
Ad-hoc File Sharing
Using Linked Data Technologies

Niko Popitsch and Bernhard Schandl

University of Vienna, Department of Distributed and Multimedia Systems
{niko.popitsch|bernhard.schandl}@univie.ac.at

Abstract. A large fraction of our information, both in the professional
and private domains, is stored in the form of files on our personal comput-
ers. When we collaborate with co-workers or meet with friends, mecha-
nisms for sharing files and file annotations are frequently required. How-
ever, centralized file sharing infrastructures are often not available or
complicated to set up, and approaches like peer-to-peer sharing infre-
quently provide functionality beyond simple copying of files between ma-
chines. In this paper we present a light-weight approach for ad-hoc file
sharing based on Linked Data principles. Our system exposes parts of
a file system as Linked Data and allows users to interlink and annotate
resources in such linked file systems. We further provide a mechanism
for mounting multiple such file systems together, and for seamlessly nav-
igating them using a common Web browser. As the exposed files and
directories become Web resources, they are amenable to a large set of
Semantic Web and Linked Data tools. Human and machine users may
exploit such linked file systems in ad-hoc data sharing scenarios. They
may further add arbitrary annotations to local and remote linked file
system resources, which may also be shared among users. Finally, file
system objects may be searched based on their extracted metadata and
such semantic annotations.

1 Introduction

File sharing has become a central activity in the professional and private do-
mains [1–3]. The sharing of files is supported by a large number of tools and
methods, ranging from email attachments over centralized file servers to peer-
to-peer sharing applications. An increasingly used method is the exchange of
data via Internet-based sharing systems that may be specialized for a certain
media type (e.g., Flickr, Youtube) or of general purpose (e.g., DropBox). Users
select one or multiple of these tools to solve a particular sharing problem based
on what is shared and with whom it is shared [1].

In this work we focus on a particular type of data sharing, ad-hoc sharing,
which is characterized by the lack of pre-existing sharing infrastructure. Often,
the participating users and their devices are physically close; however, this is
not a precondition. Ad-hoc sharing is rather identified by the need to quickly
exchange data with users or devices they do not often share data with (in the



past and the future) so that the setup of heavyweight sharing infrastructures is
unfeasible [2].

Consider for example the following scenario: after a common vacation, Alice
and Bob meet with friends to talk about their common experiences and exchange
their digital photos among each other. Alice would like to give their friends a
photo presentation of her and Bob’s photos. Bob would like to copy some of
Alice’s photos to his machine but first needs to select which ones. Further, Bob
would like to add information about where a particular photo was taken (e.g.,
what restaurant they had that great fish menu at). These annotations should
be accessible also to Alice and their friends, and they should be able to extend
them. Bob would further like to explicitly link related photos, e.g., he would
like to relate the photos of his daughter taken during last year’s vacation to this
year’s photos.

Although Alice, Bob, and their friends know each other well, it is rather un-
likely that they exchange data frequently; therefore the introduction of a heavy-
weight sharing infrastructure might be immoderate. Note that this scenario does
not require the actors to meet in person—everything could also be done remotely.
The scenario mentioned before could partly be solved with a centralized, online
data sharing application. This would, however, raise the following issues:

1. All involved devices would require Internet access, although local connectiv-
ity would be sufficient for most tasks.

2. The annotation tasks would be restricted to the functionality offered by the
particular application.

3. By uploading data to an online platform, digital copies of these data are
created. Annotations would refer to these copies rather than to the original
files. When a user decides to manipulate a data item locally (e.g., applying
a photo filter to reduce the red-eye effect), they would need to update the
data manually on the online platform so that others can access this improved
version.

4. Storing data on Web servers usually raises security and privacy issues.
5. Many existing sharing platforms handle only particular file types.

In this paper we present an alternative method for ad-hoc sharing based on
Linked Data. We present how our filesystem, TripFS [4], can be used to expose
parts of a local file system as Linked Data, and how multiple such linked file sys-
tems can be mounted and seamlessly navigated with a common Web browser.
As the exposed files and directories become regular Web resources, they are
amenable to a large set of Semantic Web and Linked Data tools. We further
describe how arbitrary annotations and links can be added to such resources:
resources may be linked to local and remote files exposed via TripFS, but also
to any other Web resource or Linked Data source. We describe how human and
machine users may exploit such linked file systems in ad-hoc data sharing sce-
narios as the one presented above, and conclude with a discussion of advantages
and shortcomings of our approach when compared with related work from the
file sharing domain.



1 <http://queens.mminf.univie.ac.at:9876/resource/71023c2f-8aec-41b0-ac0b-0ce38cf1e0f7>
2 a tripfs:File ;
3 rdfs:label "piran2.jpg" ;
4 tripfs:local-name "piran2.jpg" ;
5 tripfs:path "file:/g:/watch/images/2009/vacation/piran/piran2.jpg" ;
6 tripfs:size "46170"^^xsd:long ;
7 tripfs:modified "2010-07-20T10:04:59"^^xsd:dateTime ;
8 tripfs:parent
9 <http://queens.mminf.univie.ac.at:9876/resource/3bb652a5-d38c-4c01-b9b7-548c0c19e546> ;

10 nfo:hasHash "58717"^^xsd:int ;
11 nie:mimeType "image/jpg" ;

Fig. 1: RDF representation of a file served by TripFS. In addition to basic file
system data (lines 1–7), the representation contains a triple that connects the
file to its parent directory (lines 8–9) and extracted metadata (lines 10–11).

2 TripFS: Exposing File Systems as Linked Data

TripFS1 [4] is a lightweight utility that publishes parts of a local file system as
Linked Data. It bridges the gap between the distinct worlds of hierarchical file
systems and the hyperlink-based Web by

1. providing stable, de-referencable URIs for directories and files, thereby mak-
ing it possible to establish stable references to local and remote file system
objects;

2. extracting metadata from files, thereby allowing to find and access files based
on their contents instead of their location;

3. linking files to external Linked Data sources based on extracted metadata,
thereby opening file systems for global, enterprise-wide, or personal informa-
tion integration; and

4. serving file and directory descriptions as Linked Data (through de-referencable
URIs, a SPARQL endpoint, and RDF representations), thereby providing
access to file systems using standardized (Semantic) Web technologies.

TripFS combines several third-party components (including the Jena Se-
mantic Web Framework2, Aperture3 for metadata extraction, the Jetty HTTP
Server4, and the DSNotify monitoring framework [5]) and can be deployed as
a background process on any Java-enabled computer. It can be configured to
use any RDF storage backend for storing annotations and extracted metadata.
Upon start, it crawls the configured file system subtrees and builds an RDF rep-
resentation where directories and files are represented as RDF resources. TripFS
extracts metadata from file system objects and links these objects with each
other, as well as with external data sources. After crawling, DSNotify is used
to monitor changes in the file system, which are in consequence reflected in the

1 http://purl.org/tripfs
2 http://openjena.org
3 http://aperture.sourceforge.net
4 http://jetty.codehaus.org

http://purl.org/tripfs
http://openjena.org
http://aperture.sourceforge.net
http://jetty.codehaus.org


RDF model. New or changed files are re-analyzed, so that the RDF model re-
mains in sync with the local file system. Figure 1 shows an RDF description
of a file, as served by TripFS. In addition to the RDF representation, TripFS
provides a convenient HTML-based interface that allows the user to navigate
through the file hierarchy. All main components of TripFS are flexible and ex-
tensible; in particular, extractors (e.g., for new file types) and linker components
(for arbitrary external data sources) can be added easily.

3 Linked Data-style Ad-hoc File Sharing

In ad-hoc file sharing, users that do not exchange data regularly (in the past and
in the future) have the short-term need to exchange file-based contents between
multiple machines. As discussed, they cannot resort to permanent infrastructure
(like file servers, hosting providers, or Web applications) as it is either unfeasi-
ble to set-up such an infrastructure or due to infrastructural constraints (e.g.,
limited connectivity, firewalls, etc.). Often, ad-hoc file sharing takes place in sit-
uations where users are co-located and have some but limited shared network
infrastructure (e.g., a Wi-Fi network). Ad-hoc file sharing is of relevance both in
professional and in private contexts: for instance, during a business meeting one
may want to share a certain document or spreadsheet with all participants. In
the private domain, one may want to exchange photos from the recent vacation
with friends during a relaxed dinner.

Analyzing the related works from the file sharing domain mentioned in this
paper (in particular, [2] and [6]) and combining it with our own considerations
led us to the following list of requirements for ad-hoc file sharing:

1. Universality: all file types should be sharable.
2. Minimum preconditions: participants (i.e., data providers and consumers)

should not require a lot of additional software to be able to share files.
3. Minimum configuration: setting-up a new collaborative file space should be

as easy as possible.
4. Lightweight and usable access control: it should be simple and fast to assess

shared files and to decide on access rights.
5. Platform and network independence: it should be possible to share files across

different hardware and software (operating system) platforms. It should fur-
ther be possible to share files across network boundaries.

6. Support for transient data and stable links: data in ad-hoc sharing scenarios
is accessible only for a short amount of time. Sometimes this is sufficient in
a particular sharing scenario [2]. However, sometimes operations on shared
data run over multiple such ad-hoc sessions (in our case, e.g., annotations
and links between files should be preserved) and sharing solutions should
support such operations.

3.1 Ad-hoc File Sharing in Practice

Today, sending email attachments seems to be the predominant way of personal
file sharing [3]. Voida et al. analyzed that users tend to fall-back to such a uni-



versal data sharing mechanism when they are unsure about the availability of a
certain sharing tool at the recipients side, or when they have problems of commu-
nicating through firewalls [1]. Another common technique for infrastructure-less
ad-hoc file sharing is to use detachable physical devices, like USB sticks. Usually,
this “offline” method for file sharing works straightforward, except for limited
storage capacity on the removable media. Another popular way to share files is
to send them via instant messaging (IM) channels. Most of these tools provide
simple mechanisms to send files to one or many chat partners, which however
requires all participants to have network connectivity, an account for the IM
network, and corresponding client software at hand. This method is further not
applicable when the available network does not permit the usage of IM software
due to security restrictions, e.g., in corporate intranets. Peer-to-peer based file
sharing constitutes another often-used method [1, 3]; however, classical peer-to-
peer platforms like Napster, Gnutella or KaZaA seem less applicable in ad-hoc
file sharing scenarios.

Other common methods to share files make direct use of the World Wide
Web, arguably one of the most important information channels today. The Web
is well-supported by most modern devices: even low-capacity mobile devices
allow users to access Web resources. It is easy nowadays to set-up personal Web
presences without knowing the technical details of content markup and Web
hosting. Because of their widespread adoption, Web technologies are a promising
candidate for ad-hoc information sharing. However, current Web 2.0 applications
that support file sharing suffer from the previously mentioned issues (cf. Section
1) such as the requirement for Internet access or limited annotation support.
A major drawback of such centralized systems is that they require all shared
files to be uploaded to their Web servers first. In our scenario, this means that
Alice would have to upload all her vacation photos before Bob can select some for
downloading them to his laptop. These digital objects are not directly connected
with their digital “originals” residing on Alice’s computer, meaning that changes
to these files are not automatically propagated to the shared versions and vice
versa. Further, Alice cannot directly benefit from annotations made to these
online copies outside the hosting Web application itself.

In this paper we present an alternative file-sharing approach that does not
require a centralized infrastructure or digital copies of resources and is based
on Linked Data principles. Linked Data [7] re-uses and extends the Web infras-
tructure with technologies that allow to represent, transport, and access raw
data over the network. In comparison to the traditional, document-centric Web
it comprises the significant improvement that it associates resource identifiers
(URIs) with structured descriptions that are represented in a unified format
(RDF) and can be accessed by de-referencing their URIs. In the context of file
systems, Linked Data techniques can be used to expose structured metadata de-
scriptions about files, which allows clients to access them based on their semantic
meaning rather than just based on their location in a file system hierarchy [4].



3.2 File Sharing with TripFS

Based on the scenario outlined in Section 1, we have extended TripFS with
features that allow users to easily share files across a (local) network, and to
connect multiple file systems using Linked Data technologies. In the following
we reconsider the scenario and describe which particular TripFS features support
this use case.

One-click Sharing. When Alice and Bob meet to discuss and exchange their
recent photos, both want to share folders (including subfolders) on their laptops
that contain these photos5. When Alice starts TripFS on her laptop, it announces
its service URL via a Zeroconf6 service, so that it can be discovered by other
machines on the same network. In parallel, TripFS crawls the selected part of
the local file system, extracts metadata from files, and links them to other data
sources (cf. Section 2). The resulting triples are incrementally stored in the RDF
store and are immediately published via the Linked Data interface.

For adding new directory subtrees to TripFS, Alice makes use of the TripFS
Windows Explorer shell extension7 that allows to share a folder with a single
mouse click (cf. Figure 2). When Alice clicks this button, a local Windows socket
is opened and the selected directory’s path is sent to TripFS. TripFS adds this
directory to its list of exposed root directories and creates a new observed region
for DSNotify. The shell extension reports the successful or unsuccessful outcome
of this operation to the user via a popup dialog. Immediately, the folder is
accessible via the Web server built into TripFS and can be accessed by devices
on the network. If the newly exposed root directory lies within a directory that
is already exposed, TripFS marks it as inactive in order to avoid unnecessary
monitoring and crawling costs for overlapping regions. For the same reasons,
TripFS deactivates all existing root directories that lie in a subtree of a newly
added root directory.

Accessing Shared File Systems. Since TripFS provides both, an HTML-
and an RDF-based view on shared folders, Alice’s friends can access her photos
using the Web browser installed on their laptops. If their system supports service
discovery via Zeroconf they not even have to enter the hostname or IP address of
Alice’s laptop. They can navigate through the file hierarchy and download their
favorite photos (a screenshot of this interface is presented in Figure 3). They
could also use the structured data exposed by TripFS to search for files using
a visual Linked Data query builder (like, e.g., Explorator [8]), which allows to
visually construct structured queries. For example, Bob may decide to download
only photos taken on a certain day (indicated by EXIF metadata extracted from
the photos), or photos that are related to a particular place (represented by

5 Let us assume they have access to a shared wireless network.
6 Zero Configuration Networking (Zeroconf): http://www.zeroconf.org
7 It is also possible to add shared directory subtrees via the Web interface.

http://www.zeroconf.org


Alice’s Local File System

TFS

favorites vacation

root root

montenegro

beach durmitor

piran

prague

IMG1.jpg

TFS

images

root

2009 2008

IMG2.jpg
IMG1.jpg

Alice’s TripFS Bob’s TripFS

celovec

IMG1.jpg

rdfs:seeAlsordfs:seeAlso

Zeroconf discoveryWindows socket

tfs:m
ounts

tfs:m
ountedBy

Fig. 2: Ad-hoc file sharing with TripFS: Parts of Alice’s file system depicted on
the left have been exposed by her TripFS instance, depicted in the middle. The
screenshot on the left shows the Windows explorer shell extension for one-click
sharing of file resources via TripFS. The “vacation” resource is the mount point
of Bob’s (remote) TripFS. The dashed arrows denote explicit links between files.

a link to a GeoNames entity that has been created based on extracted GPS
coordinates).

Annotating Shared Files. While he browses Alice’s photos, Bob wants to
annotate one of the pictures because he remembers the particular restaurant
where the picture was taken. For this purpose, TripFS provides an RDF sink.
This component establishes a Web resource that accepts RDF data (for instance,
annotations of shared files) sent by clients via HTTP POST, and stores posted
triples in a designated named graph within the TripFS RDF store. Later, these
annotations are published together with metadata that have been extracted from
files. For instance, Bob could drag the URL of the restaurant’s Web page from
his Web browser to a designated area on the TripFS HTML interface, causing
an rdfs:seeAlso triple to be stored. If Bob did this for multiple files, he could
later retrieve all photos linked to the restaurant’s Web page through a structured
query, as described before.

Mounting Other TripFS Instances. A special form of file annotation is
Linked File System Mounting. This technique uses Linked Data principles to
connect distributed file systems, similar to the well-known mount operation in
UNIX-like operating systems (cf. Figure 2). TripFS defines an RDF property



tripfs:mounts8 to link a directory in one instance to a directory in the same or
another one. TripFS provides a simple user interface for mounting remote TripFS
instances, which leads to the creation of the respective triples in both involved
TripFS RDF stores. Applications may add mount links by simply posting a re-
spective triple to the RDF sink. Mount triples should be interpreted by TripFS
consumers (such as the Web-based TripFS file browser) like parent-child rela-
tionships to enable seamless navigation across file system boundaries. Note that
in contrast to local file systems, it is possible to create circular structures using
Linked File System Mounting. Although the TripFS RDF sink rejects mount
triples that would directly lead to such a situation, circles cannot be generally
avoided due to the distributed, open-world nature of Linked Data. Consumers
(e.g., crawlers or user interfaces) need to be aware of this possibility to avoid un-
wished complications like infinite loops. As mount triples reside in the annotation
model of the TripFS instance they were posted to, a mount link is initially visible
only to clients of this particular instance, as it is the case with UNIX mounts.
However, following the idea of the Web of Data, it is reasonable to propagate
the mount triple also to the remote TripFS instance, so that it can be easily
followed backwards. Thus the RDF sink posts a respective tripfs:mountedBy
triple to the RDF sink of the remote TripFS. Since TripFS provides stable URIs
for files due to its file-monitoring component, these mount points remain valid
even if a mounted file system is temporarily unavailable, or if the user decides
to move a shared directory to a different location on their hard disk.

Seamless File Browsing. While TripFS allows Alice and Bob to interlink their
file systems and mutually add annotations to exposed files, this environment
still provides no seamless browsing experience: for instance, file annotations are
exposed only by the TripFS instance they are stored in. However, if Bob wants
to add a private annotation to one of Alice’s files, it should not be stored in
Alice’s TripFS instance but in Bob’s, and he wants this private annotation to
appear when he browses Alice’s file system.

To overcome this issue, TripFS contains a Web-based proxy browser that
dynamically fetches RDF descriptions from remote sources and enriches them
with annotations from the local TripFS RDF store (cf. Figure 3). Annotations
are stored in a separate RDF graph in TripFS that is merged with a resource’s
(remote or local) RDF graph for rendering purposes. Thus, annotations from the
local store that refer (via their subject URI) to resources in the remote source
are automatically mashed with the remote source’s RDF descriptions: the user
is presented with a single, comprehensive view of remote and local resources.

Duplicate Detection. TripFS provides a simple solution for the detection of
duplicate files across multiple file systems. For each published file, TripFS calcu-
8 tripfs:mounts is a sub-property of the tripfs:child property, an inverse property
tripfs:mountedBy is available. The current version of the TripFS vocabulary is
available at http://purl.org/tripfs/2010/06.

http://purl.org/tripfs/2010/06


Fig. 3: The Web-based TripFS file browser. This locally running Web application
can retrieve local and remote TripFS descriptions and renders them together with
annotations retrieved from a local RDF model. Annotations can be added by
posting RDF graphs to a servlet or via the Web interface.



lates a content-based checksum and publishes it as property of the file resource.
A linker component creates owl:sameAs links between files within the published
file system, as well as files in other TripFS instances that share a common check-
sum. For example, when Alice’s TripFS is discovered by Bob’s TripFS (and vice
versa), this linker component is activated and creates owl:sameAs links between
all duplicates found in Alice’s and in Bob’s shared folders. By this, Bob is en-
abled to immediately detect that he already copied a certain file from Alice’s
laptop last time they met. Further, these owl:sameAs links can be exploited to
access resource copies when the originals are currently not accessible.

Discovery. Currently, TripFS makes use of a Zeroconf service to discover other
TripFS instances. When a new instance is discovered, the duplicate detection
linker described above is activated and files with equal checksums are interlinked.
One drawback of the current solution is that it is restricted to the local subnet.
An alternative method would be to use URNs (e.g., PURLs) for locating physical
TripFS addresses. Once the PURL of a particular TripFS instance is known
(e.g., because it has been communicated via email), it would remain stable.
Disadvantages would be that access to the URN service would be required, and
that users have to notify these services whenever their physical address changes
(e.g., due to a newly assigned IP address). However, this last step can be easily
automated. Another possibility is that the creation of a guest account for a
particular TripFS (see below) results in an email that sends an appropriate link
to a set of recipients. This link would contain the respective TripFS location as
well as the required user credentials for accessing it.

Access Control. The willingness to share data with others often depends on
whom these data will be shared with [9]. Access control mechanisms are there-
fore required also in ad-hoc sharing scenarios. As TripFS is still in a prototypical
phase and as security was not our primary research goal, we have no yet imple-
mented access control mechanisms. However, TripFS provides an increased level
of privacy and security compared to other sharing platforms since the data re-
mains under full control of the user and is not replicated to external servers.

We are however aware that usable access control mechanisms are essential for
a system like ours. A first, straightforward solution would be to expose files via
HTTPS and introduce password protection, which can be based on the underly-
ing operating system’s authentication and permission system. TripFS therefore
could reuse already existing mechanisms and would avoid the need to maintain
parallel structures. Additionally, a TripFS instance owner could create a new
guest account that would be valid for a limited time with a single mouse click.
The respective credentials could then be transferred to the TripFS consumer via
out-of-band methods (e.g., via email or phone). Although this might be suffi-
cient in the discussed ad-hoc sharing scenarios, more fine-grained access control
mechanisms and access rights, as discussed for example in [9] and [1], have to be
considered in the future.



4 Related Work

Several studies on personal file sharing focused on particular file types (e.g.,
music or photographs [10, 11]) or on collaboration in corporate intranets.

In [1], the authors analyze several tools and methods for data sharing and
report on dimensions for characterizing them. For example, they distinguish
between push- and pull-oriented systems and present a user interface for their
own peer-to-peer file sharing infrastructure. In accordance with the terminology
of that paper, TripFS would be a pull-oriented system that supports public or
selective addressing (when password protected) and supports notifications via
the DSNotify event log mechanisms [5]. The location of the files during sharing
remains the provider’s machine.

In [6], Rode et al. identify four significant requirements for their own ad-
hoc peer-to-peer file sharing software: (i) zero-configuration for setting up a
collaborative file space, (ii) no prior registration of participants required, (iii)
no restriction to a fixed infrastructure (e.g., Internet access) and (iv) platform
independence. We believe that TripFS meets all these requirements, although
the TripFS software has to be installed on all machines that expose their files.

In [2], Dalal et al. identify a number of key problems that are not prop-
erly addressed by current data sharing technologies. The authors describe the
requirement for ad-hoc guesting, where users require transitory, lightweight so-
lutions for sharing data securely with unplanned sets of people with whom they
have not previously shared data and that can possibly not be addressed by tra-
ditional access control. Similar to Rode et al., they identify minimal setup effort
and no need for a priori preparations by the participants as key requirements
for ad-hoc sharing. Additionally, they encourage the use of universal identifiers
(e.g., email addresses) for the identification of users.

5 Conclusions

In this paper we described the current state of TripFS and its extensions since
our last publication [4], namely: one-click sharing support; mounting support;
seamless file browsing support across distributed, mounted linked file systems;
annotation of file system objects and duplicate detection.

We further presented how this linked file system can be used in ad-hoc file
sharing scenarios. Matching our system to the requirements described in Section
3 we can state that TripFS can be used as a universal file sharing tool that is not
restricted to particular file types. TripFS requires no a-priori preparations for
recipients of shared data. Users that actively share the data need a local TripFS
instance that can either be started automatically by the operating system or
by double-clicking a JAR file. TripFS allows remote users to browse the shared
contents directly on the remote machine before downloading (subsets of) it.
It thereby comprises a pull-oriented sharing strategy [1] that is not based on
centralized infrastructure like current Web 2.0 applications. Sharing a directory
subtree with TripFS is made easy by its Windows shell extension, and we consider
the development of comparable tools for other operating systems.



TripFS has been implemented in Java and can be used on all platforms that
support Java 1.6 or higher. In the future we aim to explore how TripFS can be
deployed on mobile devices like cell phones, which are presumably more often
involved in ad-hoc sharing situations. Then, TripFS could additionally be useful
in “sharing with myself ” scenarios [2], e.g., for copying photos from a person’s
cell phone to a desktop computer or vice versa.

References

1. Stephen Voida, W. Keith Edwards, Mark W. Newman, Rebecca E. Grinter, and
Nicolas Ducheneaut. Share and Share Alike: Exploring the User Interface Affor-
dances of File Sharing. In CHI ’06: Proceedings of the SIGCHI conference on
Human Factors in computing systems, pages 221–230, New York, NY, USA, 2006.
ACM.

2. Brinda Dalal, Les Nelson, Diana Smetters, Nathaniel Good, and Ame Elliot. Ad-
hoc Guesting: When Exceptions are the Rule. In UPSEC’08: Proceedings of the
1st Conference on Usability, Psychology, and Security, pages 1–5, Berkeley, CA,
USA, 2008. USENIX Association.

3. Tara Whalen, Elaine Toms, and James Blustein. File Sharing and Group Informa-
tion Management. In Personal Information Management: PIM 2008, 2008.

4. Bernhard Schandl and Niko Popitsch. Lifting File Systems into the Linked Data
Cloud with TripFS. In 3rd International Workshop on Linked Data on the Web
(LDOW2010) - Raleigh, North Carolina, USA, 2010.

5. Niko Popitsch and Bernhard Haslhofer. DSNotify: Handling Broken Links in the
Web of Data. In WWW ’10: Proceedings of the 19th international conference on
World wide web, pages 761–770, New York, NY, USA, 2010. ACM.

6. Jennifer Rode, Carolina Johansson, Paul DiGioia, Roberto Silva Filho, Kari Nies,
David H. Nguyen, Jie Ren, Paul Dourish, and David Redmiles. Seeing Further:
Extending Visualization as a Basis for Usable Security. In SOUPS ’06: Proceedings
of the second symposium on Usable privacy and security, pages 145–155, New York,
NY, USA, 2006. ACM.

7. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data — The Story So
Far. International Journal on Semantic Web and Information Systems, 5(3), 2009.

8. Samur Araujo and Daniel Schwabe. Explorator: A Tool for Exploring RDF Data
Through Direct Manipulation. In Proceedings of the 2nd International Workshop
on Linked Data on the Web (LDOW), Madrid, Spain, 2009.

9. Judith S. Olson, Jonathan Grudin, and Eric Horvitz. A Study of Preferences for
Sharing and Privacy. In CHI ’05: CHI ’05 extended abstracts on Human factors
in computing systems, pages 1985–1988, New York, NY, USA, 2005. ACM.

10. Barry Brown, Abigail J. Sellen, and Erik Geelhoed. Music Sharing as a Computer
Supported Collaborative Application. In ECSCW’01: Proceedings of the seventh
conference on European Conference on Computer Supported Cooperative Work,
pages 179–198, Norwell, MA, USA, 2001. Kluwer Academic Publishers.

11. Andrew D. Miller and W. Keith Edwards. Give and Take: A Study of Consumer
Photo-sharing Culture and Practice. In CHI ’07: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 347–356, New York, NY,
USA, 2007. ACM.


