Provisioning of Kubernetes Clusters for Task-Based
Python Applications

Andrey Nagiyev*T, Enes Bajrovic*, Siegfried Benkner*
*Faculty of Computer Science, University of Vienna, Vienna, Austria
TDoctoral School Computer Science, University of Vienna, Vienna, Austria
andrey.nagiyev@univie.ac.at, enes.bajrovic@univie.ac.at, siegfried.benkner @univie.ac.at

Abstract—We present Python-to-Kubernetes (PTK), a frame-
work that automates the provisioning and deployment of task-
based Python applications on Kubernetes. PTK introduces com-
pact source-code annotations for tasks, resource needs, grouping,
and data-size hints. From these annotations, it provisions an
application-specific cluster, builds container images, generates
manifests, and selects the data-transfer mechanism based on
placement. A scoring-based mapping co-locates bandwidth-heavy
neighbors to reduce cross-node traffic and right-sizes nodes after
placement. On a six-task machine learning (ML) ResNet50 image-
classification pipeline (ImageNet 5%/10% subsets), PTK achieves
up to 6.43x faster runtime and 7.26 X lower cost per run than
the Kubernetes Default Scheduler, with higher CPU/memory
utilization and fewer/smaller nodes. These results indicate that
lightweight annotations plus application-aware provisioning can
substantially improve price-performance for Kubernetes-based
ML pipelines.

Index Terms—cluster provisioning, Kubernetes, resource man-
agement, source code annotations, task-based programming

I. INTRODUCTION

Modern ML pipelines and scientific workflows increasingly
rely on heterogeneous clusters with CPUs and GPUs, yet
deploying and tuning such applications on Kubernetes [1]
remains complex: developers must containerize tasks, hand-
craft manifests, choose node families/zones, and reason about
data movement across Pods and nodes.

PTK (i) introduces compact Python annotations for tasks,
resource needs, grouping, and data-size hints; and (ii) pro-
visions an application-specific heterogeneous cluster prior to
deployment. PTK then maps tasks to nodes with awareness
of inter-task bandwidth and cost. Beyond placement, PTK
automatically builds container images and generates Kuber-
netes manifests. Because task outputs must be serialized
across Pods, PTK also selects the data-transfer mechanism
by placement. We demonstrate PTK on a TensorFlow-based
image-classification pipeline using ImageNet [2]-[5].

We contribute: (1) a minimal annotation interface for task-
based Python; (2) a pre-deployment provisioning-and-mapping
procedure that sizes nodes and co-locates high-bandwidth
neighbors; (3) a prototype that emits images, manifests, and
volumes end-to-end; and (4) an evaluation indicating improved
utilization, runtime, and cost versus the Kubernetes Default
Scheduler.

Python Application

Source Code Annotations
Tasks, Resource Requirements, Deployment Configurations
[]

PTK

]
Kubernetes Artefacts
Manifest Files (Containers, Pods, Deployments)

Kubernetes Cluster

Fig. 1. Overview of the PTK framework.

II. PTK OVERVIEW

Applications are expressed as Python tasks whose out-
puts feed the inputs of downstream tasks (value semantics).
PTK serializes arguments and return values with JSON or
NumPy as appropriate and supports Keras/TensorFlow model
artifacts (e.g., HDF5). From these annotations (below), PTK
later builds container images, generates Kubernetes manifests,
and wires volumes according to placement [6]. Figure 1
summarizes the PTK workflow and how annotations drive
provisioning, mapping, and manifest generation.

Each function decorated with @task is a self-contained
unit with value semantics: arguments are serialized in-
puts; the return value is the serialized output. PTK
supports standard Python types (JSON), NumPy arrays
(.npy), and Keras/TensorFlow artifacts (e.g., HDF5 model
files). The cpu_requests, ram_requests, and op-
tional gpu_requests describe resource needs used by
the provisioning and mapping pipeline. The optional
input_data/output_data provide size hints (e.g.,
8 GiB) that steer data-locality decisions. By default, PTK
builds one container per task and one Pod per container unless
the user groups tasks or PTK groups data-heavy neighbors
automatically. Users can enforce grouping (@container,
@pod); PTK may also group data-heavy neighbors on the
same node into one Pod to enable shared-memory transfer
(emptyDir). Otherwise, PTK injects PersistentVolumeClaims
(PVCs): a local PVC for same-node Pods and an NFS-backed
PVC across nodes.

We build an ML ImageNet pipeline; the task roles and
resource hints are as follows (see Listing 1 and Figure 2).

The heaviest edge is from test_prepare to evaluate
(16 GiB). PTK uses this hint to co-locate these neighboring

{ Dataset }
\—!,—/—

Task 1: Data Preparation
¥

Task 2: Data Augmentatlon

Task 3: Data Preprocessmg

| |
| |
| |
| ’ |
| |
| e Evaluaton |

Task 4: Model Training
¥

Task 5: Test Data Preparation
¥

Task 6: Model Evaluation

Fig. 2. Task-based ML pipeline for image classification. The loop indicates
that the pipeline is deployed as a continuously running application service,
with model training triggered by the user.

tasks within a single Pod (on the same node), switching from
PVC/NFS transfers to in-memory exchange (emptyDir).

III. PROVISIONING AND MAPPING

PTK provisions an application-specific cluster before de-
ployment and maps tasks with awareness of resource needs
and data movement.

A. Cluster Provisioning Options

Users specify the cloud platform, node family (e.g., nl),
optional zone, and optional num_nodes. PTK currently tar-
gets GCP and is extensible to other clouds. If the zone is
omitted, PTK selects a low-cost zone within the chosen family
based on standard-node pricing and then enumerates node
types (marking GPU-capable variants).

python tasks.py --platform=gcp --node_families=nl \
——zone=us-westl-c —--num_nodes=3

PTK retrieves the hourly price of the target GPU (e.g., T4)
in the selected zone to compute the GPU/node price ratio,
which anchors GPU scoring to node economics. A margin is
reserved for Kubernetes overhead; PTK never assigns 100%
of advertised capacities.

B. Scoring System

Nodes and tasks are ranked with an additive model; after
mapping, a data term penalizes inter-node traffic. Table I
summarizes the scores; PTK selects the cluster that minimizes
the sum of node and data scores.

C. Algorithm 1: Node Selection and Task Mapping

PTK evaluates candidate cluster sizes ¢ = 1..t for ¢ tasks.
For a fixed i, it first sorts tasks by their task score (from
requests of CPU/memory/GPU) and instantiates 7 nodes as
the smallest standard machine types in the chosen family. It
then seeds the top-¢ tasks, one per node, upgrading a node
only if necessary to satisfy all three resource dimensions
(CPU, memory, GPU) after reserving a small overhead for
Kubernetes. GPU-requiring tasks force a GPU-capable shape
and the required device count; if the family/zone cannot

from ptk import task

@task (name='prepare',
ram_requests='12Gi"',

cpu_requests="'10",
input_data={'size'

'8Gi'"}, output_data={'size' '8Gi'})
def prepare():
Task 1: Prepare raw data

return prepare_result

@task (name='augment', cpu_requests='20",
gpu_requests="'1l"', ram_requests='1l6Gi"',
output_data={"'size' '8G1i'})

def augment (prepare_result) :

Task 2: Apply data augmentation
return augment_result

@task (name='preprocess', cpu_requests='20",
ram_requests='16Gi"', output_data={'size'
'8Gi'})

def preprocess (augment_result) :

Task 3: Preprocess augmented data
return preprocess_result

@task (name='train', cpu_requests='32",
gpu_requests='2", ram_requests='20Gi"',
output_data={"'size' '2G1'})

def train(preprocess_result):

Task 4: Train the model
return train_result

@task (name="'test_prepare',
ram_requests='12Gi"',
'16Gi'})

def test_prepare(train_result):

Task 5: Prepare test data
return test_prepare_result

cpu_requests='16",
output_data={"'size'

@task (name='evaluate', cpu_requests='12",
ram_requests='8Gi', output_data={'size'
def evaluate (test_prepare_result):
Task 6: Evaluate the model
return evaluate_result

'2G1i'})

def main() :
prepare_res = prepare ()
augment_res = augment (prepare_res)
preprocess_res = preprocess (augment_res)
train_res = train(preprocess_res)
test_prep_res = test_prepare(train_res)
evaluate_res = evaluate (test_prep_res)

Listing 1. ML pipeline tasks annotated with PTK

provide that shape, the current candidate cluster is deemed
infeasible and the algorithm moves on to size i+1.

After seeding, the algorithm performs a greedy fill of the
remaining tasks. For each task in score order, it computes
the residual capacity of each node (node score minus the
sum of scores of tasks already placed on that node) and
attempts to place the task on the node with the largest residual
capacity that also individually meets CPU, Memory, and
GPU constraints. If no current node can host the task, PTK
minimally upgrades exactly one node: it chooses the node
that requires the smallest score increase (difference between
the upgraded node’s score and its current score) to satisfy
the task’s requirements, preferring shapes that preserve GPU
headroom when the remaining task list contains GPU jobs.

If all tasks fit, the mapping for size ¢ is recorded as

TABLE I
PTK SCORING SYSTEM

Score Type Scoring Formula

Memory 1 point per GiB (rounded up if necessary)

CPU #vCPUs X memory-to-CPU ratio

GPU #GPUs x GPU-to-node price ratio X smallest node score
Node Memory score + CPU score + GPU score

Task Memory score + CPU score + GPU score

Data Node score x inter-node data (GiB)

Cluster Sum of all Node and Data scores

Algorithm 1: Node Selection and Task Mapping

Input:
T = {t1,t2,...,ts}: List of ¢ tasks ordered by descending task
scores
C = {c1,c2,...,ct}: Set of ¢ candidate clusters, where each
cluster ¢; = {n1,n2,...,n;} is a set of ¢ nodes

Output:

C" = {c} | s <14 < t}: Subset of feasible cluster configurations
C’" C C, where s > 1 is the index of the cluster with the
smallest number of nodes. Each ¢ = {n1,n2,...,n;}
represents a cluster of ¢ nodes. A unique subset of the tasks in T
is assigned to each node so that no task remains unassigned.

1 foreach candidate cluster c; € C do

// 1. Assign first ¢ tasks
2 for j =1 to i do
3 if task t; fits on node n; then
4 ‘ Assign task t; to node nj;
5 else if upgrading node n; allows t; to fit then
6 Upgrade node n; to fit t;;
7 Assign task ¢; to node n;; break;
// 2. Assign remaining tasks
8 for j =i+ 1totdo
9 Sort nodes n1,...,n; by remaining available capacity
(descending);
10 foreach node ny, in the sorted list do
11 if task t; fits on node nj, then
12 \ Assign task t; to node ny; break;
13 if task t; is not assigned then
14 Select node nj with the smallest required score increase
to host ¢5;
15 Upgrade node ny, to fit ¢;;
16 Assign task t; to node ny;
17 if all tasks in T are successfully mapped to c; then
18 if C’ is empty then s < i;
19 Add ¢; to C;

feasible; otherwise that size is rejected. The smallest 7 that
yields a feasible mapping defines the feasibility frontier s,
and all feasible mappings for sizes ¢ > s are retained for the
locality-refinement stage (Algorithm 2). Node sizes are not
reduced in Algorithm 1 (to avoid oscillations); right-sizing
occurs only after locality optimization. In practice (e.g., the
six-task ImageNet pipeline), this procedure quickly converges:
GPU-heavy tasks seed GPU nodes, CPU/memory-heavy tasks
gravitate to the nodes with the most residual capacity, and
infeasible sizes are skipped early without exhaustive search.

D. Algorithm 2: Reducing Inter-node Data Transfers

Given each feasible ¢; € C’, PTK improves locality without
increasing node sizes by first performing direct relocations.
For each task, it ranks candidate destination nodes by the
total data volume exchanged with tasks already on that node
and attempts a move only when the destination has sufficient

Algorithm 2: Reducing Inter-node Data Transfers

Input:
T = {t1,t2,...,ts}: List of ¢ tasks ordered by descending task
scores

C" = {c} | s <i < t}: Set of feasible clusters, where each
cluster ¢; = {n1,...,n;} has tasks already mapped to nodes
Output:
Optimized cluster configuration ¢* from C’ with reduced
inter-node data transfers
1 foreach feasible cluster ¢ € C' do

// 1. Direct Task Relocation
2 foreach task t € T do
3 Let ncyrr be the node currently hosting ¢;
4 Sort nodes in ¢} by the volume of data transferred with ¢
(descending);
5 foreach node n; in the ranked list preceding ncyrr do
6 if ¢ fits on node nj and ncyrr hosts other tasks after
relocation then
7 \ Relocate task ¢ to node n;; break;
// 2. Pairwise Task Swap
8 repeat
9 improvement <— False;
10 foreach pair of tasks (tz,ty) assigned to different nodes do
11 if swapping (te,ty) reduces total inter-node data transfer
and both nodes have sufficient resources then
12 Swap tasks t; and ty;
13 improvement <— True;
14 until no further improvement
// 3. Downgrade Nodes
15 foreach node n; € ¢ do
16 ‘ Downgrade n; by reclaiming unused resources;
17 Compute total cluster score s; for c};

18 Select cluster c* with the lowest score;

residual CPU, memory, and (if required) GPU capacity and
the source will still host at least one task; passes repeat until
no relocation is possible. It then considers pairwise swaps
across nodes and accepts a swap only if both tasks fit after the
exchange and the cluster’s data term (sum over nodes of node
score times inter-node GiB) strictly decreases; the swap phase
also iterates to a fixed point. Finally, PTK groups dependent
tasks that end up on the same node into one Pod to enable in-
memory exchange and right-sizes nodes by reclaiming unused
CPU and memory (GPU counts preserved), recomputes scores,
and selects the lowest-scoring cluster for deployment.

IV. EVALUATION
A. Workloads and Datasets

We create a six-task ResNet50 pipeline [2], [5] on Ima-
geNet [3], [4]. Two subsets are used: 5% (64,033 images;
7.28 GiB) and 10% (128,066 images; 14.56 GiB). The pipeline
tasks and their resource requests are summarized in Table II.

B. Deployment Scenarios

We compare three mechanisms (see Figure 3): (i) PTK/Iso-
lated — PTK provisioning without grouping (each task in its
own Pod; Pods communicate via PVC); (ii) PTK/Grouped —
PTK provisioning with automatic grouping of connected tasks
on the same node into one Pod (enables in-Pod emptyDir);
(>iii) Kubernetes Default Scheduler — default scheduler on the
same node types PTK provisioned for (ii); if it cannot place
all Pods, an extra node is added as needed.

TABLE II
RESOURCE REQUESTS FOR EACH ML PIPELINE TASK

Task # Requests
Experiment 1 Experiment 2
CPU | GPU | RAM | Output | CPU | GPU | RAM | Output

Task 1 | 10.0 | 0.0 | 12.0 8.0 150] 0.0 | 18.0 16.0
Task 2 | 20.0 | 1.0 | 16.0 8.0 30.0 | 2.0 | 24.0 16.0
Task 3 | 20.0 | 0.0 | 16.0 8.0 30.0 | 0.0 | 24.0 16.0
Task 4 | 32.0 | 2.0 | 20.0 20 [48.0| 4.0 | 30.0 2.0
Task 5 | 16.0 | 0.0 | 12.0 16.0 |24.0 | 0.0 | 18.0 16.0
Task 6 | 12.0 | 0.0 | 8.0 2.0 180 0.0 | 12.0 2.0

Note: CPU values denote vCPUs (cores); GPU values denote the number of
devices and are set to 0.0 if unused. Memory and Output are reported in GiB.

TABLE III
MAIN RESULTS ACROSS THREE SCENARIOS

Metric 5% subset 10% subset
PTK PTK K8s PTK PTK K8s
Isolated | Grouped | Default | Isolated | Grouped | Default
Runtime [h] 1.70 0.28 1.80 2.65 0.96 2.76
Hourly cost [$/h] 6.05 6.05 6.81 9.07 9.07 13.51
Cost per run [$] 10.31 1.69 12.27 | 24.00 8.73 37.36
CPU utilization 0.97 0.97 0.85 0.98 0.98 0.71
Memory utilization| 0.82 0.94 0.46 0.85 0.96 0.31
GPU utilization 0.60 0.60 0.60 0.75 0.75 0.50

C. Metrics

We report execution time (pipeline makespan per run), cost
per run and hourly cluster cost (derived from provisioned node
types), and resource utilization (CPU/Memory/GPU); values
closer to 1 indicate better utilization.

D. Results

For the 5% subset, PTK Grouped provisions two nodes:
Node 1 (82 vCPUs, 92.2 GiB RAM, 4 GPUs) and Node
2 (32 vCPUs, 42.8 GiB RAM, 1 GPU). The Kubernetes
Default Scheduler cannot place all tasks on this configuration
and requires an extra nl-standard-16 node. For the 10%
subset, PTK Grouped also yields a two-node cluster: Node 1
(92 vCPUs, 88.1 GiB RAM, 4 GPUs) and Node 2 (76 vCPUs,
109.6 GiB RAM, 4 GPUs). Kubernetes Default needs an extra
nl-standard-64 node with 4 GPUs to fit all Pods. PTK
reserves a margin for Kubernetes overhead, which explains
small gaps between requested and provisioned resources.

The default scheduler treats Pods independently and lacks
whole-pipeline awareness, which scatters bandwidth-heavy
neighbors and inflates cross-node transfers and cluster size.
PTK’s pre-deployment provisioning and placement co-locate
heavy edges within Pods and shrink nodes after mapping,
improving performance and reducing cost.

As summarized in Table III, PTK (Grouped) shortens the
pipeline makespan by 6.43x (5%) and 2.88x (10%) relative to
the Kubernetes Default Scheduler and reduces cost per run by
7.26x and 4.28x, respectively. The gains stem from grouping
bandwidth-heavy neighbors (augment and preprocess,
test_prepare and evaluate), which reduces cross-
node transfers and, together with right-sized provisioning,
yields higher CPU/memory utilization. PTK achieves higher

1. PTK Provisioning
Mechanism 1: Multiple
Pods for Tasks on a Node

2. PTK Provisioning 3. Kubernetes Default
Mechanism 2: Single Pod Scheduler: Multiple Pods
for Connected Tasks on a for Tasks on a Node

Node (Ordered by Tasks: 1 to 6)

Task 1: Data Preparation

Task 2: Data
Augmentation

9

Task 5: Test Data
B n
Task 6: Model Evaluation Task 6: Model Evaluation

Node 1 Node 1
82 vCPU; 92160 MB RAM; 4 GPU 82 vCPU; 92160 MB RAM; 4 GPU

/B RAM; 1 GPU

Pod | Pod | Pod | Pod | Pod | Pod

Experiment 1
Pod | Pod | Pod | Pod | Pod | Pod

Task 1: Data Preparation

Task 2: Data
Augmentation
T 3D ta
Pr g

Pod

T Data
Preparal

Task 6: Model Evaluation
Node 1
92 vCPU; 88064 MB RAM; 4 GPU
0! RAM; 4 G

Pod

Pre| n

Task 6: Model Evaluation
Node 1
92 vCPU; 88064 MB RAM; 4 GPU

3 RA GPU

Node 3
n1-standard-64; 4 GPU

Fig. 3. Deployment configurations.

Pod | Pod | Pod | Pod | Pod | Pod

Pod | Pod | Pod | Pod | Pod | Pod

Experiment 2

Task 6: Model Evaluation

92 vCPU; 84736 MB RAM; 4 GPU

z
o
a
@

GPU

utilization due to right-sized provisioning and locality-aware
mapping.
V. CONCLUSION

PTK combines lightweight annotations with application-
aware provisioning to improve the price-performance of task-
based Python on Kubernetes. On an ImageNet/ResNet50
pipeline, PTK co-locates bandwidth-heavy neighbors, right-
sizes nodes, and delivers substantial runtime and cost reduc-
tions relative to the Kubernetes Default Scheduler.

REFERENCES
[1] Kubernetes.io, “Kubernetes: Open-Source Container Orchestration
System,” 2024, [Accessed 14-Sep-2024]. [Online]. Available:

https://kubernetes.io/

[2] Google, LLC, “Tensorflow,” 2025, [Accessed 28-Mar-2025]. [Online].
Available: https://www.tensorflow.org/

[3] Stanford Vision Lab, Stanford University, Princeton University, “Image
Net: ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012),” 2024, [Accessed 14-Sep-2024]. [Online]. Available:
https://image-net.org/challenges/LSVRC/2012/2012-downloads.php

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein ef al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, vol. 115,
pp. 211-252, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

[6] A. Nagiyev, E. Bajrovic, and S. Benkner, “Python to kubernetes: A
programming and resource management framework for compute- and
data-intensive applications,” in 2024 IEEE 30th International Conference
on Parallel and Distributed Systems (ICPADS). 1EEE, 2024, pp. 479—
486.

