
 
 

 
 

Technical Report,                             , Dept. of Computer Science and Business Informatics, 
University of Vienna,                      ,              

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
              Dept. of Computer Science and Business Informatics 

              University of Vienna, Austria                               
                                        
                                                   
 
 



 



Contents

1 Introduction 1

2 What are InterTextual Threads (ITTs)? 3

3 The EMMO Model 5
3.1 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Logical Media Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Ontology Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 EMMOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 The EMMO Algebra (EMMA) 13
4.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Sets and Sequences . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Functions and Predicates . . . . . . . . . . . . . . . . . . . . 15
4.1.3 Select and Apply Operator . . . . . . . . . . . . . . . . . . . 17
4.1.4 Basic Predicates . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 EMMA’s Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Extraction Operators . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Navigational Operators . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Selection Predicates . . . . . . . . . . . . . . . . . . . . . . 33
4.2.4 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Join Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 44

i



ii EMMA Compendium



Chapter 1

Introduction

Enhanced Multimedia Meta Objects (EMMOs) are a novel approach of semantic mul-
timedia content modeling in content sharing and collaborative applications. EM-
MOs were developed within CULTOS, an EU-funded project, which was going from
September 2001 until October 2003 and carried by 11 partners from different EU coun-
tries, Israel and Estonia.

CULTOS addresses the needs of researchers in the domain of intertextual studies
for an integrated view on individual and culture-dependent perceptions of interrelation-
ships between artefacts. This knowledge about the interrelationships between artefacts
is gathered within so-calledInterTextual Threads (ITTs), i.e. complex knowledge struc-
tures that semantically interrelate and compare cultural artefacts such as literature, art-
works movies, etc. EMMOs provide an adequate foundation for the representation of
multimedia enriched ITTSs, thus paving the way for an Internet-based multimedia plat-
form for the collaborative authoring, managing, retrieving, exchanging, and presenting
of ITTs.

For the processing of EMMOs suitable querying facilities are required. For that
purpose, EMMA, an expressive query algebra that is adequate and complete with re-
gard to the EMMO model, was developed. EMMA offers a rich set of formally de-
fined, orthogonal query operators providing an adequate foundation for the realization
of powerful EMMO querying services.

The remainder of the paper is organized as follows. Chapter 2 gives an introduc-
tion to ITTs. Chapter 3 explains the basic ideas if EMMOs and provides its formal
definition. Chapter 4 provides a formal definition of the EMMA query algebra.

1



2 EMMA Compendium



Chapter 2

What are InterTextual Threads
(ITTs)?

A central task of researchers in intertextual studies is to discover the relationships
between pieces of literature and other works of art thereby elaborating InterTexual
Threads (ITTs). ITTs can be represented with graphical structures that may take a va-
riety of forms, ranging from spiders over centipedes to associative maps as shown in
Fig. 2.1.

The King of the 
Jews

retells

Jesus Christ 
Supperstar

by Jewison

Movie

Painting

The Yellow 
Christ

by Gauguin

resembles

Text

Figure 2.1: Simple InterTextual Thread

The example ITT depicted in the figure highlights several relationships of the movie
“Jesus Chris Superstar” by Norman Jewison to other works of art. It states that the
movie retells the text “The King of the Jews” and that the movie resembles the painting
“The Yellow Christ” of the famous painter Paul Gauguin.

When looking at the ITT, well-known techniques from the domain of knowledge
engineering like conceptual graphs and semantic nets immediately come to mind. In-
deed, the depicted graphical representation of the ITT bears a strong resemblance to
such techniques, though it lacks their formal rigidity. However, the complexity of ITTs
should not be underestimated. ITTs commonly make use of constructs that are very

3



4 EMMA Compendium

challenging from the perspective of knowledge representation, such asencapsulation
andreification of statements.

Encapsulation is intrinsic to ITTs because intertextual studies are not exact sci-
ences. Certainly, the cultural and personal context of a researcher will affect the kinds
of relationships between pieces of literature and works of art that are discovered and of
importance to the researcher. This inevitably results in differences and even contradic-
tions between different ITTs created by two different researchers on the same subject.
As there thus cannot be a global “truth”, every ITT is a “truth” in its own right that has
to be protected by an encapsulating impenetrable boundary. Moreover, differences on a
certain subject are highly interesting facts for researchers in intertextual studies. Con-
sequently, ITTs themselves can be relevant subjects of discourse and thus be contained
as first-class artefacts within other ITTs.

Reification of statements is yet another demanding construct frequently occurring
within ITTs. Since experts in intertextual studies extensively base their position on the
position of other researchers, statements about statements are common practice within
ITTs. Typically, reification is not just a one-step process: statements about already
reified statements are no rarity.



Chapter 3

The EMMO Model

To create a suitable foundation for the representation of ITTs, we have developed En-
hanced Multimedia Meta Objects (EMMOs).

An EMMO is a self-contained unit of multimedia content that encompasses three
aspects, which we would like to illustrate using Fig. 3.1 that depicts a sketch of an
EMMO representing the ITT of Fig. 2.1.

RenderImplementation

Render

resembles

retells

The King 
of the Jews

Text

Painting

The Yellow 
Christ

http://.../YellowChrist.jpg

Connector 3

java.lang.String

Paul Gauguin

Creator

Movie Jesus Christ 
Superstar 

Timestamp -> 2003-04-09-20:10:12

Properties

java.lang.String

Norman Jewison

Director

Jesus Christ

http://.../KingJews.pdf

Connector 2

http://.../Superstar.avi

Connector 1

Figure 3.1: EMMO “Jesus Christ”(ejesus)

1. The media aspect:An EMMO aggregates the media objects of which the multi-
media content consists. In the figure, we see that the depicted EMMO contains
the avi video “Superstar.avi”, the pdf document “KingJews.pdf”, and the JPEG
image “YellowChrist.jpg”. Containment of media objects can be realized either
by inclusion, i.e., the raw media data is embedded within an EMMO, or by ref-
erence via an URI, in cases where embedding media data is not feasible.

5



6 EMMA Compendium

2. The semantic aspect:An EMMO further encapsulates semantic associations be-
tween its contained media objects by means of a graph-based model similar to
conceptual graphs. Hence, an EMMO constitutes a unit of expert knowledge
concerning the multimedia content. In the example figure, it is stated that the me-
dia objects contained within the EMMO are digital manifestations of Jewison’s
movie “Jesus Christ Superstar”, the text “The King of the Jews”, and Gauguin’s
painting “The Yellow Christ”. Also, the interpretation of the author of the orig-
inal ITT has been remodeled: “Jesus Christ Superstar” retells “The King of the
Jews” and resembles “The Yellow Christ”. The model used for semantic associ-
ations is expressive: it is, e.g., possible to establish references to other EMMOs
and to reify associations.

3. The functional aspect:An EMMO offers operations for dealing with its content
which applications can invoke. In the figure, the depicted EMMO is associated
with one operation for rendering the EMMO. The operation might return a pre-
sentation of the EMMO in different formats, such as SMIL and SVG.

EMMOs have further desirable characteristics. They can beserializedinto a bundle
that completely encompasses all three aspects. Thus, an EMMO istransferablein its
entirety between different EMMO providers, including its contained media objects,
semantic associations between these objects, and functionality. Moreover,versioning
supporthas been a central design objective: all the constituents of an EMMO can be
versioned, thereby paving the way for the distributed,collaborative constructionof
EMMOs.

In the following, we describe and formally define the EMMO model and illustrate
how the model can be used to build and represent multimedia-enhanced ITTs. We
begin by introducing the concept ofentitieswhich constitute an abstract notion sub-
suming the different constituents of the EMMO model (3.1). We then define the four
concrete specializations of entities, namelylogical media partsrepresenting media ob-
jects, ontology objectsrepresenting concepts of an ontology,associationsmodeling
binary relationships between entities, andEMMOsthemselves which are aggregations
of semantically related entities (3.2 – 3.5).

3.1 Entities

Before we start with a formal definition of the abstract notion of entities, we clarify
some basic symbols required for the definitions to follow:

Definition 1 (Symbols) Let Γ denote the set of all logical media parts,Θ the set
of all ontology objects,Λ the set of all associations,Σ the set of all EMMOs, and
Ω = Γ ∪Θ ∪ Λ ∪ Σ the set of all entities.

Furthermore, letMS be the set of all media selectors,MP the set of all media
profiles, andOP be the set of all operations.

Finally, let OID be the set of all universal unique identifiers,STR the set of all
strings,OBJ the set of all objects,URI the set of all uniform resource identifiers,
RMD the set of all raw media data, andFUN the set of all functions.

Based on these common symbols, the definition of entities is formulated below:



EMMA Compendium 7

Definition 2 (Entity) An entity w ∈ Ω is a thirteen-tuple
w = (ow, nw, kw, sw, tw, Tw, Aw, Cw, Nw, Pw, Sw, Fw, Ow), where ow ∈ OID
denotes the unique object identifier (OID) ofw, nw ∈ STR the name ofw,
kw ∈ {”lmp”, ”ont”, ”asso”, ”emm”} the kind ofw, sw ∈ Ω ∪ {ε} the source and
tw ∈ Ω ∪ {ε} the target entity ofw with ε 6∈ Ω stating that such an entity is undefined,
Aw ⊆ Θ × OBJ the attribute values,Tw ⊆ Θ the types,Cw ⊆ MS × MP the
connectors,Nw ⊆ Ω the nodes,Pw ⊆ Ω the predecessors,Sw ⊆ Ω the successors,
Fw ⊆ STR × OBJ the features, andOw ⊆ OP the operations ofw. The following
constraints hold for all entities:

∀w1, w2 ∈ Ω : ow1 = ow2 −→ w1 = w2 (3.1)

∀w, v ∈ Ω : v ∈ Pw ∨ v ∈ Sw −→ kw = kv (3.2)

According to the definition, an entityw is globally and uniquely identified by its
OID ow as ensured by Constraint (3.1). Since we have chosenow to be a universal
unique identifier (UUID) [3], OIDs can easily be generated even in a distributed sce-
nario like the CULTOS project. As UUIDs are not really useful to humans, an entity
can be augmented with a human readable namenw which is a string. The kindkw

serves to identify whether an entity is either a logical media part, an ontology object,
an association, or an EMMO.

An entityw may further have an arbitrary number of typesTw. Types are concepts
taken from an ontology, so for instance, an entity might be an instantiation of the con-
cepts ”text” and ”movie”; another might instantiate the concept ”painting”, etc. By
attaching types, an entity gets meaning and is classified in an application-dependent
ontology. In the EMMO model, types are represented as ontology objects and thus
constitute entities themselves.

An entity can additionally be described by an arbitrary number of attribute values
Aw. Attribute values are simple attribute-value pairs with the attribute being a concept
of an application-dependent ontology (similar to types represented by an ontology ob-
ject in the EMMO model) and the value being an arbitrary object. With attribute values,
it is for instance possible to state that a movie has been directed by Norman Jewison
by attaching the attribute value ”director=Norman Jewison” to the entity representing
that movie in the EMMO model. The attribute ”director” would be an ontology ob-
ject and the value ”Norman Jewison” would probably be a string value. The rationale
behind representing attributes as concepts of an ontology and not just as simple string
identifiers is that this allows to express constraints on the usage of attributes within the
ontology, e.g., which entity types attributes are applicable to.

As already mentioned, the CULTOS project intends to develop a distributed plat-
form allowing researchers in intertextual studies to work collaboratively on ITTs. In
such an environment, different versions of their work will accrue not only due to the
temporal evolution of a researcher’s viewpoints but also due to concurrent work of
different reseachers on the same ITTs. Since different versions of ITTs are highly in-
teresting facts to researchers, it is important to be able to trace these versions and to
interrelate them within other ITTs. The EMMO model takes account of this need for
versioning by allowing any entityw to have an arbitrary number of direct preceding
versionsPw and direct succeeding versionsSw. A version ofw is again an entity of
the same kindkw, as expressed by Constraint (3.2). Treating an entity’s versions as



8 EMMA Compendium

entities on their own has several benefits: on the one hand, entities constituting ver-
sions of other entities have their own globally unique OID. Hence, different versions
concurrently derived from one and the same entity at different sites can easily be dis-
tinguished without synchronization effort. On the other hand, different versions of an
entity can be interrelated just like any other entities allowing to establish comparative
relationships between entity versions as desired in intertextual studies.

The featuresFw of an entityw represent a fixed set of primitive attribute-value
pairs. They have been included in the EMMO model as it might be necessary to aug-
ment entities with further attributes, e.g., time-stamps or status information, in an im-
plementation of the model.

The remaining elements and sets given by the definition – the source and target
entitiessw andtw, the connectorsCw, the nodesNw, the operationsOw – are only rel-
evant for certain kinds of entities. Therefore, we defer their explanation to the sections
to follow as they become relevant.

3.2 Logical Media Parts

Logical media parts are entities serving to represent the media objects or parts of me-
dia objects of which multimedia content consists at a logical level within the EMMO
model. When modeling a multimedia-enhanced ITT as an EMMO, logical media parts
address the cultural artefacts that are subject of discourse within the ITT, for example,
pieces of literature, movies, paintings, etc. In order to relief authors from the burden of
having digital representations of the artefacts to be treated at hand before they can start
building an ITT, special care has been taken to decouple logical media parts from any
existing physical representation. In fact, one can talk about Gauguin’s painting “The
Yellow Christ” and find intertextual relationships to other (art)works without owning a
JPG image showing that painting.

However, if an author focuses on the difference between, e.g., a movie of “Jesus
Christ Superstar” as seen on television and the corresponding cd recording, the televi-
sion broadcast and the cd recording will become two distinct media objects on a logical
level and thus have to be represented by two different logical media parts. If nothing of
this kind has to be expressed, a single logical media part will suffice for representing
“Jesus Christ Superstar”.

Definition 3 formally introduces logical media parts:

Definition 3 (Logical media part) A logical media partl ∈ Γ is an entity withkl =
”lmp” ∧ sl = tl = ε ∧ Nl = Ol = ∅.

It is important that the definition does not restrict the set of connectorsCl of a
logical media partl, which has been defined to exist for all entities in Definition 2,
to an empty set: logical media parts not only model media objects at a logical level
but are additionally able to maintain connections to media data representing these ob-
jects. Thereby, logical media parts provide the media aspect of multimedia content
represented with the EMMO model.

Connectors (see Definition 2) consist of a media profile and a media selector. Media
profiles, in accordance to the media tool set of MPEG-7 [2], represent media data. A
media profile combines low-level metadata describing the media data, e.g., the storage
format, with its storage location – a media instance in MPEG-7 terminology. A media
instance can either address the location of media data by means of an URI or it may
directly embed the media data. The ability to embed media data allows to combine



EMMA Compendium 9

media data and multimedia content described with the EMMO model based on these
media into single, indivisible units.

Definition 4 formally captures media profiles and media instances in the EMMO
model.

Definition 4 (Media profile) A media profilemp = (imp, Mmp) ∈ MP is described
by its media instanceimp ∈ URI ∪ RMD and its metadataMmp ⊆ STR ×OBJ .

Media selectors contained in connectors along with media profiles can address parts
of the media data represented by the profile according to textual, spatial, and temporal
criteria. For example, it should be possible to address a scene in a digital video starting
from second 10 and lasting until second 30 without having to extract that scene and to
put it into a separate file using a video editing tool.

Definition 5 introduces media selectors.

Definition 5 (Media selector) A media selectorms = (kms, Pms) ∈ MS is de-
scribed by its kindkms ∈ {”spatial”, ”textual”, ”temporal”, . . . } and by its param-
etersPms ⊆ STR ×OBJ .

Example 1 shows how the three cultural artefacts occurring in the sketch of the
EMMO named ”Jesus Christ” in Figure 3.1 can be represented as individual logical
media parts in the EMMO model. In the example, the logical media parts have been
labeledl0, l1, andl2. The connector of the logical media partl2 references the upper left
corner of the JPG image file located at the URI “http:// . . ./YellowChrist.jpg ”
which is expressed by the media profilemp2 in combination with the spatial selector
ms2.

Example 1

l0 =(”a3564”, ”Jesus Christ Superstar”, ”lmp”, ε, ε, {omovie},
{(odirector, Norman Jewison)}, {(ms0,mp0)}, ∅, ∅, ∅,
{(”Timestamp”, 2003-04-09-20:10:12), . . .}, ∅)

l1 =(”a7655”, ”The King of the Jews”, ”lmp”, ε, ε, {otext},
∅, {(ms1,mp1)}, ∅, ∅, ∅, ∅, ∅)

l2 =(”b4567”, ”The Y ellow Christ”, ”lmp”, ε, ε, {opainting},
{(ocreator, Paul Gauguin)}, {(ms2,mp2)}, ∅, ∅, ∅, ∅, ∅)

mp0 =(”http://.../Superstar.avi ” , {(format, avi), . . .})
ms0 =(”full”, ∅)
mp1 =(”http://.../KingJews.pdf ” , {(format, pdf), . . .})
ms1 =(”full”, ∅)
mp2 =(”http://.../YellowChrist.jpg ” , {(format, jpg), . . .})
ms2 =(”spatial”, {(startpoint, (0, 0)), (endpoint, (50, 50))})



10 EMMA Compendium

3.3 Ontology Objects

Ontology objects are the kind of entities that represent concepts of an ontology. As al-
ready explained, ontology objects among others serve to designate the types of entities
or the attributes of attribute values attached to entities.

In the CULTOS project, the experts in intertextual studies have defined an ontology
featuring the concepts necessary to represent ITTs within the EMMO model. As we
have not developed an ontology language for the EMMO model yet, we follow the
pragmatic approach of defining the concepts of the CULTOS ontology in an external
ontology language such as RDF Schema [1] and letting the ontology objects reference
these concepts.

Definition 6 formally introduces ontology objects:

Definition 6 (Ontology object) An ontology objecto ∈ Θ is an entity withko =
”ont” ∧ so = to = ε ∧Co = No = Oo = ∅.

Example 2 illustrates ontology objects again using the sketch of an EMMO of Fig-
ure 3.1. The ontology objectsoresembles andoretells represent the types of the two
associations contained in Fig. 3.1, i.e., “resembles” and “retells”. The ontology objects
omovie, otext andopainting model the types of the three logical media parts depicted,
and the ontology objectsodirector andocreator label the attribute-value pairs of the log-
ical media partl0 andl1. The ontology objectorender finally represent the designator of
the operation the sketched EMMO offers (these will be explained later in conjunction
with EMMOs).

Example 2

omovie =(”c3456”, ”Movie”, ”ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)
odirector =(”c4516”, ”Director”, ”ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

otext =(”c1162”, ”Text”, ”ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)
opainting =(”c2356”, ”Painting”, ”ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)
ocreator =(”c2333”, ”Creator”, ”ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

oresembles =(”c5627”, ”resembles”, ”ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)
oretells =(”c4111”, ”retells”, ”ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)
orender =(”c3336”, ”Render”, ”ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

3.4 Associations

Associations represent binary directed semantic relationships between entities. Thus,
they provide the semantic aspect of multimedia content represented on the basis of
the EMMO model. In the CULTOS project, they are in particular used to model the
intertextual relationships between cultural artefacts within ITTs. Since associations
are “first-class” entities, they can take part in associations as well facilitating the reifi-
cation of statements in the EMMO model. As we have explained before, expressing



EMMA Compendium 11

statements about statements is a very essential part of the work of experts in intertextual
studies when analyzing literature and building their ITTs.

Definition 7 formally describes associations:

Definition 7 (Association) An associationa ∈ Λ is an entity withka = ”asso” ∧
sa 6= ε ∧ ta 6= ε ∧ Ca = Na = Oa = ∅ ∧ |Ta| = 1.

According to the definition, the kind of semantic relationship represented by an as-
sociation is defined by the association’s type which is – like the types of other entities –
an ontology object representing a concept taken from an ontology. Different from other
entities, however, an association is only allowed to have one type as it can represent
only a single kind of relationship. Each association specifies exactly one source and
one target entitysa andta, and thus establishes a directed binary relationship between
those two entities.

Example 3 shows the representation of the two associations given in the example
EMMO of Figure 3.1.

Example 3

a0 =(”g7490”, ”a0”, ”asso”, l0, l1, {oretells}, ∅, ∅, ∅, ∅, ∅, ∅, ∅)
a1 =(”w4399”, ”a1”, ”asso”, l0, l2, {oresembles}, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

3.5 EMMOs

The EMMO is the core component of our model. It is a container that groups arbitrary
entities into a single unit. An EMMO can thus address the media and semantic aspects
of multimedia content by aggregating media data (i.e., logical media parts) with seman-
tic data (i.e., associations and ontology objects). The functional aspect of multimedia
content can be addressed as well by augmenting the EMMO with arbitrary operations
that process the content.

In CULTOS, EMMOs act as the containers carrying multimedia-enhanced ITTs. In
such a container, the cultural artefacts covered by an ITT are captured as logical media
parts, media data digitally representing these artefacts are attached to the media parts
via connectors, the intertextual relationships are modeled by means of associations,
and concepts from the domain of intertextual studies are covered by ontology objects.
The possibility to attach operations to an EMMO is exploited, among others, to provide
ITTs with the ability to render themselves as SMIL and SVG presentations.

Since EMMOs are “first-class” entities, EMMOs can be contained within other
EMMOs just like any other entity. As a consequence, a structure of hierarchically-
nested EMMOs can be established. With regard to the representation of ITTs by the
means of EMMOs, this is of particular advantage: it is possible to interrelate two dif-
ferent EMMOs representing two different ITTs with two different points of view on a
subject within an EMMO representing a third ITT. In that manner, contradictions and
relevant differences between both viewpoints can be expressed which is important for
intertextual studies.

Definition 8 formally captures EMMOs:



12 EMMA Compendium

Definition 8 (EMMO) An EMMOe ∈ Σ is an entity withke = ”emm”, andse =
te = ε ∧ Ce = ∅, such that

∀x ∈ Ne : kx = ”asso” −→ {sx, tx} ⊆ Ne (3.3)

As shown in the formal description above, an EMMOe constitutes a container of
other entities because its set of nodesNe is not restricted to an empty set, as it is the
case with the other kinds of entities in the EMMO model. These contained entities
form a connected graph structure when they become interlinked by associations within
the EMMOe.

Only entities belonging to the EMMO’s nodes can be specified as source or target
entity of an association (Constraint (3.3)). In this way, it is guaranteed that established
relationships are fully contained in an EMMO.

Definition 8 unveils a further difference between EMMOs and other kinds of en-
tites: an EMMO is more powerful in that it can have operations attached, because its
set of operationsOe is not necessarily empty. In the EMMO model, an operation is ba-
sically a tuple combining an ontology object acting as the operation’s designator with
the operation’s implementation, which can be any mathematical function. It is the in-
tention of this modeling to achieve a high flexibility by allowing to attach arbitrarily
complex operations to EMMOs. In a concrete implementation of the model, an opera-
tion could be realized as a function in the underlying programming language with the
full expressiveness of that language at disposal. An operation could then reference this
function by means of a function pointer. We have modeled operation designators as
ontology objects to be able to express constraints on operations within ontologies, e.g.,
for which types of EMMOs an operation is available.

Definition 9 formally defines the notion of operations:

Definition 9 (Operation) An operationop = (dop, iop) ∈ OP is described by its
designatordop ∈ Θ and its implementationiop ∈ FUN .

To conclude the formal definition of the EMMO model, Example 4 assembles the
EMMO ”Jesus Christ” (ejesus) sketched in Figure 3.1 from the entities of the other
examples. The functionRenderImplementation implement the “Render” operation
that is attached to EMMO ”Jesus Christ”. For example,RenderImplementation

could be a mathematical function that takes an EMMO as its input and transforms it to
an appropriate SMIL presentation, i.e., to a string that follows the SMIL syntax.

Example 4

ejesus =(”f4672”, ”Jesus Christ”, ”emm”, ε, ε, ∅, ∅, ∅, ∅,
{l0, l1, l2, a0, a1}, ∅, ∅, ∅, {(orender, RenderImplementation )})



Chapter 4

The EMMO Algebra (EMMA)

In the following sections, we will first provide some preliminary definitions. Subse-
quently, we will introduce the five classes of EMMA operators.

4.1 Preliminary Definitions

The central constructs in the EMMO model and algebra are described by sets and
sequences. In this section, we introduce all relevant mathematical definitions that will
be used in the following.

4.1.1 Sets and Sequences

A set is a collection of distinct objects and can either be described by enumerating its
members, e.g.{x1, x2, . . . , xn} or by specifying a condition, e.g.{x |x ⊆ A}. We
denote sets with capital letters, and elements with lower case letters, e.gA = {x, y, z}.
|A| stands for the cardinality of setA and is equal to the number of elements inA, and
P(A) with P(A) = {x |x ⊆ A} defines the powerset of setA. Finally, ∅ denotes the
empty set, i.e. a set with no members, andSET the set of all sets.

Further, we denote the set of all Strings bySTR , the set of all natural numbers by
N, the set of all real numbers byR, and the Boolean set, i.e.{true, false} by BOO .

We use the well-known operations for computing the cardinality, union, intersec-
tion and difference of sets.

Definition 10 [Set Operations] Let A, B, andAi, i ∈ I be arbitrary sets, then
card(A) = |A| defines the cardinality of set A,⋃

(A,B) = A ∪B := {x |x ∈ A ∨ x ∈ B} defines the union of A and B, and⋃
i∈I Ai := {x | ∃i ∈ I x ∈ Ai} defines the union of the setsAi, i ∈ I.⋂
(A,B) = A ∩B := {x |x ∈ A ∧ x ∈ B} defines the Intersection of A and B,⋂
i∈I Ai := {x | ∃i ∈ I x ∈ Ai} defines the Intersection of the setsAi, i ∈ I, and

\(A,B) = A\B := {x |x ∈ A ∧ x /∈ B} defines the Difference of A and B.

Example 5For all i ∈ I = {1, 2, . . . , n}, let Ai = {0, i}, then⋃
(A1, A2) = A1 ∪A2 = {0, 1, 2} and

⋃
i∈I Ai = {0} ∪ I,⋂

(A1, A2) = A1 ∩A2 = {0} and
⋂

i∈I Ai = {0}, and
\(A1, A2) = A1\A2 = {1}.

13



14 EMMA Compendium

A sequence is an ordered collection of objects and is defined as follows:

Definition 11 [Cartesian Product and Sequence] Let A, B, andAi, i ∈ I be arbi-
trary sets, thenA×B := {(x, y) |x ∈ A ∧ y ∈ B} denotes the cartesian product over
A and B, and

∏
i∈I Ai := {x : I −→

⋃
i∈I Ai | ∀i ∈ I : x(i) ∈ Ai} ⊂ (

⋃
i∈I Ai)I de-

notes the cartesian product over the setsAi, i ∈ I. If for all i ∈ I Ai = A, we write∏
i∈I Ai := AI or

∏
i∈I Ai := A|I|

The elements of a cartesian product are called or tuples, and a sequence or tuple of
lengthn is calledn-sequence orn-tuple. The length of a sequence (tuple) is determined
by the number of its contained elements, i.e.∀x ∈

∏
i∈I Ai length(x) = |I|. The

set of all sequences of lengthn (n-sequences orn-tuples) is denoted bySEQ n , and
the set of all sequences (tuples) bySEQ .

Example 6For all i ∈ I = {1, 2, . . . , n} let A = {0, 1}, then
A1 = {0, 1},
A2 = {(0, 0), (0, 1), (1, 0), (1, 1)},
A3 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)},
and so on.
Then, the set

⋃
i∈I Ai consists all sequences (tuples) of arbitrary length over elements

of the set{0, 1}. The length of each sequence (tuple)x ∈ Ak is k.

In order to retrieve some specific information of sequences, we need to define the
operation projection.

Definition 12 [Projection] LetI = {1, 2, . . . , n} and
∏

i∈I Ai be the cartesian prod-
uct over the setsAi.

• Let j ∈ I then

πj :
∏
i∈I

Ai −→ Aj with

πj(a1, a2, . . . , an) = aj

denotes thejth projection of the cartesian product
∏

i∈I Ai, and the return value
aj denotes projected sequence.

• Let J= {j1, . . . jk} ⊆ I and∀l < k jl < jl+1 then

πJ :
∏
i∈I

Ai −→
∏
i∈J

Ai with

πJ(a1, a2, . . . , an) = (aj1 , aj2 , . . . , ajk
)

denotes the projection of the cartesian product
∏

i∈I Ai onto the cartesian
product

∏
i∈J Ai, and the return value(aj1 , aj2 , . . . , ajk

) denotes projected se-
quence.



EMMA Compendium 15

Example 7LetA1 = {1, 2, 3},A2 = {11, 12, 13}, andA3 = {21, 22, 23} then∏
i=1,2,3

Ai = {(1, 11, 21), (1, 11, 22), (1, 11, 23), (1, 12, 21), (1, 12, 22), (1, 12, 23),

(1, 13, 21), (1, 13, 22), (1, 13, 23), (2, 11, 21), (2, 11, 22), (2, 11, 23),
(2, 12, 21), (2, 12, 22), (2, 12, 23), (2, 13, 21), (2, 13, 22), (2, 13, 23),
(3, 11, 21), (3, 11, 22), (3, 11, 23), (3, 12, 21), (3, 12, 22), (3, 12, 23),
(3, 13, 21), (3, 13, 22), (3, 13, 23), }

with π1((2, 11, 23)) = 2 and π{1,2}((2, 11, 22) = (2, 11).

4.1.2 Functions and Predicates

Functions and predicates will be of importance in the following definitions. A function
basically describes a mapping from a so-called domain set to a so-called range set.
Predicates are functions with boolean return type.

Definition 13 [Functions] LetA,B ∈ SET andf : A −→ B be a function, then we
call D(f) = A the domain (set) andR(f) = B the range (set) of function f.FUN A

denotes the set of all functions withD(f) = A, FUN [A,B] the set of all functions with
D(f) = A andR(f) = B, andFUN = {FUN A |A ∈ SET } the set of all functions.

Example 8 The functionf : R × R −→ R with f(x, y) = x + y has the
domainD(f) = R× R, the rangeR(f) = R, and belongs to the setFUN [R×R,R].

Definition 14 [Predicates] LetA ∈ SET , then we callp ∈ FUN [A,BOO ] a predicate.
PRE A = FUN [A,BOO ] denotes the set of all predicates with domain A, andPRE =
{PRE A |A ∈ SET } the set of all predicates.

Example 9The predicatep : R× R −→ BOO with

p(x, y) =
{

true if x + y < 0
false else

has rangeR(p) = R× R and belongs to the setPRE R×R.

Assuming the domain of the function is specified as cartesian product, i.e. the
function’s input values are represented by tuples. By restricting the domain of the
function onto a projection of the cartesian product (see Definition 12), we define the
projection of functions.

Definition 15 [Projection of Functions] LetI = {1, . . . , n}, f ∈ FUN ∏
i∈I Xi

and

• let j ∈ I, x ∈ Xj and
(a1, . . . , aj−1, aj+1, . . . , an) ∈

∏
i∈I\{j} Xi.



16 EMMA Compendium

Then the function

f[a1,...,aj−1,$,aj+1,...,an] : Xj −→ SET with

f[a1, ... ,aj−1,$,aj+1,...,an](x) = f(a1, . . . , aj−1, x, aj+1, . . . , an)

is called projection of f ontoXj .

• let k ≤ n, {j1, . . . jk} ⊆ I and ∀l < k jl < jl+1 with
(xj1 , . . . , xjk

) ∈
∏

i∈{j1,...jk} Xi.
and(a1, . . . , aj1−1, aj1+1, . . . , ajk−1, ajk+1, . . . , an) ∈

∏
i∈I\{j1,...jk} Xi.

Then the function

f[a1,...,aj1−1,$1,aj1+1,...,ajk−1,$k,ajk+1,...,an] :
∏

i∈{j1,...jk}

Xi −→ SET with

f[a1,...,aj1−1,$1,aj1+1,...,ajk−1,$k,ajk+1,...,an](xj1 , . . . , xjk
) =

f(a1, . . . , aj1−1, xj1 , aj1+1, . . . , ajk−1, xjk
, ajk+1, . . . , an)

is called projection of f onto
∏

i∈{j1,...jk} Xi.

Example 10 Let f ∈ FUN R4 with f(v, w, x, y) = v · w − x · y2 then the
function

f[4,$,7,2] ∈ FUN R with

f[4,$,7,2](x) = 4 · x− 7 · 22 = 4x− 28

defines a projection off ontoR, and the function

f[4,$1,7,$2] ∈ FUN R2 with

f[4,$1,7,$2](x, y) = 4x− 7y2

defines a projection off ontoR2.

As predicates are a specific type of function, the projection of predicates are defined
in the same way.

In the following definitions, two ways of joining functions will be of importance:
Firstly, the product and secondly, the composition of two functions. The product of
two functions is based on the product of the two functions’s domain values, and returns
the product of the corresponding output values.

Definition 16 [Product of Functions] Let x ∈ X, y ∈ Y , andf ∈ FUN X ,
g ∈ FUN Y , then

f ⊗ g : X × Y −→ SET × SET with

f ⊗ g (x, y) = f(x)× g(y)

the Product of the functionf andg.

The composition of two functions determines that two functions are applied sequen-
tially, such that the output values of the first function serve as input value for the second
function.



EMMA Compendium 17

Definition 17 [Composition of Functions] Letf, g ∈ FUN , A,B ∈ SET with
f : A −→ B and g : B −→ C, then

g ◦ f : A −→ C with

g ◦ f(a) = g(f(a))

the Composition of function f and g.

Example 11 Let f ∈ FUN [R×R,R] with f(x, y) = x + y and g ∈ FUN [R,R]

with g(x) = 2x, then

f × g ∈ FUN [R3,R2] with

f × g(x, y, z) = (x + y, 2 · z) such that

f × g(3, 5, 7) = (8, 14)

defines the product of the functionsf andg, and

g ◦ f ∈ FUN [R2,R] with

g ◦ f(x, y) = g(f(x, y)) = g(x + y) = 2 · (x + y) such that

g ◦ f(3, 4) = 2 · (3 + 4) = 14

defines the composition of functiong andf ,

As predicates are specific functions, the composition of predicates, i.e. the compo-
sition of function and predicates is defined in the same way.

4.1.3 Select and Apply Operator

TheSelect, andApply operators are very important for the definition of the EMMO
Algebra, as they allow to combine already defined operators and predicates of the al-
gebra, and thus allow to build more complex ones.

The operationSelect returns to a specified predicate and a specified set, all ele-
ments of the specified set, which fulfill the condition of the specified predicate.

Definition 18 [Select] LetA andp ∈ PRE , then we define the operation

Select : PRE × SET −→ SET with

Select(p, A) =
{

not defined if p /∈ PRE A

{x |x ∈ A ∧ p(x)} if p ∈ PRE A

Example 12Let p ∈ PRE N with p(x) =
{

true if x > 7
false else

then Select(p, N) = {8, 9, 10, . . .}.

The operationApply takes a function and a set as input value, and returns a set,
which encompasses all return values when applying the function to each element con-
tained in the specified set.

Definition 19 [Apply] Let A andf ∈ FUN , then we define the operation

Apply : FUN × SET −→ SET with

Apply(f,A) =
{

not defined if f /∈ FUN A

{f(x) |x ∈ A} if f ∈ FUN A



18 EMMA Compendium

Example 13Let f ∈ FUN N with f(x) = 3x
then Apply(f, N) = {3, 6, 9, 12, . . .}

The operationElements can either be based on a set or a sequence, and returns a
set. If the operation is based on a set, it returns the set of all elements, that are contained
in any of the specified set’s elements. If the operation is based on a sequence, it returns
a set encompassing all tuples of the specified sequence.

Definition 20 [Elements] LetA andAi, i ≥ 1 be arbitrary sets,

Elements : SET −→ SET with
Elements(A) =

⋃
X∈A X = {x | ∃X ∈ A ∧ x ∈ X}

Elements : SEQ −→ SET with
Elements((a1, a2, ....)) =

⋃
i≥1 πi((a1, a2, ....)) = {a1, a2, ...}

Example 14Let A = N, B = {{0, 1}, {0}, {1, 2}, {3}}, and(3, 6, 3, 8) ∈ SEQ then

Elements(A) = A,

Elements(B) = {0, 1, 2, 3} and

Elements((3, 6, 3, 8)) = {3, 6, 8}

4.1.4 Basic Predicates

In the following, some basic predicates will be defined. First, we will specify some
logical predicates, then some generic comparison and testing predicates.

The logical predicateNot takes one boolean value as input value and returns true,
if its input value is false, otherwise true.

Definition 21 Letx ∈ BOO , then

Not : BOO −→ BOO with Not(x) =
{

true if x = false
false else

The logical predicateAnd takes two boolean values as input values and returns true, if
both specified input values are true, otherwise false is returned.

Definition 22 Letx ∈ BOO , then

And : BOO × BOO −→ BOO with And(x, y) =
{

true if x ∧ y
false else

The logical predicateOr takes two boolean values as input values and returns true, if
at least one of the specified input values is true, and returns false if both input values
are false.

Definition 23 Letx ∈ BOO , then

Or : BOO × BOO −→ BOO with Or(x, y) =
{

true if x ∨ y
false else



EMMA Compendium 19

The predicateExists returns true, if the specified set contains an element which satis-
fies the condition described by the specified predicate, otherwise false is returned.

Definition 24 LetA ∈ SET , andp ∈ PRE then
Exists : SET × PRE −→ BOO is defined as

Exists(A, p) =
{

true if ∃x ∈ A p(x)
false else

The predicateForall returns true, if all elements of the specified set satisfy the condi-
tion described by the specified predicate, otherwise false is returned.

Definition 25 LetA ∈ SET , andp ∈ PRE then
Forall : SET × PRE −→ BOO is defined as

Forall(A, p) =
{

true if ∀x ∈ A p(x)
false else

In the following, we will introduce a set of generic predicates -Contains,
Equal, Empty, Subset andSubsetEq, Superset andSupersetEq, Smaller and
SmallerEq, and finallyBigger andBiggerEq, - which allow to compare and exam-
ine arbitrary sets and objects.

The predicateContains investigates whether a specified object is contained in a
specified set, in which case the boolean value true is returned. Otherwise, false is
returned.

Definition 26 Letx ∈ OBJ , andA ∈ SET then

Contains : OBJ × SET −→ BOO is defined as

Contains(x,A) =
{

true if x ∈ A
false else

The predicateEquals returns true, if two specified objects are equal, otherwise, false
is returned.

Definition 27 Leta, b ∈ OBJ ,then

Equal : OBJ ×OBJ −→ BOO with Equal(a, b) =
{

true if a = b
false else

The predicateEmpty returns true, if the specified set is an empty set, i.e. contains no
elements. Otherwise false is returned.

Definition 28 LetA ∈ SET then

Empty : SET −→ BOO with Empty(A) =
{

true if A = ∅
false else

The predicatesSubset andSubsetEq take two sets as input values and return true,
if the first set is subset of the second set, or respectively, the first set is equal or subset
of the second set. Otherwise, false is returned.

Definition 29 LetA,B ∈ SET

• Subset : SET × SET −→ BOO is defined as

Subset(A,B) =
{

true if A ⊂ B
false else

• SubsetEq : SET × SET −→ BOO is defined as

SubsetEq(A,B) =
{

true if A ⊆ B
false else



20 EMMA Compendium

The predicatesSuperset and SupersetEq are the counterparts to the predicate
Subset, andSubsetEq. Each of it takes as well two sets as input values and returns
true, if the first set is superset of the second set, or respectively, the first set is equal or
superset of the second set. Otherwise, false is returned.

Definition 30 LetA,B ∈ SET

• Superset : SET × SET −→ BOO is defined as

Superset(A,B) =
{

true if A ⊃ B
false else

• SupersetEq : SET × SET −→ BOO is defined as

SupersetEq(A,B) =
{

true if A ⊇ B
false else

The predicateSmaller takes two real numbers as input values and returns true, if the
first number is smaller than the second number. Otherwise, false is returned. Similar,
the predicateSmallerEq takes two real numbers as input values and returns true, if the
first number is equal or smaller than the second number. Otherwise, false is returned.

Definition 31 Letx, y ∈ R

• Smaller : R× R −→ BOO is defined as

Smaller(x, y) =
{

true if x < y
false else

• SmallerEq : R× R −→ BOO is defined as

SmallerEq(x, y) =
{

true if x ≤ y
false else

The predicatesBigger and BiggerEq are the counterparts to the predicates
Smaller andSmallerEq. Each of them takes again two real numbers as input values
and returns true, if the first number is bigger than the second number, or respectively is
equal or bigger than the second number. Otherwise, false is returned.

Definition 32 Letx, y ∈ R then

• Bigger : R× R −→ BOO is defined as

Bigger(x, y) =
{

true if x > y
false else

• BiggerEq : R× R −→ BOO is defined as

BiggerEq(x, y) =
{

true if x ≥ y
false else



EMMA Compendium 21

4.2 EMMA’s Operators

In the following subsections, we define the operators of the query algebra EMMA.
EMMA basically consists of five different kinds of operators: Extraction Operators (see
Sect. 4.2.1) allow the access to each entity’s attribute information, Navigational Oper-
ators (see Sect. 4.2.2) enable the navigation along the graph structure of an EMMO,
Selection Predicates (see Sect. 4.2.3) permit to choose entities with specific character-
istics, Constructors (see Sect. 4.2.4) facilitate the construction of new EMMOs, and the
Join Operator(see Sect. 4.2.5) relates several entities or EMMOs with a join condition.

The algebra’s operators are kept very simple and orthogonal. Through the combi-
nation of modular operators, complex queries can be formulated. The combination of
operators can be either realized by sequentially applying the operators or by combining
the operation’s return value via basic set operations as defined in Sect. 4.1. In this way
the orthogonality of the algebra can be realized.

4.2.1 Extraction Operators

An entity represents a thirteen-tuple. The Extraction Operators provide means to query
all attributes of the thirteen-tuple. The attributes of an entity are specified as ele-
ments and as set values. The operators for extracting an entity’s element attributes
are very simple and straightforward, whereas the operators for accessing an entity’s set
attributes can become quite elaborate. This is due to the fact, that some of an entity’s set
attributes describe quite complex structures, e.g. the set of nodes allows to nest entities
in arbitrary depth, and the set of successors or predecessors describe a branching struc-
ture of succeeding and preceding entity versions. The extraction operators defined in
the following provide means to access the hierarchically nested structure established by
the encapsulation of EMMOs, as well as the branching structure conveying an entity’s
different versions.

The following six definitions describe very basic operators for accessing the at-
tributes oid, name, kind, target and source, and types of an entity. As the operators are
realized by a simple projection, the definition is very straightforward and does not need
further explanation.

An entity can be identified by its oid, which is an universal unique identifier. The
operatoroid returns to a given entity its universal unique identifier (OID ).

Definition 33 [Accessor for entity’s oid] Letw ∈ Ω, then
oid : Ω −→ OID is defined as oid(w) = ow.

An entity can be identified by its name, which is a human readable name. The operator
nametakes an entity and returns the string value representing the entity’s name.

Definition 34 [Accessor for entity’s name] Letw ∈ Ω, then
name : Ω −→ STR is defined as name(w) = nw

Entity’s kind information specifies whether an entity is a logical media part, an ontol-
ogy object, an association, or an EMMO. The operatorkind takes an entity and returns
the string ”lmp” in case of the entity being a logical media object, the string ”emm” in
case of an EMMO, ”asso” in the case of the entity being an association, and ”ont” in
the case of an ontology object.

Definition 35 [Accessor for entity’s kind] Letw ∈ Ω, then
kind : Ω −→ {”lmp”, ”emm”, ”asso”, ”ont”} is defined as kind(w) = kw



22 EMMA Compendium

Only associations specify its source and target entity, and thus describe the semantic
relationship between those two entities. All entities except the association entity, spec-
ify their source and target entity as a empty entity, represented by the symbolε. The
following two operatorssource andtarget access entity’s source and target entity, and
either return the specified or the empty entity.

Definition 36 [Accessor for entity’s source entity] Letw ∈ Ω, then
source : Ω −→ Ω ∪ {ε} is defined as source(w) = sw

Definition 37 [Accessor for entity’s target entity] Letw ∈ Ω, then
target : Ω −→ Ω ∪ {ε} is defined as target(w) = tw

Through the Types attribute, each entity associates an arbitrary number of ontology ob-
jects describing its real world concept. The operatortypes takes an entity and retrieves
the set of all its attached ontology objects:

Definition 38 [Accessor for entity’s Types] Letw ∈ Ω, then
types : Ω −→ P(Θ) is defined as types(w) = Tw

Each entity can additionally be qualified by an arbitrary number of attribute values,
that are simple attribute-value pairs with the attribute being an ontology object and the
value being an arbitrary object. To a given entity the operatorattributes returns the
set of associated attribute-value pairs:

Definition 39 [Accessor for entity’s Attributes] Letw ∈ Ω, then
attributes : Ω −→ P(Θ×OBJ ) is defined as attributes(w) = Aw

Logical media parts are the only entities that model media objects on a logical level
as well as maintain connections to the media data representing these objects. Thus, all
other entities, i.e. EMMOs, ontology objects and associations, specify the connectors
as empty set. The connectors link a logical media part to its set of existing physical
representations. Each physical representation, the so-called connector, is manifested by
a media profile and a media selector. A media profile is defined by its media instance
and its set of metadata. Hereby, each media instance either describes the location of, or
directly embeds the media data, and the metadata constitutes a set of string-object pairs.
A media selector specifies a kind value and a parameter set. The kind attribute can take
the values “spatial”,“textual”, “temporal” etc., and the parameter set encompasses any
arbitrary string-object pair.

The following operators allow the access to the information described by connec-
tors. Firstly, the operationconnectors takes an entity and returns its set of connec-
tors, which is a set of media selector and media profile pairs. The two operators
MediaSelector andMediaProfile return to a given connector, the corresponding
media selector, and respectively the corresponding media profile. The two operators
MediaInstance andMetadata both take a media profile as input value, and return
the corresponding media instance, respectively the corresponding set of metadata. And
finally, the two operatorskind andParameter return to a given media selector the
corresponding kind value, respectively the corresponding set of parameters.

Definition 40 [Accessor for entity’s Connectors] Letw ∈ Ω, ms ∈ MS, and
mp ∈MP , then

connectors : Ω −→ P(MS ×MP ) is defined as
connectors(w) = Cw



EMMA Compendium 23

MediaSelector : MS ×MP −→MS with
MediaSelector(ms,mp) = π1(ms,mp) = ms

MediaProfile : MS ×MP −→MP with
MediaProfile(ms,mp) = π2(ms,mp) = mp

MediaInstance : MP −→ URI ∪ RMD with
MediaInstance(mp) = π1(mp) = imp

Metadata : MP −→ P(STR ×OBJ ) with
Metadata(mp) = π2(mp) = Mmp

kind : MS −→ {”spatial”, ”textual”, ”temporal”, . . . } with
kind(ms) = π1(ms) = kms

Parameter : MS −→ P(STR ×OBJ ) with
Parameter(ms) = π2(ms) = Pms

As described in Section 3, EMMOs are the only entities that can contain other entities.
EMMO’s contained entities are described by the attribute nodes. The operatornodes
enable the access to the set of all entities contained in the specified EMMO, whereas the
operatorslmp, emm, asso, andont return all contained entities of a specific kind, i.e.
lmp returns the set of all contained logical media parts,emm the set of all contained
EMMOs, asso the set of all associations, andont the set of all contained ontology
objects. All five described operators return the empty set, if the specified input entity
is not of kind EMMO.

Definition 41 [Accessor for entity’s Nodes] Letw ∈ Ω, then

nodes : Ω −→ P(Ω) is defined as nodes(w) = Nw

lmp : Ω −→ P(Γ) is defined as lmp(w) = Nw ∩ Γ
emm : Ω −→ P(Σ) is defined as emm(w) = Nw ∩ Σ
asso : Ω −→ P(Λ) is defined as asso(w) = Nw ∩ Λ
ont : Ω −→ P(Θ) is defined as ont(w) = Nw ∩Θ

An EMMO serves as container establishing a graph structure of entities. The contained
entities are either interconnected via binary directed semantic relationships described
by associations or represent isolated entities. Thus, beside the isolated entities, the
smallest building block of the described graph structure is the semantic relationship
established by an association pointing to its source and target entity. To a specified
entity (which is supposed to be an EMMO), the following two operatorsSources and
Targets allow the access to the set of all source and the set of all target entities being
involved in an relationship contained within a specified EMMO.

Definition 42 [Accessor for the source and target entities] Letw ∈ Ω, then

Sources : Ω −→ P(Ω) with Sources(w) = {s | ∃x ∈ asso(w) : s = sx}
Targets : Ω −→ P(Ω) with Targets(w) = {t | ∃x ∈ asso(w) : t = tx}

For accessing the directed graph structure of an EMMO, which is described by its
contained and possibly connected entities, a navigational access is required. The op-
erators for navigating an EMMO’s graph structure use an entity within an EMMO as
input value and return all entities that are semantically linked to this selected entity:



24 EMMA Compendium

Although specifying two entities as input value, the operatorGetSourceToAsso only
returns a reasonable result, if the first entity constitutes an EMMO and the second entity
an association within this EMMO. In such a case the association’s source entity, other-
wise the empty set is returned. Respectively, the operatorGetTargetToAsso returns
to a specified EMMO and a specified association within this EMMO, the association’s
target entity. If the first input entity is no EMMO, or second entity does not belong to
the associations of the EMMO, the empty set is returned.

Definition 43 Lete, a ∈ Ω, then

GetSourceToAsso : Ω× Ω −→ Ω ∪ {∅} with
GetSourceToAsso(e, a) = {sa | a ∈ asso(e)} and

GetTargetToAsso : Ω× Ω −→ Ω ∪ {∅} with
GetTargetToAsso(e, a) = {ta | a ∈ asso(e)}

The following two accessors facilitate the navigation of the graph structure by returning
the connecting associations: Applied to an EMMO, the operatorGetAssoToSource
locates all associations, whose source entity is equal the second specified input entity.
Similarly, the operatorGetAssoToTarget finds in an EMMO all associations, whose
target entity is equal the second specified input entity. Again, if the first specified input
entity is not of kind EMMO and the second specified input entity is no association,
then the empty set is returned.

Definition 44 Lete, w ∈ Ω, then

GetAssoToSource : Ω× Ω −→ P(Λ) with
GetAssoToSource(e, w) = {x ∈ asso(e) |w = sx} and

GetAssoToTarget : Ω× Ω −→ P(Λ) with
GetAssoToTarget(e, w) = {x ∈ asso(e) |w = tx}

EMMOs constitute a structure of hierarchically nested EMMOs, i.e. an EMMO can
contain entities and other EMMOs, and those EMMOS can again contain entities and
other EMMOs, and so on. We use the following manner-of-speaking:

• If entity w1 is contained in EMMOw’s nodes, then we sayw1 is contained in
EMMOw at first level, andw is parent EMMO ofw1.

• If and only if there is a sequence ofk entities starting with EMMOw and going
until entity wk , such that each entity in sequence is the parent EMMO of the
subsequent entity, then we say thatentity wk is contained in EMMOw at kth

level.

• If entity w is contained in EMMOe at arbitrary level, then we say thatentityw
is recursively contained or is encapsulated in EMMOe

The following operators are defined by means of induction overN and allow to navigate
the encapsulation hierarchy of nested EMMOs. Although their input value is defined on
the level of entities, they only return a reasonable result, if they are applied to EMMOs,
otherwise the empty set is returned. Thus, the operatorEncEntreturns to a specified
EMMO e and a natural numbern the set of EMMOe’s nodes atnth level. The operator
AllEncEnt, which defines a unification of the operatorEncEntreturns to a specified
EMMO all its recursively contained or encapsulated entities.



EMMA Compendium 25

Definition 45 Lete ∈ Ω, then

EncEnt : Ω× N −→ P(Ω) with EncEnt(e, 1) = Ne

LetEncEnt(e, n) be defined, then
EncEnt(e, n + 1) = {x ∈ Ω | ∃y ∈ EncEnt(e, n) ∩ Σ ∧ x ∈ Ny}
and

AllEncEnt : Ω −→ P(Ω) with AllEncEnt(e) =
⋃

i≥1 EncEnt(e, i)

The following operatorsEncEmmand AllEncEmmdescribe a special application of
the above operators, allowing the access of the set of encapsulated EMMOs. As you
can see from the definition, the operators are more or less an application of already
existing operators. In this way, one could argue that those two operators are redundant.
Nevertheless, we decided to include the two operators in the EMMO Algebra, as they
seem to be used very frequently in the user queries.

In the same way, the operatorEncEmmreturns to a specified EMMOe and natural
numbern the set of EMMOs contained in EMMOe at nth level, and the operator
AllEncEmmreturns to a specified EMMOe all its recursively contained or encapsulated
EMMOs.

Definition 46 Lete ∈ Ω, then

EncEmm : Ω× N −→ P(Ω) with EncEmm(e, 1) = emm(e)

LetEncEmm(e, n) be defined, then
EncEmm(e, n + 1) = {x ∈ Ω | ∃y ∈ EncEmm(e, n) ∧ x ∈ emm(y)}
and

AllEncEmm : Ω −→ P(Ω) with AllEncEmm(e) =
⋃

i≥1 EncEmm(e, i)

As you can see from the above definitions, for all entitiesw and all nat-
ural numbers n the operation EncEmm(w, n) is equal to the operation
Select(Contains[( $ ,EncEnt(e,n))],Σ), and the operationAllEncEmm(w) is equal
to the operationSelect(Contains[( $ ,AllEncEnt(w))],Σ).

Each entityw points to an arbitrary number of preceding versionsPw and to an
arbitrary number of succeeding versionsSw. As an entityw’s preceding or succeeding
version can again specify an arbitrary number of preceding and succeeding versions,
all those specified versions are called predecessor, or respectively successor ofw. Only
the entities directly belonging toPw, andSw are called the direct predecessors, respec-
tively direct successors ofw. The operatorspredecessors andsuccessors retrieve the
direct predecessors, and respectively direct successors of the specified entity:

Definition 47 [Accessor for entity’s Predecessor and Successor] Letw ∈ Ω, then

predecessors : Ω −→ P(Ω) is defined as predecessors(w) = Pw

successors : Ω −→ P(Ω) is defined as successors(w) = Sw

Based on these operators, the operators for accessing all predecessors will be defined
inductively. But beforehand, we will introduce some manner-of-speaking:

• Entity w′ is called direct predecessor of entityw, if w′ ∈ predecessors(w).

• Entity w′ is callednth predecessor of entityw, if there is a sequence ofn-1
entities, with each entity in the sequence representing the direct predecessor of
its subsequent entity.



26 EMMA Compendium

• Entity w′ is called predecessor of entityw, if there exists a natural numbern
such thatw′ is nth predecessor of entityw.

The operatorPredecessors takes an entityw and a natural numbern as input, and
returns entityw’s set ofnth predecessors, and the operatorAllPredecessors, which
unifies operatorPredecessors’s return values, returns to a specified entity the set of
all its predecessors:

Definition 48 Letw ∈ Ω, then

Predecessors : Ω× N −→ P(Ω) with
Predecessors(w, 1) = predecessors(w)

LetPredecessors(w, n) be defined, then
Predecessors(w, n + 1) =
{x ∈ Ω | ∃y ∈ Predecessors(w, n) x ∈ predecessors(y)}
and

AllPredecessors : Ω −→ P(Ω) with
AllPredecessors(w) =

⋃
i≥1 Predecessors(w, i)

In the same way, the operator for accessing entity’s successor versions will be defined:
The operatorSuccessors takes an entityw and a natural numbern as input, and returns
entityw’s set ofnth successors, and the operatorAllSuccessors returns to a specified
entity the set of all its successors:

Definition 49 Letw ∈ Ω, then

Successors : Ω× N −→ P(Ω) with
Successors(w, 1) = successors(w)

LetSuccessors(w, n) be defined, then
Successors(w, n + 1) =
{x ∈ Ω | ∃y ∈ Successors(w, n) x ∈ successors(y)}
and

AllSuccessors : Ω −→ P(Ω) with
AllSuccessors(w) =

⋃
i≥1 Successors(w, i)

Any entity can be augmented by additional attributes, which are joined in the features
Fw of an entityw. The operatorfeatures allows the access to this set of primitive
attribute-value pairs:

Definition 50 [Accessor for entity’s Features] Letw ∈ Ω, then
features : Ω −→ P(STR ×OBJ ) with features(w) = Fw

EMMOs also can have operations attached. As described before, an operation con-
sists of a designator and an implementation. The designator is specified as ontology
object, whereas the implementation can be any mathematical function. The operator
operations retrieves the set of all operations, i.e. the setOw, attached to the entityw,
whereas the operatorDesignators returns the set of designators to entityw’s set of
operations, the operatorImplementations the set of implementations to entityw’s set
of operations, and the operatorImpToName retrieves to a specified entity and spec-
ified designator represented as ontology object, the mathematical function describing
the corresponding implementation.



EMMA Compendium 27

Definition 51 [Accessor for entity’s Operations] Letw ∈ Ω, then
operations : Ω −→ P(OP ) with operations(w) = Ow

Designators : Ω −→ P(Θ) with
Designators(w) = {o ∈ Θ | ∃x ∈ Ow o = π1(x)}
Implementations : Ω −→ P(FUN Σ) with
Implementations(w) = {f ∈ FUN Σ | ∃x ∈ Ow f = π2(x)} and

ImpToName : Ω×Θ −→ FUN Σ with
ImpToName(w, o) = {f ∈ FUN Σ | ∃x ∈ Ow o = π1(x) ∧ f = π2(x)}

So far, we have specified that an EMMO can carry any kind of functionality. The next
step is to define an operation, which allows to execute the functions being attached
to an EMMO. The operatorExecute takes an EMMO, a function and a sequence of
parameters as input value and returns the result value of the execution of the function
with the specified EMMO and sequence of parameters as input values. If the operator
Execute is applied to an entity which is not of kind EMMO, or the specified operation
does not belong to the operations of the specified entity, respectively EMMO, or the
sequence of parameters constitutes no adequate input value for the specified operation,
the empty set is returned.

Definition 52 [Execute] Lete ∈ Ω, op ∈ OP , ands ∈ SEQ
Execute : Ω×OP × SEQ −→ SET

Execute(e, op, s) =
{

π2(op)(e, s) if op ∈ operations(e) ∧ (e, s) ∈ D(π2(op))
∅ else

Sometimes, we might only be interested in some very specific relationships contained
in an EMMO. For example, we might be interested in the relationship which is de-
scribed by an association of a specific type. The operatorAssoOfType allows the
access to such specific associations. The operator takes two entitiese and o as in-
put value, and returns all associations of typeo that are contained ine. Through the
specification of association’s source and target entity, an association incorporates the
complete information of the requested relationship. Note, that if the first specified en-
tity e is not of kind EMMO and the second specified entityo is not of kind ontology
object, the empty set is returned.

Definition 53 Lete, o ∈ Ω, then

AssoOfType : Ω× Ω −→ P(Λ) with
AssoOfType(e, o) = {x ∈ asso(e) | o ∈ types(x)}

4.2.2 Navigational Operators

In the following section, we first introduce theOne-Step Navigational Operators.
Then, we provide the definition for theRegular Path Expressionsover ontology ob-
jects, and, finally, we specify theRegular Navigational Operators.

One-Step Navigational Operators

EMMOs represent containers of entities. Those entities can be connected by as-
sociations establishing a graph structure. By attaching ontology objects, associa-
tions are classified by concepts of the ontology. Thus, EMMOs describe a graph
structure with edges being classified by ontology objects. In order to allow a



28 EMMA Compendium

single-step navigation along the graph structure of EMMOs, we define the One-step
NavigatorsTypedAssoToSource, TypedAssoToTarget, and TypedAsso. The operator
TypedAssoToSourcetakes three entitiese, w, ando as input value and returns the set of
all associations of typeo contained in EMMOe, whose source entity is equal entityw.
The operatorTypedAssoToTargettakes again three entitiese, w, ando as input value
and returns the set of all associations of typeo contained in EMMOe, whose target
entity is equal entityw. Similar, the operatorTypedAssotakes three entitiese, w, and
o as input value and returns the set of all associations of typeo contained in EMMO
e, whose source or target entity is equal entityw. For providing the orthogonality of
operators, similar to the other EMMA operators, the three One-Step Navigator are de-
fined on entity level. But nevertheless, they only return a reasonable result, if the first
specified entity is of kind EMMO and the third specified entity is of kind ontology
object; otherwise, the empty set is returned.

Definition 54 [One-Step Navigator]Fore, w, o ∈ Ω, the operation

TypedAssoToSource : Ω× Ω× Ω −→ P(Λ) with
TypedAssoToSource(e, w, o) = {x ∈ AssoOfType(e, o) |w = sx}

TypedAssoToTarget : Ω× Ω× Ω −→ P(Λ) with
TypedAssoToTarget(e, w, o) = {x ∈ AssoOfType(e, o) |w = ts}

TypedAsso : Ω× Ω× Ω −→ P(Λ) with
TypedAsso(e, w, o) = TypedAssoToTarget(e, w, o) ∪ TypedAssoToTarget(e, w, o)

Regular Navigational Operators

Regular Navigational Operators allow the navigation of any number of steps within an
EMMO’s graph structure. An EMMO encompasses a network of entities being con-
nected via associations. The syntax for describing a navigation path is provided by
Regular Path Expressions, which are specified in Definition 55. By defining the map-
ping of regular path expressions onto to sequences of ontology objects, the operators
JumpRight(Def. 56),JumpLeft(Def. 57), andAnchorNodes(Def. 58) determine the
semantic meaning of those syntactic expressions. As different associations can be la-
belled with the same ontology object, and additionally each navigation path can be
matched onto a set of sequences of ontology objects, the navigation path in general
describes multiple ways of navigation within the same specified EMMO.

Important to note is the fact, that theRegular Path Expressionsonly provide the
syntax for describing an navigation path; its semantic interpretation concerning the
navigation within an EMMO, is specified by the operatorsJumpRight, JumpLeft, and
AnchorNodes.

The expressive power of ontology languages strongly influenced the design of reg-
ular path expressions. As most ontology languages allow the description of a hierar-
chical structure of relationships, as well as allow the declaration of properties of rela-
tionships, e.g. inverse, symmetric, or transitive relationships, regular path expressions
provide means to reflect those constructs:

The simplest kind of regular path expressions is a single ontology object, whose
semantic meaning is the ontology object itself, the symbol “ε” referring to the empty
set, and the symbol “” referring to any arbitrary ontology object. The union operator
“ |” allows the combination of two regular path expressions reflecting that the corre-
sponding sequences of ontology objects can be treated as alternative versions. This
is important to cope with the hierarchical structure of relationships within an given



EMMA Compendium 29

ontology, such that a relationship’s subclass can be simply described as alternative ver-
sion. Furthermore, regular path expressions can be concatenated and be described as
optional. Moreover, both unary operators “+” and “∗” defines an iteration of path
expressions, which will be interpreted as iteration of the corresponding sequences of
ontology objects. This is important for the handling of transitive relationships. As-
suming one specifies the retelling relationship to e transitive, i.e. one specifies that a
retelling of a retelling of a story, is again a retelling of the original story. Thus, a re-
searcher asking for all objects constituting a retelling of another object, receives all
pairs of objects which can be connected by not only one, but any arbitrary sequence of
retelling relationships. Finally, with the unary operation “−” the inversion of regular
path expressions can be expressed. This is substantial for the processing of symmetric
relationships. Assuming the relationship ”is-parodied-by” constitutes the symmetric
version of the relationship ”parody-of”, and the two objects A and B are connected by
an ”is-parodied-by” relationship, then one can derive that object B and A are also con-
nected by a ”parody-of” relationship. The regular path expressionsoparody−of– and
ois−parodied−by can be labelled as equivalent, such that researchers asking for objects
being connected by a ”is-parodied-by” relationship, receive all objects being connected
by a ”is-parodied-by” relationship, as well as a ”parody-of” relationship.

Definition 55 [Regular Path Expression over ontology objects] Given a symbol set
S = {ε, ,+, ∗, ?, |, –, (, )}, an alphabetΨ = Θ ∪ S, andΨ∗ the set of words over
Ψ (finite strings over elements ofΨ). Then, we defineREG ⊆ Ψ∗ as the smallest set
with the following properties:

1. ∀o ∈ Θ : o ∈ REG

2. ε ∈ REG

3. ∈ REG

4. ∀r1, r2 ∈ REG : (r1 |r2) ∈ REG

5. ∀r1, r2 ∈ REG : r1r2 ∈ REG

6. ∀r ∈ REG : (r)? ∈ REG

7. ∀r ∈ REG : (r)+ ∈ REG

8. ∀r ∈ REG : (r)∗ ∈ REG

9. ∀o ∈ Θ : (o)– ∈ REG

REG denotes the set of regular path expression over ontology objects.

By defining the semantic interpretation of regular path expressions, the operators
JumpRight andJumpLeft specify the navigation along an EMMO’s graph struc-
ture. The navigation within an EMMO reflects the traversing of a sequences of edges
within the EMMO’s graph structure. Those edges are described by associations which
are classified by ontology objects. Thus, each sequence of ontology objects defines
uniquely one or more navigation paths within an EMMO. The operatorsJumpRight
andJumpLeft are basically the same and differ only in their direction of navigation.
They both specify a start nodew within an EMMOe, and a regular path expressionr
determining the navigation. By induction over the construction of regular path expres-
sion, the two operators define a mapping from regular path expressions to sets of se-
quences of ontology objects. As the names suggest, the operationJumpRight returns



30 EMMA Compendium

the set of all nodes in the specified EMMOe, that can be reached when starting from
entity w by traversing the sequence of labelled associations determined by the regular
path expressionr in the right direction. In this context, right direction expresses that
the the association are traversed from their source to their target entities.

This is appropriate in cases, the requesting user has specified the source entity of
an association as starting node. But assuming, the user has selected one particular text
document, and is now interested in all documents constituting a retelling of the selected
text. By specifying the selected document as start point of the navigation and the regu-
lar path expressionoretells∗ determining the navigation path, in this case the traversing
has to be accomplished in the left direction (as the selected document establishes the
target entity of a retelling association). The operatorJumpLeftreturns the set of all
nodes in an EMMOe, that can be reached when starting from entityw by travers-
ing the regular path expressionr in the left direction, meaning pointing from target
to source entity. Note, that again, in order to facilitate the combination of operators,
the following operators are defined on entity level, but only return a reasonable value,
when applied to EMMOs.

Definition 56 [JumpRight]Fore, w ∈ Ω, and a regular path expressionr ∈ REG , the
operation JumpRight : Ω× Ω× REG −→ P(Ω) is defined as follows:

1. ∀o ∈ Θ :

JumpRight(e, w, o) = {x ∈ Ne | ∃y ∈ AssoOfType(e, o)
∧ w = sy ∧ x = ty}

2. r = ε : JumpRight(e, w, ε) = {w |w ∈ Ne}

3. r = :

JumpRight(e, w, ) = {x ∈ Ne | ∃y ∈ asso(e)
∧ w = sy ∧ x = ty}

4. ∀r1, r2 ∈ REG with r = (r1 |r2) :

JumpRight(e, w, (r1 |r2)) =
⋃

x∈{r1,r2}

JumpRight(e, w, x)

5. ∀r1, r2 ∈ REG with r = r1r2 :

JumpRight(e, w, r1r2) =
⋃

x∈JumpRight(e,w,r1)

JumpRight(e, x, r2)

6. ∀r ∈ REG :

JumpRight(e, w, (r)?) =
⋃

x∈{r,ε}

JumpRight(e, w, x)

7. ∀r ∈ REG :

JumpRight(e, w, (r)+) =
⋃
n≥1

JRn(e, w, r)



EMMA Compendium 31

with JRn(e, w, r) defined by means of induction overN as follows:

JR1(e, w, r) = JumpRight(e, w, r)

JRn(e, w, r) =
⋃

x∈JRn−1(e,w,r)

JumpRight(e, x, r)

8. ∀r ∈ REG :

JumpRight(e, w, (r)∗) =
⋃

x∈{(r)+,ε}

JumpRight(e, w, x)

= JumpRight(e, w, (r)+) ∪ {w}

9. ∀o ∈ Θ :

JumpRight(e, w, (o)–) = {x ∈ Ne | ∃y ∈ AssoOfType(e, o)
∧ x = sy ∧ w = ty}

Definition 57 [JumpLeft]Fore, w ∈ Ω, and a regular path expressionr ∈ REG , the
operation JumpLeft : Ω× Ω× REG −→ P(Ω) is defined as follows:

1. ∀o ∈ Θ :

JumpLeft(e, w, o) = {x ∈ Ne | ∃y ∈ AssoOfType(e, o)
∧ x = sy ∧ w = ty}

2. r = ε : JumpLeft(e, w, ε) = {w |w ∈ Ne}

3. r = :

JumpLeft(e, w, ) = {x ∈ Ne | ∃y ∈ asso(e)
∧ x = sy ∧ w = ty}

4. ∀r1, r2 ∈ REG with r = (r1 |r2) :

JumpLeft(e, w, (r1 |r2)) =
⋃

x∈{r1,r2}

JumpLeft(e, w, x)

5. ∀r1, r2 ∈ REG with r = r1r2 :

JumpLeft(e, w, r1r2) =
⋃

x∈JumpLeft(e,w,r2)

JumpLeft(e, x, r1)

6. ∀r ∈ REG :

JumpLeft(e, w, (r)?) =
⋃

x∈{r,ε}

JumpLeft(e, w, x)

7. ∀r ∈ REG :

JumpLeft(e, w, (r)+) =
⋃
n≥1

JLn(e, w, r)



32 EMMA Compendium

with JLn(e, w, r) defined by means of induction overN as follows:

JL1(e, w, r) = JumpLeft(e, w, r)

JLn(e, w, r) =
⋃

x∈JLn−1(e,w,r)

JumpLeft(e, x, r)

8. ∀r ∈ REG :

JumpLeft(e, w, (r)∗) =
⋃

x∈{(r)+,ε}

JumpLeft(e, w, x)

= JumpLeft(e, w, (r)+) ∪ {w}

9. ∀o ∈ Θ :

JumpLeft(e, w, (o)–) = {x ∈ Ne | ∃y ∈ AssoOfType(e, o)
∧ x = ty ∧ w = sy}

As you can see from the last two definition, there is a clear connection between the
direction of navigation, and the inversion of ontology objects:
Given the ontology objectso and its symmetric counterpart(o)–, then

JumpRight(e, w, o) = JumpLeft(e, w, (o)–)

expressing, that the navigation in the right direction determined by one ontology ob-
jects, corresponds to the navigation in the left direction determined by its symmetric
counterpart.

The idea and design of the operatorAnchorNode is very similar to the operators
JumpRight, andJumpLeft. To a given EMMOe and a specified regular path ex-
pressionr, the operator retrieves all pairs of entities contained in EMMOe, that can
be connected by the regular path expressionr. Two entities can be connected by a
regular path expression, if the sequences of ontology objects determined by the regular
path expressions, refers to a sequence of associations connecting the two entities. A
sequence of associations connects two entities, if the first entity represent the starting
point from which the second entity can be reached by traversing the specified regular
path expression in the right direction.

Definition 58 [AnchorNodes]Fore ∈ Ω and a regular path expressionr ∈ REG the
operation AnchorNodes : Ω× REG −→ P(Ω× Ω) is defined as follows:

1. ∀o ∈ Θ with r = o :

AnchorNodes(e, o) = {(x, y) ∈ Ω× Ω | ∃a ∈ AssoOfType(e, o)
∧ x = sa ∧ y = ta}

2. r = ε :

AnchorNodes(e, ε) = {(x, x) |x ∈ Ne}

3. r = :

AnchorNodes(e, ) = {(x, y) ∈ Ω× Ω | ∃a ∈ asso(e)
∧ x = sa ∧ y = ta}



EMMA Compendium 33

4. ∀r1, r2 ∈ REG with r = (r1 |r2) :

AnchorNodes(e, (r1 |r2)) =
⋃

x∈{r1,r2}

AnchorNodes(e, x)

5. ∀r1, r2 ∈ REG with r = r1r2 :

AnchorNodes(e, r1r2) = {(x, y) | ∃z ∈ Ne ((x, z) ∈ AnchorNodes(e, r1)∧
(z, y) ∈ AnchorNodes(e, r2))}

6. ∀r ∈ REG :

AnchorNodes(e, (r)?) =
⋃

x∈{r,ε}

AnchorNodes(e, x)

7. ∀r ∈ REG :
AnchorNodes(e, (r)+) =

⋃
n≥1

ANn(e, r)

with ANn(e, r) defined by means of induction overN as follows:

AN1(e, r) = AnchorNodes(e, r)
ANn(e, r) = {(x, y) | ∃z ∈ Ne ((x, z) ∈ ANn−1(e, r)

∧ (z, y) ∈ AnchorNodes(e, r))}

8. ∀e ∈ REG :

AnchorNodes(e, (r)∗) =
⋃

x∈{(r)+,ε}

AnchorNodes(e, x)

9. ∀r ∈ REG :

AnchorNodes(e, (r)–) = {(π2(x), π1(x)) |x ∈ AnchorNodes(e, r))}

4.2.3 Selection Predicates

The selection predicates allow the selection of only those entities fulfilling a specific
characteristic. If an entity fulfils a specific characteristic, the corresponding selection
predicates returns the boolean value true. Thus, selection predicates can be joined
with theSelect operator (Def. 18), which again decides on the basis of the selection
predicate’s returned boolean value which entities of a given set to select.

We distinguish two different kinds of selection predicates: TheBasic Selection
Predicates, which are based on Extraction Operators (Sect. 4.2.1), and theNavigational
Selection Predicateswhich are based on the Navigational Operators (Sect. 4.2.2).

In the following section, we will first introduce Basic Selection Predicates, suc-
ceeded by the description of Navigational Selection Predicates.



34 EMMA Compendium

Basic Selection Predicates

Basic Selection Predicates are dealing with an entity’s attribute values (accessible by
Extraction Operators).

The selection predicateHasOidtakes an entityw and an oids as input value, and
returns true if entityw’s oid is equals, otherwise false is returned.

Definition 59 Letw ∈ Ω, ands ∈ OID , then

HasOid : Ω×OID −→ BOO is defined as
HasOid(w, s) = Equal(oid(w), s)

To a specified entityw and a specified strings, the selection predicateHasNamereturns
true, if entityw’s name is equal the strings.

Definition 60 Letw ∈ Ω, ands ∈ STR , then

HasName : Ω× STR −→ BOO with
HasName(w, s) = Equal(name(w), s)

The predicateIsOfKind returns true, if the specified entityw is of the kind described
by the specified string parameter.

Definition 61 Letw ∈ Ω, ands ∈ {”emm”, ”asso”, ”ont”, ”lmp”} , then

IsOfKind : Ω× {”emm”, ”asso”, ”ont”, ”lmp”} −→ BOO with
IsOfKind(w, s) = Equal(kind(w), s)

There is one selection predicates concerning the source and one selection predicate
concerning the target information of an entity. The operatorIsSourceToAssoreturns
true, if both, the specified entityw and the specified associationa are contained within
the nodes of entitye, and additionally,w is source entity ofa. Thus, for the operator
to return true, it is necessary that entitye is an EMMO, and entitya is an association
within EMMO e.

Definition 62 Lete, a, w ∈ Ω, then

IsSourceToAsso : Ω× Ω× Ω −→ BOO is defined as

IsSourceToAsso(e, a, w) =
{

true if a ∈ asso(e) ∧ w = sa

false else

As you can derive from the above definition, the expressionIsSourceToAsso(e, a, w)
is equivalent to the expressionContains(a,GetAssoToSource(e, w)) and equivalent
to the expressionEqual(GetSourceToAsso(e, a), w).

Correspondingly, the operatorIsTargetToAssoreturns true, if the specified entityw,
as well as the specified associationa are contained in EMMOe, and additionally, entity
w is target entity of associationa. Again the expressionIsTargetToAsso(e, a, w) is
equivalent to the expressionContains(a,GetAssoToTarget(e, w)) and equivalent
to the expressionEqual(GetTargetToAsso(e, a), w).

Definition 63 Lete, a, w ∈ Ω, then

IsTargetToAsso : Ω× Ω× Ω −→ BOO is defined as

IsTargetToAsso(e, a, w) =
{

true if a ∈ asso(e) ∧ w = ta
false else



EMMA Compendium 35

Furthermore, there are two selection predicates concerning an entity’s types informa-
tion. The operatorIsType returns true, if the specified entityw associates the specified
entityo within its types set (assuming that entityo is of kind ontology object). The op-
eratorEntityContains returns true, if the nodes of the specified entityw contain at
least one entity which encompasses entityo within its types set (assuming that entityo
is an ontology object).

Definition 64 Letw ∈ Ω, ando ∈ Ω , then

IsType : Ω× Ω −→ BOO is defined as

IsType(w, o) =
{

true if o ∈ types(w)
false else

and

EntityContains : Ω× Ω −→ BOO is defined as

EntityContains(w, o) =
{

true if ∃x ∈ Nw ∧ o ∈ types(x)
false else

As you can see from the definition above, the expressionEntityContains(w, o) is
equivalent to the expressionNot(Empty(Select(IsType[ $ ,o], Nw))).

For applying the predicateIsTypeonto a set of entities, for example asking whether
an entityw ∈ Ω associates within its types set at least one ontology object of set
O ⊆ Θ, the following query expression has to be evaluated:

Exists(O, IsType[w,$]).

Moreover, the EMMO Algebra defines two selection predicate concerning an en-
tity’s attribute values. The operatorHasAttribute takes two entities as input values,
and returns true, if the set of the attribute values of the first specified entity contains an
attribute-value-pair such that its attribute (represented by an ontology object) is equal
the second specified input entity.

Definition 65 Letw ∈ Ω, ando ∈ Ω, then

HasAttribute : Ω× Ω −→ BOO with

HasAttribute(w, o) =
{

true if ∃x ∈ attributes(w) o = π1(x)
false else

The operatorHasAttV alue is more specific than the operatorHasAttribute. It takes
two entitiesw ando, and a predicatep as input values, and returns true, if entityw
contains within its attributes set an attribute-value pair whose attribute (represented by
an ontology object) is equal entityo and, additionally, whose value satisfy the predicate
p.

Definition 66 Letw, o ∈ Ω, andp ∈ PRE , then

HasAttV alue : Ω× Ω× PRE −→ BOO is defined as

HasAttV alue(w, o, p) =

 true if ∃x ∈ attributes(w)
(o = π1(x) ∧ p(π2(x)))

false else

Connectors consist of a media profile and a media selector. Media profiles represent
media data. A media profile encompasses low-level metadata describing the media
data along with its storage location being described by its media instance. The follow-
ing three operators define predicates related to an entity’s media profile. The operator
HasMediaProfile returns true, if the specified media profile is described by a con-
nector of the specified entity.



36 EMMA Compendium

Definition 67 Letw ∈ Ω, andmp ∈MP , then

HasMediaProfile : Ω×MP −→ BOO with

HasMediaProfile(w,mp) =
{

true if ∃c ∈ Cw mp = MediaProfile(c)
false else

The operatorHasMediaProfileV alue is more specific concerning the condition de-
scribed by the specified predicate. The operatorHasMediaProfileV alue defines
three input parameter, i.e. an entityw, a string values, and a predicatep, and returns
true, if the entityw associates a media profile, whose set of metadata encompasses a
name-value pair, with the name being equals and the value satisfying the condition
described by the specified predicatep.

Definition 68 Letw ∈ Ω,s ∈ STR , andp ∈ PRE then

HasMediaProfileV alue : Ω× STR × PRE −→ BOO with

HasMediaProfileV alue(w, s, p) =


true if ∃c ∈ Cw

∃k ∈ Metadata(MediaProfile(c))
(π1(k) = s ∧ p(π2(k)))

false else

The operatorHasMediaInstance takes two input parameter - the entityw and the
stringd. It returns true, if entityw associates at least one media instance that is equal
d.

Definition 69 Letw ∈ Ω, andd ∈ URI ∪ RMD , then

HasMediaInstance : Ω× URI ∪ RMD −→ BOO with

HasMediaInstance(w, d) =

 true if ∃c ∈ Cw

d = MediaInstance(MediaProfile(c))
false else

Media selectors described within an entity’s connector specify the media data repre-
sented by the media profile according to their textual, spatial, and temporal selection.
In this way, a media selector delineates a value describing the kind of selection, and
further specifies a set of parameters specifying the kind of selection in more detail.
The following two operators define selection predicates related to entity’s media selec-
tors. The operatorHasMediaSelector returns true, if the specified media selector is
described by a connector of the specified entity.

Definition 70 Letw ∈ Ω, andms ∈MS, then

HasMediaSelector : Ω×MS −→ BOO with

HasMediaSelector(w,ms) =
{

true if ∃c ∈ Cw ms = MediaSelector(c)
false else

The operatorHasMediaSelectorV alue is more concerned about media selector’s
specified parameters. Similar to the operatorHasMediaProfileV alue, the operator
HasMediaSelectorV alue takes three input values - an entityw, a string values, and
a predicatep -, and returns true if entityw associates a media selector, whose set of
parameters encompasses a name-value pair, with a name being equals and a value
satisfying the condition described by the specified predicatep.

Definition 71 Letw ∈ Ω,s ∈ STR , andp ∈ PRE then

HasMediaSelectorV alue : Ω× STR × PRE −→ BOO with



EMMA Compendium 37

HasMediaSelectorV alue(w, s, p) =


true if ∃c ∈ Cw

∃k ∈ Parameter(MediaSelector(c))
(π1(k) = s ∧ p(π2(k)))

false else

The operatorHasMediaWithV alue is a combination of the two operators
HasMediaProfileV alue andHasMediaSelectorV alue. Assuming a user is only
interested in some information about the attributes specifying the media data, but the
user does not necessarily know, whether this information is stored within the media
profile or the media selectors, then the operatorHasMediaWithV alue allows him to
query the attribute information without knowing such model specific information.

Definition 72 Letw ∈ Ω,s ∈ STR , andp ∈ PRE then

HasMediaWithV alue : Ω× STR × PRE −→ BOO with

HasMediaWithV alue(w, s, p) =
HasMediaSelectorV alue(w, s, p) ∨HasMediaProfileV alue(w, s, p)

The operatorContainsNode is concerned about the nodes of an EMMO. It returns
true, if at least one entity belonging to the specified set of entities is contained in the
nodes of the specified entity.

Definition 73 Letw ∈ Ω,W ∈ P(Ω),then

ContainsNode : Ω× P(Ω) −→ BOO is defined as

ContainsNode(w,W ) =
{

true if ∃x ∈ (W ∩Nw)
false else

The following four operators incorporate the predecessor and successor information of
an entity. Thus, the operatorContainsDirectPredecessor takes an entityw and a
set of entitiesW as input values and returns true if at least one entity ofW is a direct
predecessor of entityw.

Definition 74 Letw ∈ Ω, W ∈ P(Ω),then

ContainsDirectPredecessor : Ω× P(Ω) −→ BOO is defined as

ContainsDirectPredecessor(w,W ) =
{

true if ∃x ∈ (W ∩ Pw)
false else

Again, from the definition can be derived that the expressions
ContainsDirectPredecessor(w,W ) and Not(Empty(W ∩ Pw)) are equiva-
lent.

The operatorContainsPredecessor takes the same input values as the operator
ContainsDirectPredecessor, and returns true if at least one entity ofW belongs to
the predecessors of entityw.

Definition 75 Letw ∈ Ω, W ∈ P(Ω),then

ContainsPredecessor : Ω× P(Ω) −→ BOO is defined as

ContainsPredecessor(w,W ) =
{

true if ∃x ∈ (W ∩AllPredecessors(w))
false else

Again, the equivalence of the two expressionsContainsPredecessor(w,W ) and
Not(Empty(W ∩AllPrecessors(w))) can be followed.

The operatorContainsDirectSuccesssor takes an entityw and a set of entities
W as input values, and returns true if at least one entity ofW is direct successor ofw.



38 EMMA Compendium

Definition 76 Letw ∈ Ω, W ∈ P(Ω),then

ContainsDirectSuccesssor : Ω× P(Ω) −→ BOO is defined as

ContainsDirectSuccessor(w,W ) =
{

true if ∃x ∈ (W ∩ Sw)
false else

The operatorContainsSuccessor takes the same input values as the operator
ContainsDirectSuccessor, and returns true if at least one entity ofW is successor
of entityw.

Definition 77 Letw ∈ Ω,W ∈ P(Ω),then

ContainsSuccessor : Ω× P(Ω) −→ BOO is defined as

ContainsSuccessor(w,W ) =
{

true if ∃x ∈ (W ∩AllSuccessors(w))
false else

Again, the last two definitions show that the two expressions
ContainsDirectSuccessor(w,W ) andNot(Empty(W ∩ Sw)), as well as the two
expressionsContainsSuccessor(w,W ) andNot(Empty(W∩AllSuccessors(w)))
are equivalent.

Entity’s attribute features represent a fixed set of primitive attribute-value pairs.
The operatorHasFeature is based on the extraction operatorfeatures which re-
alizes the access to this set of primitive attribute-value pairs, and returns true, if there
exists an attribute-value pair with the specified name and a value fulfilling the condition
described by the specified predicate.

Definition 78 Letw ∈ Ω,s ∈ STR , andp ∈ PRE then

HasFeature : Ω× STR × PRE −→ BOO is defined as

HasFeature(w, s, p) =

 true if ∃k ∈ features(w)
(π1(k) = s ∧ p(π2(k)))

false else

In the EMMO model, an operation is described as tuple combining an ontology object
with an arbitrary mathematical function. The ontology object is acting as the oper-
ation’s designator, whereas the mathematical function represents the operation’s im-
plementation. The operatorHasDesignator returns true, if the first specified entity
describes an operation, whose designator (represented as ontology object) is equal the
second specified entity.

Definition 79 Letw, o ∈ Ω, then

HasDesignator : Ω× Ω −→ BOO is defined as

HasDesignator(w, o) =
{

true if o ∈ Designators(w)
false else

The operatorHasImplementation takes an entityw and a mathematical function
f as input value, and returns true, if entityw specifies an operation with the implemen-
tationf

Definition 80 Letw ∈ Ω,andf ∈ FUN Σ, then

HasImplementation : Ω× FUN Σ −→ BOO is defined as

HasImplementation(w, f) =
{

true if f ∈ Implementations(w)
false else



EMMA Compendium 39

Navigational Selection Predicates

The following section introduces the Navigational Selection Predicates. Basically all
operators defined in Section 4.2.2 will be used in the following definitions.

The operators ContainsTypedAsso, ContainsTypedAssoToSource and
ContainsTypedAssoToTarget are very similar and vary only in their direction of
navigation. Each of the three operators takes three entitiese, w, ando as input value.
The operatorContainsTypedAsso returns true, if entitye if of kind EMMO, entity o
is of kind ontology object, and entity (EMMO)e contains an association of typeo with
target or source entity equalw.

Definition 81 Lete, w, o ∈ Ω, then

ContainsTypedAsso : Ω× Ω× Ω −→ BOO is defined as

ContainsTypedAsso(e, w, o) =

 true if ∃x ∈ asso(e)
(o ∈ types(x) ∧ w ∈ {sx, tx})

false else

The operatorContainsTypedAssoToSource only returns true, if entityo is an on-
tology object, and entitye is an EMMO, which contains an association of typeo with
source entity equal entityw.

Definition 82 Lete, w, o ∈ Ω, then

ContainsTypedAssoToSource : Ω× Ω× Ω −→ BOO is defined as

ContainsTypedAssoToSource(e, w, o) =

 true if ∃x ∈ asso(e)
(o ∈ types(x) ∧ w = sx)

false else

And finally, the operatorContainsTypedAssoToTarget returns true, if entityo is an
ontology object and entitye is an EMMO which contains an association of typeo with
target entity equal entityw.

Definition 83 Lete, w ∈ Ω, ando ∈ Θ, then

ContainsTypedAssoToTarget : Ω× Ω× Ω −→ BOO is defined as

ContainsTypedAssoToTarget(e, w, o) =

 true if ∃x ∈ asso(e)
(o ∈ types(x) ∧ w = tx)

false else

The above definitions manifest the equivalence of the expressions
ContainsTypedAsso(e, w, o) and Not(Empty(TypedAsso(e, w, o),
the expressions ContainsTypedAssoToSource(e, w, o) and
Not(Empty(TypedAssoToSource(e, w, o), and the ex-
pressions ContainsTypedAssoToTarget(e, w, o) and
Not(Empty(TypedAssoToTarget(e, w, o).

By specifying four entitiese, w, o, anda as input value, the following three oper-
ators constitute a more specific version of the just described operators. Thereby, the
operatorIsTypedAsso returns true, if entitya is an association of typeo which is
contained in the nodes of entitye (requiring entitye to be an EMMO) and specifies
entityw either as target or as source entity.

Definition 84 Lete, w, o, a ∈ Wm, then

IsTypedAsso : Ω× Ω× Ω× Ω −→ BOO with

IsTypedAsso(e, w, o, a) =
{

true if a ∈ asso(e) ∧ o ∈ types(x) ∧ w ∈ {sa, ta}
false else



40 EMMA Compendium

The operatorIsTypedAssoToSource returns true, if entitya is an association of type
o contained in the nodes of entity (EMMO)e and specifying entityw as source entity.

Definition 85 Lete, w, o, a ∈ Ω, then

IsTypedAssoToSource : Ω× Ω× Ω× Ω −→ BOO with

IsTypedAssoToSource(e, w, o, a) =
{

true if a ∈ asso(e) ∧ o ∈ types(x) ∧ w = sa

false else

The operatorIsTypedAssoToTarget returns true, if entitya is an association of type
o which is contained in the nodes of entity (EMMO)e and specifies entityw as target
entity.

Definition 86 Lete, w, o, a ∈ Ω, then

IsTypedAssoToTarget : Σ× Ω× Ω× Ω −→ BOO with

IsTypedAssoToTarget(e, w, o, a) =
{

true if a ∈ asso(e) ∧ o ∈ types(x) ∧ w = ta
false else

Again, the expressions IsTypedAsso(e, w, o, a) and
Contains(a, TypedAsso(e, w, o)), the expressions
IsTypedAssoToSource(e, w, o, a) andContains(a, TypedAssoToSource(e, w, o)),
and the expressions IsTypedAssoToTarget(e, w, o, a) and
Contains(a, TypedAssoToTarget(e, w, o)) are equivalent.

Both operatorsIsRightOf andIsLeftOf take three entitiese, w1 andw2, and
a regular path expressionr ∈ REG as input value. The operatorIsRightOf returns
true, if entitye is an EMMO containing two entitiesw1, andw2, such that the naviga-
tion along the regular path expressionr in the right direction and with start pointw1

yields entityw2.

Definition 87 Lete, w1, w2 ∈ Ω andr ∈ REG then

IsRightOf : Ω× Ω× Ω× REG −→ BOO is defined as

IsRightOf(e, w1, w2, r) =
{

true if w2 ∈ JumpRight(e, w1, r)
false else

The operatorIsLeftOf returns true, if entitye is an EMMO containing two entities
w1, andw2, such that the navigation along the regular path expressionr in the left
direction and with start pointw1 yields entityw2.

Definition 88 Lete, w1, w2 ∈ Ω andr ∈ REG then

IsLeftOf : Ω× Ω× Ω× REG −→ BOO is defined as

IsLeftOf(e, w1, w2, r) =
{

true if w2 ∈ JumpLeft(e, w1, r)
false else

Easily can be derived from the Definitions 87 and 88 that the two expressions
IsRightOf(e, w1, w2, r) andContains(w2(JumpRight(e, w1, r))), as well as the
two expressionsIsLeftOf(e, w1, w2, r) and Contains(w2(JumpLeft(e, w1, r)))
are equivalent.

The operatorContainsExpr is based on the operatorAnchorNodes. It takes an
entity e and a regular path expressionr as input value, and returns true, if entitye
is of kind EMMO containing a pair of nodes, such that each pair’s second node can
be reached starting from the pair’s first node by traversing along the specified regular
expressionr in right direction.



EMMA Compendium 41

Definition 89 Lete ∈ Ω, andr ∈ REG then

ContainsExpr : Ω× REG −→ BOO is defined as

ContainsExpr(e, r) =
{

true if ∃w1, w2 ∈ Nw (w1, w2) ∈ AnchorNodes(e, r)
false else

From Definition 89 follows the equivalence of the expressionsContainsExpr(e, r)
andNot(Empty(AnchorNodes(e, r)))

4.2.4 Constructors

In the following section, we introduce five so-called Constructors for EMMOs:Union,
Nest, Flatten, Difference, andIntersection. These operators have all in common
that they take at least one EMMO, and possibly other parameter as input value, and re-
turn exactly one EMMO as output value. The Constructors allow to combine and mod-
ify EMMOs, and thus to build new EMMOs. On the basis of Constructors, the closure
property of the algebra can be accomplished. New EMMOs can either be constructed
through the combination, i.e. union, intersection, etc. of already existing EMMOs, or
be constructed by nesting extracted data into a new EMMO knowledge structure, the
extracted data possibly arising from the result values of other operators of the algebra.

The ConstructorUnion allows the unification of two different EMMOs. It takes
two EMMOs and a string as input values, and returns an EMMOenew with a newly
generated uniqueoid, whereby the nodes of the returned EMMO represent the union
of the nodes of the two specified input EMMOs. The EMMOenew ’s name is equal the
specified input string, and its source and target entities are specified asε (representing
the empty entity). Furthermore, the remaining attribute sets of the new EMMO, i.e.
the set of types, attribute values, connectors, predecessors, successors, features and
operations, are specified as empty sets.

Definition 90 Lete1, e2 ∈ Σ, s ∈ STR , then

Union : Σ× Σ× STR −→ Σ with Union(e1, e2, s) = enew is defined as

oenew ∈ OID
nenew

= s
kenew

= ”emm”
senew

= tenew
= ε

Nenew = nodes(e1) ∪ nodes(e2) and

πi(enew) = ∅ ∀i ∈ {6, 7, 8, 10, 11, 12, 13}

To a given set of associations and a specified EMMO, the operatorNest allows the
generation of a new EMMO containing exactly those relationships described by the
specified set of associations that are also contained in the specified EMMO. Thus, the
operatorNest takes an EMMOe, a set of associationsA, and a string values as
input value, and returns EMMOenew with a newly generated uniqueoid. The nodes
of the new EMMO encompass all associations belonging to both, the specified set of
associationsA and nodes of EMMOe. Furthermore, the nodes of the new EMMO
contain all source and target entities of the before selected associations. The name
of the new EMMO is equal the specified input string, its source and target entities
are specified asε (representing the empty entity), and its remaining attribute sets, i.e.
the set of types, attribute values, connectors, predecessors, successors, features and
operations, are specified as empty sets.



42 EMMA Compendium

Definition 91 Lete ∈ Σ, A ⊆ Λ, ands ∈ STR , then

Nest : Σ× P(Λ)× STR −→ Σ with Nest(e,A, s) = enew is defined as

oenew ∈ OID
nenew = s
kenew

= ”emm”
senew

= tenew
= ε

Nenew = (A ∩ nodes(e)) ∪ {sx |x ∈ A ∩ nodes(e)}
∪{tx |x ∈ A ∩ nodes(e)} and

πi(enew) = ∅ ∀i ∈ {6, 7, 8, 10, 11, 12, 13}

To a specified EMMOe and strings, the operatorFlatten allows the construction of
a new EMMO whose set of nodes contains all entities, which are recursively contained
in EMMO e. The operatorFlatten takes an EMMOe and a strings as input value
and returns the EMMOenew, whose nodes encompass all entities that are recursively
contained in the specified EMMO. Similar to the constructors defined before, the new
EMMO is suited with a newly generated uniqueoid, nameds, defines its source and
target entities as empty entities, and assigns its remaining attribute sets, i.e. the set of
types, attribute values, connectors, predecessors, successors, features and operations,
as empty sets.

Definition 92 Lete ∈ Σ ands ∈ STR , then

Flatten : Σ× STR −→ Σ with Flatten(e, s) = enew is defined as

oenew
∈ OID

nenew = s
kenew = ”emm”
senew

= tenew
= ε

Nenew
= AllEncEnt(e) and

πi(enew) = ∅ ∀i ∈ {6, 7, 8, 10, 11, 12, 13}

The operatorDifference allows the computation of the difference of two input EM-
MOs. The difference is determined by the difference of the set of nodes of the two
input EMMOs, such that the returned EMMO contains all nodes which are contained
in the first, but not in the second EMMO. Additionally, for each association that only
belongs to the nodes of the first EMMO, its source and target entity is added to the
nodes of the new EMMO. Again, the returned EMMOenew is supplied with a new
uniqueoid and labeled with the specified input strings, defines its source and target
entities as empty entity, and assigns its remaining attribute sets, i.e. the set of types, at-
tribute values, connectors, predecessors, successors, features and operations, as empty
sets.

Definition 93 Lete1, e2 ∈ Σ ands ∈ STR then

Difference : Σ × Σ × STR −→ Σ with Difference(e1, e2, s) = enew is
defined as

oenew
∈ OID

nenew
= s

kenew = ”emm”
senew = tenew = ε



EMMA Compendium 43

Nenew
= nodes(e1)\nodes(e2) ∪ {sx |x ∈ asso(e1)\asso(e2)}

∪{tx |x ∈ asso(e1)\asso(e2)} and

πi(enew) = ∅ ∀i ∈ {6, 7, 8, 10, 11, 12, 13}

The operatorIntersection allows the computation of the intersection of two specified
input EMMOs. TheIntersection of two EMMOs is determined by the intersection of
its contained nodes, such that the returned EMMO’s nodes are the entities contained in
both specified EMMOs. Note, that by computing the intersection of two EMMOs, for
each association belonging to both EMMOs, we can deduce from entity’s definition,
that its source and target entity belong to the intersection as well. Similar to the four
other Constructors, the returned EMMOenew is supplied with a new uniqueoid and is
labeled with the specified input strings, defines its source and target entities as empty
entity, and assigns its remaining attribute sets, i.e. the set of types, attribute values,
connectors, predecessors,successors, features and operations, as empty sets.

Definition 94 Lete1, e2 ∈ Σ ands ∈ STR then

Intersection : Σ× Σ× STR −→ Σ with Intersection(e1, e2, s) = enew is
defined as

oenew ∈ OID
nenew = s
kenew

= ”emm”
senew

= tenew
= ε

Nenew
= nodes(e1) ∩ nodes(e2)

πi(enew) = ∅ ∀i ∈ {6, 7, 8, 10, 11, 12, 13}



44 EMMA Compendium

4.2.5 Join Operator

In the following section, we introduce the Join Operator for entities specifying how to
relate sets of entities in the query. The Join operator takes a set of entity sets, a set of
functions and a predicate as input value, and selects only those entities contained in the
first specified entity set, which fulfil a condition considering all specified input values.
In this way, the Join operator is a generalization of the Select operator accounting for a
join condition over not only one but a set of entity sets.

Definition 95 [Join]Let i ∈ I = {1, . . . n},Wi ⊆ Ω, Ri ∈ SET , fi ∈ FUN [Wi,Ri]

andp ∈ PRE ∏
i∈I Ri

then we define the operation

Join :
∏

i∈I P(Ω)×
∏

i∈I FUN [Ω,SET ] × PRE SEQ n
−→ SET with

Join(W1, . . . ,Wn, f1, . . . , fn, p) =
{π1(w1, . . . , wn) |wi ∈ Wi ∧ i ∈ I ∧ p(f1(w1), . . . , fn(wn))}

After computing the cartesian product of the set of all specified entity sets, the Join
operator evaluates for each tuple of the product whether the tuple which is achieved by
applying the specified sequence of functions to the sequence of elements in the tuple
fulfils the condition described by the predicate. If this is the case, the projection of the
first element of the original tuple value is selected.



Bibliography

[1] D. Brickely and R.V. Guha. Resource Description Framework (RDF) Vocabulary
Description Language 1.0: RDF Schema. W3C Working Draft, World Wide Web
Consortium (W3C), April 2002.

[2] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multimedia Content
Description Interface – Part 5: Multimedia Description Schemes. ISO/IEC Final
Draft International Standard 15938-5:2001, International Organization for Stan-
dardization/International Electrotechnical Commission (ISO/IEC), October 2001.

[3] P.J Leach. UUIDs and GUIDs. Network Working Group Internet-Draft, The Inter-
net Engineering Task Force (IETF), February 1998.

45


	TR-NR: TR-2004301
	Month: June
	Year: 2004
	Title: The EMMA Algebra for EMMOs - Compendium
	Autoren: Sonja Zillner
	Email: sonja.zillner@univie.ac.at


