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Abstract: Recently, the software industry has published several proposals for transactional 
processing in the Web service world. Even though most proposals support arbitrary transaction 
models, there exists no standardized way to describe such models. This paper describes potential 
impacts and use cases of utilizing advanced transaction meta-models in the Web service world and 
introduces a suitable meta-model for defining arbitrary advanced transaction models. In order to 
make this meta-model more usable in Web service environments, it had to be enhanced and an XML 
representation of the enhanced model had to be developed. 
  
1. Introduction 
 
The publication of Web service transaction proposals [1][2][3] implies that the software industry 
has recognized that there is a need for transactional processing in the Web service world. In tightly 
coupled systems, transactional processing that follows the ACID principles [7] is ubiquitous and 
works well [8]. However, transactions that follow ACID principles may not be practical in loosely 
coupled systems, e.g. systems composed of Web services. [8] discusses this in detail and even 
asserts that transaction semantics that work in a tightly coupled single enterprise cannot be 
successfully used in loosely coupled multi-enterprise networks such as the Internet. Advanced 
Transaction Models (ATM) [6][7] offer appropriate transaction semantics for loosely coupled 
systems. The Web service transaction industry proposals [1][2][3] use the ideas of ATMs and 
embed them in a transaction processing architecture that fits well into the Web service world. We 
call an ATM that is supposed to be used in a Web service transaction system Web Service ATM 
(WS-ATM).   
 
Different (business) domains require different policies for conducting transactional processing. No 
out-of-the-box set of WS-ATMs can satisfy all requirements of all domains that want to do 
transactional Web service processing [9]. Besides, a WS-ATM that is used by a domain may have 
to be adjusted in the course of time and has to be updated from time to time. Such updates should 
not affect the whole Web service transaction system. Therefore, a Web service transaction system 
should support arbitrary WS-ATMs, i.e. it should support arbitrary transaction semantics.  



 

 

 
Generally speaking, the software industry is aware of that because the Web service transaction 
system proposals [1] and [2] support the idea of incorporating arbitrary WS-ATMs. However, even 
though formal meta-models for general ATMs exist and were published in [4] and [7], [1] and [2] 
simply describe a small number of specific WS-ATMs in an informal style. 
 
In this paper we discuss a solution for arbitrary ATMs in the Web service world (WS-ATMs) that 
can be described in a standardized way. Sect. 2 describes the advantages of standardized WS-
ATMs. In Sect. 3, we provide a short introduction of an existing advanced transaction meta-model. 
Sect. 4 introduces necessary enhancements of this advanced transaction meta-model and an 
appropriate XML representation. Finally, to give a deeper understanding, Sect. 5 shows selected 
aspects of a particular WS-ATM in XML. 
  
2. Impact of Using Standardized Meta-Model Based WS-ATM Descriptions 
 
A standardized WS-ATM meta-model and its representation in a machine-readable language (the 
language is used to describe transaction model instances) could facilitate working with WS-ATMs 
in Web service transaction systems mostly in the following special areas: Comprehension and the 
process of obtaining comprehension, development of transaction aware Web services, and 
administration of a Web service transaction system. Figure 1 summarizes potential impacts of 
standardized WS-ATM descriptions and gives examples of applications.  

 
Figure 1: Impacts of standardized WS-ATM descriptions 

 
Comprehension, development and administration are related, e.g. comprehension implicitly 
influences development and administration. All three areas affect the speed and the extent of the 
penetration of new or updated WS-ATMs in a particular domain. People usually tend to adopt new 
techniques like new WS-ATMs faster if they comprehend them thoroughly and if the techniques are 
easy to use.  
 
Comprehension and the process of obtaining comprehension could be improved by WS-ATM 
descriptions. If we assume that all details of a WS-ATM are available in a machine-readable format 
that conforms to a WS-ATM meta-model, then different transformations of the same model could 
provide appropriate human-readable views for different users. For example, the Web service 
developer could need a sophisticated HTML document that describes the model in every detail 
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whereas an SVG diagram of basic model properties would serve decision-makers well. In short, 
WS-ATM meta-models build the foundation of reusable and standardized documentations of WS-
ATMs.  
 
WS-ATMs could also improve the development of transaction enabled Web services. Automatic 
code generators that create abstract base classes, interfaces, or code-skeletons out of WS-ATMs are 
feasible with machine-readable WS-ATM descriptions. If a Web service that should conform to a 
particular transaction model (e.g. a special kind of multi-level transaction [10] in the tourism 
domain) has to be created, the developer could download the specification of the transaction model 
and create code fragments out of it. Code fragments clearly show the developer what functionality 
has to be implemented to support the transaction model. Automatic code generation is a common 
technique in software development, e.g. Web service clients are generated automatically from 
WSDL interface descriptions, Corba client stubs from Interface Definition Language descriptions, 
or GUI code by a graphical GUI builder tool. 
 
Different business domains want to or have to use different WS-ATMs. It is not realistic that a set 
of “shrink-wrapped” transaction models will be used in all domains or that a WS-ATM will be used 
forever in a single domain [9]. It is more likely that a WS-ATM changes from time to time to reflect 
new requirements of the domain. A Web service transaction system has to support WS-ATM 
variations like the update of existing WS-ATMs or the addition of new WS-ATMs. If the WS-
ATMs are described thoroughly in a standardized way, it is imaginable that an existing transaction 
system can be updated with new WS-ATMs using some kind of easy-to-use installation procedure. 
At least, a detailed description of a transaction system behaviour that conforms to the new WS-
ATM should be possible. 
 
3. An Advanced Transaction Meta-Model 
 
Simple transaction models can be described with finite state-machines. However, if it is not possible 
to identify a fixed number of states of a particular transaction model a priori, finite state-machines 
are not appropriate. Thus, specialized models for ATMs were developed. In this section, we give a 
short overview of such a model that was introduced in [7] by Jim Gray and Andreas Reuter. 
 
In Gray & Reuter’s model, transactions are modelled as compositions of one or more Atomic 
Actions (AA). AAs have ports that identify possible signals an AA can receive and final states that 
indicate the outcome of an action. For example, a simple AA named “T” can have the ports “abort”, 
“commit”, and “begin” and the final states “aborted” and “committed”.  
 
In a transaction, the included AAs can also be related. Relations can model the invocation hierarchy 
of the AAs, e.g. if AAa commits, AAb has to commit, too. Transactions impose different rules on 
relations among AAs and the effects they have on related AAs. For each AA in a transaction model, 
there can be one or more rules. Each rule represents a state transition an AA can perform. Such 
rules have two parts. The active part of a rule defines conditions that trigger events. For example, 
“commitment of AAa triggers commitment of AAb” is modelled by the active part. These events 
cause an AA to change its state.  The passive part specifies the conditions for performing a state 
transition. For example, “commitment of AAa can only happen if AAx is ready to commit, too” can 
be defined by the passive part. The structure of a rule can be depicted as follows: 
<rule identifier>:<preconditions> →  
<rule modifier list>, <signal list>, <state transition> 
 



 

 

The rule identifier indicates the port on a target AA to which a signal should be sent. Preconditions 
are predicates that have to be fulfilled before the corresponding rule is executed.  
 
Rule modifiers capture the dynamic behaviour of a transaction model, i.e. the addition or deletion of 
rules. The signal list contains names of rules that are to be activated in the course of execution of 
the originating rule. The rule modifier list contains one or more rule modifiers. State transition is a 
supplementary element that gives the rule a label. The structure of a rule modifier is the following: 

<rule modifier> ::= ((+||-) (<rule identifier>|<signal>))  
                    ||  
                    (delete (<Atomic Action Identifier>))  
 
The first clause of a rule modifier introduces means to dynamically create new rules and 
dependencies introduced by these new rules. It is also used to delete single rules. The second clause 
is a shortcut and makes it possible to dynamically delete obsolete rules pertaining to a particular 
AA. 
 
A transaction model consists of several such rules. Whenever an event occurs, the right side of the 
rule that identifies the event is executed – of course only if the preconditions of the rule are met. 
The rule is “marked” to indicate the current state. It remains marked after its execution steps are 
finished until a new signal comes in. Thus, subsequent emissions of the same signal to the same 
action are not possible, because the port is “closed” after the first emission. Once an AA reaches a 
final state, all its rules are deleted. Note that we only write down delete actions if they are essential 
for the described transaction model.   
 
To illustrate Gray & Reuter’s model, we will define a simple transaction model: flat transactions. In 
flat transactions we have two AAs: The flat transaction action itself and a system action. The 
“System” action can be aborted only, i.e. the system crashes for some reason. The flat transaction 
action can be committed and aborted. There is a dependency between the system action and the flat 
transaction action: If the system action aborts, the flat transaction action has to abort, too. The 
graphical rendering of the model depicted in Figure 2 describes a particular state of the flat 
transaction model. The figure would become burdened if we tried to describe the whole model with 
it. Textual rules are a better way to do that. Each AA has three ports (Abort, Begin, and Commit) 
and two states (Aborted and Commited). Transaction “T” is running, i.e. the begin port has been 
used.   

Figure 2: A single aspect of a flat transaction system 

Shaded ports in the figure cannot be used. Thus, the only ports that can be used in the demonstrated 
state are the abort port of AA “System” and the abort and commit port of action “T”. If the system 
gets into the state “aborted”, the abort port of the “T” action is signalled. This emitted signal implies 
an abort of “T” and consecutively a rollback of “T”. Note that we expect a transaction that is 
aborted to perform a rollback. 
 
The “textual rules rendering” of the model is as follows: 

SA(System): →  , , System Crash (rule 1) 
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SB(T): → +(SA(system)|SA(T)), , Begin Work (rule 2) 
SA(T): → (delete(SB(T)), delete(SC(T))), , Rollback Work (rule 3) 
SC(T): → (delete(SB(T)), delete(SA(T))), , Commit Work (rule 4) 
 
The notation “Sx(J)” means signal “x” of AA “J”. The signals are abbreviated as follows: “A” is 
short for abort/rollback, “B” means begin, and “C” means commit. The first rule handles the case of 
a system crash: The system action is aborted. Since it does nothing, it is actually redundant. It is 
only given for the sake of clarity. The second rule installs the structural dependency of the AA “T” 
and the AA “System”, i.e. the arrow in Figure 2. The third rule is executed when an abort signal 
arrives. All ports are deactivated now. The same is true in the case of a commit signal. It is written 
down in rule 4. Nested transactions (for a detailed discussion of nested transactions see [5]) can be 
described with the following rules: 

SB(Tkn):  → +(SA(TK)|SA(Tkn)), ,BEGIN WORK (rule 1) 
SA(Tkn):   → ,,ROLLBACK WORK (rule 2) 
SC(Tkn): C(Tk) → ,,COMMIT WORK (rule 3) 

 
Rule 1 introduces a new AA and installs the dependency “if the parent AA aborts, the child AA has 
to abort, too”. Rule 2 establishes the abort signal and rule 3 manages the commit system: “The child 
can finally commit only if its parent has committed”. The rules use two AA identifiers: “Tk” and 
“Tkn”. “Tk” represents an arbitrary parent AA and “Tkn” an arbitrary child AA of “Tk”. 
 
Gray & Reuter’s model seems to be promising for our purposes. As shown in [7], it is able to 
express the semantics of many well-known ATMs, including those that are also found in Web 
service transaction framework proposals like nested transactions and multilevel transactions. Thus, 
chances are good that it can cover a significant majority of all needed ATMs. The model is concise 
and not hard to understand, which can turn out to be a positive factor regarding acceptance in the 
Web service world.  
 
4. An XML Serialization of Gray & Reuter’s Advanced Transaction Meta-

Model 
 
In order to use Gray & Reuter’s model as stated in Sect. 2, ATMs have to be described in a 
machine-readable language that conforms to the meta-model. Besides the claim that the language 
has to be machine-readable, it would be helpful that humans can read it as well. While the textual 
rules introduced in Sect. 3 would be tolerable regarding these claims, XML is an excellent choice as 
well. It is verbose enough to provide information for humans, and countless tools and libraries exist 
that ease the processing of XML. In addition, every standard in the Web service world is using 
XML. Representing the model in any other way would just not fit well there. Thus, an XML 
representation of Gray & Reuter’s model seems to be the best choice. In the next sections an XML 
serialization of a transaction meta-model that is based on Gray & Reuter’s ideas is introduced. To 
be concise, we focus on significant parts of the meta-model solely. Nevertheless, an XML-Schema 
that defines the complete meta-model was developed as well. 
 
 
A straightforward approach to bring Gray & Reuter’s model into the XML world is to map the rules 
in a one-to-one way. The “begin work” rule of a flat transaction as shown in Sect. 3 would look 
something like this in XML: 

<rule stateTransition="Begin Work"> 
 <identifier> 



 

 

<signal type="B"><atomicAction type="T"/></signal> 
</identifier> 

 <ruleModifiers> 
   <add>      
      <from><signal type="A"><atomicAction type="system"/></signal></from> 
      <to><signal type="A"><atomicAction type="T"/></signal></to>      
   </add> 

</ruleModifiers> 
</rule> 

 
For such a simple model, this one-to-one mapping seems to be appropriate. However, for more 
complex transaction models, this kind of mapping has deficits. For example, take a look at the one-
to-one mapped commit rule of a nested transaction: 

<rule stateTransition="COMMIT WORK"> 
 <identifier> 

<signal type="C"><atomicAction type="T" id="kn"/></signal> 
</identifier> 

 <precondition> 

  <state type="C"> 
<atomicAction type="T" id="k"/> 

  </state> 
</precondition> 

</rule> 

 
A human computer scientist could imagine that the identifier “kn” describes an arbitrary child AA 
and “k” its parent AA. The precondition for committing the child AA (i.e. the parent transaction has 
to be in the committed state) is not machine-readable, because the hierarchic relation between “Tk” 
and “Tkn” is not expressed in a machine-readable way. A similar problem arises when mapping flat 
transactions with savepoints [7] to XML in a one-to-one way. The abort rule and its one-to-one 
XML serialization for an arbitrary AA in a flat transaction with savepoints are as follows (let R be 
the target savepoint, i.e. the transaction should rollback to the AA identified by R): 

SA(R) : (R<Sn) → , SA(Sn-1), ROLLBACK WORK 
 
<rule stateTransition="ROLLBACK WORK"> 
 <identifier> 

<signal type="A"><atomicAction type="S" id="n"/></signal> 
<arguments> 

<arg name="RollbackTargetSavepointAA"> 
<constraint>RollbackTargetSavepointAA < Sn</constraint> 

</arg> 
</arguments> 

</identifier> 
<signalList><emitSignal> 

<target> 

  <signal name="C"><atomicAction type="S" id="n-1"/></signal> 
</target> 
</emitSignal></signalList>  

</rule> 

 
Here we have an argument that defines the identifier more precisely and a constraint, which 
describes the allowed values of the argument. The rule and consequently the one-to-one mapping 
defines this in a language that cannot be understood by a machine without difficulty. Thus, a 
comprehensive XML mapping should include machine-readable parameter-passing semantics, too. 



 

 

Another problem arises with the signal list. A human can interpret the target of the signal: the linear 
predecessor AA. Similar to the parent-child relationship problem above, the linear relationship is 
not expressed explicitly. 
 
Hence we face two obvious key problems when translating Gray & Reuter’s rules to XML in a 
straightforward one-to-one way: We need an explicit definition of relationship types (e.g. previous, 
parent, etc.) and some kind of parameter passing semantics.  
 
4.1. Explicit Relationship Declarations 
 
One has to consider that arbitrary transaction models can have arbitrary relation types between their 
AAs. While a set of basic relation types can be identified, an extension mechanism is required, too. 
The basic set of relation types can be separated into linear and hierarchic types. Linear types are 
“first”, “next”, “previous”, and “last”. The hierarchic types are “parent”, “child”, and “root”. 
Another special type (see Sect. 5) is also needed: “self” for relations to the atomic action itself. Note 
that the basic set just supports transaction models that follow a linear or hierarchic structure. The 
names are self-describing and these basic types should be sufficient for quite a few transaction 
models – at least the set is sufficient for all ATMs presented in [7]. The commit rule of a nested 
transaction in XML looks like this: 

<rule stateTransition="COMMIT WORK"  
 xmlns:aaRelations="http://wsTransactions.ec3.at/2004/AA_relations"> 
  <identifier> 

<signal type="C"> <atomicAction type="T" id="kn"/> </signal> 
  </identifier> 
  <precondition> 

<state type="C"> 
  <atomicAction type="T" id="k"> 
 <aaRelations:relationSpecification  

         relatedTo="this" as="parent" /> 
  </atomicAction> 
</state> 

  </precondition> 
</rule> 

 
As can be seen, the embedding of relation specifications is implemented with XML-namespaces. 
This provides a flexible extension mechanism for AA relation types. The “this” value in the 
relatedTo attribute represents the current rule. Of course, the semantics of a parent type in the 
“http://wsTransactions.ec3.at/2004/AA_relations” namespace has to be implemented in the 
processing software in order to do some “parent relation aware” processing. If this is the case, the 
processing software is aware that the parent has to commit first. Extension sets reside in other 
namespaces and are included by declaring their namespace and prefixing the corresponding relation 
element with the namespace shortcut. Again, the semantics of extension AA relation types has to be 
implemented in the processing software – at least if it is desired to process these new AA relation 
types appropriately. 
 
4.2. Parameter Passing 
 
Since the input parameters used in the ATM rules presented in [7] are only AA types, we 
concentrate on building a parameter passing system that considers just AA types for now. We need 
to know the allowed type of the AA that can be passed as well as constraints the passed AA 
instance has to respect.  



 

 

 
For the constraint, we use a similar technique as in Sect. 4.1: It is sufficient that constraints are 
expressed in terms of relations to other AAs. Thus, we enhance our relation vocabulary with 
“linearAncestor” (any previous AA), “linearSuccessor” (any subsequent AA), “treeAncestor” (on a 
higher tree-level), and “treeSuccessor” (on a lower tree-level). E.g., argument passing in the 
rollback rule of a transaction with savepoints is as follows:   

<rule stateTransition="ROLLBACK WORK" 
  xmlns:aaRelations="http://wsTransactions.ec3.at/2004/AA_relations"> 
... 
<identifier> 
 <signal name="A"/> 

<atomicAction type="S" id="n"/> 
<arguments> 

<arg type="S"> 
  <aaRelations:relationSpecification  

relatedTo="this" as="linearAncestor" /> 
</arg> 

</arguments> 
</signal> 

</identifier>  
... 
</rule> 
 
4.3. Supplementary AA Type Declarations 
 
In [7], there is no explicit definition which states an atomic action can have and which signals it can 
accept. This is done implicitly by defining rules accordingly, i.e. if a rule is identified by signal “S” 
to AA “T”, it is assumed that “T” has the port “S”. Though it is redundant, an explicit definition of 
used AA types in the model should be added to enhance readability and to ease processing by 
software programs. State transitions are also defined implicitly in [7], i.e. if signal “C” arrives at 
AA “T”, “T” gets into the “C” state. This should be stated explicitly in the XML representation as 
well. A nested transaction AA can be represented in XML as follows: 

<signalType name="A"/><signalType name="B"/><signalType name="C"/> 
<stateType name="A"/><stateType name="C"/> 
<atomicActionType name=”T”> 
 <signals> 

  <signal type="A"/><signal type="B"/><signal type="C"/> 
 </signals>  

 <states> <state type="A"/><state type="C"/> </states> 
  

<transitions><transition> 

<fromSignal type="A"/><toState type="A"/>   
   </transition> 
   <transition> 

   <fromSignal type="C"/><toState type="C"/>   
</transition></transitions> 

</atomicActionType>  
 
 
 
 



 

 

5. Selected Aspects of an XML Advanced Transaction Model  
 
To clarify the XML representation in Sect. 4, we present selected aspects of a multi-level 
transaction [10] model XML description. We have chosen this particular ATM because its ideas are 
used in the industry Web service transaction proposals, i.e. in WS-Transactions [2], WS-CAF [1], 
and BTP [3]. 
 
Besides the “system” transaction (see Sect. 3) and a transaction “T”, which has the usual signal 
ports (“abort”, “begin”, “commit”) and states (“aborted” and “committed”), multi-level transactions 
make use of compensation actions. Hence we have to introduce a corresponding atomic action type:  

<atomicActionType name="Compensation"> 
 <signals> 
  <signal type="begin"/><signal type="commit"/> 
 </signals> 
 <states> 
  <state type="comitted"/> 
 </states> 
 <transitions> 
  <fromSignal type="commit"/> <toState type="committed"/> 
 </transitions> 
</atomicActionType> 

 
Compensations are not aborted, so we have no abort port and no aborted state. In contrast to nested 
transactions, a child-transaction can commit in multi-level transactions before its parent transaction 
commits. If this happens, a compensation action has to be provided. This is the corresponding rule 
modifier: 

<rule stateTransition="COMMIT WORK" 
xmlns:aaRelations="http://wsTransactions.ec3.at/2004/AA_relations"> 

... 
<ruleModifiers> 
<add> 

<from> 
<signal type="abort"> 

  <atomicAction type="T"> 
  <aaRelations:relationSpecification relatedTo="this" as="parent" /> 
  </atomicAction> 
 </signal> 

</from>  
<to> 
<signal type="begin"><atomicAction type="compensation"/></signal> 
</to> 

</add> 
<delete><atomicAction type="T"> 
  <aaRelations:relationSpecification self=”true”/> 
</atomicAction></delete> 
</ruleModifiers> 
... 
</rule> 

 
Whenever a child-transaction commits, a new compensation action is installed and all rules 
pertaining to the current atomic action are removed. The compensation action is connected to the 
abort state of the parent transaction. If the parent transaction has to abort, the compensation action is 
started. 
 



 

 

6. Conclusion and Future Work 
 
In this paper we have introduced a meta-model for advanced transaction models and an appropriate 
XML representation for its model instances. As foundation we used Gray & Reuter’s meta-model 
[7]. A one-to-one XML mapping of this model is not favourable, therefore we enhanced the model 
with a parameter passing system, an extendable mechanism to explicitly express relationships 
between the components of a transaction and supplementary transaction component type 
declarations. We have presented an XML representation of this enhanced meta-model by showing 
significant sections of well-known ATMs (flat transactions, nested transactions, transactions with 
savepoints, and multi-level transactions) in XML.  
 
In the next step we will analyse another advanced transaction meta-model called ACTA [4]. If it is 
reasonable, we will create an XML representation of the ACTA model and make a comparison 
between the two XML ATM meta-models. To prove the capabilities of the model(s) we will create 
a catalogue of well-known ATMs in XML. Another important task is the development of various 
transformations of the XML transaction models, e.g. to diagrams and HTML documents 
(comprehension), to Java code fragments (development), to a requirement report for Web service 
transaction systems/transaction monitors (administration), etc. 
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