See Fig. 6 for an illustration. Recall that b; and b2 do not belong to T', as else they
would not have an uncoloured neighbour. This implies the following. If b; and b, are
not adjacent, then J, together with {u, b1, v, b2}, induces a P3 + Py in G. If by and by
are adjacent, then J, together with {u, b1, ba, w}, induces a P; + Py in G. Both cases
are not possible due to (P; + Py)-freeness of G. Hence, we conclude that such verti-
ces by and by, and such connected components F},, F;, F; do not exist.

We assume that without loss of generality the connected components with an
uncoloured vertex are Fs, ..., F, for some r > 2. Suppose G[Ns] has collective
components. Then, due to the above and Claim 11.3, we can now partition the col-
lective components of {F5, ..., F,.} in blocks Dy, ..., D, for some p > 1, such that
the following holds:

e Fori=1,...,p,there exists a blue vertex b; in [V that is adjacent to all vertices
of every collective component of D;;
e Fori=1,...,p,every D; contains at most d — 1 collective components, each of

which contain at most 2d vertices by Claim 11.2; and
e Every blue vertex in V7 is adjacent to vertices of collective components of at
most one D;.

Let W be the set of vertices of G that have already been coloured. Let
D ={Ds,...,D,}. We add every individual component F' that does not belong to
some block in D to D as a block {F'}. Note that by definition, every blue vertex in
Nj that is of type (i) has uncoloured neighbours in only one individual component.
Hence, due to the above, G has a red-blue d-colouring that extends the colouring of

Fig. 6 Illustration of Case 2 where we show P
that two vertices by and bz of type (ii) must

have either disjoint neighbourhoods in N3 or

one neighbourhood in N2 must be contained in Ny b1 b2

r

the other. White vertices indicate uncoloured ’

vertices / / \ / \

YL
w

N2

80O

Fi F F; Fj
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G[W] if and only if for every D € D it holds that G[W U |Jpcp V(F')] has a red-
blue d-colouring. Therefore, we can consider each D € D separately as follows. We
consider all colourings of the uncoloured vertices in G[V (D;)] and for each of these
colourings we check if we obtained a red-blue d-colouring of G[W U Jpcp V (F)].
As D; contains at most d — 1 components, each with at most 2d vertices, the number
of these colourings is at most 22¢(4=1)_Note that there are at most p < n number of
blocks that we must consider.

If the above leads to a red-blue d-colouring of G, then we are done. Else, we dis-
card the branch.

Suppose we have not found a red-blue d-colouring of G after processing all the
branches. If G is still a yes-instance, then in any red-blue d-colouring of G, every
induced P, of G is bichromatic. Therefore, our algorithm will perform the following
step:

Step 2. Decide if G has a red-blue d-colouring, for which every induced P, of G
is bichromatic.

We first prove a structural claim. Assume G has a red-blue d-colouring. Let B be the
set of blue vertices. Let R be the set of red vertices. Assume that G[B] has connected
components DB ... Df for some p > 1 and that G[R] has connected components
Df, ..., DE for some ¢ > 1. If ¢ > 2, then we obtain another red-blue d-colouring
of G by changing the colour of every vertex in every D}f with h € {2,...,7} from
red to blue. Hence, we may assume ¢ = 1. Suppose p > 2. As G is connected, every
DB contains a vertex that is adjacent to a vertex in D7¥. Hence, we obtain another
red-blue d-colouring of G by changing the colour of every vertex in every D with
i €{2,...,p} from blue to red. So we may also assume p = 1. Recall that we have
ruled out the case where G has a red-blue d-colouring in which some induced P, of
G is monochromatic. This means that both G[B] and G[R] have diameter at most 2,
else we would have a monochromatic P;. So we have shown the following claim:

Claim 11.4 If G has a red-blue d-colouring, then G has a red-blue d-colouring in
which the sets of blue and red vertices, respectively, each induce subgraphs of G that
have diameter at most 2.

By Claim 11.4, we will now search for a red-blue d-colouring of G in which the
sets of blue and red vertices, respectively, each induce subgraphs of G that have
diameter at most 2. We say that such a red-blue d-colouring has diameter at most 2.

Recall that G is not P,-free. Hence, we can find an induced path P on four vertices
in O(n*) time by brute force. We now branch over all O(n*?) colourings of N[V(P)].
Let No = V(G) \ N[V(P)]. If Ny =0, then we check if we obtained a red-blue
d-colouring of G. If so, then we are done, and else we discard the branch.

Suppose Ny # 0. As G is (Ps + Py)-free, every connected component of G[Ns]
is a complete graph. Let F,.. ., Fj, for some integer k > 1, be the connected com-
ponents of G[Ns]. We colour-process the pair consisting of the current sets of blue
and red vertices.

If all vertices are coloured, then we check if we obtained a red-blue d-colouring of
G. If so, then we are done, and else we discard the branch. Suppose not every vertex
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is coloured. This means there exists some Fj, say Fi, with an uncoloured vertex x.
As we colour-processed and x has not been coloured, we find that x has at most d red
neighbours and at most d blue neighbours. Let B, C N; be the set of blue neighbours
of x in N7 and R, C N be the set of red neighbours of x in V7. By Claim 11.1, the
number of red-blue colourings of the uncoloured vertices of F} is constant (at most

224) Let U be the set of uncoloured vertices of . We branch over all O(nQd2 ) colour-
ings of G[N (B, U R,) UU].

We now colour the remaining uncoloured vertices, which must all belong to
Ny \ V(F}) as follows. If x is blue, then any blue vertex of N2 \ V(F}) must have a
neighbour in B, in any red-blue d-colouring of G that has diameter at most 2 and that
is an extension of the current red-blue colouring. As we already coloured all vertices
in N(B,), this means that we must colour any uncoloured vertex of Ny red. Simi-
larly, if x is red, then we must colour any uncoloured vertex of Ny blue. We check if
the resulting colouring is a red-blue d-colouring of G. If yes, we have found a solu-
tion, otherwise we discard the branch.

In the end we either found a red-blue d-colouring of G, or we have discarded every
branch. In that case, the algorithm returns that G has no red-blue d-colouring. This
completes the description of our algorithm.

The correctness of the algorithm follows from its description. The maximum num-
ber of branches in Step 1 is

0 <n4.n4d. (n+n4d2 ) <n4d2 4 3 n))) ,

and in Step 2, it is O(n* - n? . n2d2). So, in total we have at most n®(@") branches
and each branch can be processed in polynomial time (in particular, colour-process-
ing takes polynomial time due to Lemma 8; N;-updates can be done in polynomial
time; and we can also check in polynomial time if a red-blue colouring of G is a red-
blue d-colouring). Thus, the running time of our algorithm is polynomial. ]

As our final result in this section, we prove the following.

Theorem 12 For every graph H and every d > 2, if d-CuUT is polynomial-time solv-
able for H-free graphs, then it is so for (H + P;)-free graphs.

Proof Suppose that d-CuT is polynomial-time solvable for H-free graphs. Let G be a
connected (H + Py)-free graph. If G is H-free, the result follows by assumption. If
G is not H-free, then V(G) contains a set U such that G[U] is isomorphic to H. As G
is (H + Py)-free, U dominates G. As H is fixed, |U| = |V (H)| is a constant. Hence,
in this case we can apply Lemma 7. O

4 NP-Completeness Results

In this section we show our NP-completeness results for d-Curt for d > 2. As d-Cut
is readily seen to be in NP for each d > 1, we only show NP-hardness in our proofs.
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We first focus on the case where d > 3. For this, we need some additional termi-
nology. An edge colouring of a graph G = (V, E) with colours red and blue is called
a red-blue edge colouring of G, which is a red-blue edge d-colouring of G if every
edge of G is adjacent to at most d edges of the other colour and both colours are used
at least once. Now, G has a red-blue edge d-colouring if and only if L(G) has a red-
blue d-colouring. A set S C V' is monochromatic if all edges of G[S] are coloured
alike.

Theorem 13 For every d > 3, the d-Cut problem is NP-complete for line graphs.

Proof We first define the known NP-complete problem we reduce from. Let
X ={x1,x2,...,2,} be a set of logical variables and C = {C1,C5,...,Cy,} be
a set of clauses over X. The problem NOT-ALL-EQUAL SATISFIABILITY asks whether
(X, C) has asatisfying not-all-equal truth assignment ¢ that is, ¢ sets at least one literal
true and at least one literal false in each C;. This problem remains NP-complete even
if each clause consists of three distinct literals that are all positive [30]. Let (X,C)
be such an instance, where X = {x1,x2,...,2,} and C = {C1,Cs,...,C,,}. We
construct, in polynomial time, a graph G; see also Fig. 7:

e Buildaclique S = {v7,...,v5 YU {of', ... v U U{vf™, ... 057, )
vfﬂr}u{ul s ugt o U U{um L ugm s )
e Forevery z € X, add cliques V,, = {vf,...,v% ,} and V& = {07, ... 7vd_l}.

e Buildaclique § = {05

TR

e For every z € X, add a vertex v, with edges v,v7, v, 05, V08, ... V05 |,
VgUT, .., VgV

e For every C'€C, add a clause vertex v. with edges v.vf,...,v.v5 o,
vcul, oo vul o, and if C = {x;, x;, x1}, alsoadd a Vertex Vi to V%, a vertex

ve? to V and a vertex vZ* to V;, , and add the edges v v} , Ve, VUEk
e Add, 1fneeded some auxiliary vertices to S, S, V.. an Var an, such
that in the end all these sets are cliques of size at least 2d + 2.

We claim that (X, C) has a satisfying not-all-equal truth assignment if and only if
the line graph L(G) has a d-cut. Recall that, by Observation 6, L(G) has a d-cut if and

£ 3 ¢ .l k
Vi V., Vo

Fig.7 An example of vertices in the reduction related to clause C' = { Tiy Tj, T k}
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only if L(G) has a red-blue d-colouring. Furthermore, L(G) has a red-blue d-colouring
if and only if G has a red-blue edge d-colouring. Hence, we will show that (X, C)
has a satisfying not-all-equal truth assignment if and only if G has a red-blue edge
d-colouring.

First suppose (X, C) has a satisfying not all-equal truth assignment. We colour all
edges in S red and in .S blue. For every x € X set to true, we colour the edges in V.
red and those in Vz blue. For every x € X set to false, we colour the edges in V,, blue
and those in Vg red. Consider an edge uv, with v € {v,,v. | x € X,c € C}. Then u
is contained in a clique D € {S,S,V,,, Var, ..., Vi, , Va—}. Colour uv with the same
colour as the edges of D.

Now, let D € {S,S,V,,,Var, ..., Vi, , Va—}. Every uu/ € E(D) is adjacent to
only edges of the same colour. For u € V(D) and v € {v,,v. | x € X, c € C}, the
edge uv has the same colour as all edges in D. Since S and S have different colours
and V, and Vz have different colours for every x € X, uv has at most d adjacent
edges of each colour. Hence, we obtained a red-blue edge d-colouring of G.

Now suppose that G has a red-blue edge d-colouring. We prove a series of claims:

O

Claim 13.1 Bvery clique D € {S,S,V,,,Var, ..., Vs, , Va—} is monochromatic.

Proof of the Claim. First assume G[D] has a red edge uv and a blue edge uw. As
|D| > 2d + 2, we know that u is incident to at least 2d + 1 edges. Hence, we may
assume without loss of generality that u is incident to at least d + 1 red edges. How-
ever, now the blue edge uw is adjacent to d + 1 red edges, a contradiction. As every
u € D is incident to only edges of the same colour and D is a clique, it follows that
D is monochromatic.

By Claim 13.1, we can speak about the colour (either red or blue) of a clique D if
Dbelongs to {S, S, V., , Vary ..o, Vi, Vo b

Claim 13.2 Foreachz € X and ¢ € C, each edge from v, or v, to a vertex in a clique
D e {S,S, Vi, Var, ..., Vi, Va} has the same colour as D.

Proof of the Claim. This follows directly from the fact that | D| > 2d + 1.

Claim 13.3 The cliques S and S have different colours if and only if for every variable
x € X, it holds that V,, and V5 have different colours.

_ Proof of the Claim. First suppose S and S have different colours, say S is red and
S is blue. For a contradiction, assume there exists a variable x € X, such that V,, and
Vz have the same colour, say blue. By Claim 13.2, we have that the 2d — 2 edges

between v, and V, U Vz and the edge vwvf are all blue, while v$vf is red. Hence,

the red edge v, v5 is adjacent to at least 2d — 1 > d + 1 blue edges, a contradiction.

Now suppose that for all z € X, V,, and V5 have different colours, say V. is red
and Vz is blue. For a contradiction, assume that S and S have the same colour, say
blue. Let x € X. By Claim 13.2, we have that the edges between v, and V,, are red,
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while all other edges incident to v, are blue. Now every (red) edge between v, and
V is incident to d + 1 blue edges, a contradiction.

Claim 13.4 The cliques S and S have different colours.

Proof of the Claim. For a contradiction, assume S and S have the same colour,
say blue. By Claim 13.2, we have that v, v? is blue. By Claim 13.3, we find that for
every x € X, V, and V5 have the same colour. If V,, and V5 are both red, then the
2d — 2 edges between v,, and V,, U V5 are red due to Claim 13.2. Consequently, the
blue edge v, v? is adjacent to 2d — 2 > d + 1 red edges. This is not possible. Hence,
V, and VZ are blue, and by Claim 13.2, all edges between v, and V,, U V5 are blue as
well. This means that every edge of G is blue, a contradiction.

Claim 13.5 For every clause C' = {x;, z;, 73} in C, the cliques V., V,,, and V, do
not all have the same colour.

Proof of the Claim. For a contradiction, assume V,,, V.., and V;, have the same
colour, say blue. By Claim 13.4, S and S are coloured differently, say S is red and S
is blue. By Claim 13.2, we have that the three edges v,vZ?, vovs? and v UoF are all
blue, just like the d — 2 edges between v, and .S, while every edge between v, and
S is red. Consider such a red edge e. We find that e is adjacent to d + 1 blue edges, a
contradiction.

For each variable x, if the clique V,, is coloured red, then set x to true, and else to
false. By Claim 13.5, this yields a satisfying not-all-equal truth assignment. O

We now show that the case H = 3P, is hard. The gadget in our NP-hardness
reduction is neither 2 P;-free nor Ps-free nor Pr-free.

Theorem 14 For every d > 2, the d-Cut problem is NP-complete for 3Ps-free
graphs of radius 2 and diameter 3.

Proof We first define the known NP-complete problem we reduce from. Let
X ={x1,x2, - ,x,} be a set of variables. Let C = {C1,Ca, -+ ,C,,} be a set
of clauses over X. The 3-SATISFIABILITY problem asks whether (X, C) has a satisfy-
ing truth assignment ¢, that is, ¢ sets at least one literal true in each C;. Darmann
and Docker [10] proved that 3-SATISFIABILITY is NP-complete even for instances in
which:

1. Each variable occurs as a positive literal in exactly two clauses and as a negative
literal in exactly two other clauses, and

2. Each clause consists of three distinct literals that are either all positive or all
negative.

Let X = {z1,22,...,2,} for some n>1 and C={C1,...,Cp,D1,..., Dy}
where each C; consists of three distinct positive literals, and each D; consists of
three distinct negative literals. We may assume without loss of generality that p > 4
and g > 4, as otherwise the problem is trivial to solve by using brute force.
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]
]
:
- d
]
1
]
]

K
Fig. 8 The graph G for X:{x1,...,x6{} and C:{Exl,xz,xg% {xl,xg,m%,
sz,xs,xe}, {Z4,$57936}, {$1,$27I4 s $17$37I5}, X2,T4,T6 ,{I37$57I6 .

For readability the edges inside the cliques K and /X " are not shown

From (X, C), we construct a graph G = (V, F) as follows. We introduce two verti-
ces C and D and let the other vertices of G represent either variables or clauses. That
is, we introduce a clique K = {C1,...,C,,C}; a clique K’ = {Ds,...,D,, D}
and an independent set I = {x1,...,x,}, such that K, K’, I are pairwise disjoint
and V=KUK'UI Forevery h € {1,...,n} and every i € {1,...,p}, we add
an edge between x5, and C; if and only if x5, occurs as a literal in C;. For every
he{l,...,n} and every j € {1,...,q}, we add an edge between z;, and D; if
and only if =}, occurs as a literal in D;. We also add the edge CD. See Fig. 8 for an
example.

As every edge must have at least one end-vertex in K or K/, and K and K’ are
cliques, we find that G is 3P,-free. Moreover, G has radius 2, as the distance from
C or D to any other vertex in G is at most 2. In addition, the distance from a vertex
inITU(K\{C})U(K'"\ {D}) to any other vertex in G is at most 3. Hence, G has
diameter at most 3.

We claim that (X, C) has a satisfying truth assignment if and only if G has a 2-cut.

First suppose that (X, C) has a satisfying truth assignment ¢. In I, we colour for
h e {1,...,n}, vertex xj, red if ¢ sets xj, to be true and blue if ¢ sets x}, to be false.
We colour all the vertices in K red and the vertices in K’ blue.

Consider a vertex xp, in I. First suppose that x;, is coloured red. As each literal
appears in exactly two clauses from { D1, ..., D, }, we find that ;, has only two blue
neighbours (which all belong to K'). Now suppose that z, is coloured blue. As each
literal appears in exactly two clauses from {C1,...,C,}, we find that =, has only
two red neighbours (which all belong to K). Now consider a vertex C; in K, which
is coloured red. As C; consists of three distinct positive literals and ¢ sets at least
one positive literal of C; to be true, we find that C; is adjacent to at most two blue
vertices in /. Hence, every C; is adjacent to at most two blue vertices. Now consider
avertex D; in K’, which is coloured blue. As D, consists of three distinct negative
literals and ¢ sets at least one negative literal of D; to be true, we find that D; is
adjacent to at most two red vertices in /. Hence, every D); is adjacent to at most two
red vertices. Finally, we note that C, which is coloured red, is adjacent to exactly one
blue neighbour, namely D, while D has only one red neighbour, namely C. The above
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means that we obtained a red-blue 2-colouring of G. By Observation 6, this means
that G has a 2-cut.

Now suppose G has a 2-cut. By Observation 6, this means that G has a red-blue
2-colouring ¢. As |[K| =p+1>5and |K'| = ¢+ 1 > 5, both K and K’ are mono-
chromatic. Say ¢ colours every vertex of K red. For a contradiction, assume ¢ colours
every vertex of K’ red as well. As ¢ must colour at least one vertex of G blue, this
means that / contains a blue vertex xj,. As each variable occurs as a positive literal in
exactly two clauses and as a negative literal in exactly two other clauses, we now find
that a blue vertex, x;, has two red neighbours in K and two red neighbours in K, so
four red neighbours in total, a contradiction. We conclude that ¢ must colour every
vertex of K’ blue.

Recall that every C; and every D; consists of three literals. Hence, every vertex
in K U K’ has three neighbours in 1. As every vertex C; in K is red, this means that
at least one neighbour of C; in / must be red. As every vertex D; in K is blue, this
means that at least one neighbour of D; in / must be blue. Hence, setting x; to true if
x; isred in G and to false if x; is blue in G gives us the desired truth assignment for X.

Now, we consider the case where d > 3. We adjust G as follows. We first mod-
ify K into a larger clique by adding for each xj, a set L, of d — 3 new vertices.
We also modify K’ into a larger clique by adding for each x, a set L}, of d — 3
vertices. For each h € {1,...,n} we make x; complete to both L;, and to L}.
Finally, we add additional edges between vertices in K U Ly U...U L,, and ver-
tices in K’ U Lj U...U L/, in such a way that every vertex in K \ {C'} has d — 2
neighbours in K’ \ {D}, and vice versa. The modified graph G is still 3P»-free, has
radius 2 and diameter 3, and also still has size polynomial in m and n. The remainder
of the proof uses the same arguments as before. O

5 Conclusions

We considered the natural generalization of MATCHING CUT to d-CuT[15] and proved
dichotomies for graphs of bounded diameter and graphs of bounded radius. We also
started a systematic study on the complexity of d-Cut for H-free graphs. While for
d = 1, there still exists an infinite number of non-equivalent open cases, we were able
to obtain for every d > 2, an almost-complete complexity classification of d-Cut
for H-free graphs, with only three non-equivalent open cases left if d > 3. We finish
our paper with some open problems on H-free graphs resulting from our systematic
study.

We recall that 1-Cur is polynomial-time solvable for claw-free graphs [5], while
we showed that d-Curt is NP-complete even for line graphs if d > 3. We also recall
the recent result of Ahn et al. [1] who proved that 2-Cut is NP-complete for claw-free
graphs. What is the computational complexity of 2-Cur for line graphs?

Finally, we recall the only three non-equivalent open cases H = 2P;, H = P,
H = P; for d-Cut on H-free graphs for d > 2. We aim to address these cases as
future work.
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