Technical Report, TR-2004301 , Dept. of Computer Science and Business Informatics,
University of Vienna, June , 2004

The EMMA Algebra for EMMOs -
Compendium

Sonja Zillner

Dept. of Computer Science and Business Informatics
University of Vienna, Austria

sonja.zillner@univie.ac.at

Contents

1 Introduction 1
2 What are InterTextual Threads (ITTs)? 3
3 The EMMO Model 5
3.1 Entities 6
3.2 LogicalMediaParts., 8
3.3 OntologyObjects 10
3.4 Associations 10
35 EMMOS e 11
4 The EMMO Algebra (EMMA) 13
4.1 Preliminary Definitions oL 13
411 SetsandSequences 13
4.1.2 Functionsand Predicates 15
4.1.3 Selectand Apply Operator 17
41.4 BasicPredicates, 18
42 EMMASOperators i 21
4.2.1 ExtractionOperators 21
4.2.2 NavigationalOperators 27
4.2.3 SelectionPredicates 33
424 Constructors 41
425 JoinOperator 44

EMMA Compendium

Chapter 1

Introduction

Enhanced Multimedia Meta Objects (EMMOSs) are a novel approach of semantic mul-
timedia content modeling in content sharing and collaborative applications. EM-
MOs were developed within CULTOS, an EU-funded project, which was going from
September 2001 until October 2003 and carried by 11 partners from different EU coun-
tries, Israel and Estonia.

CULTOS addresses the needs of researchers in the domain of intertextual studies
for an integrated view on individual and culture-dependent perceptions of interrelation-
ships between artefacts. This knowledge about the interrelationships between artefacts
is gathered within so-callddterTextual Threads (ITTs).e. complex knowledge struc-
tures that semantically interrelate and compare cultural artefacts such as literature, art-
works movies, etc. EMMOSs provide an adequate foundation for the representation of
multimedia enriched ITTSs, thus paving the way for an Internet-based multimedia plat-
form for the collaborative authoring, managing, retrieving, exchanging, and presenting
of ITTs.

For the processing of EMMOs suitable querying facilities are required. For that
purpose, EMMA, an expressive query algebra that is adequate and complete with re-
gard to the EMMO model, was developed. EMMA offers a rich set of formally de-
fined, orthogonal query operators providing an adequate foundation for the realization
of powerful EMMO querying services.

The remainder of the paper is organized as follows. Chapter 2 gives an introduc-
tion to ITTs. Chapter 3 explains the basic ideas if EMMOs and provides its formal
definition. Chapter 4 provides a formal definition of the EMMA query algebra.

EMMA Compendium

Chapter 2

What are InterTextual Threads
(ITTs)?

A central task of researchers in intertextual studies is to discover the relationships
between pieces of literature and other works of art thereby elaborating InterTexual
Threads (ITTs). ITTs can be represented with graphical structures that may take a va-
riety of forms, ranging from spiders over centipedes to associative maps as shown in

Fig. 2.1.
The King of the
Jews

by Jewison

retells

Jesus Christ
Supperstar

Figure 2.1: Simple InterTextual Thread

The example ITT depicted in the figure highlights several relationships of the movie
“Jesus Chris Superstar” by Norman Jewison to other works of art. It states that the
movie retells the text “The King of the Jews” and that the movie resembles the painting
“The Yellow Christ” of the famous painter Paul Gauguin.

When looking at the ITT, well-known techniques from the domain of knowledge
engineering like conceptual graphs and semantic nets immediately come to mind. In-
deed, the depicted graphical representation of the ITT bears a strong resemblance to
such techniques, though it lacks their formal rigidity. However, the complexity of ITTs
should not be underestimated. ITTs commonly make use of constructs that are very

3

4 EMMA Compendium

challenging from the perspective of knowledge representation, suehcapsulation
andreification of statements

Encapsulation is intrinsic to ITTs because intertextual studies are not exact sci-
ences. Certainly, the cultural and personal context of a researcher will affect the kinds
of relationships between pieces of literature and works of art that are discovered and of
importance to the researcher. This inevitably results in differences and even contradic-
tions between different ITTs created by two different researchers on the same subject.
As there thus cannot be a global “truth”, every ITT is a “truth” in its own right that has
to be protected by an encapsulating impenetrable boundary. Moreover, differences on a
certain subject are highly interesting facts for researchers in intertextual studies. Con-
sequently, ITTs themselves can be relevant subjects of discourse and thus be contained
as first-class artefacts within other ITTs.

Reification of statements is yet another demanding construct frequently occurring
within ITTs. Since experts in intertextual studies extensively base their position on the
position of other researchers, statements about statements are common practice within
ITTs. Typically, reification is not just a one-step process: statements about already
reified statements are no rarity.

Chapter 3

The EMMO Model

To create a suitable foundation for the representation of ITTs, we have developed En-

hanced Multimedia Meta Objects (EMMOS).

An EMMO is a self-contained unit of multimedia content that encompasses three
aspects, which we would like to illustrate using Fig. 3.1 that depicts a sketch of an

EMMO representing the ITT of Fig. 2.1.

Jesus Christ
onnector

http://.../KingJews.pdf

java_lang.String
,,,,,,,, Norman Jewison

| Timestamp -> 2003-04-09-20:10:12 |

resembles

java.lang.String

Paul Gauguin

http://.../YellowChrist.jpg

Figure 3.1: EMMO “Jesus Chris#(...,s)

1. The media aspectAn EMMO aggregates the media objects of which the multi-
media content consists. In the figure, we see that the depicted EMMO contains
the avi video “Superstar.avi’, the pdf document “KingJews.pdf”, and the JPEG
image “YellowChrist.jpg”. Containment of media objects can be realized either
by inclusion, i.e., the raw media data is embedded within an EMMO, or by ref-
erence via an URI, in cases where embedding media data is not feasible.

5

6 EMMA Compendium

2. The semantic aspectn EMMO further encapsulates semantic associations be-
tween its contained media objects by means of a graph-based model similar to
conceptual graphs. Hence, an EMMO constitutes a unit of expert knowledge
concerning the multimedia content. In the example figure, itis stated that the me-
dia objects contained within the EMMO are digital manifestations of Jewison’s
movie “Jesus Christ Superstar”, the text “The King of the Jews”, and Gauguin’s
painting “The Yellow Christ”. Also, the interpretation of the author of the orig-
inal ITT has been remodeled: “Jesus Christ Superstar” retells “The King of the
Jews” and resembles “The Yellow Christ”. The model used for semantic associ-
ations is expressive: it is, e.g., possible to establish references to other EMMOs
and to reify associations.

3. The functional aspectAn EMMO offers operations for dealing with its content
which applications can invoke. In the figure, the depicted EMMO is associated
with one operation for rendering the EMMO. The operation might return a pre-
sentation of the EMMO in different formats, such as SMIL and SVG.

EMMOs have further desirable characteristics. They casebializedinto a bundle
that completely encompasses all three aspects. Thus, an EMi@hgerablein its
entirety between different EMMO providers, including its contained media objects,
semantic associations between these objects, and functionality. Moreersioning
supporthas been a central design objective: all the constituents of an EMMO can be
versioned, thereby paving the way for the distributeollaborative constructiorof
EMMOs.

In the following, we describe and formally define the EMMO model and illustrate
how the model can be used to build and represent multimedia-enhanced ITTs. We
begin by introducing the concept efititieswhich constitute an abstract notion sub-
suming the different constituents of the EMMO model (3.1). We then define the four
concrete specializations of entities, namlelyical media partsepresenting media ob-
jects, ontology objectgepresenting concepts of an ontologgsociationamodeling
binary relationships between entities, @&dMOsthemselves which are aggregations
of semantically related entities (3.2 — 3.5).

3.1 Entities

Before we start with a formal definition of the abstract notion of entities, we clarify
some basic symbols required for the definitions to follow:

Definition 1 (Symbols) LetT" denote the set of all logical media par®, the set
of all ontology objectsA the set of all associations, the set of all EMMOs, and
Q=T UBUAUX the set of all entities.

Furthermore, letM.S be the set of all media selectotsq P the set of all media
profiles, andO P be the set of all operations.

Finally, let OTD be the set of all universal unique identifie&[R the set of all
strings, OBJ the set of all objectsURI the set of all uniform resource identifiers,
RMID the set of all raw media data, aritiUN the set of all functions.

Based on these common symbols, the definition of entities is formulated below:

EMMA Compendium 7

Definition 2 (Entity) An entity w € Q is a thirteen-tuple
W = (0w, Ny Kws Sws tw, Tws Aw, Cwy Ny Py Swy Fuw, Ow), Where o, € QOID
denotes the unique object identifier (OID) of, n,, € STR the name ofw,
ky € {"lmp”,”ont”,”asso”,”emm” } the kind ofw, s,, € QU {e} the source and
t, € QU {e} the target entity ofv with ¢ ¢ 2 stating that such an entity is undefined,
A, € © x OBJ the attribute values7,, C O the types(C,, C MS x MP the
connectors,N,, C Q2 the nodespP,, C () the predecessors,, C () the successors,
F, C STR x OBJ the features, and,, C OP the operations ofv. The following
constraints hold for all entities:

Ywi, wa € 0y, = 0y, — W1 = Wa 3.1

Vw,v € Q:veEP,VvES, — ky =k, 3.2)

According to the definition, an entity is globally and uniquely identified by its
OID o, as ensured by Constraint (3.1). Since we have chegeto be a universal
unique identifier (UUID) [3], OIDs can easily be generated even in a distributed sce-
nario like the CULTOS project. As UUIDs are not really useful to humans, an entity
can be augmented with a human readable napmevhich is a string. The kind,,
serves to identify whether an entity is either a logical media part, an ontology object,
an association, or an EMMO.

An entity w may further have an arbitrary number of tyes. Types are concepts
taken from an ontology, so for instance, an entity might be an instantiation of the con-
cepts "text” and "movie”; another might instantiate the concept "painting”, etc. By
attaching types, an entity gets meaning and is classified in an application-dependent
ontology. In the EMMO model, types are represented as ontology objects and thus
constitute entities themselves.

An entity can additionally be described by an arbitrary number of attribute values
A,,. Attribute values are simple attribute-value pairs with the attribute being a concept
of an application-dependent ontology (similar to types represented by an ontology ob-
jectinthe EMMO model) and the value being an arbitrary object. With attribute values,
it is for instance possible to state that a movie has been directed by Norman Jewison
by attaching the attribute value "director=Norman Jewison” to the entity representing
that movie in the EMMO model. The attribute "director” would be an ontology ob-
ject and the value "Norman Jewison” would probably be a string value. The rationale
behind representing attributes as concepts of an ontology and not just as simple string
identifiers is that this allows to express constraints on the usage of attributes within the
ontology, e.g., which entity types attributes are applicable to.

As already mentioned, the CULTOS project intends to develop a distributed plat-
form allowing researchers in intertextual studies to work collaboratively on ITTs. In
such an environment, different versions of their work will accrue not only due to the
temporal evolution of a researcher’s viewpoints but also due to concurrent work of
different reseachers on the same ITTs. Since different versions of ITTs are highly in-
teresting facts to researchers, it is important to be able to trace these versions and to
interrelate them within other ITTs. The EMMO model takes account of this need for
versioning by allowing any entityy to have an arbitrary number of direct preceding
versionsP,, and direct succeeding versiofs. A version ofw is again an entity of
the same kindk,,, as expressed by Constraint (3.2). Treating an entity’s versions as

8 EMMA Compendium

entities on their own has several benefits: on the one hand, entities constituting ver-
sions of other entities have their own globally unique OID. Hence, different versions
concurrently derived from one and the same entity at different sites can easily be dis-
tinguished without synchronization effort. On the other hand, different versions of an
entity can be interrelated just like any other entities allowing to establish comparative
relationships between entity versions as desired in intertextual studies.

The featuresF,, of an entityw represent a fixed set of primitive attribute-value
pairs. They have been included in the EMMO model as it might be necessary to aug-
ment entities with further attributes, e.g., time-stamps or status information, in an im-
plementation of the model.

The remaining elements and sets given by the definition — the source and target
entitiess,, andt,,, the connector§’,,, the nodesv,,, the operation®),, — are only rel-
evant for certain kinds of entities. Therefore, we defer their explanation to the sections
to follow as they become relevant.

3.2 Logical Media Parts

Logical media parts are entities serving to represent the media objects or parts of me-
dia objects of which multimedia content consists at a logical level within the EMMO
model. When modeling a multimedia-enhanced ITT as an EMMO, logical media parts
address the cultural artefacts that are subject of discourse within the ITT, for example,
pieces of literature, movies, paintings, etc. In order to relief authors from the burden of
having digital representations of the artefacts to be treated at hand before they can start
building an ITT, special care has been taken to decouple logical media parts from any
existing physical representation. In fact, one can talk about Gauguin’s painting “The
Yellow Christ” and find intertextual relationships to other (art)works without owning a
JPG image showing that painting.

However, if an author focuses on the difference between, e.g., a movie of “Jesus
Christ Superstar” as seen on television and the corresponding cd recording, the televi-
sion broadcast and the cd recording will become two distinct media objects on a logical
level and thus have to be represented by two different logical media parts. If nothing of
this kind has to be expressed, a single logical media part will suffice for representing
“Jesus Christ Superstar”.

Definition 3 formally introduces logical media parts:

Definition 3 (Logical media part) A logical media parf € T'is an entity withk; =
Imp” A sp=t, = AN =0, =0.

It is important that the definition does not restrict the set of conneciprsf a
logical media part, which has been defined to exist for all entities in Definition 2,
to an empty set: logical media parts not only model media objects at a logical level
but are additionally able to maintain connections to media data representing these ob-
jects. Thereby, logical media parts provide the media aspect of multimedia content
represented with the EMMO model.

Connectors (see Definition 2) consist of a media profile and a media selector. Media
profiles, in accordance to the media tool set of MPEG-7 [2], represent media data. A
media profile combines low-level metadata describing the media data, e.g., the storage
format, with its storage location — a media instance in MPEG-7 terminology. A media
instance can either address the location of media data by means of an URI or it may
directly embed the media data. The ability to embed media data allows to combine

EMMA Compendium 9

media data and multimedia content described with the EMMO model based on these
media into single, indivisible units.

Definition 4 formally captures media profiles and media instances in the EMMO
model.

Definition 4 (Media profile) A media profilenp = (i, Mpp) € MP is described
by its media instancg,,,, € URI U RMD and its metadata/,,,, C STR x OBJ.

Media selectors contained in connectors along with media profiles can address parts
of the media data represented by the profile according to textual, spatial, and temporal
criteria. For example, it should be possible to address a scene in a digital video starting
from second 10 and lasting until second 30 without having to extract that scene and to
put it into a separate file using a video editing tool.

Definition 5 introduces media selectors.

Definition 5 (Media selector) A media selectoins = (kns, Pns) € MS is de-
scribed by its kind:,,,s € {” spatial”,”textual”,”temporal”, ...} and by its param-
etersP,,; C STR x OBJ.

Example 1 shows how the three cultural artefacts occurring in the sketch of the
EMMO named "Jesus Christ” in Figure 3.1 can be represented as individual logical
media parts in the EMMO model. In the example, the logical media parts have been
labeled, i1, andl;. The connector of the logical media parteferences the upper left
corner of the JPG image file located at the URIitg:// .. ./YellowChrist.jpg 8
which is expressed by the media profilep, in combination with the spatial selector
msso.

Example 1

lo =("a3564”,” Jesus Christ Superstar”,”lmp” , €, €, {Omovie }
{(0director, Norman Jewison)}, {(mso, mpo)}, 0, 0,0,
{("Timestamp”,2003-04-09-20:10:12), .. .},)

Iy =("a7655”,"The King of the Jews”,”lmp” , €, €, {0text }
0, {(ms1,mp1)},0,0,0,0,0)

lo =("04567"," The Yellow Christ”,”lmp”, €, €, {Opainting }+
{(0creators Paul Gauguin)}, {(msa, mp2)},0,0,0,0,0)

mpo =(”http://.../Superstar.avi 7 {(format avi), ...})
mso =(" full”, D)

mp1 =("http://.../KingJews.pdf 7, {(format pdf), ...})
msy =" full”, 0)

mpo =("http://.../YellowChrist.jpg 7 {(format jpg), . . .})
mse =(" spatial”, {(startpoint, (0,0)), (endpoint, (50,50))})

10 EMMA Compendium

3.3 Ontology Objects

Ontology objects are the kind of entities that represent concepts of an ontology. As al-
ready explained, ontology objects among others serve to designate the types of entities
or the attributes of attribute values attached to entities.

In the CULTOS project, the experts in intertextual studies have defined an ontology
featuring the concepts necessary to represent ITTs within the EMMO model. As we
have not developed an ontology language for the EMMO model yet, we follow the
pragmatic approach of defining the concepts of the CULTOS ontology in an external
ontology language such as RDF Schema [1] and letting the ontology objects reference
these concepts.

Definition 6 formally introduces ontology objects:

Definition 6 (Ontology object) An ontology objecb € © is an entity withk, =
Yont” A sy =t, = NCy =N, =0, =0.

Example 2 illustrates ontology objects again using the sketch of an EMMO of Fig-
ure 3.1. The ontology Objects.cscmpies aNd 0,¢rer1s FEpresent the types of the two
associations contained in Fig. 3.1, i.e., “resembles” and “retells”. The ontology objects
Omovier Otext ANU0painting Model the types of the three logical media parts depicted,
and the ontology objectsy;,cctor aNdo.,-cqior labEl the attribute-value pairs of the log-
ical media party andi;. The ontology object, ... finally represent the designator of
the operation the sketched EMMO offers (these will be explained later in conjunction
with EMMOs).

Ted1117 " retells” " ont” g,,0,0,0,0,0,0,0,0)
¢3336”,” Render”,” ont”,e,¢,0,0, ,@,@,@,@,@)

Oretells

Example 2
Omovie =(7¢3456” " Movie”,”ont” e,¢,0,0,0,0,0,0,0,0)
Odirector =(" 45167, Director” " ont” e,¢,0,0,0,0,0,0,0,0)
Oteat =(7c1162”, " Text” " ont” ,e,0,0,0,0,0,0,0,0)
Opainting =(7¢2356”,” Painting”,” ont” e,£,0,0,0,0,0,0,0,0)
Ocreator =(7¢2333” " Creator”,” ont” e,&,0,0,0,0,0,0,0,0)
Oresembles =(7¢H627" " resembles”,”ont” ,&,0,0,0,0,0,0,0,0)
=(
("

Orender

3.4 Associations

Associations represent binary directed semantic relationships between entities. Thus,
they provide the semantic aspect of multimedia content represented on the basis of
the EMMO model. In the CULTOS project, they are in particular used to model the
intertextual relationships between cultural artefacts within ITTs. Since associations
are “first-class” entities, they can take part in associations as well facilitating the reifi-
cation of statements in the EMMO model. As we have explained before, expressing

EMMA Compendium 11

statements about statements is a very essential part of the work of experts in intertextual
studies when analyzing literature and building their ITTs.
Definition 7 formally describes associations:

Definition 7 (Association) An associatioru € A is an entity withk, = 7asso” A
SagFeNta#e NCy=N,=0,=0 N [T, =1.

According to the definition, the kind of semantic relationship represented by an as-
sociation is defined by the association’s type which is — like the types of other entities —
an ontology object representing a concept taken from an ontology. Different from other
entities, however, an association is only allowed to have one type as it can represent
only a single kind of relationship. Each association specifies exactly one source and
one target entity,, andt,, and thus establishes a directed binary relationship between
those two entities.

Example 3 shows the representation of the two associations given in the example
EMMO of Figure 3.1.

Example 3

ao :(”9749077 s ? a0”7 ”ass0” 3 l07 ll, {Oretells}a ®7 q)a (Z), Q), @7 @, (Z))
aq :(77’11)4399”, ”al” s ”ass0” 9 l07 l2> {Oresembles}a @7 ®7 (2)7 (Z); (Z), @, @)

3.5 EMMOs

The EMMO is the core component of our model. It is a container that groups arbitrary
entities into a single unit. An EMMO can thus address the media and semantic aspects
of multimedia content by aggregating media data (i.e., logical media parts) with seman-
tic data (i.e., associations and ontology objects). The functional aspect of multimedia
content can be addressed as well by augmenting the EMMO with arbitrary operations
that process the content.

In CULTOS, EMMOs act as the containers carrying multimedia-enhanced ITTs. In
such a container, the cultural artefacts covered by an ITT are captured as logical media
parts, media data digitally representing these artefacts are attached to the media parts
via connectors, the intertextual relationships are modeled by means of associations,
and concepts from the domain of intertextual studies are covered by ontology objects.
The possibility to attach operations to an EMMO is exploited, among others, to provide
ITTs with the ability to render themselves as SMIL and SVG presentations.

Since EMMOs are “first-class” entities, EMMOs can be contained within other
EMMOs just like any other entity. As a consequence, a structure of hierarchically-
nested EMMOs can be established. With regard to the representation of ITTs by the
means of EMMOs, this is of particular advantage: it is possible to interrelate two dif-
ferent EMMOs representing two different ITTs with two different points of view on a
subject within an EMMO representing a third ITT. In that manner, contradictions and
relevant differences between both viewpoints can be expressed which is important for
intertextual studies.

Definition 8 formally captures EMMOs:

12 EMMA Compendium

Definition 8 (EMMO) An EMMOe € X is an entity withk, = "emm”, ands, =
te = A C. = 0, such that

Vo € Ne: ky ="ass0” — {sz,t,} C N, (3.3)

As shown in the formal description above, an EMMQ@onstitutes a container of
other entities because its set of nodésis not restricted to an empty set, as it is the
case with the other kinds of entities in the EMMO model. These contained entities
form a connected graph structure when they become interlinked by associations within
the EMMOe.

Only entities belonging to the EMMO’s nodes can be specified as source or target
entity of an association (Constraint (3.3)). In this way, it is guaranteed that established
relationships are fully contained in an EMMO.

Definition 8 unveils a further difference between EMMOs and other kinds of en-
tites: an EMMO is more powerful in that it can have operations attached, because its
set of operation®). is not necessarily empty. In the EMMO model, an operation is ba-
sically a tuple combining an ontology object acting as the operation’s designator with
the operation’s implementation, which can be any mathematical function. It is the in-
tention of this modeling to achieve a high flexibility by allowing to attach arbitrarily
complex operations to EMMOs. In a concrete implementation of the model, an opera-
tion could be realized as a function in the underlying programming language with the
full expressiveness of that language at disposal. An operation could then reference this
function by means of a function pointer. We have modeled operation designators as
ontology objects to be able to express constraints on operations within ontologies, e.g.,
for which types of EMMOs an operation is available.

Definition 9 formally defines the notion of operations:

Definition 9 (Operation) An operationop = (dop,i0p) € OP is described by its
designatord,, € © and its implementatiof,, € FUN.

To conclude the formal definition of the EMMO model, Example 4 assembles the
EMMO "Jesus Christ” ¢;...s) sketched in Figure 3.1 from the entities of the other
examples. The functioRenderimplementation implement the “Render” operation
that is attached to EMMO "Jesus Christ”. For exampenderimplementation
could be a mathematical function that takes an EMMO as its input and transforms it to
an appropriate SMIL presentation, i.e., to a string that follows the SMIL syntax.

Example 4

€jesus =(7 f4672",7 Jesus Christ”,”emm” e, ¢,0,0,0, 0,
{lo,11,12,a0,a1},0,0,0,{(0render, RENderimplementation) })

Chapter 4

The EMMO Algebra (EMMA)

In the following sections, we will first provide some preliminary definitions. Subse-
guently, we will introduce the five classes of EMMA operators.

4.1 Preliminary Definitions

The central constructs in the EMMO model and algebra are described by sets and
sequences. In this section, we introduce all relevant mathematical definitions that will
be used in the following.

4.1.1 Sets and Sequences

A set is a collection of distinct objects and can either be described by enumerating its
members, e.g{z1,x2,...,z,} Or by specifying a condition, e.gfx |z C A}. We
denote sets with capital letters, and elements with lower case letters,.fr, y, 2 }.
|A| stands for the cardinality of sétand is equal to the number of elements\irand
P(A) with P(A) = {z|x C A} defines the powerset of sdt Finally, (} denotes the
empty set, i.e. a set with no members, &I the set of all sets.

Further, we denote the set of all StringsSiR , the set of all natural numbers by
N, the set of all real numbers I, and the Boolean set, i.€true, false} by BOO .

We use the well-known operations for computing the cardinality, union, intersec-
tion and difference of sets.

Definition 10 [Set Operations] Let A, B, and,, i € I be arbitrary sets, then

card(A) = |A| defines the cardinality of set A,

U(A,B)=AUB:={xz|x € Avz e B} defines the union of A and B, and
Uier Ai := {z| 3i € I = € A;} defines the union of the seds, i € I.
N(A,B)=ANB:={z|z € ANz € B} defines the Intersection of A and B,
Nic; Ai = {x|3i € I x € A;} defines the Intersection of the sets i € I, and
\(4,B) = A\B :={z |z € ANz ¢ B} defines the Difference of A and B.

Example 5Foralli € I = {1,2,...,n}, let 4; = {0,i}, then
U(Al,AQ) = A1 U Ag = {0, 1,2} and Uie] AL = {O} ul,
m(Al,AQ) =A1NAy = {0} and mie] A; = {0}, and
\(A1, Az) = A1\Ap = {1}.

13

14 EMMA Compendium

A sequence is an ordered collection of objects and is defined as follows:

Definition 11 [Cartesian Product and Sequence] Let A, B, andi € I be arbi-
trary sets, them x B := {(z,y) |z € A Ay € B} denotes the cartesian product over
AandB,and], ; A :={z:] — U;c; Ai|Vie I :x(i) € Ai} C (U, Ai)' de-
notes the cartesian product over the sdisi € I. Ifforalli € I A; = A, we write
[Lier Ai == Al or [Lic; Ai = Al

The elements of a cartesian product are called or tuples, and a sequence or tuple of
lengthn is calledn-sequence at-tuple. The length of a sequence (tuple) is determined

by the number of its contained elements, ve. € [[,.; A: length(xz) = |I|. The

set of all sequences of length(n-sequences at-tuples) is denoted b§EQ ,, , and

the set of all sequences (tuples)$ipQ .

Example 6Foralli € T = {1,2,...,n} let A = {0,1}, then

Al ={0,1},

A% = {(07 0), (07 1)7 (170)7 (1, 1)}'

A% ={(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1), (1,1,0), (1,1,1)},

and so on.

Then, the set),.; A consists all sequences (tuples) of arbitrary length over elements
of the set{0, 1}. The length of each sequence (tupte} A* is k.

In order to retrieve some specific information of sequences, we need to define the
operation projection.

Definition 12 [Projection] Let] = {1,2,...,n} and [],.; A; be the cartesian prod-
uct over the setgl;.

e Letj € I then

w4 — A with
icl

mi(ai,a2,...,a,) = a;

denotes thg*” projection of the cartesian produ§{ ., A;, and the return value

a; denotes projected sequence.

icl

o LetJ={ji1,...Jx} CTandVi< k j < ji4+1then

m:HAi s HAi with

i€l icJ
7TJ(CL17CL27...,CL7L) = (aj17aj2a'~'7ajk)
denotes the projection of the cartesian prodigf.,; A; onto the cartesian

product] [, ; 4;, and the return valu¢a;, , a;,, . .., a;,) denotes projected se-
quence.

ic€J

EMMA Compendium 15

Example 7Let A; = {1,2,3},42 = {11,12,13}, and A3 = {21, 22,23} then

II 4 = {(11,21),(1,11,22),(1,11,23),(1,12,21), (1,12,22), (1, 12,23),
i=1,2,3
(1,13,21),(1,13,22), (1,13,23), (2,11,21), (2,11,22), (2,11, 23),
(2,12,21), (2,12,22), (2,12,23), (2,13, 21), (2,13,22), (2, 13,23),
(3,11,21), (3,11,22), (3,11,23), (3,12, 21), (3,12,22), (3, 12, 23),
(3,13,21),(3,13,22), (3,13,23), }

with m1((2,11,23)) =2 and g 0((2,11,22) = (2,11).

4.1.2 Functions and Predicates

Functions and predicates will be of importance in the following definitions. A function
basically describes a mapping from a so-called domain set to a so-called range set.
Predicates are functions with boolean return type.

Definition 13 [Functions] LetA, B € SET and f : A — B be a function, then we
call D(f) = A the domain (set) an®(f) = B the range (set) of function FUN 4

denotes the set of all functions with(f) = A, FUN (4 p) the set of all functions with
D(f)=AandR(f) = B,andFUN = {FUN 4 | A € SET } the set of all functions.

Example 8 The functionf : R x R — R with f(z,y) = = + y has the
domainD(f) = R x R, the rangeR(f) = R, and belongs to the SBUN g g r)-

Definition 14 [Predicates] LetA € SET, then we calp € FUN 4 goo) @ predicate.
PRE 4 = FUN 4 goo) denotes the set of all predicates with domain A, &ikE =
{PRE 4 | A € SET } the set of all predicates.

Example 9The predicate : R x R — BOO with

| true if z4+y <0
p(,y) = { false else
has rangeR(p) = R x R and belongs to the sBRE g .

Assuming the domain of the function is specified as cartesian product, i.e. the
function’s input values are represented by tuples. By restricting the domain of the
function onto a projection of the cartesian product (see Definition 12), we define the
projection of functions.

Definition 15 [Projection of Functions] Let/ = {1,...,n}, f € FUN _ x, and

eletjel, xe X, and
(al, cey 1, Q541 - .,an) € Hie]\{j} X;.

16 EMMA Compendium

Then the function

f[al,~~7<1j—17$,aj+1,m,an] X, — SET with
f[al,,,.,aj,1,$,aj+1.,...,an]<x) = f(a’17'")a’j*17x7a’j+17"'7a’n)

is called projection of f onto;.

elet k<n, {j1,--.Jx} €T and Vi<k j<jy1 with
(.’lﬁjl, A ,J?jk) S Hie{jhmjk} Xi.
and(ay, ..., a5, 1,085,141, Q1,415+, 0n) € Hie[\{jl’”.jk} X

Then the function

H X, — SET with

i€{j1,---Jr }

f[cn yees @iy —1,81,05, 41,505, —1,8%,a5, +1,--,an]

f[al ,,,,, ajl—1’$1»a_jl+17-~~7a_7'k—17$k7ajk+1’»---,an](ajjl R xjk)
f(al, e ,ajl_l,.’L‘jl,aj1+1, e ,ajk_l,xjk,ajk_,_l, e ,an)
is called projection of f ontd |

i€{j1,---Jr } Xi.

Example 10 Let f € FUNgs with f(v,w,z,y) = v-w — a - y* then the
function
f,8,7,2) € FUNR with
fasro(@)=4-2—-7-2> =42 —28

defines a projection of ontoRR, and the function

fi4,81,7,8,) € FUNg2 with
fia81.7.80 (T, y) = 4z — Ty

defines a projection of ontoR2.

As predicates are a specific type of function, the projection of predicates are defined
in the same way.

In the following definitions, two ways of joining functions will be of importance:
Firstly, the product and secondly, the composition of two functions. The product of
two functions is based on the product of the two functions’s domain values, and returns
the product of the corresponding output values.

Definition 16 [Product of Functions] Letx € X, y € Y, andf € FUN x,
g € FUNy, then

f®g: XxY — SET x SET with
fog (zy)=f(z)*xgy)
the Product of the functioii and g.

The composition of two functions determines that two functions are applied sequen-
tially, such that the output values of the first function serve as input value for the second
function.

EMMA Compendium 17

Definition 17 [Composition of Functions] Letf,g € FUN, A,B € SET with
f:A— B and g¢g:B— C,then

gof:A—C with
go fla) =g(f(a))

the Composition of function f and g.

Example 11 Let f € FUNRurpr With f(z,y) = = +y andg € FUN g
with g(z) = 2z, then
f X g ¢ [FUN [R3,R?] W|th
fxglz,y,z) = (r+y,2-2) suchthat
fxg(3,5,7) (8,14)
defines the product of the functioifsandg, and
go f ¢ [FUN [R2,R] with

gof(z,y) = g(f(z,y)) =gz +y)=2-(z+y) suchthat
gof(3,4) = 2-(3+4) =14

defines the composition of functignand f,

As predicates are specific functions, the composition of predicates, i.e. the compo-
sition of function and predicates is defined in the same way.

4.1.3 Select and Apply Operator

The Select, and Apply operators are very important for the definition of the EMMO
Algebra, as they allow to combine already defined operators and predicates of the al-
gebra, and thus allow to build more complex ones.

The operationSelect returns to a specified predicate and a specified set, all ele-
ments of the specified set, which fulfill the condition of the specified predicate.

Definition 18 [Select] LetA andp € PRE , then we define the operation

Select : PRE x SET — SET with
| not defined if p¢PRE4
Select(p, A) = { {w|z € AAp(x)} if p€ePRE,

true if x=>7

Example 12Let p € PRE y with p(z) = { False else

then Select(p,N) = {8,9,10,...}.

The operationdpply takes a function and a set as input value, and returns a set,
which encompasses all return values when applying the function to each element con-
tained in the specified set.

Definition 19 [Apply] Let A and f € FUN, then we define the operation

Apply : FUN x SET — SET with

| not defined if f¢FUN
Apply(f’A)_{{f(meeA} if f€FUN

18 EMMA Compendium

Example 13Let f € FUNy with f(z) = 3z
then Apply(f,N) ={3,6,9,12,...}

The operationFlements can either be based on a set or a sequence, and returns a
set. If the operation is based on a set, it returns the set of all elements, that are contained
in any of the specified set’s elements. If the operation is based on a sequence, it returns
a set encompassing all tuples of the specified sequence.

Definition 20 [Elements] LetA and A;, ¢ > 1 be arbitrary sets,

Elements : SET — SET with
Elements(A) = Uxea X ={z|3X € ANz € X}

Elements : SEQ — SET with
Elements((a1, az,)) = U;>; mi((a1, a2,)) = {a1, a2, ...}

Example 14Let A = N, B = {{0, 1}, {0}, {1, 2}, {3}}, and(3, 6, 3,8) € SEQ then

Elements(A) = A,
Elements(B) = {0,1,2,3} and
Elements((3,6,3,8)) = {3,6,8}

4.1.4 Basic Predicates

In the following, some basic predicates will be defined. First, we will specify some
logical predicates, then some generic comparison and testing predicates.

The logical predicatéV ot takes one boolean value as input value and returns true,
if its input value is false, otherwise true.

Definition 21 Letx € BOO), then
Not : BOO — BOO with Not(z) = {

true if x = false
false else

The logical predicatelnd takes two boolean values as input values and returns true, if
both specified input values are true, otherwise false is returned.

Definition 22 Letz € BOO, then
And : BOO x BOO — BOO with And(z,y) = { true if Ay

false else

The logical predicat®r takes two boolean values as input values and returns true, if
at least one of the specified input values is true, and returns false if both input values
are false.

Definition 23 Letxz € BOO, then

Or : BOO x BOO — BOO with Or(z,y) _{ true if zVy

false else

EMMA Compendium 19

The predicatézxists returns true, if the specified set contains an element which satis-
fies the condition described by the specified predicate, otherwise false is returned.

Definition 24 Let A € SET, andp € PRE then
Exists : SET x PRE — BOO is defined as
) [true if JzeA px)
Ewists(A,p) = { false else
The predicatéorall returns true, if all elements of the specified set satisfy the condi-
tion described by the specified predicate, otherwise false is returned.

Definition 25 Let A € SET, andp € PRE then
Forall : SET x PRE — BOQ is defined as
true if VeeA p(x)

Forall(A,p) :{ false else

In the following, we will introduce a set of generic predicate€entains,
Equal, Empty, Subset and SubsetEq, Superset and Superset Eq, Smaller and
Smaller Eq, and finally Bigger and Bigger Eq, - which allow to compare and exam-
ine arbitrary sets and objects.

The predicate”ontains investigates whether a specified object is contained in a
specified set, in which case the boolean value true is returned. Otherwise, false is
returned.

Definition 26 Letz € OBJ, andA € SET then

Contains : OBJ x SET — BOO is defined as

true if ze€A

ContainS(IvA) { false else

The predicatdZquals returns true, if two specified objects are equal, otherwise, false
is returned.

Definition 27 Leta,b € OBJ ,then

Equal : OBJ x OB] — BOO with Fqual(a,b) = { true —if a=b

false else

The predicateégmpty returns true, if the specified set is an empty set, i.e. contains no
elements. Otherwise false is returned.

Definition 28 Let A € SET then

Empty : SET — BOO with Empty(A) = { true if A=0

false else
The predicatesSubset andSubset Eq take two sets as input values and return true,

if the first set is subset of the second set, or respectively, the first set is equal or subset
of the second set. Otherwise, false is returned.

Definition 29 Let A, B € SET
e Subset : SET x SET — BOQO is defined as

true if ACB
Subset(A, B) = { False e{se

e SubsetEq: SET x SET — BOQ is defined as

true if ACB

SubsetEq(A,B) = { false else

20 EMMA Compendium

The predicatesSuperset and SupersetFq are the counterparts to the predicate
Subset, andSubset Eq. Each of it takes as well two sets as input values and returns
true, if the first set is superset of the second set, or respectively, the first set is equal or
superset of the second set. Otherwise, false is returned.

Definition 30 Let A, B € SET

e Superset : SET x SET — BQOQ is defined as

true if ADB
false else

Superset(A, B) = {

e SupersetEq: SET x SET — BOO is defined as

true if ADB
false else

SupersetEq(A, B) = {

The predicateSmaller takes two real numbers as input values and returns true, if the
first number is smaller than the second number. Otherwise, false is returned. Similar,
the predicaté&maller Eq takes two real numbers as input values and returns true, if the
first number is equal or smaller than the second number. Otherwise, false is returned.

Definition 31 Letz,y € R

e Smaller : R x R — BOO is defined as
Smaller(x,y) = { true —if w<y

false else

e SmallerEq : R x R — BOO is defined as

true if x<y

SmallerEq(I,y) { false else

The predicatesBigger and Bigger Eq are the counterparts to the predicates
Smaller andSmaller Eq. Each of them takes again two real numbers as input values
and returns true, if the first number is bigger than the second number, or respectively is
equal or bigger than the second number. Otherwise, false is returned.

Definition 32 Letz,y € R then

e Bigger : R x R — BQO is defined as

Bigger(z,y) — { true if >y

false else

e BiggerEq: R x R — BOQO is defined as

‘ true if x>
BiggerEq(z,y) :{ false ejlcse ’

EMMA Compendium 21

4.2 EMMA's Operators

In the following subsections, we define the operators of the query algebra EMMA.
EMMA basically consists of five different kinds of operators: Extraction Operators (see
Sect. 4.2.1) allow the access to each entity’s attribute information, Navigational Oper-
ators (see Sect. 4.2.2) enable the navigation along the graph structure of an EMMO,
Selection Predicates (see Sect. 4.2.3) permit to choose entities with specific character-
istics, Constructors (see Sect. 4.2.4) facilitate the construction of new EMMOSs, and the
Join Operator(see Sect. 4.2.5) relates several entities or EMMOs with a join condition.

The algebra’s operators are kept very simple and orthogonal. Through the combi-
nation of modular operators, complex queries can be formulated. The combination of
operators can be either realized by sequentially applying the operators or by combining
the operation’s return value via basic set operations as defined in Sect. 4.1. In this way
the orthogonality of the algebra can be realized.

4.2.1 Extraction Operators

An entity represents a thirteen-tuple. The Extraction Operators provide means to query
all attributes of the thirteen-tuple. The attributes of an entity are specified as ele-
ments and as set values. The operators for extracting an entity’s element attributes
are very simple and straightforward, whereas the operators for accessing an entity’s set
attributes can become quite elaborate. This is due to the fact, that some of an entity’s set
attributes describe quite complex structures, e.g. the set of nodes allows to nest entities
in arbitrary depth, and the set of successors or predecessors describe a branching struc-
ture of succeeding and preceding entity versions. The extraction operators defined in
the following provide means to access the hierarchically nested structure established by
the encapsulation of EMMOs, as well as the branching structure conveying an entity’s
different versions.

The following six definitions describe very basic operators for accessing the at-
tributes oid, name, kind, target and source, and types of an entity. As the operators are
realized by a simple projection, the definition is very straightforward and does not need
further explanation.

An entity can be identified by its oid, which is an universal unigue identifier. The
operatoroid returns to a given entity its universal unique identifiefD).

Definition 33 [Accessor for entity’s oid] Letv € €, then
oid : Q@ — OID is defined as oid(w) = o,.

An entity can be identified by its name, which is a human readable name. The operator
nametakes an entity and returns the string value representing the entity’s name.

Definition 34 [Accessor for entity’s name] Let < (2, then
name : Q — STR is defined as name(w) = ny,

Entity’s kind information specifies whether an entity is a logical media part, an ontol-
ogy object, an association, or an EMMO. The operéaiar takes an entity and returns
the string "Imp” in case of the entity being a logical media object, the string "emm” in
case of an EMMO, "asso” in the case of the entity being an association, and "ont” in
the case of an ontology object.

Definition 35 [Accessor for entity’s kind] Let € (2, then
kind: Q — {"lmp”,”emm”,”asso”,”ont”} isdefined as kind(w) = ky,

22 EMMA Compendium

Only associations specify its source and target entity, and thus describe the semantic
relationship between those two entities. All entities except the association entity, spec-
ify their source and target entity as a empty entity, represented by the symbbé
following two operatorsource andtarget access entity’s source and target entity, and
either return the specified or the empty entity.

Definition 36 [Accessor for entity’s source entity] Let € 2, then
source : Q@ — QU {e} isdefinedas source(w) = s,

Definition 37 [Accessor for entity’s target entity] Let € (2, then
target : QQ — QU {e} isdefinedas target(w) = t,

Through the Types attribute, each entity associates an arbitrary number of ontology ob-
jects describing its real world concept. The operatpes takes an entity and retrieves
the set of all its attached ontology objects:

Definition 38 [Accessor for entity’s Types] Let € (2, then
types : Q — P(O©) isdefinedas types(w) =T,

Each entity can additionally be qualified by an arbitrary number of attribute values,
that are simple attribute-value pairs with the attribute being an ontology object and the
value being an arbitrary object. To a given entity the operatotibutes returns the

set of associated attribute-value pairs:

Definition 39 [Accessor for entity’s Attributes] Let € (2, then
attributes : @ — P(O x OBJ) isdefined as attributes(w) = A,

Logical media parts are the only entities that model media objects on a logical level
as well as maintain connections to the media data representing these objects. Thus, all
other entities, i.e. EMMOSs, ontology objects and associations, specify the connectors
as empty set. The connectors link a logical media part to its set of existing physical
representations. Each physical representation, the so-called connector, is manifested by
a media profile and a media selector. A media profile is defined by its media instance
and its set of metadata. Hereby, each media instance either describes the location of, or
directly embeds the media data, and the metadata constitutes a set of string-object pairs.
A media selector specifies a kind value and a parameter set. The kind attribute can take
the values “spatial”,“textual”, “temporal” etc., and the parameter set encompasses any
arbitrary string-object pair.

The following operators allow the access to the information described by connec-
tors. Firstly, the operationonnectors takes an entity and returns its set of connec-
tors, which is a set of media selector and media profile pairs. The two operators
MediaSelector and MediaProfile return to a given connector, the corresponding
media selector, and respectively the corresponding media profile. The two operators
Medialnstance and M etadata both take a media profile as input value, and return
the corresponding media instance, respectively the corresponding set of metadata. And
finally, the two operator&ind and Parameter return to a given media selector the
corresponding kind value, respectively the corresponding set of parameters.

Definition 40 [Accessor for entity’s Connectors] Let € Q, ms € MS, and
mp € MP, then

connectors : § — P(MS x MP) is defined as
connectors(w) = Cy,

EMMA Compendium 23

MediaSelector : MS x MP — MS with
MediaSelector(ms, mp) = w1 (ms, mp) = ms

MediaProfile : MS x MP — MP with
MediaProfile(ms, mp) = ma(ms, mp) = mp

Medialnstance : MP — URI URMD with
MediaInstance(mp) = w1 (mp) = imp

Metadata : MP — P(STR x OBJ) with
Metadata(mp) = ma(mp) = My,

kind : MS — {7 spatial”,”textual”,”temporal”, ...} with
kind(ms) = m1(ms) = ks

Parameter : MS — P(STR x OBJ) with
Parameter(ms) = ma(ms) = P

As described in Section 3, EMMOs are the only entities that can contain other entities.
EMMO's contained entities are described by the attribute nodes. The opetalor

enable the access to the set of all entities contained in the specified EMMO, whereas the
operatordmp, emm, asso, andont return all contained entities of a specific kind, i.e.

Imp returns the set of all contained logical media pattan the set of all contained
EMMOs, asso the set of all associations, awmat the set of all contained ontology
objects. All five described operators return the empty set, if the specified input entity
is not of kind EMMO.

Definition 41 [Accessor for entity’s Nodes] Let € €2, then
nodes : } — P(Q) isdefinedas nodes(w) = Ny,
Imp: Q — PT) is defined as Imp(w) = N, NT
emm : Q) — P(X) isdefinedas emm(w)= N, N%
asso: 8 — P(A) isdefined as asso(w) = N, N A
ont :) — P(O) is defined as ont(w) = N, N©

An EMMO serves as container establishing a graph structure of entities. The contained
entities are either interconnected via binary directed semantic relationships described
by associations or represent isolated entities. Thus, beside the isolated entities, the
smallest building block of the described graph structure is the semantic relationship
established by an association pointing to its source and target entity. To a specified
entity (which is supposed to be an EMMO), the following two operatargrces and
Targets allow the access to the set of all source and the set of all target entities being
involved in an relationship contained within a specified EMMO.

Definition 42 [Accessor for the source and target entities] ket 2, then

Sources : Q — P(Q2) with Sources(w) = {s|3x € asso(w) : s=s;}

Targets: Q — P(Q) with Targets(w) ={t| 3z € asso(w): t=t,}

For accessing the directed graph structure of an EMMO, which is described by its
contained and possibly connected entities, a navigational access is required. The op-

erators for navigating an EMMO’s graph structure use an entity within an EMMO as
input value and return all entities that are semantically linked to this selected entity:

24 EMMA Compendium

Although specifying two entities as input value, the operé&tetSourceT oAsso only
returns a reasonable result, if the first entity constitutes an EMMO and the second entity
an association within this EMMO. In such a case the association’s source entity, other-
wise the empty set is returned. Respectively, the opetatdl argetToAsso returns

to a specified EMMO and a specified association within this EMMO, the association’s
target entity. If the first input entity is no EMMO, or second entity does not belong to
the associations of the EMMO, the empty set is returned.

Definition 43 Lete,a € 2, then

GetSourceToAsso: Q x Q — QU {0} with
GetSourceToAsso(e,a) = {s,|a € asso(e)} and

GetTargetToAsso : Q x Q — QU {0} with
GetTargetToAsso(e,a) = {t, | a € asso(e)}

The following two accessors facilitate the navigation of the graph structure by returning
the connecting associations: Applied to an EMMO, the opet@tardssoT oSource
locates all associations, whose source entity is equal the second specified input entity.
Similarly, the operatoGet AssoT oT arget finds in an EMMO all associations, whose
target entity is equal the second specified input entity. Again, if the first specified input
entity is not of kind EMMO and the second specified input entity is no association,
then the empty set is returned.

Definition 44 Lete,w € Q, then

GetAssoToSource : Q x Q@ — P(A) with
GetAssoToSource(e,w) = {x € asso(e) |w =s,} and

GetAssoToTarget : Q x Q — P(A) with
GetAssoToTarget(e,w) = {x € asso(e) |w = t,}

EMMOs constitute a structure of hierarchically nested EMMOs, i.e. an EMMO can
contain entities and other EMMOs, and those EMMOS can again contain entities and
other EMMOs, and so on. We use the following manner-of-speaking:

e If entity w, is contained in EMMOw’s nodes, then we say, is contained in
EMMO w at first leve] andw is parent EMMO ofw;.

e If and only if there is a sequence bfentities starting with EMMQw and going
until entity wy, , such that each entity in sequence is the parent EMMO of the
subsequent entity, then we say tleatity w,, is contained in EMMQu at k*"
level

e If entity w is contained in EMMQCe at arbitrary level, then we say thamtity w
is recursively contained or is encapsulated in EMMO

The following operators are defined by means of induction dvand allow to navigate

the encapsulation hierarchy of nested EMMOs. Although their input value is defined on
the level of entities, they only return a reasonable result, if they are applied to EMMOs,
otherwise the empty set is returned. Thus, the opeEtcEntreturns to a specified
EMMO e and a natural numberthe set of EMMQe’s nodes at'” level. The operator
AlIEncEnt which defines a unification of the operatéencEntreturns to a specified
EMMO all its recursively contained or encapsulated entities.

EMMA Compendium 25

Definition 45 Lete € 2, then
EncEnt: QxN— P(Q) with EncEnt(e,1) = N,

Let EncEnt(e,n) be defined, then
EncEnt(e,n+1) ={x € Q|3y € EncEnt(e,n)NE A z € N,}
and

AllEncEnt : Q — P(Q) with AllEncEnt(e) = U;>, EncEnt(e, i)

The following operator&EncEmmand AllIEncEmmdescribe a special application of

the above operators, allowing the access of the set of encapsulated EMMOs. As you
can see from the definition, the operators are more or less an application of already
existing operators. In this way, one could argue that those two operators are redundant.
Nevertheless, we decided to include the two operators in the EMMO Algebra, as they

seem to be used very frequently in the user queries.

In the same way, the operatBncEmnreturns to a specified EMM®and natural
numbern the set of EMMOs contained in EMM®@ at n*" level, and the operator
AlIEncEmnreturns to a specified EMM®all its recursively contained or encapsulated
EMMOs.

Definition 46 Lete € 2, then
EncEmm : QxN— P(Q) with EncEmm(e,1) = emm(e)

Let EncEmm(e, n) be defined, then
EncEmm(e,n+1) = {z € Q| 3y € EncEmm(e,n) N z € emm(y)}
and

AllEncEmm : Q — P(Q) with AllEncEmm(e) = ;> EncEmm(e, 1)

As you can see from the above definitions, for all entitiesand all nat-
ural numbersn the operation EncEmm(w,n) is equal to the operation
Select(Contains(s pncEnt(e,n)): 2), and the operatiomll EncEmm(w) is equal
to the operatiorbelect(Contains| s auencEnt(w)): 2)-

Each entityw points to an arbitrary number of preceding versidisand to an
arbitrary number of succeeding versidgfis. As an entityw’s preceding or succeeding
version can again specify an arbitrary number of preceding and succeeding versions,
all those specified versions are called predecessor, or respectively successOndy
the entities directly belonging t8,,, andS,, are called the direct predecessors, respec-
tively direct successors af. The operatorgredecessors andsuccessors retrieve the
direct predecessors, and respectively direct successors of the specified entity:

Definition 47 [Accessor for entity’s Predecessor and Successorlbet (2, then
predecessors : Q0 — P(Q) is defined as predecessors(w) = P,
successors : @ — P(Q2) s defined as successors(w) = Sy,

Based on these operators, the operators for accessing all predecessors will be defined
inductively. But beforehand, we will introduce some manner-of-speaking:

e Entity w’ is called direct predecessor of entity if w’ € predecessors(w).

e Entity v’ is calledn'" predecessor of entitw, if there is a sequence of-1
entities, with each entity in the sequence representing the direct predecessor of
its subsequent entity.

26 EMMA Compendium

e Entity v’ is called predecessor of entity, if there exists a natural number
such thatw’ is n*" predecessor of entity.

The operatorPredecessors takes an entityw and a natural numbet as input, and
returns entityw’s set ofnt" predecessors, and the operatdt Predecessors, which
unifies operatoPredecessors’s return values, returns to a specified entity the set of
all its predecessors:

Definition 48 Letw € €, then

Predecessors : § x N — P(Q) with
Predecessors(w, 1) = predecessors(w)

Let Predecessors(w,n) be defined, then
Predecessors(w,n+ 1) =

{z € Q| 3y € Predecessors(w,n) x € predecessors(y)}
and

AllPredecessors : — P(2) with
AllPredecessors(w) = ;5 Predecessors(w, i)

In the same way, the operator for accessing entity’s successor versions will be defined:
The operatoSuccessors takes an entityy and a natural numberas input, and returns
entity w’s set ofn!* successors, and the operattit Successors returns to a specified
entity the set of all its successors:

Definition 49 Letw € €, then

Successors : @ x N — P(Q) with
Successors(w, 1) = successors(w)

Let Successors(w, n) be defined, then
Successors(w,n+ 1) =

{z € Q|Ty € Successors(w,n) x € successors(y)}
and

AllSuccessors : @ — P(2) with
AllSuccessors(w) = ;5 Successors(w, i)

Any entity can be augmented by additional attributes, which are joined in the features
F,, of an entityw. The operatorfeatures allows the access to this set of primitive
attribute-value pairs:

Definition 50 [Accessor for entity’s Features] Let € 2, then
features : Q@ — P(STR x OBJ) with features(w) = F,

EMMOs also can have operations attached. As described before, an operation con-
sists of a designator and an implementation. The designator is specified as ontology
object, whereas the implementation can be any mathematical function. The operator
operations retrieves the set of all operations, i.e. the@gt, attached to the entity,
whereas the operatdpesignators returns the set of designators to entitis set of
operations, the operatdmplementations the set of implementations to entitys set

of operations, and the operatbnpT oName retrieves to a specified entity and spec-
ified designator represented as ontology object, the mathematical function describing
the corresponding implementation.

EMMA Compendium 27

Definition 51 [Accessor for entity’s Operations] Let € €2, then
operations : Q@ — P(OP) with operations(w) = O,
Designators : — P(0) with

Designators(w) ={o€©|3x € 0, o=m(x)}
Implementations : @ — P(FUNyg) with

Implementations(w) = {f € FUNy |3z € O,, f=ma(x)} and

ImpToName : Q x © — FUNy with
ImpToName(w,0) = {f e FUNy |3z € O, o=m1(x) A f =ma(x)}

So far, we have specified that an EMMO can carry any kind of functionality. The next
step is to define an operation, which allows to execute the functions being attached
to an EMMO. The operatoFzecute takes an EMMO, a function and a sequence of
parameters as input value and returns the result value of the execution of the function
with the specified EMMO and sequence of parameters as input values. If the operator
Ezecute is applied to an entity which is not of kind EMMO, or the specified operation
does not belong to the operations of the specified entity, respectively EMMO, or the
sequence of parameters constitutes no adequate input value for the specified operation,
the empty set is returned.

Definition 52 [Execute] Lete € 2, op € OP, ands € SEQ
FEzxecute : Q x OP x SEQ — SET

Ezecute(e, op, s) = { gz(op)(e, 5) i];soep € operations(e) A (e, s) € D(ma(op))

Sometimes, we might only be interested in some very specific relationships contained
in an EMMO. For example, we might be interested in the relationship which is de-
scribed by an association of a specific type. The operdtsoO fType allows the
access to such specific associations. The operator takes two entitieso as in-

put value, and returns all associations of typthat are contained ia. Through the
specification of association’s source and target entity, an association incorporates the
complete information of the requested relationship. Note, that if the first specified en-
tity e is not of kind EMMO and the second specified entitis not of kind ontology
object, the empty set is returned.

Definition 53 Lete, 0 € Q, then

AssoO fType : 2 x Q@ — P(A) with
AssoO fType(e,0) = {z € asso(e) | o € types(x)}

4.2.2 Navigational Operators

In the following section, we first introduce th@ne-Step Navigational Operators
Then, we provide the definition for thRegular Path Expressiorsver ontology ob-
jects, and, finally, we specify tHeegular Navigational Operators

One-Step Navigational Operators

EMMOs represent containers of entities. Those entities can be connected by as-
sociations establishing a graph structure. By attaching ontology objects, associa-
tions are classified by concepts of the ontology. Thus, EMMOs describe a graph
structure with edges being classified by ontology objects. In order to allow a

28 EMMA Compendium

single-step navigation along the graph structure of EMMOs, we define the One-step
NavigatorsTypedAssoToSourcdypedAssoToTargeaind TypedAsso The operator
TypedAssoToSourtakes three entities w, ando as input value and returns the set of

all associations of type contained in EMMQe, whose source entity is equal entity

The operatoifypedAssoToTargéhkes again three entities w, ando as input value

and returns the set of all associations of typeontained in EMMOg, whose target
entity is equal entityw. Similar, the operatofypedAssdakes three entities, w, and

o as input value and returns the set of all associations of éypentained in EMMO

e, whose source or target entity is equal entity For providing the orthogonality of
operators, similar to the other EMMA operators, the three One-Step Navigator are de-
fined on entity level. But nevertheless, they only return a reasonable result, if the first
specified entity is of kind EMMO and the third specified entity is of kind ontology
object; otherwise, the empty set is returned.

Definition 54 [One-Step Navigator]Foe, w, o € €2, the operation

TypedAssoToSource : Q x Q x Q — P(A) with
TypedAssoToSource(e,w,0) = {x € AssoO fType(e,0) |w = sz}

TypedAssoToTarget : Q x Q x & — P(A) with
TypedAssoToTarget(e, w,0) = {x € AssoO fType(e,o0) |w =ts}

TypedAsso : Q x Q x Q — P(A) with
TypedAsso(e,w,o0) = TypedAssoToTarget(e,w,0) U TypedAssoToT arget(e,w, o)

Regular Navigational Operators

Regular Navigational Operators allow the navigation of any number of steps within an
EMMO'’s graph structure. An EMMO encompasses a network of entities being con-
nected via associations. The syntax for describing a navigation path is provided by
Regular Path Expressionshich are specified in Definition 55. By defining the map-
ping of regular path expressions onto to sequences of ontology objects, the operators
JumpRight(Def. 56), JumpLeft(Def. 57), andAnchorNodegDef. 58) determine the
semantic meaning of those syntactic expressions. As different associations can be la-
belled with the same ontology object, and additionally each navigation path can be
matched onto a set of sequences of ontology objects, the navigation path in general
describes multiple ways of navigation within the same specified EMMO.

Important to note is the fact, that thegular Path Expressioranly provide the
syntax for describing an navigation path; its semantic interpretation concerning the
navigation within an EMMO, is specified by the operatdtsnpRight, JumpLeftand
AnchorNodes

The expressive power of ontology languages strongly influenced the design of reg-
ular path expressions. As most ontology languages allow the description of a hierar-
chical structure of relationships, as well as allow the declaration of properties of rela-
tionships, e.g. inverse, symmetric, or transitive relationships, regular path expressions
provide means to reflect those constructs:

The simplest kind of regular path expressions is a single ontology object, whose
semantic meaning is the ontology object itself, the symbbréferring to the empty
set, and the symbol“ referring to any arbitrary ontology object. The union operator
“|” allows the combination of two regular path expressions reflecting that the corre-
sponding sequences of ontology objects can be treated as alternative versions. This
is important to cope with the hierarchical structure of relationships within an given

EMMA Compendium 29

ontology, such that a relationship’s subclass can be simply described as alternative ver-
sion. Furthermore, regular path expressions can be concatenated and be described as
optional. Moreover, both unary operators™and “x” defines an iteration of path
expressions, which will be interpreted as iteration of the corresponding sequences of
ontology objects. This is important for the handling of transitive relationships. As-
suming one specifies the retelling relationship to e transitive, i.e. one specifies that a
retelling of a retelling of a story, is again a retelling of the original story. Thus, a re-
searcher asking for all objects constituting a retelling of another object, receives all
pairs of objects which can be connected by not only one, but any arbitrary sequence of
retelling relationships. Finally, with the unary operation™the inversion of regular

path expressions can be expressed. This is substantial for the processing of symmetric
relationships. Assuming the relationship "is-parodied-by” constitutes the symmetric
version of the relationship "parody-of”, and the two objects A and B are connected by
an "is-parodied-by” relationship, then one can derive that object B and A are also con-
nected by a "parody-of” relationship. The regular path expressignsq,—.s— and
Ois—parodicd—by CaN be labelled as equivalent, such that researchers asking for objects
being connected by a "is-parodied-by” relationship, receive all objects being connected
by a "is-parodied-by” relationship, as well as a "parody-of” relationship.

Definition 55 [Regular Path Expression over ontology objects] Given a symbol set
S ={e_,+,%7|,-(,)}, an alphabetl = © U S, and ¥* the set of words over

¥ (finite strings over elements &). Then, we definBREG C ¥* as the smallest set
with the following properties:

1. YVoe ©®:0€ REG

. € € REG

- € REG

. Vry,re € REG : (r1|r2) € REG
. Vry,70 € REG : r179 € REG

. Vr e REG : (r)? € REG

. Vr e REG : (r)+ € REG

© N o U A W N

. Vr e REG : (r)x € REG
9. Yo € ©: (0)- € REG
REG denotes the set of regular path expression over ontology objects.

By defining the semantic interpretation of regular path expressions, the operators
JumpRight and JumpLeft specify the navigation along an EMMO'’s graph struc-
ture. The navigation within an EMMO reflects the traversing of a sequences of edges
within the EMMO's graph structure. Those edges are described by associations which
are classified by ontology objects. Thus, each sequence of ontology objects defines
uniquely one or more navigation paths within an EMMO. The operatarap Right
andJumpLeft are basically the same and differ only in their direction of navigation.
They both specify a start node within an EMMO e, and a regular path expression
determining the navigation. By induction over the construction of regular path expres-
sion, the two operators define a mapping from regular path expressions to sets of se-
guences of ontology objects. As the names suggest, the opesatiopRight returns

30 EMMA Compendium

the set of all nodes in the specified EMMOQthat can be reached when starting from
entity w by traversing the sequence of labelled associations determined by the regular
path expression in the right direction. In this context, right direction expresses that
the the association are traversed from their source to their target entities.

This is appropriate in cases, the requesting user has specified the source entity of
an association as starting node. But assuming, the user has selected one particular text
document, and is now interested in all documents constituting a retelling of the selected
text. By specifying the selected document as start point of the navigation and the regu-
lar path expression,...;;s* determining the navigation path, in this case the traversing
has to be accomplished in the left direction (as the selected document establishes the
target entity of a retelling association). The operalampLeftreturns the set of all
nodes in an EMMCQe, that can be reached when starting from entityy travers-
ing the regular path expressionin the left direction, meaning pointing from target
to source entity. Note, that again, in order to facilitate the combination of operators,
the following operators are defined on entity level, but only return a reasonable value,
when applied to EMMOs.

Definition 56 [JumpRight]Fore, w € 2, and a regular path expressionc REG , the
operation JumpRight : Q x Q@ x REG — P(1Q) is defined as follows:

1. Yoe©O:
JumpRight(e,w,0) = {x € N. |3y € AssoO fType(e,o0)
ANw=sy, ANz =1t,}
2.r=c¢: JumpRight(e,w,e) = {w|w € N.}
3.r=_

JumpRight(e,w,_) = {x € N |y € asso(e)
ANw=sy ANz =1y}

4. Vry,ro € REG with r = (r1]|r2) :

JumpRight(e,w, (r1|r2)) = U JumpRight(e, w, x)

xze{ri,ra}
5. Vri,ry € REG with r =177y :

JumpRight(e,w,r1r3) = U JumpRight(e,z,12)
ze€JumpRight(e,w,r1)

6. Vr € REG :

JumpRight(e,w, (r)?) = U JumpRight(e,w, x)
ze{r,e}

7.Vr € REG :

JumpRight(e,w, (r)+) = U JR,(e,w,T)

EMMA Compendium 31

with JR,, (e, w, r) defined by means of induction ovéras follows:

JRyi(e,w,r) = JumpRight(e, w,r)

JR,(e,w,r) = U JumpRight(e,x,)
zEJR,_1(e,w,r)

8. Vr e REG :
JumpRight(e,w, (r)*) = U JumpRight(e, w, x)
ze{(r)+.e}
= JumpRight(e,w, (r)+) U {w}
9.YocO:

JumpRight(e,w, (0)-) = {x € N |Jy € AssoO fType(e, o)
N =8y Nw =1y}

Definition 57 [JumpLeft]Fore, w € 2, and a regular path expressionc REG, the
operation JumpLeft: Q x Q x REG — P(Q) is defined as follows:

1. Vo€ O:
JumpLeft(e,w,0) = {x € N, |y € AssoO fType(e, o)
Nx=syANw=1t,}
2.r=¢: JumpLeft(e,w,e) = {w|w € N}
3.r=_

JumpLeft(e,w,_) = {x € N.|Jy € asso(e)
ANx =85y Nw =ty}

4.Vr1,m72 € REG with 7= (ry|rs):

JumpLeft(e,w, (r1|r2)) = U JumpLe ft(e,w, x)

z€{ry,ra}
5. Vri,7o € REG with r=riry:

JumpLeft(e,w,r17m2) = U JumpLeft(e,x,r1)

z€JumpLeft(e,w,rs)
6. Vr € REG :

JumpLeft(e,w, (r)?) = U JumpLeft(e,w,x)
ze{r,e}

7. ¥r € REG :

JumpLeft(e,w, (r)+) = U JLy(e,w,r)

32 EMMA Compendium

with JL,, (e, w, r) defined by means of induction oéras follows:
JLy(e,w,r) = JumpLeft(e,w,r)

JL,(e,w,r) = U JumpLeft(e,z,r)
2€JLyp_1(e,w,r)

8. Vr € REG :
JumpLeft(e,w, (r)x) = U JumpLeft(e,w,x)
ze{(r)+.e}
= JumpLeft(e,w, (r)+) U {w}
9. YVoe ©:

JumpLeft(e,w, (0)-) = {x € N |3y € AssoO fType(e, o)
AT =ty ANw =5y}

As you can see from the last two definition, there is a clear connection between the
direction of navigation, and the inversion of ontology objects:
Given the ontology objectsand its symmetric counterpai)—, then

JumpRight(e,w,0) = JumpLeft(e,w, (0)-)

expressing, that the navigation in the right direction determined by one ontology ob-
jects, corresponds to the navigation in the left direction determined by its symmetric
counterpart.

The idea and design of the operatbnchor N ode is very similar to the operators
JumpRight, andJumpLeft. To a given EMMOe and a specified regular path ex-
pressionr, the operator retrieves all pairs of entities contained in EMM@hat can
be connected by the regular path expressionfwo entities can be connected by a
regular path expression, if the sequences of ontology objects determined by the regular
path expressions, refers to a sequence of associations connecting the two entities. A
sequence of associations connects two entities, if the first entity represent the starting
point from which the second entity can be reached by traversing the specified regular
path expression in the right direction.

Definition 58 [AnchorNodes]Fore €) and a regular path expressiane REG the
operation AnchorNodes : Q x REG — P (2 x Q) is defined as follows:

1.Voe ® with r=o0:

AnchorNodes(e,0) = {(z,y) € Q x Q|TJa € AssoO fType(e, o)
AT =38, Ny="tq}

AnchorNodes(e,e) = {(z,z) |z € N}

AnchorNodes(e,-) = {(z,y) € Q x Q| Ja € asso(e)
AT =8, ANy=ty,}

EMMA Compendium 33
4. VT'DT'Q € REG with r = (T’l ‘T'Q) .

AnchorNodes(e, (r1|ra)) = U AnchorNodes(e, x)

z€{ry,ra2}

5. Vri,ro € REG with r=riry:
AnchorNodes(e,r1r2) = {(z,y) |3z € N, ((z,2) € AnchorNodes(e,ri)A
(z,y) € AnchorNodes(e,r2))}
6. Vr € REG :

AnchorNodes(e, (r)?) = U AnchorNodes(e, x)
ze{r,e}

7. Vr € REG :
AnchorNodes(e, (r)+) = U AN, (e,T)

with AN,, (e, r) defined by means of induction ovéms follows:

AN (e,r) = AnchorNodes(e,)
ANy(e,r) ={(z,y) |3z € Ne ((w,2) € ANp_s(e,7)

A (z,y) € AnchorNodes(e,r))}

8. Ve € REG :
AnchorNodes(e, (r)x) = U AnchorNodes(e, x)
ze{(r)+,e}
9. Vr € REG :

AnchorNodes(e, (r)-) = {(m2(x), m1(x)) |z € AnchorNodes(e,r))}

4.2.3 Selection Predicates

The selection predicates allow the selection of only those entities fulfilling a specific
characteristic. If an entity fulfils a specific characteristic, the corresponding selection
predicates returns the boolean value true. Thus, selection predicates can be joined
with the Select operator (Def. 18), which again decides on the basis of the selection
predicate’s returned boolean value which entities of a given set to select.

We distinguish two different kinds of selection predicates: Basic Selection
Predicateswhich are based on Extraction Operators (Sect. 4.2.1), ardethigational
Selection Predicateshich are based on the Navigational Operators (Sect. 4.2.2).

In the following section, we will first introduce Basic Selection Predicates, suc-
ceeded by the description of Navigational Selection Predicates.

34 EMMA Compendium

Basic Selection Predicates

Basic Selection Predicates are dealing with an entity’s attribute values (accessible by
Extraction Operators).

The selection predicatdasOidtakes an entityv and an oids as input value, and
returns true if entityw’s oid is equals, otherwise false is returned.

Definition 59 Letw € , ands € QID , then

HasOid : @ x OID — BOO is defined as
HasOid(w, s) = Equal(oid(w), s)

To a specified entity and a specified string the selection predicatéasNameeturns
true, if entityw’s hame is equal the string

Definition 60 Letw € , ands € STR , then

HasName : Q x STR — BOO with
HasName(w, s) = Equal(name(w), s)

The predicatdsOfKind returns true, if the specified entity is of the kind described
by the specified string parameter.

Definition 61 Letw € Q, ands € {"emm”,”asso”,”ont”,”lmp” } , then

IsOfKind : Q x {"emm”,”asso”,” ont”,”lmp”’ } — BOO with
IsOfKind(w, s) = Equal(kind(w), s)

There is one selection predicates concerning the source and one selection predicate
concerning the target information of an entity. The oper&&ourceToAssoeturns

true, if both, the specified entity and the specified associatiarare contained within

the nodes of entity, and additionallyyw is source entity ofi. Thus, for the operator

to return true, it is necessary that entitys an EMMO, and entity; is an association

within EMMO e.

Definition 62 Lete, a, w € 2, then
IsSourceToAsso :) x) x) — BOQO is defined as

true if a € asso(e) N w=s,

IsSourceToAsso(e, a,w) { False else

As you can derive from the above definition, the expresgidivurceToAsso(e, a, w)
is equivalent to the expressiGtontains(a, Get AssoToSource(e, w)) and equivalent
to the expressioftqual(GetSourceToAsso(e, a), w).

Correspondingly, the operatlsTargetToAsseeturns true, if the specified entity,
as well as the specified associatioare contained in EMMQ@, and additionally, entity
w is target entity of association Again the expressiofsT argetToAsso(e, a,w) is
equivalent to the expressidbiontains(a, Get AssoToTarget(e,w)) and equivalent
to the expressiofqual (GetTargetToAsso(e, a), w).

Definition 63 Lete, a, w € 2, then
IsTargetToAsso: Q x Q x Q@ — BOO is defined as

true if a € assole) A w=t,

IsTargetToAsso(e, a,w) —{ false else

EMMA Compendium 35

Furthermore, there are two selection predicates concerning an entity’s types informa-
tion. The operatof sType returns true, if the specified entity associates the specified
entity o within its types set (assuming that entitys of kind ontology object). The op-
erator EntityContains returns true, if the nodes of the specified entityontain at

least one entity which encompasses entityithin its types set (assuming that entity

is an ontology object).

Definition 64 Letw € 2, ando € Q) , then
IsType : Q x Q@ — BOO is defined as
IsType(w,o0) = {

EntityContains : 2 x Q — BOQO is defined as

true if Jx € Ny A o € types(x)
false else

true if o € types(w)

false else and

EntityContains(w,0) = {

As you can see from the definition above, the expres&ianityContains(w, o) is
equivalent to the expressiaoviot(Empty(Select(IsTypes o), Nuw)))-

For applying the predicatsTypeonto a set of entities, for example asking whether
an entityw € () associates within its types set at least one ontology object of set
O C 0, the following query expression has to be evaluated:

Exists(O, IsTypepy,.s))-

Moreover, the EMMO Algebra defines two selection predicate concerning an en-
tity’s attribute values. The operatéfasAttribute takes two entities as input values,
and returns true, if the set of the attribute values of the first specified entity contains an
attribute-value-pair such that its attribute (represented by an ontology object) is equal
the second specified input entity.

Definition 65 Letw € €, ando € (, then
HasAttribute : Q x Q — BOO with

true if 3z € attributes(w) o= mi(x)

HasAttribute(w, o) = { False else

The operatofi as AttV alue is more specific than the operatbius Attribute. It takes

two entitiesw ando, and a predicate as input values, and returns true, if entity
contains within its attributes set an attribute-value pair whose attribute (represented by
an ontology object) is equal entityand, additionally, whose value satisfy the predicate

p-

Definition 66 Letw,o € 2, andp € PRE, then

HasAttValue : x Q x PRE — BOQO is defined as

true if Jx € attributes(w)
HasAttValue(w,o,p) = (0 =m(z) A p(ma(x)))
false else

Connectors consist of a media profile and a media selector. Media profiles represent
media data. A media profile encompasses low-level metadata describing the media
data along with its storage location being described by its media instance. The follow-
ing three operators define predicates related to an entity’s media profile. The operator
HasMediaProfile returns true, if the specified media profile is described by a con-
nector of the specified entity.

36 EMMA Compendium

Definition 67 Letw € Q, andmp € MP, then
HasMediaProfile : Q x MP — BOO with
true if Jee Oy mp= MediaProfile(c)

HasMediaProfile(w, mp) = { False else

The operatoi asM ediaProfileV alue is more specific concerning the condition de-
scribed by the specified predicate. The operdfars M ediaProfileV alue defines

three input parameter, i.e. an entity a string values, and a predicatg, and returns

true, if the entityw associates a media profile, whose set of metadata encompasses a
name-value pair, with the name being egsi@nd the value satisfying the condition
described by the specified predicate

Definition 68 Letw € Q,s € STR, andp € PRE then
HasMediaProfileValue : Q@ x STR x PRE — BOO with

true if dece Oy,
3k € Metadata(MediaProfile(c))
(mi(k) = s A p(ma(k)))

false else

HasMediaProfileValue(w, s,p) =

The operatotH asM edialInstance takes two input parameter - the entityand the
stringd. It returns true, if entityw associates at least one media instance that is equal
d.

Definition 69 Letw € ©, andd € URI U RMD, then
HasMedialnstance : Q x URI URMD — BOQO with

true if dce Oy,
HasMediaInstance(w,d) = d = MediaInstance(MediaProfile(c))
false else

Media selectors described within an entity’s connector specify the media data repre-
sented by the media profile according to their textual, spatial, and temporal selection.
In this way, a media selector delineates a value describing the kind of selection, and
further specifies a set of parameters specifying the kind of selection in more detail.
The following two operators define selection predicates related to entity’s media selec-
tors. The operatof asMediaSelector returns true, if the specified media selector is
described by a connector of the specified entity.

Definition 70 Letw € ©, andms € MS, then
HasMediaSelector : Q x MS — BOO with

true if Jee C, ms= MediaSelector(c)

HasMediaSelector(w, ms) = { False else

The operatorH asM ediaSelectorValue is more concerned about media selector's
specified parameters. Similar to the operdiars M edia Pro fileV alue, the operator
HasMediaSelectorV alue takes three input values - an entity a string values, and

a predicatep -, and returns true if entityw associates a media selector, whose set of
parameters encompasses a name-value pair, with a name beings edhl value
satisfying the condition described by the specified predigate

Definition 71 Letw € Q,s € STR, andp € PRE then
HasMediaSelectorValue : Q x STR x PRE — BOO with

EMMA Compendium 37

true if dce Cy,
3k € Parameter(MediaSelector(c))
(mi(k) = s A p(ma()))

false else

HasMediaSelectorValue(w, s, p) =

The operator HasMediaWithValue is a combination of the two operators
HasMediaProfileValue and HasM ediaSelectorV alue. Assuming a user is only
interested in some information about the attributes specifying the media data, but the
user does not necessarily know, whether this information is stored within the media
profile or the media selectors, then the operatas M ediaWithV alue allows him to

query the attribute information without knowing such model specific information.

Definition 72 Letw € Q,s € STR, andp € PRE then
HasMediaWithValue : Q x STR x PRE — BOO with

HasMediaWithV alue(w, s,p) =
HasMediaSelectorValue(w, s,p) V HasMediaProfileValue(w, s, p)

The operatoiContainsNode is concerned about the nodes of an EMMO. It returns
true, if at least one entity belonging to the specified set of entities is contained in the
nodes of the specified entity.

Definition 73 Letw € QW € P(Q),then
ContainsNode : Q x P(2) — BOO is defined as

true if Jze (WNNy)

ContainsNode(w, W) z{ False else

The following four operators incorporate the predecessor and successor information of
an entity. Thus, the operat@rontainsDirect Predecessor takes an entityw and a

set of entitiedV as input values and returns true if at least one entitijy/ofs a direct
predecessor of entity.

Definition 74 Letw € Q, W € P(Q),then
ContainsDirectPredecessor :) x P(Q2) — BOO is defined as

true if Jze (WnNPR,)

ContainsDirect Predecessor(w, W) —{ False else

Again, from the definiton can be derived that the expressions
ContainsDirect Predecessor(w, W) and Not(Empty(W N P,)) are equiva-
lent.

The operatoiContainsPredecessor takes the same input values as the operator
ContainsDirect Predecessor, and returns true if at least one entityldf belongs to
the predecessors of entity.

Definition 75 Letw € 2, W € P(Q),then
ContainsPredecessor : Q x P(Q2) — BOO is defined as

true if Jx € (W N AllPredecessors(w))
false else

ContainsPredecessor(w, W) = {

Again, the equivalence of the two expressidtisntainsPredecessor(w, W) and
Not(Empty(W N All Precessors(w))) can be followed.

The operatoContainsDirectSuccesssor takes an entityw and a set of entities
W as input values, and returns true if at least one entity/ak direct successor af.

38 EMMA Compendium

Definition 76 Letw € Q, W € P(Q),then
ContainsDirectSuccesssor : Q x P(Q)) — BOO is defined as

true if Jzre (WNSy,)

ContainsDirectSuccessor(w, W) —{ False else

The operatorContainsSuccessor takes the same input values as the operator
ContainsDirectSuccessor, and returns true if at least one entity16f is successor
of entity w.

Definition 77 Letw € Q,W € P(£2),then
ContainsSuccessor : @ x P(2) — BOO is defined as

true if 3z e (W N AllSuccessors(w))

ContainsSuccessor(w, W) :{ False else

Again, the last two definitons show that the two expressions
ContainsDirectSuccessor(w, W) and Not(Empty(W N S,,)), as well as the two
expression§ontainsSuccessor(w, W) andN ot (Empty(W N AllSuccessors(w)))

are equivalent.

Entity’s attribute features represent a fixed set of primitive attribute-value pairs.
The operatorH asFeature is based on the extraction operattratures which re-
alizes the access to this set of primitive attribute-value pairs, and returns true, if there
exists an attribute-value pair with the specified name and a value fulfilling the condition
described by the specified predicate.

Definition 78 Letw € Q,s € STR, andp € PRE then
HasFeature : Q x STR x PRE — BOO is defined as

true if 3k € features(w)
HasFeature(w, s,p) = (m1(k) = s A p(ma(k)))
false else

In the EMMO model, an operation is described as tuple combining an ontology object
with an arbitrary mathematical function. The ontology object is acting as the oper-
ation’s designator, whereas the mathematical function represents the operation’s im-
plementation. The operatdfasDesignator returns true, if the first specified entity
describes an operation, whose designator (represented as ontology object) is equal the
second specified entity.

Definition 79 Letw, o € (2, then
HasDesignator : Q0 x @ — BOQO is defined as

true if o€ Designators(w)

HasDesignator(w, o) = { False else

The operatoid asImplementation takes an entityw and a mathematical function
f asinput value, and returns true, if entityspecifies an operation with the implemen-
tation f

Definition 80 Letw € Q,andf € FUN g, then
HasImplementation : Q x FUNy — BOQO is defined as

true if f € Implementations(w)

HasImplementation(w, f) = { False else

EMMA Compendium 39

Navigational Selection Predicates

The following section introduces the Navigational Selection Predicates. Basically all
operators defined in Section 4.2.2 will be used in the following definitions.

The operators ContainsTypedAsso, ContainsTypedAssoToSource and
ContainsTypedAssoToT arget are very similar and vary only in their direction of
navigation. Each of the three operators takes three entities ando as input value.

The operatoContainsTypedAsso returns true, if entity if of kind EMMO, entity o
is of kind ontology object, and entity (EMMQ@)contains an association of typevith
target or source entity equal.

Definition 81 Lete, w,o0 € Q, then
ContainsTypedAsso : 2 x) x — BOO is defined as

true if Jz € asso(e)
ContainsTypedAsso(e, w,0) = (0 € types(x) N w € {sz,t})
false else
The operatoiContainsTyped AssoToSource only returns true, if entity is an on-

tology object, and entity is an EMMO, which contains an association of typwith
source entity equal entity.

Definition 82 Lete, w, o0 € , then

ContainsTypedAssoToSource :) x Q x Q — BOQO is defined as

true if Jz € asso(e)
ContainsTyped AssoToSource(e, w,0) = (o € types(x) A w = s;)
false else

And finally, the operato€ontainsTyped AssoToT arget returns true, if entity is an
ontology object and entity is an EMMO which contains an association of typeith
target entity equal entity.

Definition 83 Lete, w € 2, ando € O, then

ContainsTypedAssoToTarget : 2 x Q x) — BOO is defined as

true if 3z € asso(e)
ContainsTypedAssoT oTarget(e,w,0) = (o € types(x) A w=1,)
false else

The above definitions manifest the equivalence of the expressions

ContainsTypedAsso(e, w, o) and Not(Empty(TypedAsso(e,w, o),
the expressions ContainsTypedAssoToSource(e,w, o) and
Not(Empty(TypedAssoToSource(e, w, o), and the ex-
pressions ContainsTypedAssoToTarget(e, w, o) and

Not(Empty(TypedAssoToTarget(e, w, o).

By specifying four entitieg, w, o, anda as input value, the following three oper-
ators constitute a more specific version of the just described operators. Thereby, the
operatorl sTypedAsso returns true, if entityz is an association of type which is
contained in the nodes of entity(requiring entitye to be an EMMO) and specifies
entity w either as target or as source entity.

Definition 84 Lete, w,0,a € Wm, then
IsTypedAsso : 2 x Q x Q x Q — BOO with

IsTypedAssole, w, 0,a) — { tfr;lie glsea € asso(e) A o € types(x) N w € {sq,tq}

40 EMMA Compendium

The operatot sT'yped AssoT oSource returns true, if entity: is an association of type
o contained in the nodes of entity (EMM®@)and specifying entityv as source entity.

Definition 85 Lete, w,0,a € £, then
IsTypedAssoToSource : 2 x Q x Q x Q@ — BOO with

IsTypedAssoToSource(e,w,0,a) = { thaLZe glsea € asso(e) A o € types(z) N w = s,

The operatof sTyped AssoT oT arget returns true, if entity: is an association of type
o which is contained in the nodes of entity (EMM@3and specifies entity as target
entity.

Definition 86 Lete,w,0,a € 2, then
IsTypedAssoToTarget : 3 x Q x Q x — BOO with

IsTypedAssoToTarget(e,w,o0,a) = { ?{Zie glsea € asso(e) A o € types(z) N w=t,

Again, the expressions IsTypedAsso(e,w,o0,a) and
Contains(a, TypedAsso(e, w, 0)), the expressions
1sTypedAssoToSource(e,w, o,a) andContains(a, TypedAssoToSource(e,w, o)),
and the expressions IsTypedAssoToTarget(e,w,o0,a) and
Contains(a, TypedAssoToTarget(e, w, 0)) are equivalent.

Both operatord sRightOf andIsLeftO f take three entities, w; andws, and
a regular path expressione REG as input value. The operatds RightO f returns
true, if entitye is an EMMO containing two entities;, andw-, such that the naviga-
tion along the regular path expressioin the right direction and with start point,
yields entityws.

Definition 87 Lete, wq,ws € Q andr € REG then
IsRightOf : Q x Q x Q x REG — BOQ is defined as

true if wo € JumpRight(e,wy,r)

IsRightO f (e, wy,wa,r) z{ False else

The operatod sLe ftO f returns true, if entitye is an EMMO containing two entities
w1, andwsy, such that the navigation along the regular path expressionthe left
direction and with start poinb; yields entityws.

Definition 88 Lete, w1, wy € Q andr € REG then
IsLeftOf : Q x Q x Q x REG — BOQ is defined as

¢ if we € JumpLeft(e,wr,
IsLeftOf(e, w1, ws,T) = { frﬁie elsew2 umpLerte)

Easily can be derived from the Definitions 87 and 88 that the two expressions
IsRightO f(e, w1, wa,) and Contains(ws(JumpRight(e,wy,7))), as well as the
two expressiondsLe ftO f(e, w1, ws,r) and Contains(wa(JumpLeft(e,w1,r)))
are equivalent.

The operatoContainsExpr is based on the operatdmchor Nodes. It takes an
entity e and a regular path expressioras input value, and returns true, if entity
is of kind EMMO containing a pair of nodes, such that each pair’s second node can
be reached starting from the pair’s first node by traversing along the specified regular
expression in right direction.

EMMA Compendium 41

Definition 89 Lete €), andr € REG then
ContainsExpr : Q x REG — BOO is defined as

true if Jwi,wy € Ny (wy,wy) € AnchorNodes(e,r)

ComﬁainSEICp?”(evr) = { false else

From Definition 89 follows the equivalence of the expressibastainsExpr(e,r)
and Not(Empty(Anchor Nodes(e,r)))

4.2.4 Constructors

In the following section, we introduce five so-called Constructors for EMMQsion,
Nest, Flatten, Dif ference, andIntersection. These operators have all in common
that they take at least one EMMO, and possibly other parameter as input value, and re-
turn exactly one EMMO as output value. The Constructors allow to combine and mod-
ify EMMOs, and thus to build new EMMOSs. On the basis of Constructors, the closure
property of the algebra can be accomplished. New EMMOs can either be constructed
through the combination, i.e. union, intersection, etc. of already existing EMMOSs, or
be constructed by nesting extracted data into a new EMMO knowledge structure, the
extracted data possibly arising from the result values of other operators of the algebra.
The Constructof/nion allows the unification of two different EMMOs. It takes
two EMMOs and a string as input values, and returns an EM¥Q, with a newly
generated uniqueid, whereby the nodes of the returned EMMO represent the union
of the nodes of the two specified input EMMOs. The EMMQ,,’s name is equal the
specified input string, and its source and target entities are specifie@eggesenting
the empty entity). Furthermore, the remaining attribute sets of the new EMMO, i.e.
the set of types, attribute values, connectors, predecessors, successors, features and
operations, are specified as empty sets.

Definition 90 Leteq,es € X, s € STR, then
Union: X x X x STR — X with Union(ey,ez2,5) = enery IS defined as

Oc,.., € OID
nene'w =S
emew — R emm”
Senew = tenew = €
N, .., = nodes(er) Unodes(ez) and

Ti(enew) =0 Vi€ {6,7,8,10,11,12,13}

To a given set of associations and a specified EMMO, the opefatot allows the
generation of a new EMMO containing exactly those relationships described by the
specified set of associations that are also contained in the specified EMMO. Thus, the
operatorNest takes an EMMOe, a set of associationd, and a string valug as

input value, and returns EMM@,.,, with a newly generated uniquéd. The nodes

of the new EMMO encompass all associations belonging to both, the specified set of
associationsA and nodes of EMMCe. Furthermore, the nodes of the new EMMO
contain all source and target entities of the before selected associations. The name
of the new EMMO is equal the specified input string, its source and target entities
are specified as (representing the empty entity), and its remaining attribute sets, i.e.
the set of types, attribute values, connectors, predecessors, successors, features and
operations, are specified as empty sets.

42 EMMA Compendium

Definition 91 Lete € X, A C A, ands € STR, then
Nest : 3 x P(A) x STR — £ with Nest(e, A,s) = enewy IS defined as

Oc,,.., € OID
Nepew — S

ke, .., = emm”
Senew = tenew =€

N,

€new

(ANnodes(e)) U {s; |z € ANnodes(e)}
U{t. | € ANnodes(e)} and

Ti(enew) =0 Vi€ {6,7,8,10,11,12,13}

To a specified EMMQ and strings, the operatoi'latten allows the construction of

a new EMMO whose set of hodes contains all entities, which are recursively contained

in EMMO e. The operatoii'latten takes an EMMQe and a strings as input value

and returns the EMMQ@,,.,, whose nodes encompass all entities that are recursively
contained in the specified EMMO. Similar to the constructors defined before, the new
EMMO is suited with a newly generated uniqui&!, nameds, defines its source and

target entities as empty entities, and assigns its remaining attribute sets, i.e. the set of
types, attribute values, connectors, predecessors, successors, features and operations,
as empty sets.

Definition 92 Lete € ¥ ands € STR, then
Flatten : ¥ x STR — ¥ with Flatten(e, s) = enewy IS defined as

Oe,,,,, € OID
nenew =S
e/new — b emm”
Sepew = tenew =€
N, .., = AllEncEnt(e) and

Tilenew) =0 Vi€ {6,7,8,10,11,12,13}

The operatoDi f ference allows the computation of the difference of two input EM-

MOs. The difference is determined by the difference of the set of nodes of the two
input EMMOs, such that the returned EMMO contains all nodes which are contained

in the first, but not in the second EMMO. Additionally, for each association that only
belongs to the nodes of the first EMMO, its source and target entity is added to the
nodes of the new EMMO. Again, the returned EMMQ.,, is supplied with a new
uniqueoid and labeled with the specified input stringdefines its source and target
entities as empty entity, and assigns its remaining attribute sets, i.e. the set of types, at-
tribute values, connectors, predecessors, successors, features and operations, as empty
sets.

Definition 93 Leteq, ey € ¥ ands € STR then

Difference : ¥ x ¥ x STR — ¥ with Dif ference(e1,e2,8) = enew IS
defined as

Oc,.., € OID
=35

erew = €M
Senow — T =€

€new

€new

EMMA Compendium 43

= nodes(ey)\nodes(ez) U {s; |z € asso(e1)\asso(ez2)}
U{ty | x € asso(e1)\asso(ez)} and

Ti(enew) =0 Vi€ {6,7,8,10,11,12,13}

€new

The operatoi ntersection allows the computation of the intersection of two specified
input EMMOSs. Thelntersection of two EMMOSs is determined by the intersection of

its contained nodes, such that the returned EMMO’s nodes are the entities contained in
both specified EMMOSs. Note, that by computing the intersection of two EMMOs, for
each association belonging to both EMMOs, we can deduce from entity’s definition,
that its source and target entity belong to the intersection as well. Similar to the four
other Constructors, the returned EMMZ).., is supplied with a new unique&d and is
labeled with the specified input string defines its source and target entities as empty
entity, and assigns its remaining attribute sets, i.e. the set of types, attribute values,
connectors, predecessors,successors, features and operations, as empty sets.

Definition 94 Letey, es € ¥ ands € STR then

Intersection : ¥ x ¥ x STR — X with Intersection(e1,ez,8) = €pew 1S
defined as

Ocpe,, € OID
Nepew = S
enew — b2 emm”
Senew = lenew = €
N, .., = nodes(e1) Nnodes(ez)

Ti(enew) =0 Vi€ {6,7,8,10,11,12,13}

44 EMMA Compendium

4.2.5 Join Operator

In the following section, we introduce the Join Operator for entities specifying how to
relate sets of entities in the query. The Join operator takes a set of entity sets, a set of
functions and a predicate as input value, and selects only those entities contained in the
first specified entity set, which fulfil a condition considering all specified input values.

In this way, the Join operator is a generalization of the Select operator accounting for a
join condition over not only one but a set of entity sets.

Definition 95 [Join]Leti € I = {1,...n},W; C Q, R; € SET, f; € FUN [y, g,
andp € PRE Mic; Ri then we define the operation

Join : Hiel P(Q) X Hie] FUN [Q,SET] X HDREgE@ n SET with

JOin(le’"7Wn7f17"'7fnap) =
{mi(wi, . wn) fwi € Wi A€ TAp(fi(wi)s ..., fu(wn))}

After computing the cartesian product of the set of all specified entity sets, the Join
operator evaluates for each tuple of the product whether the tuple which is achieved by
applying the specified sequence of functions to the sequence of elements in the tuple
fulfils the condition described by the predicate. If this is the case, the projection of the
first element of the original tuple value is selected.

Bibliography

[1] D. Brickely and R.V. Guha. Resource Description Framework (RDF) Vocabulary
Description Language 1.0: RDF Schema. W3C Working Draft, World Wide Web
Consortium (W3C), April 2002.

[2] ISO/IEC JTC 1/SC 29/WG 11. Information Technology — Multimedia Content
Description Interface — Part 5: Multimedia Description Schemes. ISO/IEC Final
Draft International Standard 15938-5:2001, International Organization for Stan-
dardization/International Electrotechnical Commission (ISO/IEC), October 2001.

[3] P.J Leach. UUIDs and GUIDs. Network Working Group Internet-Draft, The Inter-
net Engineering Task Force (IETF), February 1998.

45

	TR-NR: TR-2004301
	Month: June
	Year: 2004
	Title: The EMMA Algebra for EMMOs - Compendium
	Autoren: Sonja Zillner
	Email: sonja.zillner@univie.ac.at

