
Dissertation

Integration of Transaction
Management in Web Service

Orchestrations

ausgeführt zum Zwecke der Erlangung des akademischen
Grades eines Doktors der Sozial- und

Wirtschaftswissenschaften

unter der Leitung von

Univ. Prof. Dr. Jürgen Dorn
E184-2 Institut für Informationssysteme

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Mag. Peter Hrastnik

9401792
Aegidigasse 7-11/2/23

A-1060 Wien
Österreich

peter@hrastnik.at

Wien, im April 2006
Unterschrift

Abstract

This thesis tries to spur on transaction–oriented processing in distributed
Web service systems, particularly in Web service orchestrations that imple-
ment virtual enterprises.

For this purpose, existing scientific work in the area of advanced transac-
tion semantics is analyzed in terms of its applicability in Web service systems.
Moreover, the thesis examines prominent existing proposals for transactional
Web service systems. These proposals are quite alike and certain shared
deficits, which may be the reason for their minor success, are pointed out.

The main part of the thesis specifies a new approach for distributed trans-
actional Web service systems: TWSO – Transactional Web Service Orches-
trations. This approach is based on a programmatic paradigm, as also nor-
mally used in traditional transaction systems. Thus, a clear and well–known
usage pattern is presented. Complex and arbitrary transactions semantics
can be implemented by using concepts as follows. A set of transaction primi-
tives, that is appropriate for Web service needs, is provided and it is possible
to coordinate multiple concurrent transactions. TWSO concepts can be in-
tegrated with arbitrary Web service orchestration technologies. The thesis
contains integration proposals for XPDL and Java Web service orchestra-
tions.

To evaluate the TWSO approach on the basis of certain predefined crite-
ria, a scenario, which stems from a real–world project in the tourism domain,
is used. It is implemented using a prototypical TWSO system. Evaluation
results show that TWSO satisfies the postulated criteria.

Acknowledgments

First and foremost I want to thank my mother and my father. They laid the
foundation and made this all possible.

I am grateful to Jürgen Dorn, who supervised my doctoral studies at the
Vienna University of Technology. His excellent foresight and support shaped
this work considerably. I also want to thank Werner Winiwarter, who super-
vised my work at the University of Vienna for giving indispensable support
for publishing key results of my work in journals and conference proceedings.
Further, I deeply appreciate his huge efforts in putting the finishing touches
to my thesis.

I also want to mention the E–Commerce Competence Center (EC3). It
is a pleasure to work in such a fruitful environment with so many smart and
nice colleagues.

Last but not least, I thank my friends for encouraging my ambitions, and
for making my spare times so pleasant and recreational.

Contents

I Preliminaries 1

1 Introduction 2
1.1 Transactions and Web Services 2
1.2 Goals . 11
1.3 Structure . 13

2 Scenario 15
2.1 City Trip Scenario Case . 16
2.2 Car Rental Tour Scenario Case 17

3 State–of–the–Art 21
3.1 Transaction Basics . 21
3.2 ACID Transactions . 21

3.2.1 Usage Pattern of ACID Transactions 23
3.2.2 Preserving Isolation in ACID Transactions with Locks . 24
3.2.3 Two Phase Commit Protocol 25

3.3 Advanced Transaction Models 26
3.3.1 Transactions with Savepoints 26
3.3.2 Nested Transactions 27
3.3.3 Multilevel Transactions 28
3.3.4 Sagas . 28

3.4 Advanced Transaction Metamodels 28
3.4.1 Gray and Reuter’s Approach 28
3.4.2 ACTA . 31

3.5 Evaluation of Advanced Transaction Metamodels 33
3.5.1 Gray and Reuter . 34
3.5.2 ACTA . 39
3.5.3 Summary . 39

3.6 Web Service Transaction Proposals 40
3.6.1 Business Transaction Protocol 40
3.6.2 WS–Transactions and WS–Coordination 41

i

CONTENTS ii

3.6.3 Web Service Composite Application Framework 42
3.7 Evaluation of Web Service Transaction Proposals 44

II Transactional Web Service Orchestrations 48

4 Introduction into TWSO 49

5 Ubiquitous Transaction Presence 52

6 TWSO Orchestrations 55
6.1 TWSO Usage Pattern . 56
6.2 Transaction Primitives . 57

6.2.1 Transactions Managing Multiple Web Services 59
6.2.2 Transaction Lifecycle 60

6.3 Transaction Dependencies . 61
6.4 Selected TWSO Orchestration Solutions 64

6.4.1 TWSOL – XML Implementation of TWSO 65
6.4.2 TWSO4J – Java TWSO Implementation 70

7 Transaction Monitor 75
7.1 Interface: Orchestration and Transaction Monitor 78

8 TWSO Enabled Web Services 82
8.1 TWSO WSDL . 83
8.2 Interface: Transaction Monitor and Web service 87

9 TWSO Tourism Scenario Orchestrations 90
9.1 City Trip Scenario . 90
9.2 Rental Car Tour Scenario . 95
9.3 Summary . 96

III Implementation of a TWSO Environment 99

10 TWSO Prototype Implementation 100
10.1 Overall Architecture . 100
10.2 TWSO4J Implementation . 101
10.3 TWSO Transaction Monitor Implementation 102
10.4 TWSO Enabled Web Services in protoTWSO 103
10.5 Limitations of Prototype Implementation 104

CONTENTS iii

11 Evaluation 106
11.1 Performed Testing . 106
11.2 Performance Measurements 107
11.3 Towards an Automated Test Environment for Web Service

Transaction Systems . 108

IV Epilogue 111

12 Conclusion 112

13 Future Steps 114

V Appendices 116

A Web Service Description Language 117

B TWSO Transaction Monitor WSDL 119

C Scenario Orchestrations 123
C.1 XPDL Scenario Orchestrations 123

C.1.1 TWSOL in XPDL . 123
C.1.2 TWSOL XPDL Scenario Orchestration Documents . . 123

C.2 Java Scenario Orchestration 143

List of Figures

1.1 Web service orchestration failures 10

2.1 Non–transactional Vienna city trip orchestration 19

3.1 Common transaction usage pattern 23
3.2 Insufficient isolation scenario 25
3.3 Sufficient isolation scenario . 26
3.4 Single aspect of a flat transaction system 30

4.1 Architecture of a TWSO system 50

6.1 TWSO usage pattern . 56
6.2 TWSO state–transitions . 61
6.3 Transaction monitor factory 71
6.4 Transaction monitor . 72
6.5 TWSO4J transaction . 73

9.1 Non–transactional Vienna city trip orchestration 91
9.2 Transactional Vienna city trip orchestration 91
9.3 Adapted transactional Vienna city trip orchestration 94
9.4 Transactional Crete car tour orchestration 95

11.1 Transactional Crete car tour orchestration measurements . . . 107

A.1 Elements of a WSDL definition 117

iv

List of Tables

3.1 History of Web service transaction proposals 45

6.1 Transaction primitives and categorization 58
6.2 Basic transaction states . 68
6.3 Basic transaction primitives 70

11.1 Test mock–up Web Services for Crete rental tour 110

v

Part I

Preliminaries

1

Chapter 1

Introduction

1.1 Transactions and Web Services

In contrast to single–user standalone applications, distributed computing sys-
tems as described in Definition 1.1 require high coordination efforts.

Definition 1.1. A distributed system is an application that consists of com-
ponents running on physically different computers and/or running on dif-
ferent separated spheres of the same physical computer concurrently. These
components are able to communicate and are designed to operate separately.1

Definition 1.2. A virtual enterprise is an organizational model in which
different independent organizations work together in order to offer better
services to customers that cannot be offered by a single organization. Since
the cooperation may be short–term, it has to be easy to establish cooperation
without great organizational or financial efforts. The members of a virtual
enterprise shall collaborate mainly via the Internet. A customer will not
necessarily recognize that the service is provided by different organizations.
Preferably, the business processes in such a virtual enterprise should become
manifest in electronic form [16].

Distributed systems allow the realization of virtual enterprises as defined
in Definition 1.2 and thus have significant economical relevance. For example,
consider a simple virtual enterprise that implements a booking operation in
the tourism domain that consists of booking a flight, a hotel and a rental car.
Flight, hotel and rental car booking occurs on different databases and either

1It should be noted that this definition can include, for example, a full–blown J2EE
system with numerous legacy systems and relational databases on different servers as well
as a simple Visual Basic application that connects to a database server, each of them
running as a separated process on the same physical computer entity.

2

CHAPTER 1. INTRODUCTION 3

flight, hotel and rental car together or nothing at all should be booked. Such
a scenario poses significant coordination efforts to guarantee a valid result.
Most importantly, the following matters have to be regarded:

• If at least a single service could be booked successfully and afterward
it turns out another one cannot be booked, all occurred actions have
to be undone without any traces.

• When arbitrary failures emerge during the booking procedure, it has
to be possible that all occurred actions are undone without any (from
outside) visible traces.

• When several users perform booking actions, it has to be assured that
they do not influence each other unintentionally.

To tackle such coordination tasks in distributed systems in an efficient,
dependable and non–redundant way, transaction processing systems (Defini-
tion 1.3) can be employed.

Definition 1.3. According to [24], a transaction processing system provides
tools to ease or automate application programming, execution and adminis-
tration. A transaction (see Definition 1.4) is executed in the environment of
a transaction processing system.

Definition 1.4. A transaction is a collection of operations on the physical
and abstract application state [24].

The basic idea of transaction– processing is “relieving the application
programmer from worrying about failure and concurrency interleaving” [20]
on a high level at development time. A common transaction–oriented pro-
gramming pattern (see Definition 1.5 and Subsection 3.2.1) has (therefore)
evolved and contributes to this goal significantly. Correspondingly, the sys-
tem administrator is relieved from worrying about invalid application states
and unexpected and/or unhandled error conditions at run time.

Definition 1.5. A pattern records the design decisions taken by many buil-
ders in many places over many years in order to resolve a particular problem
[2].

When using conventional distributed systems, transaction–oriented con-
cepts are considered regularly. Transaction–oriented processing usually takes
place in database access and other distributed systems. For most practition-
ers in these areas, transactions are absolutely indispensable and a great help

CHAPTER 1. INTRODUCTION 4

in using and developing such systems. Two prominent case studies empha-
size this as follows.

The MySQL relational database management system lacked transaction
support for a long time. Taking Internet sources like forums, blogs, wikis, etc.
into consideration to get an overview of common personal opinions, MySQL
was not considered for many projects just because it lacked transaction sup-
port — although nobody really doubting MySQL’s fastness and reliability
(e.g. [47]). The possibility to build transaction semantics in the business
logic if needed was not an alternative for most. However, the support of
transactions in recent MySQL versions was considered a quantum leap and
made MySQL ready for “enterprise level” applications [35].

The development of the J2EE standard was initially driven by satisfying
the needs for simplifying the development of distributed applications that
are portable, scalable, and that integrate easily with legacy applications and
data [44]. A lot of other big industry players other than SUN like IBM,
Microsoft, Oracle, Bea, etc. contributed to this standard by sending their
most senior architects and engineers that shared their invaluable knowledge
and experience [32]. Also here, transaction–oriented processing was an inte-
gral part from the very beginning. This circumstance indicates once more
that transactions are highly demanded when it comes to build “serious” dis-
tributed systems.

Besides these two developments, there are countless software products
that try to facilitate transaction–oriented processing in distributed systems.
History has shown that the development and operation of distributed systems
benefits from the employment of transaction–oriented principles to a high
degree.

Definition 1.6. Dependability is defined as the trustworthiness of a com-
puting system, which allows reliance to be justifiably placed on the service
it delivers [33].

Transaction–related processing increases the dependability of a distributed
system. The concept dependability as given in Definition 1.6 can be classified
into different aspects, which are as follows [26]:

• Availability is the readiness of a system to accept and process requests
correctly.

• Reliability is described by the persistency of the system being provided
correctly.

CHAPTER 1. INTRODUCTION 5

• Safety prevents severe consequences for users and the system itself.

• Confidentiality guarantees that data is not revealed unauthorized.

• Integrity assures that no illegal system states or state transitions ap-
pear.

• Maintainability is the possibility to modify, tweak and control a running
system.

To attain dependability of a system, certain measures can be taken. These
measures can be classified into four categories. Fault prevention subsumes
measures that can be taken a priori during the design and implementation
of the distributed systems. This includes quality assurance during software
engineering as well as quality assurance during the design of the overall sys-
tem architecture and hardware. Fault tolerance includes measures that are
taken a priori to assure that the systems works correctly even when faults
emerge. When faults appear at operation and are not handled appropriately,
fault removal can help to eliminate these faults. System diagnosis and correc-
tions during operation may be applied here. Last not least, fault forecasting
permanently analyzes system parameters to forecast potential faults in order
to take preventive measures. Transaction–oriented systems mainly focus on
fault prevention and fault tolerance. Strategies for fault removal and fault
forecasting tend to be too application specific to be tackled by general mod-
els like transaction–oriented processing.

Recently, Web services are used more and more to build distributed sys-
tems. The term Web service is defined generically in Definition 1.7. This
definition is good for a basic comprehension, but too wide–ranging. A more
detailed and practice–oriented definition that captures the current character
of Web services better and is used in this thesis is given in Definition 1.8.

Definition 1.7. Web services are software–powered resources or functional
components whose capabilities can be accessed at an Internet URI. However,
this definition is rather generic.

Definition 1.8. A Web service is a software functionality whose interface is
described by WSDL2 [12] and which is capable of being accessed via standard
network protocols such as but not limited to SOAP[36] over HTTP. It should
be noted, that a WSDL definition contains and groups multiple (related) Web
service functionalities. Thus, in terms of WSDL, a Web service is a WSDL

2A short introduction to WSDL is given in Appendix A.

CHAPTER 1. INTRODUCTION 6

operation that is accessed at a particular port using a particular binding. It
is neither a port type nor a group of related port types.

In distributed Web service systems, aggravating circumstances arise from
the usually somewhat low dependability of third party Web services dis-
tributed in the Internet. Even though Internet services usually have incor-
porated a number of techniques for achieving high availability, user–visible
failures still occur frequently [38]. Oppenheimer et al. [38] surveyed the
causes of Internet services in detail and conclude, that user–visible Internet
service errors originate mainly from human operator failures and errors in
custom software mainly. Network failures occur, but can be hidden from
users efficiently. They also conclude that more extensive testing could pre-
vent many failures. Based on this survey, it becomes obvious that operating
and developing Internet services — and therefore also Web services — is an
inherently error–prone discipline. Internet services and especially Web ser-
vices are still in their infancy. Despite all undertaken efforts, it seems that it
is not possible to develop and operate them dependably, as it can be (and is)
achieved in other computer disciplines (e.g. intra–enterprise mainframe com-
puting). It should be noted, that pure Internet network errors are virtually
non–existent. The core of the Internet consists of several large backbones,
which are well–engineered and adequately provisioned. This leads to negligi-
ble delays and virtually no downtime [21, 39]. Accordingly, visible failures of
Internet services virtually always stem from the service itself and not from
the Internet–network, which itself is pretty much reliable. Mostly, Web ser-
vice users neither have the chance to assess nor to positively influence the
dependability of required Web services. Thus, it is essential to take erroneous
situations into account inherently in the whole distributed Web service sys-
tem. Transaction–oriented processing is a way to do so efficiently.

Depending on the characteristics of the transaction processing system, a
transaction always conforms to some axiomatic semantics. The most com-
monly — or in practitioner groups frequently the only known — kind of
transaction processing system supports solely ACID transactions, which are
described more detailed in Section 3.2. It should be stressed, that in everyday
database practitioner’s life, the term transaction mostly refers to traditional
ACID transactions. In contrast, in this thesis the term transaction is strictly
used as shown in Definition 1.4, where no particular set of properties is im-
posed to a transaction per default.

In tightly coupled systems, transactional processing that follows the ACID
semantics is ubiquitous and works well. More precisely, they are highly useful

CHAPTER 1. INTRODUCTION 7

in applications with transactions that:

• have a short duration,

• influence mostly intra–organizational resources that are controllable,
whose behavior is assessable, and whose availability and reliability is
trustworthy, and

• act in a network that is controllable, whose behavior is assessable, and
whose availability and reliability is trustworthy.

Distributed Web service systems do not adhere to the tightly–coupled sys-
tem characteristics where ACID transactions would be appropriate. Mostly,
Web services are out of sphere–of–control of an organization, and are nebu-
lous regarding their behavior and dependability. In addition, Web services —
especially Web services that are called in an asynchronous way3 — possibly
have a considerable extensive interaction time.

Consequently, transactions that follow ACID principles may not be prac-
tical in distributed loosely coupled systems, e.g. distributed systems com-
posed of Web services. Potts et al [40] discuss ACID transactions regarding
Web services more detailed and even assert that “transaction semantics that
work in a tightly coupled single enterprise cannot be successfully used in
loosely coupled multi–enterprise networks such as the Internet”. For appro-
priate Web service transaction systems, transaction semantics that are more
flexible than ACID transaction semantics are required.

Advanced transaction models (see Section 3.3) offer other transaction
semantics in addition to common ACID transactions. Numerous advanced
transaction models were developed [19, 24] to overcome the rigid demands of
ACID transactions. For example, a particular advanced transaction model
could relax the strict atomicity claim. These concepts can be used well for
Web service transactions.

For Web service transaction systems, yet another aspect of advanced
transaction systems comes into effect. Different (business) domains require
different policies for conducting transactional processing. As stated in [42],

3Asynchronous invocation style has significant advantages to request–response invoca-
tion style. According to a talk from Frank Leymann on Sept. 17th 2003 hosted by Vienna
University of Technology, asynchronous Web services will gain major relevance in near
future.

CHAPTER 1. INTRODUCTION 8

no out–of–the–box set of advanced transaction models can satisfy all require-
ments of all domains that want to do inter–organizational transactional Web
service processing. Therefore, a Web service transaction system should sup-
port arbitrary advanced transaction models, i.e. it should support arbitrary
transaction semantics. Advanced transaction models can be described using
formal metamodels. Well–known approaches for such “advanced transaction
meta models” are presented in Section 3.4. Accordingly, concepts of an ap-
proach for Web service transactions should be based on such a metamodel in
order to offer a reasonable solution for using arbitrary advanced transaction
semantics.

These claims become more apparent when the scenario above is enhanced
as follows. The booking tasks are implemented using Web services and these
Web services are distributed globally and organizationally: The customer
books in Austria at a local travel agency, the flight booking Web service
is hosted in Moscow by Aeroflot, the hotel Web service in Germany is of-
fered by Ibis and the rental car Web service at the destination is located
in Greece. The flight booking is expected to last 5 seconds and the rental
car booking 2 days. Preferably, the customer wants to book all three kinds
of resources, but is also satisfied when some resources cannot be booked.
Since the booking process obviously is long lasting and error–prone, consid-
ering this customer preference in detail may lead to much more successful
overall results than sticking to simple all–or–nothing semantics. However,
such customer preferences are subjects to change and so are the factors that
lead to successful outcomes. To adequately implement this scenario, trans-
action semantics have to be tailored to customer preferences. Prefabricated
(advanced) transaction semantics most likely may not support the customer
preferences as well as the long lasting nature of some booking tasks. More-
over, an implementation of the scenario has to address the likely change of
transaction semantics sufficiently. Thus, ACID transaction principles obvi-
ously are rather useless to implement this scenario.

The creation of distributed Web service systems like the scenario de-
scribed above can be facilitated by employing Web service orchestration tech-
nologies, as defined in Definition 1.9.

Definition 1.9. Web service orchestrations tie together a set of existing Web
services in order to create a completely new service by employing workflow
technologies [27].

It should be noted, that the term Web service orchestration as presented
in Definition 1.9 describes applications that use several Web services as well

CHAPTER 1. INTRODUCTION 9

as applications that use a single Web service only. Obviously, the term “or-
chestration” does not describe the latter situation intuitively. However, since
every orchestration technique can handle these cases by nature, the introduc-
tion of a new term is abandoned and the term Web service orchestration refers
to such applications in this thesis, too.

Descriptive process languages such as XPDL[48] or BPEL4WS[3] should
ease the development of Web service orchestrations. However, the use of
descriptive process languages is not the only way to implement Web service
orchestrations. Using traditional programming languages like Java is a pos-
sibility, too. Thus, in this thesis the term Web service orchestration does not
imply a certain implementation method of the actual orchestration. A Java
program that combines Web services is as well a Web service orchestration
as a BPEL4WS process definition.

In Web service orchestrations that combine numerous Web services, trans-
actional Web service processing highly gains importance because major co-
ordination and error–management efforts have to be undertaken to deliver
a valid result. Transaction–oriented processing can help to cut these efforts
significantly. Additionally, as discussed above, transaction–oriented process-
ing increases the dependability of Web service orchestrations.

A taxonomy of common failures that may occur in Web service orchestra-
tions is depicted in Figure 1.1. Communication failures relate to erroneous
network communication and consist of protocol violations and transfer fail-
ures. Protocol violations occur whenever the used communication protocol
is not followed. For example, a SOAP message that does not adhere to the
SOAP standard is a protocol violation. Transfer failures subsume situations
where communication is not possible at all. For example, an unreachable
Web service host is a transfer failure. Service failures stem from Web ser-
vices. Unexpected service failures are all failures that should not occur in
theory, but may happen in practice. For example, “Nullpointer Exceptions”
thrown by a Java Web service or “Internal Server Errors” are unexpected ser-
vice failures. Expected service failures are anticipated. Service users should
be aware4 of such failures and should take precautions. Common expected
service failures are input validation related, when the delivered input does
not meet the service’s expectations, and resource related, when a (logical)
resource that is needed for a successful service execution is not available

4Expected service failures are listed in the fault elements of the service’s WSDL docu-
ment.

CHAPTER 1. INTRODUCTION 10

adequately. For example, a booking request that fails because of ran out
resources causes an expected resource related service failure.

Figure 1.1: Web service orchestration failures

To react on such failures, orchestrations may apply the following general
measures. Most times, a failure has to be handled explicitly by the orchestra-
tion’s logic. For example, a failed booking request on service A may result in
doing the same booking request on service B. In some cases, a failure can be
ignored if it is assumed that it does not compromise a valid outcome of the
orchestration. It also may make sense to repeat operations when it seems to
be likely that the failure causing condition will disappear in the near future.
For example, transfer errors are predestined to be handled that way.

It is not possible to deduce universal relationships between failure types
and measures in Web service orchestrations. Such relationships highly de-
pend on the orchestration’s goal, the orchestration’s domain and the partic-
ular service.

Web service orchestrations are an important technique to implement vir-
tual enterprises, as defined in Definition 1.2. Consequently, a major ap-
plication area of Web service transaction concepts is the development and
operation of virtual enterprises. Implementation and run–time efforts of vir-
tual enterprises decrease, and dependability of virtual enterprises increases.

CHAPTER 1. INTRODUCTION 11

It obviously stands to reason that the development and operation of dis-
tributed Web service systems benefit when transaction–oriented paradigms
are applied. Employing transaction–oriented principles would ease distributed
Web service system development and administration in terms of achieving
superior dependability. The programmer of a Web service application could
be absolved from the burden of worrying about failures and concurrency in-
terleaving. The system administrator of a Web service system is relieved
from worrying about invalid application states and unexpected and/or un-
handled error conditions. Transaction–oriented processing in the Web service
field increases the degree of dependability of distributed Web service systems
significantly. Moreover, usual distributed systems or distributed applications
in general require the advantages of transaction–oriented concepts. Thus, it
is sound to draw the conclusion that also distributed Web service systems
can potentially benefit a lot from the practical experiences and scientific re-
sults that were accumulated over time in the transactional processing and
distributed systems field.

The existence of ready to use transaction–software for Web service sys-
tems would make the necessity for own, almost certainly inferior, solutions
— as it is common practice nowadays — witless. Operation of distributed
Web service systems will be facilitated because particular transactions in the
system might be influenced directly by transaction management components.
There is no need to (re)implement such transaction influencing operations in
the application scope.

Spoken generally, systems that consider transaction–oriented paradigms
are potentially robust when it comes to unforeseen erroneous situations at
run–time. Invalid system states are avoided by nature. All these considera-
tions strongly motivate the use of transaction–oriented concepts in modern
Web service computing.

1.2 Goals

Software industry has already identified the assets that transaction–oriented
processing in the Web service area could bear, and has published several
proposals. As discussed in detail in Subsection 3.7, these proposals are quite
alike and have weaknesses, which may be responsible for the lack of proposal
implementations and the lack of transaction–oriented processing in Web ser-
vice consumer applications nowadays.

CHAPTER 1. INTRODUCTION 12

The goal of this thesis is to spur on transaction–oriented processing in
the Web service world by presenting an approach for transaction–aware Web
service systems that overcomes certain recognized deficiencies of existing ap-
proaches. It differs from these approaches significantly. It is called TWSO –
Transactional Web Service Orchestrations5.

The new TWSO approach features the following core characteristics:

• Seamless integration into Web service orchestration techniques. TWSO
is designed to be potentially integrateable into virtually any Web ser-
vice orchestration technique.

• Usage of arbitrary advanced transaction models is taken into considera-
tion from scratch and is an inherent characteristic of TWSO. Arbitrary
advanced transaction models can be put in operation based on the
particular domain’s requirements without hassles.

• The usage pattern (see Definition 1.5) of TWSO resembles common
transaction–oriented programming patterns. Familiarization efforts of
new TWSO users are minimized.

The soundness of the TWSO approach will be verified by applying it
to a scenario that is part of a real world project. This scenario consists of
a virtual enterprise in the tourism domain that provides booking services
across various resources. The resources are available via Web service means.
The virtual enterprise integrates these resources or these Web services in
an electronic business process that is implemented by using Web service or-
chestration technologies. Since Web service orchestrations enclose numerous
challenges that can be tackled by Web service transaction approaches ef-
ficiently, this scenario is highly appropriate to check the TWSO approach
thoroughly. In detail, the scenario should demonstrate that transactional
processing in Web service systems with the TWSO approach:

• can be integrated with Web service orchestrations seamlessly,

• allows to put arbitrary transaction semantics into operation easily,

• employs a usage pattern that resembles the usage pattern of transaction–
oriented processing commonly used nowadays,

5The reference to Web service orchestrations in the name stems from strengths of
TWSO that can be used particularly in orchestrations that involve more Web services. Of
course, TWSO is perfectly usable and reasonable for applications that call only a single
Web service, too.

CHAPTER 1. INTRODUCTION 13

• increases in general the dependability of distributed Web service sys-
tems and in particular the dependability of virtual enterprises that are
implemented using Web service orchestration techniques, in detail, it
should be shown that TWSO is capable of increasing dependability,
i.e.:

– availability,

– reliability,

– safety,

– integrity, and

– maintainability,

by providing effective means of:

– fault prevention, and

– fault tolerance.

To actually evaluate the scenario, a prototypical implementation of a
TWSO transaction processing system called protoTWSO is developed. This
implementation provides all functional aspects of a TWSO system. However,
non–functional aspects like performance, stability under high–load and in-
ternal error processing and interception are regarded only to a certain extent
and need to be revised for a production grade TWSO system. In addition,
the implementation will be used to determine performance related influences
of using transaction–oriented processing in Web service orchestrations.

1.3 Structure

Part I presents introductory contents. In Chapter 1, the background of the
underlying research topic “Transactions and Web services” is introduced and
goals of the thesis are defined. These goals are validated on the basis of a
comprehensive real–world scenario presented in Chapter 2. State–of–the–art
technology and research in the field of transactional Web service computing
is presented in Chapter 3. Here, current transactional processing techniques
and advanced transaction concepts are outlined. Moreover, transaction meta-
models that capture arbitrary transaction semantics are presented. These
metamodels are evaluated detailed in terms of applicability for Web service
transaction systems, as also published in [28] and [30]. In the end, existing
approaches for creating transactional Web service systems are discussed.

CHAPTER 1. INTRODUCTION 14

Part II presents the TWSO approach for transactional processing in Web
service systems. For the most part, accomplishments as described here have
been published in [29] and [31]. The basics of TWSO are presented in Chap-
ters 4 and 5. Chapter 6 introduces the usage of TWSO in Web service systems
in detail and Chapter 7 defines the TWSO transaction monitor component.
Requirements and properties that have to be met by Web services that par-
ticipate in a TWSO enabled system are described in Chapter 8. Chapter 9
discusses the implementation of the scenario using TWSO.

Part III describes a prototype implementation of a TWSO system that
uses Java Web service orchestrations. Chapter 10 presents the prototype in
detail and Chapter 11 provides evaluation results of the prototype system.

Finally, in Part IV, Chapter 12 draws conclusions and Chapter 13 out-
lines important tasks for future research that will be started based upon the
results of this thesis.

Appendix A gives an understanding of WSDL that is needed to under-
stand various specifications in the thesis and Appendix B presents the com-
plete WSDL description of a TWSO transaction monitor. Appendix C.1
describes a method to intersperse TWSO concepts within XPDL orchestra-
tions and gives complete listings of orchestrations that implement the scenar-
ios of Chapter 2. Appendix C.2 shows a Java orchestration that implements
selected scenario parts.

Chapter 2

Scenario

To validate the soundness of the TWSO approach, a reasonable and compre-
hensive scenario has to be developed. It should be shown, that the use of
TWSO in such a scenario bears significant benefits.

The scenario is part of a real world project that is carried out by EC3 -
Electronic Commerce Competence Center and Tiscover, a company that runs
a tourism information system with a search engine and other functionalities.
The project encompasses a virtual enterprise that provides a metasearch–
function for miscellaneous tourism services. This search considers not only
the Tiscover database, but also data–sources stemming from other Inter-
net tourism services. The possibility to book discovered services should be
provided, too. Thus, the virtual enterprise searches and combines tourism
services to create a dynamic holiday package. The customer of the virtual
enterprise buys such a package. The correct way to combine the individual
building blocks should be calculated without human intervention. Thus, Web
service composition strategies may be applied here. Web service composition
software that has been developed by Electronic Commerce Competence Cen-
ter and performed best in an international contest [17] may be used for this
task. The particular building blocks of the dynamic holiday package stem
from different resources that are globally distributed. These resources are
accessible through Web service techniques. The customer of the virtual en-
terprise knows nothing about the individual building blocks and their global
distribution and merely obtains the single journey. The scenario focuses on
the booking part of the virtual enterprise only. Thus, from now on it is as-
sumed that tourism services have been already found and composed and are
ready to be booked.

15

CHAPTER 2. SCENARIO 16

To book an appropriate journey for a particular customer, strategies as
follows are applied. For each destination, one or more sets of reasonable
services are defined. For example, a city trip can consist of a set of services
like flight, airport transfer, hotel room, public transport ticket, etc.

However, traveler preferences differ. For example, some want to have
maximum flexibility and prefer to organize a holiday program on their own
in an ad–hoc manner at the destination while others favor a completely pre–
given holiday program for the whole stay. Which traveler type is applied
may be determined by an interview or by deducing the type from other trav-
eler attributes like age, gender, origin, profession, etc. However, the method
that is used to decide on the traveler type is not covered in this thesis. It is
presumed that the correct traveler type is known.

Depending on the target region and the traveler type, a particular pre–
defined electronic business process is put in action. The scenario includes
cases as follows.

2.1 City Trip Scenario Case

A city trip to Vienna for high convenience tourists should be created. The
set of services for this trip is as follows:

• flight,

• airport transfer,

• hotel room,

• set of tickets for selected sights,

• set of tickets for selected events,

• coupons for selected restaurants to provide half–board catering.

The high convenience customer wants to reach Vienna in the most comfort-
able way. Thus, a flight is used. To reach the necessarily pre–booked hotel
room, an airport transfer service has to be available. The customer wants
a ready–made holiday program and either the sight ticket set or the event
ticket set or both have to be available. Moreover, the high convenience cus-
tomer does not want to worry about where to have a meal. Thus, a set of

CHAPTER 2. SCENARIO 17

half–board restaurant coupons are needed. Expected processing times for
booking the hotel room in Vienna is two days, whereas all other services can
be booked within seconds.

At first, the services do not charge booking attempts but after some
months, the flight service charges each booking attempt. Thus, it becomes
necessary to minimize unneeded flight booking requests. Moreover, after
some months it is noticed that the typical high convenience customer is not
longer satisfied with only sight or event tickets and now he wants both types
of tickets. This circumstance has to be considered to meet (new) customer
preferences as good as possible.

2.2 Car Rental Tour Scenario Case

This Scenario encompasses a rental car tour around Crete. This trip should
be offered to two types of travelers. The first type encompasses travelers that
are flexible enough and enjoy to book necessary services at the destination to
a certain degree on their own. But they also appreciate pre–booked services.
The other type is not so flexible and expects a wide array of pre–booked
services at the destination. The set of services for the Crete trip is as follows:

• flight to Heraklion,

• rental car,

• hotel in Heraklion,

• hotel in Agios Nikolaos,

• hotel in Chania.

To reach the destination, a suitable flight to Heraklion should be booked.
To provide the traveler with sufficient mobility, a rental car should be pro-
vided at Heraklion airport. This trip is a tour around the whole island Crete
and at adequate locations, hotel rooms may be pre–booked. For both types
of travelers, the flight to Heraklion is mandatory.

For the more flexible traveler type, the following applies. It is assumed
that if the flexible traveler is equipped with a car, it is very easy to find a
suitable hotel room in Heraklion for her. And — the other way round — if
the traveler has a pre–booked hotel room in Heraklion, she has a place to

CHAPTER 2. SCENARIO 18

stay and can rent a car on–site without any hassles. Thus, it is required that
the hotel in Heraklion and/or the car booking have to be successful for a
valid journey. If both, the car booking and the hotel booking fail, a flexible
traveler considers the whole journey as unacceptable. Pre–booked hotels in
Chania and Agios Nikolaos are nice to have but not necessary.

The not so flexible traveler expects that there is a rental car and a hotel
room provided in Heraklion. However, for these travelers it is acceptable to
book at most one hotel room at the destination on their own. Thus, either
the hotel room in Chania or the room in Agios Nikolaos or both should be
pre–booked.

It is assumed that the car rental and hotel room bookings need approx-
imately 2 days to finish because human processing is involved. The full
automated airline reservation system needs just some seconds to provision-
ally reserve a free seat.

It is obvious that a traditional ACID transaction cannot support Scenario
2.1 and 2.2. It would be necessary to stick to the atomicity property: When
a single service fails, the whole transaction has to fail. For example, if the
car–booking fails in the Crete journey, the whole journey would fail, even
though the flexible traveler accepts a journey that consists out of a flight and
a hotel room in Heraklion. The isolation property (see Section 3.2) is also
problematic in these cases. If the service booking durations as stated above
are considered: To preserve the isolation property it would be necessary to
keep a tentatively booked flight seat hidden from other transactions for days.
The status of the seat remains unclear and ultimately depends on the deci-
sion of some small local organizations, like an event ticket set vendor. This
situation is probably unacceptable for any airline.

To implement the scenarios without transactional concepts, massive busi-
ness logic would be necessary. One would have to check numerous outcomes
of operations and act accordingly with appropriate business logic in the elec-
tronic business process. An array of unforeseen erroneous situations like
time–outs, temporary unavailability of services, etc. have to be handled ap-
propriately in the electronic business process. In addition, concurrent pro-
cessing (e.g. concurrent booking of tourism services) to minimize execution
time imposes vast coordination measures. These measures have to be im-
plemented in the electronic business processes, which poses a non–trivial
and error–prone issue. In addition, changing requirements (as posed in the
Vienna city trip) also imply massive modifications of business logics. A pos-

CHAPTER 2. SCENARIO 19

Figure 2.1: Non–transactional Vienna city trip orchestration

sible workflow that implements the first part of the Vienna Scenario 2.1 is
depicted in Figure 2.1. This figure shows the vast efforts that are necessary
to implement failure management and coordination when only workflow con-
cepts are employed. Although this workflow considers concurrent processing
only marginally and failure detection is simplified drastically to check “ok”
or “not ok” conditions of actions.

It will be shown that using TWSO and its transactional concepts, all the
fields above can be tackled in a straightforward way. Reinventing the wheel
and coordination–efforts will be reduced, dependability increased.

The electronic business processes of the virtual enterprise can be imple-
mented faster with transaction–oriented concepts. Time–to–market is de-
creased, the virtual enterprise can be put into operation faster. New busi-
ness processes, for example, to react on varying or new tourist needs, can
be deployed faster. Moreover, failure–management of the electronic business

CHAPTER 2. SCENARIO 20

processes is improved — a key characteristic for the virtual enterprise that
operates on globally distributed Web services via the Internet. As discussed
in Section 1.1, erroneous situations are likely here and their causes cannot be
prevented actively. The only possible remaining measure is to try to react
on such situations as good as possible, and transactional processing is an
effective and efficient way to do so.

From a technical point of view, proper technologies that put the elec-
tronic business processes in action are needed. Due to the fact that our
virtual enterprise operates on Web service resources, Web service orches-
tration technologies are a rather good choice to do so. It will be shown,
that the TWSO approach can be efficiently and effectively used to incor-
porate transactional concepts into the orchestration(s) that implement the
electronic business process of the described virtual enterprise.

In short, it will be shown that TWSO is capable of:

• reducing time–to–market of the virtual enterprise,

• reducing time–to–market of the tweaked virtual enterprise,

• cutting coordination efforts in the virtual enterprise significantly,

• cutting failure management efforts in the virtual enterprise significantly,

• putting arbitrary advanced transaction semantics in the virtual enter-
prise into operation,

• increasing dependability of the virtual enterprise, and

• being incorporated into existing orchestration technologies efficiently
and effectively.

Chapter 3

State–of–the–Art

3.1 Transaction Basics

A transaction is always executed within the bounds of a transaction pro-
cessing system. Often, a particular component in the transaction processing
system is dedicated to cover the management of transactions. This compo-
nent is called transaction monitor.

Transactions are controlled by sending them special transaction com-
mands, called transaction primitives. During its lifecycle, a transaction comes
into different states. Typically, state changes of a transaction arise from is-
sued transaction primitives.

Depending on the characteristics of a particular transaction processing
system, a transaction conforms to a set of properties. Depending on the
application domain, numerous combinations of types of transaction properties
can be reasonable. Based on these properties, different transaction primitives
and different transaction states exist in a transaction processing system. It
should be stressed, that the term transaction does not imply any particular
property set.

3.2 ACID Transactions

The most commonly known set of transaction properties are the ACID1

properties. The ACID property set consists of atomicity, consistency, iso-
lation and durability. This set is widely known and accepted and countless

1ACID is short for for Atomicity, Consistency, Isolation and Durability.

21

CHAPTER 3. STATE–OF–THE–ART 22

transaction–enabled systems support — most times even solely — trans-
actions that adhere to the ACID properties. The exact meanings of the
properties are as follows:

• Atomicity: The transaction’s changes to the application state are atomic.
A transaction has an “all–or–nothing” characteristic. Either all the
changes or none of them happen.

• Consistency: A transaction is a correct transformation of the applica-
tion state. The actions of a transaction do not violate any integrity
constraints, the transaction is a “correct program”. The applied in-
tegrity constraints depend on the particular application.

• Isolation: When transactions execute concurrently, for a transaction tx
the system has to pretend that tx is the only one being executed. It has
to appear that other transactions are executed either before tx or after
tx. For example, let ti and tj be two transactions that are executed
concurrently. For ti it seems that it is either executed before tj or after
tj.

• Durability: When a transaction completes successfully (e.g. a commit
finishes a transaction), the changes it did to the application state have
to be permanent and have to survive any kind of failure — be it a
software crash, a hardware failure, a power cut or an earthquake.

Transactions that adhere to the ACID properties are suited for tightly–
coupled systems, where a typical transaction is short–lived and does not act
on globally distributed, organizational independent, and uncontrollable re-
sources. Hence, ACID style transactions are very well suited for distributed
systems that are intra–organizational and make use of intra–organizational
resources like databases, legacy systems, middleware, etc.

To control ACID transactions, there are three distinct transaction prim-
itives. begin starts a transaction. In case the related business logic of a
transaction is considered to be successful, the transaction is finished with a
commit. Changes that happened in the committed transaction’s scope are
made permanent (durability). Also, all measures that were taken to preserve
isolation (see Subsection 3.2.2) can be withdrawn after a commit. When the
business logic is considered to be erroneous, abort cancels a transaction. All
changes made so far are revoked without any traces. Isolation measures —
if taken — are withdrawn.

CHAPTER 3. STATE–OF–THE–ART 23

Figure 3.1: Common transaction usage pattern

Based on the primitives, an ACID transaction can have states as follows.
After a transaction is started with begin, it is in the in progress state.
After a commit, the transaction gets into the committed state. Otherwise,
when a transaction is aborted, it comes into the state aborted.

3.2.1 Usage Pattern of ACID Transactions

Current methods to do transaction oriented programming with ACID trans-
actions follow a pattern as shown in Figure 3.1.

For example, if an application programmer wants to use a relational
database in some procedural/object–oriented programming language in a
transactional way, the following process is often applied. Let us assume that
new records should be inserted into a flight reservation and a hotel-

room reservation table together, i.e. a flight and a hotel room should be
reserved jointly in an atomic way.

After acquiring the needed data (which flight and which hotel room and
related dates), a new transaction is started. Then, business logic (as defined
in Definition 3.1) is executed. First, it is checked whether the desired reser-

CHAPTER 3. STATE–OF–THE–ART 24

vations conflict with already existing reservations. If not, reservation data is
inserted into the flight reservation and then into the hotelroom reser-

vation table.

Definition 3.1. Business logic is the set of rules, processes, and algorithms
that operate on and with information (data) in the business domain, as
implemented by the application [8].

Based on return messages of the database system, it is decided whether
the business logic could be executed successfully or not. For example, when
the database system reported an error free insertion into both tables and no
conflicting reservations could be detected, the business logic would be con-
sidered to be successful. A commit would be used to make the changes in the
flight reservation and hotelroom reservation persistent. Otherwise, if
the database system reports that the insertion of the record in a table failed
or the intended reservation conflicts with an existing reservation, the business
logic would be considered to be unsuccessful. Consequently, the transaction
would be aborted with an abort primitive. If necessary, tentatively inserted
records would be undone without any traces.

3.2.2 Preserving Isolation in ACID Transactions with
Locks

Considering the example before in Subsection 3.2.1, the database system
would have to be configured as follows to preserve isolation. From the mo-
ment a transaction ti performs an arbitrary operation (read, write, delete
or update) on table θv, only ti is able to perform operations on θv for the
duration of ti, i.e. θv is locked exclusively for ti for all kind of operations.
Operations of other transactions are queued up until ti terminates by abort

or commit. To prevent deadlock situations, timeout failures occur in case an
operation is queued for a long time.

Because of the database locking configuration described above, concurrent
access to the table(s) is coordinated in a semantically correct way. Isolation
and consistency is guaranteed. For example, the situation in Figure 3.2 is
avoided a priori. Here, user A and user B want to reserve the same flight
and the same hotel room for the same date. Because they both read existing
reservations concurrently at the time before any record is inserted, they as-
sume that there is no conflicting reservation. The results are four conflicting
reservation records in the database. This is an inconsistent database state

CHAPTER 3. STATE–OF–THE–ART 25

Figure 3.2: Insufficient isolation scenario

emerging from insufficient isolation.

Figure 3.3 shows the result of using transactions and locking tables after a
read operation. The read operation of user B is delayed until the reservation
records of user A are inserted. Consequently, the read operation notices the
reservations of user A and a conflict is detected. Isolation is satisfied and a
consistent database state is guaranteed.

3.2.3 Two Phase Commit Protocol

To achieve an atomic agreed outcome in a distributed system and thus to
adhere to the atomicity property of an ACID transaction in a distributed sys-
tem, a special communication protocol is used frequently: The Two Phase
Commit protocol (2PC protocol) [24]. Here a coordination entity asks the
participating entities whether they can commit or not. This phase is called
prepare phase. If all participating entities can commit, the coordinating
entity asks them to do so. If at least one participating entity tells the co-
ordinating entity that it cannot commit, the coordinating entity tells all
participating entities to abort the transaction.

The 2PC protocol is not only used in computer communications, but also
used in “real life” for numerous occasions. For example, voting with veto
powers is in accordance with 2PC protocol. A moderator (coordinating en-

CHAPTER 3. STATE–OF–THE–ART 26

Figure 3.3: Sufficient isolation scenario

tity) asks the voters (participating entities) whether the matter (about which
is voted) is ok. If at least one of the voters says “No”, the matter is aborted.
A typical Christian wedding ceremony is also handled by the 2PC protocol
[24]. The pastor (coordinating entity) asks each partner (participating enti-
ties) whether he or she wants to marry. If both partners agree, the marriage
is committed. Otherwise, it is aborted.

3.3 Advanced Transaction Models

As discussed in Section 3.2, ACID style transactions are especially appropri-
ate for generally simple and short–lived operations. It has been found that
in other areas, the ACID concept has limited applicability [19]. Thus, to
overcome the restrictions of ACID style transactions in such domains, other
models for transaction–oriented processing were developed. These models
are called advanced transaction models. Generally speaking, advanced trans-
action models offer concepts for transaction–oriented processing in domains
where the support of one or more ACID properties is not necessary or even
not possible. Some important advanced transaction models are presented
here. [24] offers a detailed discussion of advanced transaction models.

3.3.1 Transactions with Savepoints

Transactions with savepoints [24] allow organizing a transaction into a se-
quence of actions that can be rolled back individually.

CHAPTER 3. STATE–OF–THE–ART 27

For example, a virtual enterprise in the tourism domain imports 100,000
existing user accounts from a partner company. It is important, that only
the complete set of new user accounts are available in the virtual enterprise,
i.e. isolation has to be considered.

Hence, 100,000 records have to be inserted, whereas each insert is a time–
consuming task and takes 1 second. The whole transaction would last for a
day. If the very last update fails, the whole transaction is aborted and the
work of a day is lost.

Savepoints provide a solution for this scenario and relax the atomicity
criterion. During a transaction, one can set savepoints and can rollback to
an arbitrary savepoint if something fails. It should be noted that setting a
savepoint does not commit the modifications that have been done before the
savepoint, i.e. another concurrent user cannot see the modifications done so
far.

For the previous example, let us assume that a savepoint is set at every
1000th inserted user account, then only 15 minutes of work would have to be
repeated in case the last transaction fails.

3.3.2 Nested Transactions

Nested transactions [18] can be seen as a generalization of savepoints. While
transactions with savepoints organize a transaction in a sequence, nested
transactions form a hierarchy of actions.

A nested transaction is a tree of transactions. The root is called top–level
transaction. The superordinate of a sub–transaction is called parent, the sub-
ordinate of a transaction is called child. If a transaction rolls back, all child–
transactions have to roll back, too. The commit of a child–transaction does
not take effect until the parent–transaction commits. The parent–transaction
is the only instance that can see the changes of a child–transaction’s commit.
Thus, any child–transaction can fully commit only if its parent–transaction
commits. However, after a commit, the parent–transaction will see the effects
of the child–transaction.

CHAPTER 3. STATE–OF–THE–ART 28

3.3.3 Multilevel Transactions

Multilevel transactions [46] are like nested transactions and build an hier-
archy of transactions. However, multilevel transactions allow a complete
commit of the results of subtransactions before their parent–transactions
commit. The results take effect immediately. Yet, it must be possible to
retract the committed results of subtransactions. This is achieved by using
compensation actions, as defined below.

Definition 3.2. A compensation action is a “forward” action that makes
some adjustments to reverse the original action. After a compensation action,
the fact that the original action took place is visible. In contrast, a rollback
undoes an action so that it seems like the action never took place.

3.3.4 Sagas

Put simply, a Saga [22] is a chain of transactions. Each transaction in the
chain commits when it finishes its work, and provides a compensation action.
If a transaction ti fails, ti can do an abort, and all previous transactions
t1, . . . , ti−1 have to start their compensation actions.

3.4 Advanced Transaction Metamodels

As indicated in Section 3.3, several advanced transaction models were devel-
oped to overcome the limitations of ACID transactions in some domains. To
describe advanced transaction semantics, formal models have been developed.
Here, we give a short introduction of advanced transaction metamodels.

3.4.1 Gray and Reuter’s Approach

Simple transaction models can be described with finite state–machines. How-
ever, most advanced transaction models do not have a fixed number of states.
Thus, finite state–machines are not appropriate, and specialized metamodels
for advanced transaction models were developed. In this section we give a
short overview of an advanced transaction metamodel that was introduced in
[24] by Jim Gray and Andreas Reuter. In Gray & Reuter’s approach, trans-
actions are modeled as compositions of one or more atomic actions. Atomic
actions have ports that identify possible signals an atomic action can receive,
and final states that indicate the outcome of an action. For example, a sim-
ple atomic action as can have the ports abort, commit, and begin and the
final states aborted and committed.

CHAPTER 3. STATE–OF–THE–ART 29

In a transaction, the included atomic actions can also be related. Rela-
tions can model the invocation hierarchy of the atomic actions, e.g. if atomic
action aa commits, atomic action ab has to commit, too. Transactions impose
different rules on relations among atomic actions and the effects they have
on related atomic actions. For each atomic action in a transaction model,
there can be one or more rules. Each rule represents a state transition an
atomic action can perform. Such rules have two parts. The active part of
a rule defines conditions that trigger events. For example, “commitment of
aa triggers commitment of ab” is modeled by the active part. These events
cause an atomic action to change its state. The passive part specifies the
conditions for performing a state transition. For example, “commitment of
aa can only happen if ax is ready to commit, too” can be defined by the
passive part. The structure of a rule can be depicted as follows:
<rule identifier>:<preconditions>

<rule modifier list>, <signal list>, <state transition>

The rule identifier indicates the port on a target atomic action to which
a signal should be sent. Preconditions are predicates that have to be fulfilled
before the corresponding rule is executed.

Rule modifiers capture the dynamic behavior of a transaction model, i.e.
the addition or deletion of rules. The signal list contains names of rules that
are to be activated in the course of execution of the originating rule. The
rule modifier list contains one or more rule modifiers. State transition is a
supplementary element that gives the rule a label. The structure of a rule
modifier is the following:
<rule modifier> ::= ((+||-) (<rule identifier>|<signal>))

||

(delete (<Atomic Action Identifier>))

The first clause of a rule modifier introduces means to dynamically create
new rules and dependencies introduced by these new rules. It is also used to
delete single rules. The second clause is a shortcut and makes it possible to
dynamically delete obsolete rules pertaining to a particular atomic action.

A transaction model consists of several such rules. Whenever an event
occurs, the right side of the rule that identifies the event is executed — of
course only if the preconditions of the rule are met. The rule is “marked”
to indicate the current state. It remains marked after its execution steps are
finished until a new signal comes in. Thus, subsequent emissions of the same
signal to the same action are not possible, because the port is “closed” after

CHAPTER 3. STATE–OF–THE–ART 30

Figure 3.4: Single aspect of a flat transaction system

the first emission. Once an atomic action reaches a final state, all its rules
are deleted. Note that delete actions are given only when they are essential
for the described transaction model.

To illustrate Gray & Reuter’s model, a simple transaction model is de-
fined: flat transactions. In flat transactions we have two atomic actions: The
flat transaction action itself and a system action. The system action can only
be aborted, i.e. the system crashes for some reason. The flat transaction ac-
tion can be committed and aborted. There is a dependency between the
system action and the flat transaction action: If the system action aborts,
the flat transaction action has to abort, too. The graphical rendering of the
model depicted in Figure 3.4 describes a particular state of the flat transac-
tion model. The figure would become too complex if we tried to describe the
whole model with it. Textual rules are a better way to do that. Each atomic
action has three ports (Abort, Begin, and Commit) and two states (Aborted
and Committed). Transaction t is running, i.e. the begin port has been used.

Crossed–out ports in the figure cannot be used. Thus, the only ports that
can be used in the current state are the abort port of atomic action system

and the abort and commit port of atomic action t. If the system gets into
the state aborted, the abort port of the t atomic action is signaled. This
emitted signal implies an abort of t and, consecutively, a rollback of t. It
should be noted that we expect a transaction that is aborted to perform a
rollback. The “textual rules rendering” of the model is as follows:
SA(system): , , System Crash (rule 1)

SB(t): +(SA(system)|SA(t)), , Begin Work (rule 2)

SA(t): (delete(SB(t)), delete(SC(t))), , Rollback Work (rule 3)

SC(t): (delete(SB(t)), delete(SA(t))), , Commit Work (rule 4)

CHAPTER 3. STATE–OF–THE–ART 31

The notation SX(j) means signal X of atomic action j. The signals are
abbreviated as follows: A is short for abort/rollback, B means begin, and C

means commit. The first rule handles the case of a system crash: The system
action is aborted. Since it does nothing, it is actually redundant. It is only
given for the sake of clarity. The second rule installs the structural depen-
dency of the atomic action t and the atomic action system, i.e. the arrow
in Figure 3.4. The third rule is executed when an abort signal arrives. All
ports are deactivated. The same is true in the case of a commit signal, which
is written down in rule 4. Nested transactions (see Subsection 3.3.2) can be
described with the following rules:
SB(tkn): +(SA(tk)|SA(tkn)), ,BEGIN WORK (rule 1)

SA(tkn): , , ROLLBACK WORK (rule 2)

SC(tkn): C(tk), , COMMIT WORK (rule 3)

Rule 1 introduces a new atomic action and installs the dependency “if the
parent atomic action aborts, the child atomic action has to abort, too”. Rule
2 establishes the abort signal and rule 3 manages the commit system: “The
child can finally commit only if its parent has committed”. The rules use
two atomic action identifiers: tk and tkn. tk represents an arbitrary parent
atomic action and tkn an arbitrary child atomic action of tk.

3.4.2 ACTA

ACTA is a framework that can be used to specify, analyze and synthesize
advanced transaction models [13]. As in Gray and Reuter’s model, sev-
eral transactions are combined to compose advanced transaction models in
ACTA.

Basically, ACTA distinguishes between object events and significant events.
Object events are calls on operations of objects. Significant events are invoca-
tions of transaction management primitives like commit, abort, etc. Besides
that, ACTA uses the following building blocks to describe an advanced trans-
action model.

Inter–transaction dependencies are used to specify the relationships be-
tween transactions in a transaction model. For example, an abort depen-
dency between transaction tj and transaction ti indicates that the abort of
ti causes the abort of tj.

Views of transactions allow specifying the state of objects visible to a
transaction at a point in time. For example, let us assume that under the

CHAPTER 3. STATE–OF–THE–ART 32

control of transaction ta an object event on object ov has changed the state
of ov and ta has not committed yet. Transaction views control whether it is
possible for object events under a transaction tb to operate on and/or see the
not–yet–committed state of ov.

With conflict sets it is possible to define that object events under control
of a transaction cannot be called by another transaction while the object
events are in–progress (in–progress object events are events that have been
started but have not been committed or aborted yet).

Delegations move the responsibility for object events from one transac-
tion to another and also delegate the responsibility for significant events from
one transaction to another. Delegation of object od from transaction ty to
transaction tx means that all method calls to od that happened before the
delegation (that is ty was de facto in control) are considered to have happened
under tx and tx is responsible for doing significant events (e.g. commit) on od.

In [13], sample advanced transaction models are described using axioms
that are expressed in predicate logic, whereas this predicate logic uses the
building blocks of ACTA. The following axioms describe a simple atomic
transaction:

1. SEt = {Begin, Commit, Abort}

2. IEt = {Begin}

3. TEt = {Commit, Abort}

4. t satisfies the fundamental Axioms of Transactions

5. V iewt = Hct

6. ConflictSett = {pt′ [ob] | t′ 6= t, Inprogress(pt′ [ob])}

7. ∀ob ∃p (pt[ob] ∈ H) ⇒ (ob is atomic)

8. (Committ ∈ H) ⇒ ¬(tC∗t)

9. ∃ob ∃p (Committ[pt[ob]] ∈ H) ⇒ (Committ ∈ H)

10. (Committ ∈ H) ⇒ ∀ob ∀p ((pt[ob]) ∈ H) ⇒ (Committ[pt[ob]] ∈ H))

11. ∃ob ∃p (Abortt[pt[ob]] ∈ H) ⇒ (Abortt ∈ H)

12. (Abortt ∈ H) ⇒ ∀ob ∀p ((pt[ob] ∈ H) ⇒ (Abortt[pt[ob]] ∈ H))

Axioms 1-3 define events and their purpose: Significant events (begin,
commit, abort), a single initiation event (begin) and two termination events
(commit, abort). Axiom 4 refers to basic transaction axioms, i.e. transac-
tions can only be initiated by a single event and can only be terminated by

CHAPTER 3. STATE–OF–THE–ART 33

a single event, termination can only occur if a transaction has been initiated
before, and only running transactions can invoke operations on objects. Ax-
ioms 5 to 12 define further core semantics of atomic transactions. We will
not describe these axioms in detail here. See [13] for a complete explanation
of axioms 5 to 12.

The ACTA framework is a very comprehensive metamodel and it is un-
likely that a particular idea for a custom advanced transaction model cannot
be represented in ACTA. However, as one can see from the preceding exam-
ple, this completeness causes complexity, and ACTA itself is neither easy to
understand nor easy to use.

Specialized approaches for defining advanced transaction models that use
ACTA have been proposed. For example, ASSET [6] and Bourgogne transac-
tions [41] use the ideas of ACTA but simplify the usage of ACTA significantly.
Both approaches are based on the idea to combine several basic transactions
by defining their dependencies in order to compose an advanced transaction
model. They also provide a set of general transaction primitives that can
be applied to control transactions. These transaction primitives can be used
in programming environments. ASSET focuses on O++, a database pro-
gramming language, and Bourgogne transactions target the J2EE applica-
tion server infrastructure. Thus, an advanced transaction model is defined by
creating a program that defines one or more basic transactions, their depen-
dencies (if necessary), and controls the transactions by means of transaction
primitives.

3.5 Evaluation of Advanced Transaction Meta-

models

To support arbitrary advanced transaction models (a key feature of Web ser-
vice transaction systems as discussed in Section 1.1), a model that is capable
to grasp semantics of advanced transactions is compulsory. To the best of
our knowledge, two significant formal advanced transaction metamodels were
developed in the past. These have been introduced before. In this section we
analyze these advanced transaction metamodels regarding their usefulness
for a Web service transaction system. To avoid redundant work, using one
of these scientifically approved advanced transaction metamodels for Web
service transactions is highly desirable. Thus, a decision will be finally made
which of these transaction metamodels will build the base of a new approach
for Web service transactions.

CHAPTER 3. STATE–OF–THE–ART 34

3.5.1 Gray and Reuter

For a Web service transaction system, Gray & Reuter’s metamodel for ad-
vanced transaction models could be used to describe the application’s trans-
action semantics. However, the rules as used in [24] are proprietary and
uncommon in the Web service world. Moreover, the advanced transaction
semantics have to be described in a machine–readable language. As shown
below, the rule syntax satisfies these requirements only marginally. XML
would be a superior solution. It is verbose enough to provide information for
humans, and countless tools and libraries exist that ease the processing of
XML. In addition, every standard in the Web service world is using XML,
therefore, representing the model in any other way would be unreasonable.
Thus, an XML representation of Gray & Reuter’s model seems to be the best
choice.

A straightforward approach to bring Gray & Reuter’s model into the
XML world is to map the rules in a one–to–one way. The “begin work” rule
of a flat transaction as shown before would look something like shown in
Listing 3.1.

Listing 3.1: Sample XML rule serialization
<rule stateTransition="begin work">

<identifier >

<signal type="begin">

<atomicAction type="t"/>

</signal >

</identifier >

<ruleModifiers >

<add>

<from>

<signal type="abort">

<atomicAction type="system"/>

</signal >

</from>

<to>

<signal type="abort">

<atomicAction type="t"/>

</signal >

</to>

</add>

</ruleModifiers >

</rule>

For such a simple model, this one–to–one mapping seems to be appropri-
ate. However, for more complex transaction models, this kind of mapping
has deficits. For example, take a look at the one–to–one mapped commit
rule of a nested transaction in Listing 3.2.

CHAPTER 3. STATE–OF–THE–ART 35

Listing 3.2: Simple nested transaction XML rule
<rule stateTransition="COMMIT WORK">

<identifier >

<signal type="commit">

<atomicAction type="t" id="kn"/>

</signal >

</identifier >

<precondition >

<state type="commit">

<atomicAction type="t" id="k"/>

</state >

</precondition >

</rule>

A human specialist could imagine that the identifier kn describes an ar-
bitrary child atomic action and k its parent atomic action. The precondition
for committing the child atomic action (i.e. the parent transaction has to
be in the committed state) is not machine–readable, because the hierarchic
relation between tk and tkn is not expressed in a machine–readable way. A
similar problem arises when mapping flat transactions with savepoints (see
Section 3.3.1) to XML in a one–to–one way. The abort rule and its one–
to–one XML serialization for an arbitrary atomic action in a flat transaction
with savepoints are as follows (let r be the target savepoint, i.e. the transac-
tion should rollback to the atomic action identified by r), Listing 3.3 shows
the corresponding XML serialization:

SA(r) : (r<Sn) → , SA(Sn−1), ROLLBACK WORK

Listing 3.3: Savepoint transaction XML rule
<rule stateTransition="ROLLBACK WORK">

<identifier >

<signal type="abort">

<atomicAction type="s" id="n"/>

</signal >

<arguments >

<arg name="RollbackTargetSavepointAtomicAction">

<constraint >

RollbackTargetSavepointAtomicAction < Sn

</constraint >

</arg>

</arguments >

</identifier >

<signalList >

<emitSignal >

<target >

<signal name="commit">

<atomicAction type="s" id="n-1"/>

CHAPTER 3. STATE–OF–THE–ART 36

</signal >

</target >

</emitSignal >

</signalList >

</rule>

Here we have an argument that defines the identifier more precisely, and a
constraint, which describes the allowed values of the argument. The rule and
consequently the one–to–one mapping defines this in a language that can-
not be understood by a machine without difficulty. Thus, a comprehensive
XML mapping should include machine–readable parameter–passing seman-
tics, too. Another problem arises with the signal list. A human can interpret
the target of the signal: the linear predecessor atomic action. Similar to
the parent–child relationship problem above, the linear relationship is not
expressed explicitly.

Hence we face two obvious key problems when translating Gray & Reuter’s
rules to XML in a straightforward one–to–one way: An explicit definition of
relationship types (e.g. previous, parent, etc.) and some kind of parameter
passing semantics is needed.

One has to consider that arbitrary transaction models can have arbitrary
relation types between their atomic actions. While a set of basic relation
types can be identified, an extension mechanism is required, too. The ba-
sic set of relation types can be separated into linear and hierarchic types.
Linear types are first, next, previous, and last. The hierarchic types
are parent, child, and root. Another special type is also needed: self for
relations to the atomic action itself. Note that the basic set just supports
transaction models that follow a linear or hierarchic structure. The names
are self–describing and these basic types should be sufficient for quite a few
transaction models — at least the set is sufficient for all ATMs presented in
[24]. The commit rule of a nested transaction in XML is shown in Listing
3.4.

Listing 3.4: Nested transaction XML rule
<rule stateTransition="COMMIT WORK"

xmlns:aaRelations="http: //wstx.ec3.at/AA_relations">

<identifier >

<signal type="commit">

<atomicAction type="t" id="kn"/>

</signal >

</identifier >

<precondition >

<state type="commit">

CHAPTER 3. STATE–OF–THE–ART 37

<atomicAction type="t" id="k">

<aaRelations:relationSpecification relatedTo="this"

as="parent" />

</atomicAction >

</state >

</precondition >

</rule>

As can be seen, the embedding of relation specifications is implemented
with XML–namespaces. This provides a flexible extension mechanism for
atomic action relation types. The this value in the relatedTo attribute
represents the current rule. Of course, the semantics of a parent type in the
http://wstx.ec3.at/AA_relations namespace has to be implemented in
the processing software in order to do some “parent relation aware” process-
ing. If this is the case, the processing software is aware that the parent has to
commit first. Extension sets reside in other namespaces and are included by
declaring their namespace and prefixing the corresponding relation element
with the namespace shortcut. Again, the semantics of extension atomic ac-
tion relation types has to be implemented in the processing software — at
least if it is desired to process these new atomic action relation types appro-
priately.

Since the input parameters used in the ATM rules presented in [24] are
only atomic action types, focus is laid on building a parameter passing sys-
tem that considers just atomic action types for now. The allowed type of the
atomic action that can be passed as well as constraints the passed atomic
action instance has to respect must be known.
For the constraints, a similar technique as used before for the explicit defini-

tion of relationships is applied. It is sufficient that constraints are expressed
in terms of relations to other atomic actions. Thus, the relation vocabulary is
enhanced with linearAncestor (any previous atomic action), linearSuc-
cessor (any subsequent atomic action), treeAncestor (on a higher tree–
level), and treeSuccessor (on a lower tree–level). For instance, argument
passing in the rollback rule of a transaction with savepoints is specified in
Listing 3.5.

Listing 3.5: XML rollback rule savepoint transactions
<rule stateTransition="ROLLBACK WORK"

xmlns:aaRelations="http: //wstx.ec3.at/AA_relations">

...

<identifier >

<signal name="abort">

<atomicAction type="s" id="n"/>

<arguments >

<arg type="s">

<aaRelations:relationSpecification

CHAPTER 3. STATE–OF–THE–ART 38

relatedTo="this" as="linearAncestor" />

</arg>

</arguments >

</signal >

</identifier >

...

</rule>

In [24], there is no explicit definition which states an atomic action can
have and which signals it can accept. This is done implicitly by defining
rules accordingly, i.e. if a rule is identified by signal S to atomic action t, it
is assumed that t has the port S. Though it is redundant, an explicit defi-
nition of atomic action types used in the model should be added to enhance
readability and to ease processing by software programs. State transitions
are also defined implicitly in [24], i.e. if signal commit arrives at atomic ac-
tion t, t gets into the committed state. This should be stated explicitly in
the XML representation as well. A nested transaction atomic action can be
represented in XML as follows:

Listing 3.6: Nested transaction XML rule
<signalType name="abort"/>

<signalType name="begin"/>

<signalType name="commit"/>

<stateType name="abort"/>

<stateType name="commit"/>

<atomicActionType name="t">

<signals >

<signal type="abort"/>

<signal type="begin"/>

<signal type="commit"/>

</signals >

<states >

<state type="aborted"/>

<state type="committed"/>

</states >

<transitions >

<transition >

<fromSignal type="abort"/><toState type="aborted"/>

</transition >

<transition >

<fromSignal type="commit"/><toState type="comitted"/>

</transition >

</transitions >

</atomicActionType >

CHAPTER 3. STATE–OF–THE–ART 39

3.5.2 ACTA

In contrast to Gray and Reuter’s advanced transaction metamodel, a one–to–
one XML representation of ACTA is not eligible. The resulting complexity
would be too cumbersome. There is a superior way to use the ACTA frame-
work in the context of Web service transaction systems. Enhancing Web
service orchestrations with arbitrary advanced transaction models in a way
that is inspired by ASSET [6] or Bourgogne transactions [41] — both are
based on ACTA — seems to be a desirable objective.

For example, ASSET uses multi–purpose transaction primitives to build
arbitrary advanced transaction semantics in O++, a database programming
language. Transaction primitives become an integral part of O++. Hence,
O++ language constructs and transaction primitives are merged with the
intention to jointly put advanced transaction semantics into operation.

Such an approach is called programmatic transaction system and works
well in Web service environments, as shown by this work 2.

3.5.3 Summary

Gray & Reuter’s metamodel is appropriate to describe the structure and ba-
sic ideas of advanced transaction metamodels. It can be especially useful to
comprehend advanced transaction models in Web service systems. However,
it is not well suited to facilitate developing transaction aware Web service
systems directly. Major efforts would have to be taken to create a concept
that enables a link between business logic and transaction semantics. For
example, the model is not prepared to express that Web service ws1 should
be managed by transaction t1. If Web service ws1 fails for 3 times, it is
considered to be unsuccessful and t1 should be aborted. In that case, a
transaction t2 should be started that manages a Web service ws2 and ws2

should be called. Addressing all the limitations of the industrial Web service
transaction proposals as discussed in Subsection 3.7 would require consider-
able efforts. Incorporation with Web service orchestrations — i.e. linking the
business logic to transaction semantics — is not addressed and a well–known
usage pattern is not deducible per default. Gray & Reuter’s metamodel has
not been developed to handle such aspects of transaction–related processing
per default.

2A programmatic Web service transaction system is discussed in detail in Part II.

CHAPTER 3. STATE–OF–THE–ART 40

Although an exact one–to–one use of the ACTA framework would be
rather ineffective to create a Web service transaction system, the ideas of
ACTA can build a valuable base for Web service transactions. Using con-
cepts of ACTA in a Web service transaction system similar as proposed in
ASSET or in Bourgogne transactions is a promising undertaking. The limi-
tations of the industrial Web service transaction proposals could be avoided.
By integrating transaction primitives in the business logic, a well–known us-
age pattern can be provided and the incorporation of transactional processing
in Web service orchestrations is enabled. Moreover, the usage of arbitrary
transaction semantics is featured as an integral part.

Accordingly, it is sound to base a new approach of Web service trans-
actions on the ideas of ACTA, similar as shown in ASSET and Bourgogne
transactions. Such an approach requires significant fewer efforts to address
the limitations in available Web service transaction proposals than advancing
Gray & Reuter’s metamodel.

3.6 Web Service Transaction Proposals

Several renowned companies published proposals that deal with transactional
processing in the Web service world. These proposals are remarkably similar
and differ only in details. The basic building blocks are the same.

3.6.1 Business Transaction Protocol

In the Business Transaction Protocol (BTP) proposal, each Web service is
associated to a so–called coordinating entity. A transaction can contain sev-
eral coordinating entities that are organized in a tree–hierarchy. Coordinat-
ing entities control their Web services in terms of transaction primitives and
propagate transaction primitives to their sub–ordinate coordinating entity.
Which transaction–primitives are sent to which Web services or subordinate
coordinating entity is based on application–specific (business) logic, that is
implemented in the coordinating entity. For example, a coordinating entity
can abort all its Web services or subordinate coordinating entities if a single
Web service or subordinate coordinating entity fails. In BTP, such behavior
is called atom and implements atomicity in terms of the ACID properties.
In contrast, a coordinating entity can tell — based on some (business) logic
— some of its subordinates or Web services to abort and others to commit.
This is called cohesion.

CHAPTER 3. STATE–OF–THE–ART 41

BTP uses transaction primitives as follows. BTP–enabled services must
support provisional (tentative) state changes, called provisional effects. The
provisional effect can be either made permanent (commit, in BTP called fi-
nal effect) or canceled (counter effect). The actual implementation of these
effects is up to the service. The counter effect can be accomplished by a
rollback or a compensation. Isolation is not covered in BTP. It is up to
the service how to manage isolation matters. The client decides whether a
resource is visible during a transaction to all clients and how to deal with
implications of this decision.

The integration in existing distributed environments is rather flexible.
There are bindings for different network protocols. As for the SOAP bind-
ing, coordinating entity messages like “prepare” are sent in the SOAP body.
Regarding application calls, a transaction context is transferred to the partic-
ipants in SOAP header elements. Thus, a Web service can relate application
calls to particular transaction instances.

3.6.2 WS–Transactions and WS–Coordination

This proposal is organized in two parts. One part is a framework for manag-
ing the transaction context between the participating activities (WS–Coord-
ination) and the other part deals with transaction protocols (WS–Trans-
action).

WS–Coordination defines a framework for coordinating components (co-
ordinators) in a transaction. It defines a coordinator’s offered functionality
and interactions. A coordinator produces a (transaction) context, called co-
ordination context. The context is propagated to all involved components
and contains a coordination type, which has to be supported by all compo-
nents that participate in the transaction. The context is transmitted in the
SOAP header and conversation flow works almost the same as in BTP: An
application receives a SOAP call that includes transaction context informa-
tion. Based on this information, the application registers to a coordinator
and transaction specific communication with the coordinator is conducted
based on protocols that are deduced from transaction models.

WS–Transaction defines communication protocols for particular trans-
action models. Again, the (advanced) transaction models are defined only
implicitly by the communication protocol. A transaction model can offer
several protocols, and a component can choose one or more protocols. Based
on the component’s registered protocol(s), the coordinator sends protocol
conformant messages to the components. The communication protocol is

CHAPTER 3. STATE–OF–THE–ART 42

arbitrary. Thus, the WS–Transaction and WS–Coordination infrastructure
can be used for custom transaction model communication protocols. How-
ever, WS–Transactions defines two potentially often–used types.

The transaction model atomic transaction (AT) is an all–or–nothing trans-
action model. It fulfills the atomicity property of the ACID properties. AT
offers 5 protocols that can be used by participants. For example, if a compo-
nent registers to the completion protocol, the component is able to finish the
transaction. It can tell the coordinator either to try to commit the transac-
tion or force a rollback. After that, the coordinator sends a message with the
transaction outcome (committed or aborted) to the participant and “forgets”
about the transaction.

For long–lasting transactions, where hard isolation operations are not ap-
plicable and trust between participants is not guaranteed, the coordination
type business activity (BA) is proposed. This type builds up a transaction
tree to handle such cases. The tree can consist of both, ATs and BAs. The
tree enables superordinate coordinators to control their subordinate coordi-
nators and divides the transaction into several domains. Note that the term
“control subordinates” means handling of exceptions thrown by subordinates,
selection of only a few subordinates that should contribute to the overall out-
come and giving transaction specific orders like “complete” or “compensate”.
As in BTP, (business) logic has to be applied to coordinators, so that they
know, for example, which subordinates are vital for the whole transaction.
To reverse actions of participants, compensation is used.

3.6.3 Web Service Composite Application Framework

The Web Service Composite Application Framework (WS–CAF) contains rec-
ommendations for coordinating several Web services using transactional pro-
cessing. The architecture consists of three different parts.

A Web services context service (WS–CTX) provides means to share infor-
mation between several Web services that collaborate in order to accomplish
a specific activity. This information is called context and is shared within
those Web services.

Generic coordinating entities are defined according to the Web Services
Coordination Framework (WS–CF) proposal. The task of a generic coordi-
nating entity is to disseminate information to a number of participants. It
should be noted that generic coordinating entities might be used for any coor-

CHAPTER 3. STATE–OF–THE–ART 43

dination activity and are not focused on coordinating transaction processing
only. WS–CTX contexts are used here to exchange information about the
coordinating entities. For example, the question “How can the coordinating
entity be reached?” might be answered by a WS–CTX context.

Web services transaction management (WS–TXM) defines transaction
protocols. These transaction protocols are executed using the infrastruc-
ture of WS–CF and WS–CTX. Coordinators as defined in WS–CF, manage
the execution of transaction protocols. For example, a tree structure of a
transaction may be created using subordinate and superordinate coordinat-
ing entities. At run–time, these coordinating entities control Web services
according to the hierarchy. Hence, they implement the transaction seman-
tics. Contexts, as defined in WS–CTX, convey context information in the
transaction management system. For instance, if a Web service call that
comes in includes a WS–CTX context, the participating Web service may re-
act in accordance to the context. The context could carry information about
the desired transaction model and, depending on the transaction model’s re-
quirements, the Web service may register itself to a coordinating entity as
also proposed in the context.

WS–TXM proposes three different transaction protocols. The ACID
Transactions (AT) model provides ACID semantics for transactions. There
are some tweaks to enhance the performance. For example, a Web service
can indicate that it has just read operations to perform, and then is treated
specifically by the coordinating entity.

For business interactions that occur over a long period, the long running
action (LRA) transaction model is available. This model makes one impor-
tant assumption about the participant’s work: It has to be compensatable
through compensation actions. LRAs define triggers for compensation ac-
tions and the conditions under which those triggers are executed. When a
Web service participates in an LRA, it enlists a compensator Web service
that is able to compensate the Web service’s actions. LRAs can be nested.
If an LRA inside an enclosing LRA fails, all LRAs inside the enclosing LRA
have to be compensated. Thus, LRAs respect the atomicity property. How-
ever, a typical long running business interaction involves more LRAs that
are not nested inside of each other. Obviously, the idea of LRAs is based on
SAGAs (see Subsection 3.3.4).

The Business Process Transactions (BPT) transaction model is special-
izing primarily in inter–organizational transactions. It consists of business

CHAPTER 3. STATE–OF–THE–ART 44

tasks and each task executes within a specific business domain. A BPT can
either terminate successfully (i.e. all of the work could be done) or unsuccess-
fully (i.e. at least one task failed). In the latter case, the transaction moves
to a “failure” state. In this state, work can be undone if necessary: Some
tasks can be told to undo and some tasks can be told to commit. Thus,
atomicity is relaxed. If some work cannot be undone, this has to be logged
and further compensation operations like human intervention (business–level
compensation) have to be applied. How a task undoes its work is not spec-
ified. It can be done using compensation actions like in LRAs or by some
other means. Again, a tree–structure models the transaction. Each business
domain is exposed as a single subordinate. Each subordinate is responsible
for managing its domain in terms of making it to cooperate with the business
transaction. The internal implementation of the domain is not specified and
is not necessarily WS–TXM. It can also use BTP or WS–Transaction/WS–
Coordination as long as its coordinating entity maps BPT messages to its
implementation messages and vice versa. The basic ideas of BPT originate
from multilevel transactions. In contrast to multilevel transactions, seman-
tics of undo actions were enriched and the tree structure of the transaction
does not imply cascading undo/compensation structures. What should be
undone can be determined without the rules of any underlying model.

3.7 Evaluation of Web Service Transaction

Proposals

As mentioned before, the published proposals for Web service transactions
resemble each other to a high degree. Analyzing the participating organi-
zations and release dates, this is no surprise. Table 3.1 shows the release
dates and the most important participating organizations of each Web ser-
vice transaction proposal.

BTP was the first proposal for Web service transactions, with Oracle,
Sun, BEA and others involved. Only one month later, IBM and Microsoft
published a competitive proposal, whereas BEA switched and obviously pro-
vided extensive know–how that originated from BTP. One year later, Oracle
and Sun tried again and published WS–CAF, challenging WS–Transactions
and WS–Coordination.

All these Web service transaction proposals describe an architecture of a
Web service transaction system, which includes participating Web services

CHAPTER 3. STATE–OF–THE–ART 45

Table 3.1: History of Web service transaction proposals

Proposal Published on Organizations
Business Transaction Protocol June 3, 2002 OASIS (Oracle, Sun,

BEA, HP, Iona, Sybase)
WS–Transactions & WS–
Coordination

August 9, 2002 IBM, Microsoft, BEA

Web Services Composite Ap-
plication Framework

July 28, 2003 Oracle, Sun, IONA

and a hierarchy of central components that offer transaction–related services
and communicate transaction–related matters to affected participating com-
ponents. Based on this framework, different protocols that handle communi-
cation between all affected components are defined. These protocols adhere
to certain transaction semantics. Thus, if protocol px conforms to transac-
tion semantic sx, and a transaction ta is executed using px, the semantics
of ta conform to sx. The offered transaction communication protocols are
based on the semantics of advanced transaction models, as described in Sec-
tion 3.3. Each proposal offers a small number of ready–to–use transaction
communication protocols. The usage of additional arbitrary advanced trans-
action communication protocols is only possible with WS–Transactions/WS–
Coordination and Web Service Composite Application Framework. Frankly
spoken, the only relevant diversity of the available Web service transaction
proposals lies in the offered transaction protocols.

Unfortunately, all existing Web service transaction proposals introduced
in the following section suffer from weaknesses as follows.

These Web service transaction proposals focus on the specification of
communication protocols between a transaction enabled Web service and
transaction monitors. Such protocols exist for a few number of different
(advanced) transaction models. Thus, certain default advanced transaction
models are described implicitly by suggesting suitable communication pro-
tocols for them. However, the incorporation of custom advanced transaction
semantics into the transaction system is left open to a high degree. On
the whole, the software industry is aware of that important requirement be-
cause the Web service transaction system proposals WS–Transactions/WS–
Coordination and WS–CAF support the idea of incorporating arbitrary ad-
vanced transaction models. However, to incorporate custom advanced trans-

CHAPTER 3. STATE–OF–THE–ART 46

action semantics, it is necessary to introduce a new communication protocol.
How this can be achieved is not described in the proposals. In addition, this
seems to be unwieldy. It is likely that most of the transaction system has
to be modified in order to be aware of such new communication protocols.
This would take huge efforts and would discourage users from using domain–
specific semantics.

The architecture and communication protocols in the proposals are well
specified. However, all proposals fail to present a usage pattern. It is well de-
scribed that there is a network of transaction components, some participants
of a transaction, and communication protocols, but it remains nebulous how
an application can use such a transaction system. In contrast, if an appli-
cation programmer wants to use ACID transactions in a usual transaction
environment, a ubiquitous pattern is used as described in detail in Subsec-
tion 3.2.1. However, the existing proposals for Web service transactions do
not provide such a usage pattern. There is no clear understanding on how
the application programmer can use Web service transactions. Such an un-
derstanding would support basic ideas of transaction–oriented processing,
namely “relieving the application programmer from worrying about failure
and concurrency interleaving” [20]. The proposals refrain to discuss the view
of the user who wants to use transaction–oriented processing for Web service
computing. Only the Web service transaction system architect’s view is dis-
cussed. Thus, a majority of potential Web service transaction users is not
addressed.

Considering Web service orchestrations, using transaction concepts would
facilitate their implementation and operation significantly as discussed in Sec-
tion 1.1. Neither the Web service transaction proposals nor common Web
service orchestration technologies take transactional processing into account
sufficiently. To the best of our knowledge, only BPEL4WS tries to offer
transactional concepts by offering explicit compensation operations. This is
a beginning, but far away from a satisfying support of Web service transac-
tions in Web service orchestrations. Thus, there is a significant gap between
current proposals for Web service orchestrations and Web service transac-
tions.

There are only few implementations for the proposals discussed above.
The commercial Arjuna Transaction Service product [5] stands above all
other implementations. It provides production grade implementations of

CHAPTER 3. STATE–OF–THE–ART 47

WS–CAF, WS–Transaction/WS–Coordination and also BTP3. For BTP, there
is a technology preview from Hewlett Packard [25] and an extension of an
open–source transaction environment by ObjectWeb, JOTM [37]. However,
both projects seem to cease to exist sooner or later because almost no ac-
tivity and interest is visible. For WS–Transaction/WS–Coordination IBM
Alphaworks offers a technology preview [34] of the atomic transaction model
for the Websphere application server. Apache Software Foundation develops
Kandula [4], an open source implementation that currently only supports
atomic transaction. However, Kandula shall support business activities in
the future.

Just few usable implementations exist and Web service transactions do
only gain marginal attention in the field of Web service computing. Com-
pared to other advanced Web service proposals (e.g. proposals for Web service
orchestrations) that certainly matter in the Web service area, Web service
transaction proposals stagnate on a rather low level. We believe that the
weaknesses discussed in this section contribute to the virtually non–existing
adoption of transactions in the Web service world.

3BTP is no longer available on a regular basis but special arrangements seem to be
possible, though.

Part II

Transactional Web Service
Orchestrations

48

Chapter 4

Introduction into TWSO

TWSO — an acronym for transactional web service orchestrations — is
a model–based and programmatic approach for doing transaction oriented
processing in Web service computing. TWSO offers a model that captures
essential transaction–related concepts that are well suited for Web service
environments. In contrast to other approaches, TWSO tries to resemble cur-
rent (programmatic) methods to do transaction oriented programming as far
as possible in order to keep familiarization efforts for new users low. TWSO
is based on a sound scientific foundation because its fundamental ideas stem
from ACTA [13], a well–known and accredited formal metamodel for ad-
vanced transaction models. In addition, existing applications of ACTA, i.e.
ASSET [6] and Bourgogne transactions [41], also inspired TWSO.

To pay tribute to the special requirements Web services pose on trans-
action semantics, TWSO enhances the current usage pattern of transaction–
oriented processing as shown in Subsection 3.2.1 significantly. On the one
hand, the set of possible transaction commands (i.e. transaction primitives)
is enhanced. Standard begin, abort, and commit is not sufficient for Web
service systems. On the other hand, TWSO features the possibility to build
up comprehensive advanced transaction semantics by orchestrating several
“small–scale” transactions.

It should be noted that TWSO defines primarily concepts of a Web ser-
vice transaction system. These concepts can be brought into existence by
implementing them for a particular Web service orchestration technique. For
example, a TWSO Java API is a manifestation of TWSO concepts for Java
Web service orchestrations while TWSO XML entities can manifest TWSO
concepts for XML Web service orchestrations. By this means, TWSO can
be integrated with virtually any Web service orchestration technology.

49

CHAPTER 4. INTRODUCTION INTO TWSO 50

Figure 4.1 shows an overview of the architecture of a TWSO environment.
There are three major areas of a TWSO environment: The orchestration sys-
tem, the transaction monitor, and the involved Web services.

Figure 4.1: Architecture of a TWSO system

The orchestration system combines Web services in terms of workflow,
i.e. it directly calls Web services in some particular order and thus invokes
business logic. In addition, the orchestration system provides possibilities to
setup transactions, to setup dependencies between transactions and to use
transaction primitives on transactions. Such operations imply a central com-
ponent that handles transaction specific tasks, a transaction monitor. The
transaction monitor acts on the transaction matters that occur in the or-
chestration and takes charge of execution of transaction specific processing.
Depending on the transaction system’s status and the particular transac-
tion matter, the transaction monitor may forward transaction primitives to
affected Web services. Web services in a TWSO transaction system must
conform to some requirements. They have to be able to communicate with
the transaction monitor and act on the transaction monitor’s commands, i.e.
transaction primitives, in a sound way. Moreover, Web services in a TWSO
environment must be able to associate each business logic call they receive
with a particular transaction1.

1This requires additional information in each Web service call that should be managed
by a transaction. In TWSO, this is handled by using a transaction context, as discussed
in Section 5.

CHAPTER 4. INTRODUCTION INTO TWSO 51

There are three significant interfaces between the components of a TWSO
system. To establish transaction related logic in an orchestration, the orches-
tration’s specification (e.g. an XPDL XML document or Java source code)
has to include means to specify programmatic transaction related actions.
Accordingly, an interface between an orchestration’s specification and an
orchestration’s execution engine has to be present. The orchestration’s ex-
ecution engine communicates transaction related matters to the transaction
monitor. To do so, an interface between the transaction monitor and the
orchestration engine is necessary. The transaction monitor manages TWSO
enabled Web services in terms of transactional issues. Such a Web service
provides an interface to facilitate the communication between the transaction
monitor and itself.

This part of the thesis discusses the different components of a TWSO
environment thoroughly. First, the technique to share a transaction context
in a TWSO system is discussed in Section 5. TWSO concepts that are
related directly to Web service orchestrations are presented in Section 6. In
Section 7, TWSO transaction monitors are described. Finally, requirements
for TWSO enabled Web services are specified in Section 8.

Chapter 5

Ubiquitous Transaction
Presence

Many actions in a TWSO system require information about corresponding
transaction instances. A ubiquitous existence of a context (as defined in
Definition 5.1) that includes information of involved transactions would be
useful. Such a context can be appended to all kinds of communication in a
TWSO system to specify that transaction instances need to be considered
for intended actions. For example, when a Web service receives a call, it
has to know whether it has to consider a transaction and — if so — which
transaction instance it needs to consider. If there is a transaction context
included, transaction related actions like generating only tentative and trace-
lessly undoable state changes may be necessary.

Definition 5.1. A context contains information about the execution envi-
ronment of a series of related interactions with a set of Web Services. Context
information supplements information in application payloads [9].

Since all communication is handled using SOAP, the transaction context
has to be inserted in a SOAP call. This is achieved by adding SOAP headers
to SOAP messages that contain the transaction context. The transaction
context is manifested in XML and specified as shown in Listing 5.1.

Listing 5.1: Transaction Context
<element name="TransactionContext" type="twso:TransactionContext" />

<complexType name="TransactionContext">

<sequence minOccurs="1" maxOccurs="unbounded">

<element name="Transaction" type="twso:Transaction"/>

</sequence >

</complexType >

<complexType name="Transaction">

52

CHAPTER 5. UBIQUITOUS TRANSACTION PRESENCE 53

<sequence minOccurs="1" maxOccurs="unbounded">

<element name="SessionID" type="string"/>

<element name="TransactionMonitorURI" type="string"/>

<element name="TransactionID" type="string"/>

</sequence >

</complexType >

A transaction context can include one or more transaction identifiers. It
is possible, that a communication refers to more than one transaction. A
transaction specification has to include a URI that identifies the transaction
and a URI that identifies the transaction monitor that is responsible for the
transaction. In addition, this URI is the SOAP endpoint that enables com-
munication with the concerned transaction monitor. To keep track of client
sessions, a session identifier may be included in the header. Thus, the trans-
action monitor is always aware of the transaction communication related to
a particular client for the duration of a particular session. For example, the
transaction monitor is always able to relate a set of running transactions to
a particular client.

A Web service that receives a call to its business logic that includes
a transaction context is able to unambiguously identify the corresponding
transaction instance. Moreover, the Web service is also able to communi-
cate matters that are related to the transaction instance with the concerned
transaction monitor.

Listing 5.2 shows a SOAP message that triggers a flight booking. It
contains a transaction context in the header. The receiver of the message
has to interpret the message as follows: A flight booking has to be executed
under control of transaction 423db171:108fd3442d7:-7fff that stems from
transaction monitor http://move.ec3.at/services/twsoMonitor.

Listing 5.2: TWSO Header SOAP Message
<soap:Envelope xmlns:soap="http:// schemas.xmlsoap.org/soap/envelope/">

<soap:Header >

<twso:TransactionContext xmlns:twso="http: //move.ec3.at/twso">

<twso:Transaction >

<twso:SessionID >

423 db171:108fd3442d7: -7ff5

</twso:SessionID >

<twso:TransactionMonitorURI >

http: //move.ec3.at/services/twsoMonitor

</twso:TransactionMonitorURI >

<twso:TransactionID >

423 db171:108fd3442d7: -7fff

</twso:TransactionID >

CHAPTER 5. UBIQUITOUS TRANSACTION PRESENCE 54

</twso:Transaction >

</twso:TransactionContext >

</soap:Header >

<soap:Body >

<ns1:bookFlight xmlns:ns1="urn:BookFlightService">

<param_1 xsi:type="xsd:string">someValue </param_1 >

...

<param_n xsi:type="xsd:string">someValue </param_n >

</ns1:getEmployeeDetails >

</soap:Body >

</soap:Envelope >

Chapter 6

TWSO Orchestrations

In this section the orchestration’s view of the concepts of a TWSO transac-
tion system is presented in detail. These TWSO concepts are inspired by the
ideas of [6, 13, 41]. TWSO orchestration concepts consist of three building
blocks.

Transaction primitives are fundamental commands that control particular
transactions. Analogous as in ACTA, there is a fundamental discrimination
between Web service calls and transaction primitives. Web service calls are
operations on the Web service state. The final outcome of these operations
may be influenced by transaction primitives. For example, the transaction
primitive abort on transaction ti that manages Web service su may undo all
changes of the call of Web service su.

Transaction dependencies model interaction and organization of transac-
tions in a TWSO orchestration. The design of ACTA and Gray and Reuter’s
transaction metamodel [24] is followed. A fundamental part of advanced
transaction semantics is captured by creating compositions of multiple in-
dividual transactions and — if necessary — dependencies amongst them.
Altogether, the combination of transaction primitives and interdependencies
of transactions in an orchestration implements arbitrary advanced transac-
tion models, of course also including the ones introduced in Section 3.3. It
should be stressed that in contrast to the other Web service transaction ap-
proaches, there is no need for any modifications in the transaction system
when using new transaction models in TWSO.

Furthermore, TWSO defines solely a set of concepts for Web service trans-
action systems. These concepts can be employed in different orchestration
environments. In order to use these concepts, they have to be manifested

55

CHAPTER 6. TWSO ORCHESTRATIONS 56

Figure 6.1: TWSO usage pattern

in a form that integrates seamlessly with the particular orchestration envi-
ronments. Thus, TWSO can be used in various orchestration techniques,
provided that an implementation of TWSO concepts exists for the particular
orchestration technique. To start with, two implementations are presented.
A generic one for XML Web service orchestrations (see Subsection 6.4.1) and
another for Java Web service orchestrations (see Subsection 6.4.2).

6.1 TWSO Usage Pattern

The TWSO usage pattern in Web service orchestrations roughly corresponds
to the activity diagram shown in Figure 6.1.

The first action of the TWSO pattern is the setup of all participating
transactions. Furthermore, Web services are associated to transactions, in
order to declare which Web services are managed by which transactions.
Then, dependencies between the transactions may be defined. For example,
it could be stated, that if transaction ti aborts, tj has to abort, too. After this
setup work, the real work can be done. This work consists of beginning trans-

CHAPTER 6. TWSO ORCHESTRATIONS 57

actions, doing business logic, issuing transaction primitives on transactions
and terminating transactions. These tasks may occur in arbitrary sequence
and even concurrently, provided that some basic validity constraints — e.g.
a transaction can only be terminated when it has been already started —
are regarded.

Examining the TWSO usage pattern it becomes clear, that the com-
mon usage pattern that is used in traditional transaction processing systems
is only enhanced in TWSO. The basic paradigm, i.e. embedding business
logic in a transactional embracement, remains the same. In addition to the
common usage pattern, in TWSO it is possible to work with multiple trans-
actions in concert. By orchestrating transactions through defining depen-
dencies amongst them, it is possible to form arbitrary advanced transaction
semantics. This is an inherent feature of TWSO and absolutely no part of
the transaction system has to be updated to use new transaction semantics.
Furthermore, TWSO provides significantly more transaction primitives.

6.2 Transaction Primitives

TWSO is based on a basic set of transaction primitives, commands that
influence particular transactions and thus may influence the state of used
Web services indirectly. Transaction primitives are directed primarily to
particular transactions. However, depending on various circumstances in the
transaction system (i.e. mainly the type of transaction primitive and the cur-
rent transaction’s state), the transaction primitive (or better the transaction
primitive’s intention) may be forwarded to affected Web service(s). For ex-
ample, let ti denote a transaction and su a Web service, and ti manages su.
The transaction primitive pabort on ti may finally impose, that su has to do
some actions that resemble abort semantics. If a transaction primitive has
the ability to be forwarded to a Web service, it is called Web service effective.

Solely the Web service is responsible for taking the right steps according
to a received primitive. For example, a commit on a Web service that does
not manipulate any persistent data may trigger no action at all and is correct.
In a loosely coupled system like the Internet, where Web services reside, it
is unlikely that the Web service user can practice any kind of control on the
used Web service. Thus, as one has to trust that the Web service fulfills the
business logic correctly, one also has to trust that it fulfills the transaction
logic correctly.

CHAPTER 6. TWSO ORCHESTRATIONS 58

Table 6.1: Transaction primitives and categorization

Transaction Primitive
Group

Transaction Primitive Web Service
Effective

Initiation Primitives begin 3

In–Progress Primitives delegate termination 7

Termination Primitives abort 3

commit 3

Post–Termination Primitives compensate 3

In the special case, when a transaction primitive fails — for example, the
used Web service is of bad quality and some special circumstances provoke a
runtime exception on a commit — the transaction has to be transitioned to an
aborted state. The Web service is responsible to clean up the consequences
in order to guarantee that the aborted state of the transaction is consistent
with the actual state of the Web service. A thrown exception notifies the
orchestration in such a case. Thus — if needed — actions can be arranged
in the orchestration to handle such cases properly.

A basic set of transaction primitives presented below should be sufficient
for many applications. However, if needed, the set may be enhanced. It
should be noted that all participating components (e.g. transaction moni-
tors, Web services, etc.) have to be aware of the new transaction primitives
and would need according modifications.

Transaction primitives can be classified as follows. There are initia-
tion primitives, in–progress primitives, termination primitives and post–
termination primitives. Table 6.1 shows the basic set of transaction primi-
tives, their categorization, and Web service effectiveness.

begin starts a transaction. After the transaction has started, business
logic managed by the transaction can commence, i.e. Web services can be
called and will be under transaction control.

To assign the responsibility of termination of a transaction to another
transaction, the delegate termination primitive can be applied during the
run–time of a transaction. For example, in nested transactions (see Section
3.3), delegate would be issued when a child transaction is ready to commit.
The parent transaction takes command over termination of its child trans-

CHAPTER 6. TWSO ORCHESTRATIONS 59

action. For example, when the parent transaction receives a commit, it will
also commit its child transaction. Only termination obligations — i.e. abort,
commit and also post–termination obligations like compensate — can be del-
egated. It is not possible to delegate just a single termination obligation.

After the business logic has been completed, the transaction has to be
terminated. This is done using termination or post–termination primitives.
Which primitive will be used depends on the outcome of the business logic.
commit may be issued if the transaction’s outcome is considered to be suc-
cessful and should be finished. A Web service may, for example, persist the
transaction’s changes and make them visible to all users, if it receives a com-

mit task.

If the outcome of the business logic is considered to be unsuccessful, abort
may be issued to indicate that the transaction should be aborted. The af-
fected Web service will do necessary actions that conform to the semantics
of an abort. For example, a classic rollback could be executed by the Web
service to undo the changes that happened during the run–time of the cor-
responding transaction.

In case the changes of an already committed transaction should be re-
voked, compensate is used to perform some forward actions that neutralize
the already persisted actions. In case compensate is used before a transac-
tion has been committed, the Web service decides how to act accordingly.
It is reasonable that the compensate primitive will invoke standard abort

actions in such a case.

6.2.1 Transactions Managing Multiple Web Services

In TWSO, a transaction can manage one or more Web services. The possi-
bility to manage several Web services with a single transaction causes note-
worthy consequences.

When a transaction primitive is issued to a transaction that manages mul-
tiple Web services, atomic behavior is induced and additional coordination
efforts may be necessary. This depends on the kind of transaction primi-
tive. Transaction primitives that most likely require advanced coordination
efforts are Web service effective termination primitives. In the basic set, be-
gin, abort, commit and compensate are affected. When these transaction
primitives are issued to transactions that manage more Web services, they
are treated — so to speak — atomically amongst the involved Web services.

CHAPTER 6. TWSO ORCHESTRATIONS 60

Hence, it must be assured that such a primitive that is forwarded to more
Web services at once leads to a consistent and valid result. This result has
to be agreed among all involved Web services.

There are reliable distributed algorithms that can solve such problems.
For example, the well–known two phase commit protocol, that is presented
in detail in Subsection 3.2.3, can be applied successfully here.

6.2.2 Transaction Lifecycle

During its lifetime, a transaction runs through various states whereas trans-
action primitives cause state transitions. Only particular state transitions
are valid. Accordingly, transaction primitives cannot be issued in arbitrary
order because they could cause invalid state transitions. Thus, states of a
transaction, valid transaction primitives on this state and state transitions
based on the issued transaction primitive are defined.

The following states are defined. initiated indicates that a transaction
was set–up. After a transaction has been begun, it is in the in-progress

state. Based on the kind of termination, a transaction can be committed or
aborted. The post–termination primitive compensate brings a transaction
to the compensated state. If delegation has been applied, the correspond-
ing transaction (i.e. the transaction from which termination obligations have
been withdrawn) goes into the delegated state.

Figure 6.2 depicts transaction states and all valid state transitions. Regu-
lar arrows depict transaction state transitions based on an issued transaction
primitive. Dashed arrows depict valid transaction primitives on the corre-
sponding state that, however, cause no state transitions. For example, issuing
a commit on a transaction that has already committed is considered as valid,
but won’t have any effect in the transaction system. The transaction sys-
tem may intercept such useless commands and react by sending out only a
warning without — if the transaction primitive is Web service effective —
bothering the related Web service.

CHAPTER 6. TWSO ORCHESTRATIONS 61

Figure 6.2: TWSO state–transitions

6.3 Transaction Dependencies

The foundation of TWSO was set by defining a collection of basic transac-
tion primitives. The set of basic transaction primitives was enhanced to be
appropriate for Web service transaction systems. Thus, a model for Web ser-
vice transactions that strictly follows the common transaction usage pattern
as described in Section 4 is already available.

It is possible to synthesize advanced transaction semantics using these
primitives and (massive) explicit business logic of the orchestration technique.
For example, to express the parent–child dependencies in nested transactions,
one would have to perform something like shown in Listing 6.1 explicitly.

Listing 6.1: Parent Child Dependency in Business Logic
if (state(t_parent) == ABORT) {

abort(t_child);

}

However, such an approach is not preferable. The significantly increased
number of transaction primitives and the for advanced transaction semantics
necessary concurrent use of multiple transactions impose a major growth of
complexity. Using various sophisticated transaction primitives in multiple

CHAPTER 6. TWSO ORCHESTRATIONS 62

transactions concurrently instead of just using begin, commit or abort in
a single transaction makes a significant difference. Moreover, using the ba-
sic set of transaction primitives and business logic to synthesize advanced
transaction semantics mingles business logic with transaction logic to a high
degree. Obviously the separation of concerns principle [15] is violated.

It is desirable to separate transaction from business logic as much as
possible. A possibility to do so is specifying certain dependencies between
transactions separately.

In TWSO, dependencies between transactions are defined as follows. A
dependency consists of two parts. The source state specifies a particular
state of the transaction system. If the transaction system gets into this
state, an effect is triggered. The source state is composed by the state of a
single transaction or a combination of transaction states. The combination
of transaction states is constructed by using the logical operators and (∧), or
(∨) and not (¬). For example, let t1, t2, and t3 be three different transactions
and a state of a transaction be σstate type(ti). Possible source states could be
as follows:

• σaborted(t2)

• ¬ σaborted(t2) ∧ (σcompensated(t1) ∨ σcommitted(t3))

The first source state describes the transaction system state that comes
into effect when t2 got aborted. The second one specifies the transaction
system’s state when t2 is not aborted, and t1 is compensated or t3 is commit-
ted. Obviously, the second source state is a combination of states of several
transactions.

The effect, the second part of a rule, is the issuing of transaction primitives
on one or more transactions. For example, let t4 and t5 be two different
transactions and the issuing of a transaction primitive on a transaction ti
pprimitive type(ti). For example, effects may be as follows:

• pcompensate(t4)

• pabort(t4), pcommit(t5)

The first effect triggers a compensate primitive on transaction t4. The sec-
ond one triggers more transaction primitives, an abort on t4 and a commit

on t5.

CHAPTER 6. TWSO ORCHESTRATIONS 63

The concepts of transaction dependencies should be illustrated by the
following example. A part of the desired advanced transaction semantic
should state that as soon as t1 gets into state σaborted and t2 gets into state
σcompensated, pcommit should be issued on t3 and t4. It is possible to express
this in the business logic solely. Using Java as the orchestration technology,
this could be expressed as depicted in Listing 6.2.

Listing 6.2: Transaction Dependency Using Java Only
if (stateobserver.getState(t1) == States.ABORTED &&

stateobserver.getState(t2) == States.COMPENSATED)

{

transactionMonitor.commit(t3);

transactionMonitor.commit(t4);

}

Here, a stateobserver object tests the states of transaction t1 and t2. If
both get into the desired states, a transactionMonitor object commits t3,
t4. However, it should be noted that this is just a fragment of code that has
to be placed in a “suitable place” in the orchestration definition. Finding
or preparing such a place is not a trivial task. Besides the actual business
logic of the orchestration, one would have to make an additional concurrent
execution path that involves a loop that observes the states of the dependen-
cies transactions permanently. This loop would be stopped when the source
states of the dependency go into effect (the corresponding significant events
are issued) or when the dependency is considered to be not relevant anymore
(e.g. when the business logic is finished). In Java, this task can be tackled
by using various low–level Java language constructs. In contrast, for XML
Web service orchestrations that are on a much higher level, one has to get
by with significantly limited constructs and will have a hard time to specify
the desired semantics. Accordingly, massive efforts in the business logic are
necessary to implement such advanced transaction semantics and business
logic is mingled with transaction logic.

Using a transaction dependency as described in this section, the only task
is to specify it in some place and in some syntax. A formal representation of
the example dependency is σaborted(t1)∧σcompensated(t2) ⇒ pabort(t3), pabort(t4).
This formal rule can be manifested into a form that is usable for the used
orchestration technique. XML elements are a way as well as other repre-
sentations. The dependency could be expressed in Java as shown in Listing
6.3. It should be noted that for the sake of readability, the definition of the
dependency string does not fully conform to Java syntax.

CHAPTER 6. TWSO ORCHESTRATIONS 64

Listing 6.3: Transaction Dependency in Java
String dependencyString =

<dependency >

<sourceState >

<concatenation type="and">

<state type="aborted" transaction="t1"/>

<state type="aborted" transaction="t2"/>

</concatenation >

</sourceState >

<effect >

<primitive type="abort" transaction="t3"/>

<primitive type="abort" transaction="t4"/>

</effect >

</dependency >

;

Document dependencyDoc = XMLHelper.stringToDoc(dependencyString);

transactionMonitor.setDependency(dependencyDoc);

Using an explicit transaction dependency definition as shown in Listing
6.3, business logic is separated from transaction logic to a significant degree.
The transaction system is responsible to monitor source states and trigger
effects simultaneously while the business logic executes. No additional efforts
have to be undertaken in the business logic. Moreover, separation of concerns
is honored and modification of transaction semantics does not impose signif-
icant changes of business logic. However, it should be noted that advanced
transaction semantics are synthesized not only using transaction dependen-
cies. Parts of the business logic have to address also transaction logic. This
cannot be avoided in a programmatic transaction system approach. Accord-
ingly, not all modifications of the transaction logic can be tackled without
touching business logic and separation of concerns is not honored completely.
Outsourcing transaction dependencies from the business logic just reduces
mixing business logic and transaction logic to a considerable degree. It does
not avoid it completely.

6.4 Selected TWSO Orchestration Solutions

The concepts of TWSO can be employed in various orchestration environ-
ments. There is no imposition to stick to a specific technology for TWSO
implementations. Moreover, there is no need for a special technology to ex-
press TWSO declarations in orchestrations. XML is a possibility as well as
constructs of an existing programming language, depending on the particular
orchestration environment.

CHAPTER 6. TWSO ORCHESTRATIONS 65

Important implementations of TWSO are presented below. An imple-
mentation for Java Web service orchestrations and an implementation that
can be used for various XML Web service orchestration technologies are in-
troduced. Moreover, Appendix C.1 shows the usage of the XML Web service
orchestration implementation in a common Web service orchestration tech-
nology.

6.4.1 TWSOL – XML Implementation of TWSO

For various XML Web service orchestrations, it is highly reasonable to express
TWSO concepts in XML. The resulting XML language is called TWSOL
(Transactional Web service Orchestration Language). It is intended, that
the XML elements that are defined in TWSOL are incorporated in Web
service orchestration XML documents. That is, in order to embed transac-
tion logic into XML Web service orchestrations, TWSOL XML elements are
added to XML Web service orchestration documents.

By using XML namespaces [7] to discriminate TWSOL elements from
the original orchestration elements, transaction logic and business logic is
separated to a significant degree. Moreover, XML namespaces also allow
to extend TWSOL elements in a clean way. For example, new transaction
primitives (besides the ones presented in Section 6.2) can be introduced by
defining them in new namespaces, and execution environments can decide
on the basis of the found namespace whether they are able to execute the
namespace’s primitive or not.

TWSOL XML elements that can be interspersed in orchestration host–
languages are specified in this section by using XML–Schema. It should
be noted that global XML–Schema constructs like namespace definitions or
ID/IDREF definitions are omitted for the sake of clarity. All used twso pre-
fixes refer to the http://move.ec3.at/twso/20060101 namespace.

To setup a transaction, we need a unique identifier by which the transac-
tion is identified. Furthermore, we also need to associate the transaction to
one or more orchestration work items (a transaction can control more than
one work item) that it is intended to manage. This setup information is kept
in the <initiate> element, as presented in Listing 6.4.

CHAPTER 6. TWSO ORCHESTRATIONS 66

Listing 6.4: <initiate> element
<xs:element name="initiate">

<xs:complexType >

<xs:sequence >

<xs:element ref="twso:workitemRef"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence >

<xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType >

</xs:element >

There is a single attribute id that defines an identifier of the transac-
tion. The <workitemRef> element should include ways to reference activities
that occur in the orchestration in order to specify which activities should be
managed by the transaction. How this is done best depends on the XML
orchestration standard to a high degree. Therefore, the XML–Schema allows
any type of content in <workitemRef>. If the host language considers unique
identifiers for workitems, <workitemRef> could simply contain the matching
identifier. If not, techniques that identify an element unambiguously in an
XML document like XPath [14] can be used. The <workitemRef> element
is shown in Listing 6.5.

Listing 6.5: <workitemRef> element
<xs:element name="workitemRef"/>

After initiating transactions, it has to be possible to define their depen-
dencies. The <dependency> element is used for that task. It is defined in
Listing 6.6.

Listing 6.6: <dependency> element
<xs:element name="dependency">

<xs:complexType >

<xs:sequence >

<xs:element name="sourceState" type="twso:sourceState"/>

<xs:element name="effect" type="twso:effect"/>

</xs:sequence >

<xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType >

</xs:element >

<dependency> contains two children. The <sourceState> child–element
specifies the state(s) that have to be in effect in order to trigger the ef-
fect. The effect is defined in the <effect> child–element. To reference a
dependency, an identifier has to be provided in the id attribute.

CHAPTER 6. TWSO ORCHESTRATIONS 67

The twso:sourceState type is defined as shown in Listing 6.7.

Listing 6.7: sourceState type
<xs:complexType name="sourceState">

<xs:choice >

<xs:element name="transactionState"

type="twso:transactionState"/>

<xs:element name="operator"

type="twso:operator"/>

</xs:choice >

</xs:complexType >

In the twso:sourceState type, the state of a particular transaction is
specified with <transactionState> elements of type twso:transaction-

State. These contain the type of the state and the identifier of the concerned
transaction. It is specified in Listing 6.8.

Listing 6.8: transactionState type
<xs:complexType name="transactionState">

<xs:sequence >

<xs:element name="type" type="xs:string"/>

<xs:element name="transactionID" type="xs:string"/>

</xs:sequence >

</xs:complexType >

According to Subsection 6.2.2 there is a basic set of transaction states that
should be sufficient for many advanced transaction models. In TWSOL, these
states are referenced in the type attribute of the twso:transactionState

type, as shown in Table 6.2. The content of the type attribute has to be
a qualified name as defined in the XML namespace proposal [7]. Table 6.2
shows the transaction states that are included in the basic set, as well as the
namespace URI of this set and a possible occurrence.

If the <sourceState> element should express states that involve the
states of more than one transaction, all of theses transaction states have
to be combined in some way: What arrangement of transaction states have
to occur in order to trigger an effect? TWSOL offers the logical operators and
(∧), or (∨) and not (¬) to combine multiple transaction states. These logical
operators can be nested and are used in combination with <transaction-

State> elements. To do so, an <operator> element of type twso:operator

is introduced, as shown in Listing 6.9. twso:operator defines a recursion to
arbitrary nest (logical) operators and <transactionState> elements.

CHAPTER 6. TWSO ORCHESTRATIONS 68

Table 6.2: Basic transaction states

State Qualified Identifier

initiated twso:initiated

in progress twso:in_progress

committed twso:committed

aborted twso:aborted

compensated twso:compensated

delegated twso:delegated

Listing 6.9: operator type
<xs:complexType name="operator">

<xs:sequence maxOccurs="unbounded" minOccurs="1">

<xs:element name="operator" type="twso:operator"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="transactionState" type="twso:transactionState"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence >

<xs:attribute name="type" type="xs:string"/>

</xs:complexType >

To define the effects of a dependency, the twso:effect type is used. It is
defined in Listing 6.10. It contains one or more <primitive> elements, that
are of type twso:primitive. Accordingly, if the source states go into effect,
all transaction primitives that are found in a particular <effect> element are
issued. The twso:primitive type is specified in Listing 6.12 and described
in detail further below.

Listing 6.10: effect type
<xs:complexType name="effect">

<xs:sequence >

<xs:element name="primitive" type="twso:primitive"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence >

</xs:complexType >

To give an example, the dependency “¬ σaborted(t2) ∧ (σcompensated(t1) ∨
σcommitted(t3)) ⇒ pabort(t4), pabort(t5)” (refer to Section 6.3 for the formal no-
tation) is expressed in TWSOL XML in Listing 6.11.

CHAPTER 6. TWSO ORCHESTRATIONS 69

Listing 6.11: Dependency example
<dependency id="exampleDependency">

<sourceState >

<operator type="and">

<operator type="not">

<transactionState transaction="t2" type="twso:aborted">

</operator >

<operator type="or">

<transactionState transaction="t1" type="twso:compensated">

<transactionState transaction="t3" type="twso:commited">

</operator >

</operator >

</sourceState >

<effect >

<primitive type="twso:abort" target="t4">

<primitive type="twso:abort" target="t5">

</effect >

</dependency >

After the transactions are setup, a possibility to issue transaction prim-
itives in the orchestration’s business logic has to be offered, too. Adding
XML elements that represent transaction primitives into suitable places of
the orchestration can achieve this. In TWSOL, <primitive> elements of
type twso:primitive perform this task. These elements are specified as
presented in Listing 6.12.

Listing 6.12: <primitive> element
<xs:element name="primitive" type="twso:primitive"/>

<xs:complexType name="primitive">

<xs:attribute name="type" type="xs:string" use="required"/>

<xs:attribute name="source" type="xs:string" use="optional"/>

<xs:attribute name="target" type="xs:string" use="optional"/>

</xs:complexType >

The <primitive> element has a type attribute that specifies the type of
the transaction primitive. In Section 6.2, a basic set of transaction primitives
that should be sufficient for many advanced transaction models is defined.
These primitives are referenced in TWSOL in a <primitive> element in
the type attribute. This procedure is analogous to the one for transaction
states, as discussed above. Hence, the content of the type attribute has to
be a qualified name as defined in the XML namespace proposal [7]. Table

CHAPTER 6. TWSO ORCHESTRATIONS 70

Table 6.3: Basic transaction primitives

Primitive Qualified Identifier

begin twso:begin

commit twso:commit

abort twso:abort

compensate twso:compensate

delegate twso:delegate

6.3 gives an overview of transaction primitives that are included in the basic
set. Possible occurrences including the namespace URI are included, too.

To specify the involved transactions, a target and a source attribute
may be used. target defines the target transaction of the transaction prim-
itive. If necessary, source can be used to define a source of a significant
event. For example, if one wants to delegate responsibilities using the trans-
action primitive type base events:delegate, both, the source and target

attribute have to be given: Responsibilities will be transferred from the trans-
action specified in source to the transaction specified in target.

Transaction primitive elements should be interspersed in “suitable” places
of the orchestration specification. Where those “suitable” places are highly
depends on the orchestration technology. For example in XPDL, an XPDL
activity element could contain <primitive> elements. Appendix C.1 illus-
trates TWSOL usage in XPDL orchestrations in detail.

6.4.2 TWSO4J – Java TWSO Implementation

In this section, a TWSO implementation for a Java Web service orchestra-
tion is presented. The implementation is called TWSO4J and is intended to
be used in Java Web service orchestrations. However, since only standard
object–oriented concepts are used, it can be ported to other object–oriented
languages easily. TWSO4J is a Java API that consists of Java interfaces.
This approach allows multiple implementations of TWSO4J that are inter-
changeable. TWSO4J consists of only three interfaces.1

1It should be noted that the low number of necessary interfaces emphasizes TWSO’s
lean design, ease of use and steep learning curve for Web service orchestration developers.

CHAPTER 6. TWSO ORCHESTRATIONS 71

Figure 6.3: Transaction monitor factory

To establish communication between the orchestration and the compo-
nent that manages transaction semantics for the orchestration (i.e. an orches-
tration specific transaction monitor), a proxy object called TransactionMon-

itor may be used. Such TransactionMonitor objects are created using a
factory, called TransactionMonitorFactory and depicted in Figure 6.3.

The method getTransactionMonitor() produces an instance of a Trans-
actionMonitor object. Its parameter, an endpoint of a Web service (“port”),
references a Web service interface that is used to communicate with the
transaction system. The endpoint parameter has to be an instance of the
WSDL4J’s (Java WSDL library) Port class. Setup procedures in the system’s
transaction monitor server that are needed to use the transaction monitor
proxy appropriately have to be initiated while it is created. For example,
a new transaction monitor client session for the newly created proxy may
be generated at the server. Depending on the implementation, more aspects
like authentication credentials may be added and require additional methods
or parameters for the TransactionMonitorFactory. To conclude, Transac-
tionMonitorFactory produces an individual proxy (a TransactionMonitor

instance) for each Web service orchestration instance. This proxy is used in
the orchestration to interact with the Web service transaction system.

A TransactionMonitor instance encapsulates the interaction between an
instance of an orchestration and the Web service transaction system. It is
shown in Figure 6.4.

A WebServiceReference can contain a URI that points to a WSDL doc-
ument, a qualified name that references a binding in this WSDL document
and a name for a binding operation. If only the WSDL document URI is set,
the transaction should manage every service that is mentioned. If a qualified
name that references a binding is present, just the services in the binding
should be managed by the transaction. And when a binding operation is
referenced, the transaction supervises just this single service.

CHAPTER 6. TWSO ORCHESTRATIONS 72

Figure 6.4: Transaction monitor

The setDependency() methods take either an XML element or a De-

pendency object as input. The XML element describes the dependency as
defined in Listing 6.6, including all its referenced XML Schema definitions.
The outsourcing of dependency information from Java code to XML descrip-
tions yields several advantages. Modifications of XML dependencies may
take place without the need to recompile the Java orchestration source code.
Sources of dependencies definitions can be handled flexible. Any XML source
is possible: XML databases, files on the local filesystem, XML documents in
the Internet or Intranet, etc. In addition, XML dependency definitions are
interchangeable to a high degree. For example, it is possible to use the same
XML dependency definitions in an XPDL orchestration as well as in a Java
orchestration. However, it is also possible to define a dependency in Java
using a Dependency object. The related Dependency class is a Java repre-
sentation of the XML Schema type for a dependency as defined in Listing 6.6.

logout() ends a transaction monitor session and frees all related re-
sources of the transaction monitor proxy in the transaction monitor server.

A transaction is modeled using the Transaction interface, as shown in
Figure 6.5. It has an overloaded method that issues a transaction primi-
tive, called doPrimitive(). The target of the transaction primitive is the
respective Transaction instance. The type of the primitive is given as a
String in the type parameter. If it is desired or necessary to give a source
transaction, an additional corresponding Transaction object can be passed
to doPrimitive(), too.

CHAPTER 6. TWSO ORCHESTRATIONS 73

Figure 6.5: TWSO4J transaction

An example of an exemplary TWSO4J usage is shown in Listing 6.13.
From line 2 to line 8, an instance of a TransactionMonitor, called trans-

actionMonitor is created. Line 10-22 create collections of endpoints of two
Web services. In line 24-27, the transactionMonitor instance is used to cre-
ate two Transaction instances. They are associated to the two Web services.
The method getSimpleDependency() creates a dependency XML element
from a string. This dependency is used in line 30 to install the dependency
semantics (stated in XML) in the transaction system.

Starting from line 32, business logic is executed. Some Web service calls
are done on both Web services. If these calls are considered to be unsatisfac-
tory, transaction t1 is aborted. Consequently, t1 gets into the state aborted
and the dependency is triggered. This causes the abort of t2, too, and exe-
cution of business logic is stopped. Both Web services get an abort primitive
and perform according steps to undo the actions in line 32 without any traces.

In the other case, when the first calls are considered to be satisfactory,
termination obligations are transferred from t1 to t2 in line 39. Thus, ter-
mination transaction primitives on t2 are also effective on t1.

Thereafter, line 41 does some business logic by calling Web service 2 and
depending on the outcome, t2 is committed in line 44 or aborted in line 46.

Listing 6.13: TWSO4J Example
1 public void doBusinessLogic () {

2 TransactionMonitorFactory factory =

3 new SoapTransactionMonitorFactory ();

4

CHAPTER 6. TWSO ORCHESTRATIONS 74

5 TransactionMonitor transactionMonitor =

6 factory.getTransactionMonitor(

7 getTransactionSystemPort ()

8);

9
10 WebServiceReference ws1Ref = getWSReference(

11 "http :// ws1.ws1domain.net :8080/ ws1?wsdl",

12 "http :// ws1.namespace.net", "ws1SoapBinding",

13 "doWS1");

14 Collection <WebServiceReference > tx1Services = new Vector <Port >();

15 tx1Services.add(ws1Ref);

16
17 WebServiceReference ws2Ref = getWSReference(

18 "http :// ws2.ws1domain.net :8080/ ws1?wsdl",

19 "http :// ws2.namespace.net", "ws2SoapBinding",

20 "doWS2");

21 Collection <WebServiceReference > tx2Services = new Vector <Port >();

22 tx1Services.add(ws2Ref);

23
24 Transaction t1 = transactionMonitor.createTransaction

25 ("t1", tx1Services);

26 Transaction t2 = transactionMonitor.createTransaction

27 ("t2", tx2Services);

28
29 Element simpleDependency = getSimpleDependency ();

30 transactionMonitor.setDependency(simpleDependency);

31
32 //do Web service calls on Web service 1 and 2

33
34 if (Web service 1 calls != ok) {

35 t1.doPrimitive("ABORT");

36 return;

37 }

38
39 t2.doPrimitive(t1 , "DELEGATE");

40
41 //do Web service calls on Web service 2

42
43 if (Web service 2 calls == ok){

44 t2.doPrimitive("COMMIT");

45 } else {

46 t2.doPrimitive("ABORT");

47 }

48 }

49
50 private static Element getSimpleDependency (){

51 String depString = "A string that contains XML as shown below ...";

52 //<dependency id=" exampleDependency ">

53 // <sourceState >

54 // <transactionState transaction ="t1" type =" twso:abort">

55 // </sourceState >

56 // <effect >

57 // <primitive type =" twso:abort" target ="t2">

58 // </effect >

59 // </dependency >;

60 Element dependency = XmlUtilities.stringToElement(depString);

61 return dependency;

62 }

Chapter 7

Transaction Monitor

A TWSO transaction system makes use of an autonomous component that
mediates transaction matters between an orchestration system and the or-
chestrated Web services. This component is called transaction monitor and
is situated in the scope of the orchestration system. For example, in a vir-
tual enterprise, a single transaction monitor is located within the scope of the
central components of the virtual enterprise that combine all parts of the vir-
tual enterprise together. In a TWSO transaction system, a single transaction
monitor is sufficient. In contrast to the WS–transaction proposals introduced
in Section 3.6, a TWSO transaction system does not consider a network of
interoperating transaction monitors. The centric nature of a TWSO system
— a single orchestration system assisted by transaction–oriented concepts
ensembles multiple services — does not mandate the use of a network of
transaction monitors. Thus, the huge complexity of a system of multiple
distributed transaction monitors is avoided.

The advantages such a network would have (as discussed in [9, 10, 11])
are only marginally relevant for a TWSO transaction system: To reach orga-
nizational and political independence by using an own transaction monitor
that operates in a network is arguable. The intra–organizational transaction
monitor takes commands from transaction monitors that are beyond organi-
zational influence and forwards these commands to intra–organizational sys-
tems. Hence, the intra–organizational transaction monitor acts on decisions
that are made outside of an organization and is neither political nor organiza-
tional independent, although it acts in a network. A network of transaction
monitors should contribute to avoid a single point failure. However, also a
single transaction monitor can be designed to be virtually always available
by adding, for example, redundancy components or other high availability
techniques.

75

CHAPTER 7. TRANSACTION MONITOR 76

Thus — at least for a TWSO transaction system — the huge complexity
of a network of multiple distributed transaction monitors outweighs its ad-
vantages by far. A single transaction monitor is highly sufficient.

[24] states, that a transaction monitor in traditional transaction process-
ing systems must offer the following services:

• Heterogeneity management. If the application–level function re-
quires access to different services, the transaction monitor has to man-
age transactional matters across those services.

• Control communication. Communication with a remote service as
such has to be subject to transaction management, too.

• Terminal management and presentation services. Transaction
services have to be available for and have to be able to be visualized
by virtually all kinds of client systems.

• Context management. Multiple business invocations under transac-
tion control including their involved services and transaction facilities
need stable information about the corresponding transaction. A trans-
action context that holds this information has to be provided by the
transaction monitor.

• Start/restart. The transaction monitor is responsible to restart ser-
vice after failures.

These demands are designed for tightly coupled systems. For transac-
tion monitors in Web service transaction systems, control communication
and start/restart are not feasible. The control of Web service communica-
tion requires rules that describe situations when a Web service call should
be considered to be erroneous. Such rules highly depend on the Web service
itself and sometimes even on the orchestration in that the Web service is
used. For example, in one orchestration, a timeout that results in a failure
may occur after 2 seconds and in another orchestration after 5 minutes. In
TWSO, the logic that decides when a business logic call or a communication
is considered to be erroneous resides in the orchestration. Start and restart of
Web services by the transaction monitor are impossible because of the orga-
nizational distributed nature of loosely coupled systems. It is unlikely that a
Web service provider lets an external transaction system decide when a Web
service should be restarted after a crash. Thus, in a TWSO transaction sys-
tem, responsibility to restart a service lies at the service provider. However,

CHAPTER 7. TRANSACTION MONITOR 77

heterogeneity management, terminal and presentation management, and con-
text management are reasonable in loosely coupled systems with transaction
support and are offered by a TWSO transaction monitor, as described here.

A TWSO transaction monitor gathers transaction related services to-
gether in order to modularize transaction concerns. The orchestration com-
municates simple transaction related concerns to the transaction monitor.
The transaction monitor acts on these concerns accordingly. Depending on
the concern, it should be noted that such an action of the transaction monitor
might be rather complex. Thus, complexity of transaction related matters is
hidden from orchestrations and can be called by a clean and simple interface.
This interface is accessible via SOAP Web service technology. Therefore, the
claim for terminal management and presentation services is satisfied. Virtu-
ally all kinds of client systems can talk to SOAP Web services and create a
user friendly interface that encapsulates the SOAP interaction.

In TWSO, a single transaction can manage invocations on multiple Web
services. Transaction primitives on such a transaction must cause an agreed
atomic outcome across all managed operations. For example, let t be a trans-
action that manages all invocations on three Web services s1, s2, and s3. A
commit on t has to cause a commit on s1, s2, and s3. However, if, for example,
s3 cannot commit, s1 and s2 must not commit and the transaction fails and
has to be aborted. Such a case can be handled by synchronization protocols
like the two phase commit, as described in Subsection 3.2.3. The transaction
monitor is responsible to execute the synchronization protocol (thus guar-
anteeing an agreed atomic outcome), and sends outcomes to the concerning
orchestration. By providing synchronization means for transactions that act
across several Web services, the demand for heterogeneity management is
fulfilled.

As discussed in Section 5, transaction related data is interchanged in a
TWSO system between the main components using a transaction context.
This context is transmitted in a TWSO transaction system in all opera-
tions that happen in presence of any transaction–related management. The
context is produced by the transaction monitor and transmitted to the or-
chestration, when a transaction is generated. All communication between
the transaction monitor and the orchestration is accompanied by the related
transaction context. For example, the issuing of a transaction primitive con-
tains the context of the affected transaction. This type of context handling
in a TWSO system complies with the claim for context management.

CHAPTER 7. TRANSACTION MONITOR 78

7.1 Interface: Orchestration and Transaction

Monitor

The interface between a TWSO enabled orchestration and the transaction
monitor will be used by the orchestration to communicate transaction related
concerns. It resembles the interface between the orchestration specification
and the orchestration as introduced in Section 6.4. The orchestration for-
wards transaction related issues as specified in the orchestration’s specifica-
tion. Thus, the orchestration does not have to cope with transaction related
logic and outsources this logic to the transaction monitor component.

The interface of a transaction monitor is accessible using SOAP. It is
straightforward, lean and follows a synchronous messaging paradigm. The
interface is described using WSDL descriptions. For the sake of clarity, only
selected parts of WSDL definitions without type declarations and only down
to the port type level are shown here. The complete WSDL definition of a
TWSO transaction monitor is presented in Appendix B.

To create a transaction, the createTransaction operation is used. The
input message consists of a significant label (the part named name) and a
collection that contains one or more references to refer to Web services that
should be executed under transaction control. Such a reference uses URI to
point to the considered WSDL document and a qualified name (using the
namespace URI and the local name) that references a binding in this WSDL.
Additionally, a binding operation can be specified. If this is the case, the
transaction should supervise just this operation. Otherwise, all operations
in the binding should be managed by the related transaction. For example,
to control the bookFlight operation of a flight booking Web service as de-
scribed in Section 8.1 and Listing 8.5, one would have to give the URI of the
WSDL (e.g. http://www.lh.org/bookFlight?wsdl), a qualified name for
the binding reference (e.g. namespace http://www.lh.org/bookFlight and
local name LHFlightBookingSOAP) and the binding operation name (book-
Flight). An identifier of the created transaction is returned. This identifier
is used to reference the transaction in the later processing, for example, to
reference it in a transaction context. Listing 7.1 shows relevant parts of the
WSDL description.

Listing 7.1: createTransaction operation
<wsdl:message name="createTransactionRequest">

<wsdl:part name="name" type="xsd:string" />

<wsdl:part name="wsReferenceCollection"

CHAPTER 7. TRANSACTION MONITOR 79

type="twso:wsReferenceCollection"/>

</wsdl:message >

<wsdl:message name="createTransactionResponse">

<wsdl:part name="id" type="xsd:string" />

</wsdl:message >

<wsdl:message name="createTransactionException">

<wsdl:part name="createTransactionException" type="xsd:string"/>

</wsdl:message >

<wsdl:portType name="TransactionMonitor">

<wsdl:operation name="createTransaction">

<wsdl:input message="twso:createTransactionRequest" />

<wsdl:output message="twso:createTransactionResponse" />

<wsdl:fault name="createTransactionException"

message="twso:createTransactionException">

</wsdl:fault >

</wsdl:operation >

</wsdl:portType >

The setDependency operation is shown in Listing 7.2. It is used to cre-
ate transaction semantics by specifying dependencies between multiple small
transactions. setDependency takes an input parameter that conforms to the
dependency specification as given in Listing 6.6 and returns a status string.

Listing 7.2: setDependency operation
<wsdl:message name="setDependencyRequest">

<wsdl:part name="dependency" type="twso:dependency"/>

</wsdl:message >

<wsdl:message name="setDependencyResponse">

<wsdl:part name="status" type="xsd:string"/>

</wsdl:message >

<wsdl:message name="setDependencyException">

<wsdl:part name="setDependencyException" type="xsd:string"/>

</wsdl:message >

<wsdl:portType name="TransactionMonitor">

<wsdl:operation name="setDependency">

<wsdl:input message="twso:setDependencyRequest"/>

<wsdl:output message="twso:setDependencyResponse"/>

<wsdl:fault name="setDependencyException"

message="twso:setDependencyException">

</wsdl:fault >

</wsdl:operation >

</wsdl:portType >

To instruct the transaction monitor to do a transaction primitive, the
doPrimitive operation is used. It takes the type of the primitive in a format
as described in Table 6.3, the identifier of the target transaction and — if

CHAPTER 7. TRANSACTION MONITOR 80

needed — the identifier of the source transaction. In case the primitive fails, a
special fault message is returned. Depending on the particular orchestration
technique, this fault message most likely would cause a runtime–exception in
the orchestration.

Listing 7.3: doPrimitive operation
<wsdl:message name="doPrimitiveRequest">

<wsdl:part name="primitiveType" type="xsd:string"/>

<wsdl:part name="sourceTransactionID" type="xsd:string"/>

</wsdl:message >

<wsdl:message name="doPrimitiveResponse">

<wsdl:part name="status" type="xsd:string"/>

</wsdl:message >

<wsdl:message name="doPrimitiveException">

<wsdl:part name="doPrimitiveException" type="xsd:string"/>

</wsdl:message >

<wsdl:portType name="TransactionMonitor">

<wsdl:operation name="doPrimitive">

<wsdl:input message="twso:doPrimitiveRequest"></wsdl:input >

<wsdl:output message="twso:doPrimitiveResponse"></wsdl:output >

<wsdl:fault name="doPrimitiveException"

message="twso:doPrimitiveException">

</wsdl:fault >

</wsdl:operation >

</wsdl:portType >

In addition, there are login and logout operations to enable client ses-
sion handling. The login operation returns a session identifier that has to
be included in the transaction context. Thus, the transaction monitor and
the involved Web services are always aware of the particular client that uses
transactions for the duration of a session. These operations are presented in
Listing 7.4.

Listing 7.4: login and logout operations
<wsdl:message name="loginRequest"/>

<wsdl:message name="loginResponse">

<wsdl:part name="sessionId" type="xsd:string"/>

</wsdl:message >

<wsdl:message name="logoutRequest"/>

<wsdl:message name="logoutResponse">

<wsdl:part name="status" type="xsd:string"/>

</wsdl:message >

<wsdl:portType name="TransactionMonitor">

<wsdl:operation name="login">

<wsdl:input message="twso:loginRequest"/>

<wsdl:output message="twso:loginResponse"/>

CHAPTER 7. TRANSACTION MONITOR 81

</wsdl:operation >

<wsdl:operation name="logout">

<wsdl:input message="twso:logoutRequest"/>

<wsdl:output message="twso:logoutResponse"/>

</wsdl:operation >

</wsdl:portType >

Chapter 8

TWSO Enabled Web Services

Web services that are able to interoperate with a TWSO transaction sys-
tem in a transactional way have to fulfill certain prerequisites. It should be
noted, that Web services that do not offer TWSO transaction capabilities
could be part of a transactional TWSO orchestration, too. Of course, such
orchestrations have to take into account that transactional concepts cannot
be applied to Web services without TWSO related capabilities.

A Web service supports a TWSO concept when it is able to act on a
received TWSO matter in a semantically correct way. A TWSO transaction
system cannot influence a Web service in any way and cannot validate its
correct mode of operation. Thus, the transaction system has to trust the
Web service, that it implements pretended capabilities in a sound way. Re-
sponsibility of correct execution of transaction related matters lies totally in
the area of the Web service itself.

A Web service that supports TWSO concepts and wants to participate
in TWSO transactions has to publish the supported TWSO concept in its
WSDL description. This procedure enables all interested TWSO components
to be aware of the Web service’s TWSO capabilities. It is described in Sec-
tion 8.1.

To communicate transaction matters, a Web service has to provide a
standardized interface. This interface is described in Section 8.2. Of course,
the concrete implementation of such an interface (as done by a TWSO Web
service) has to correspond to its published supported transaction concepts.
This interface will be used by the transaction monitor.

82

CHAPTER 8. TWSO ENABLED WEB SERVICES 83

8.1 TWSO WSDL

Web services that are transaction enabled for TWSO transaction systems
should publish their transaction capabilities. This way, components of a
TWSO transaction system can become aware of the TWSO capabilities of
a particular Web service. These capabilities are expressed by declaring the
transaction related concepts a Web service or a part of a Web service sup-
ports in the WSDL description of the Web service. As this section assumes
some basic knowledge of WSDL, a short introduction to WSDL is given in
Appendix A.

WSDL offers an extensibility mechanism by allowing arbitrary XML el-
ements (“extensibility elements”) interspersed in particular sections of a
WSDL definition. This extensibility mechanism is appropriate to publish
TWSO related capabilities of a Web service.

To describe TWSO capabilities in a WSDL document, the binding section
may be considered: A binding defines implementation details of an abstract
port type interface definition. Moreover, WSDL extensibility elements in the
binding section provide protocol specific information that applies to the port
type being bound [12]. Hence, the binding section of a WSDL definition is an
appropriate place for specifying TWSO capabilities of particular port type
implementations.

In a binding, extensibility information can be associated either to the
whole binding or to a particular binding operation of a binding. Accord-
ingly, either the whole port type or a single operation of the port type is
addressed. TWSO capabilities of a Web service can also be associated to the
whole port type or to particular operations of a port type, depending on the
location of the TWSO capability elements in the binding.

The XML Schema in Listing 8.1 defines TWSO related WSDL extensi-
bility elements. Currently, supported transaction primitives and supported
synchronization protocols represent TWSO capabilities. The XML Schema
is designed to integrate future extensions easily.

There is an element <tx:capabilities> that includes a single <tx:prim-
itives> element. This element contains one or more <tx:primitiveCap-

ability> elements that represent the capability to act on the mentioned
primitive accordingly. The <tx:primitiveCapability> element can con-
tain two attributes. type specifies the type of the primitive, for example

CHAPTER 8. TWSO ENABLED WEB SERVICES 84

twso:commit. If available, syncProtocol specifies which protocol can be
used to achieve an atomic execution of an issued transaction primitive across
distributed services. Possible content of the type attribute is the same as
specified in Section 6.3, when the basic set of transaction primitives is used.
In a default version of TWSO, the syncProtocol attribute can only hold a
single value to indicate that the usage of the two phase commit protocol (as
described in Subsection 3.2.3) is possible: twoPhaseCommit.

Listing 8.1: TWSO WSDL capabilities
<element name="capabilities">

<complexType >

<sequence >

<element ref="tx:primitives"/>

</sequence >

</complexType >

</element >

<element name="primitives">

<complexType >

<sequence >

<element ref="tx:primitiveCapability"

minOccurs="1"

maxOccurs="unbounded"/>

</sequence >

</complexType >

</element >

<element name="primitiveCapability">

<xs:complexType >

<xs:attribute name="type" type="xs:NMTOKEN" use="required"/>

<xs:attribute name="syncProtocol" type="xs:NMTOKEN" use="optional"/>

</xs:complexType >

</element >

To conduct TWSO related communication, the Web service has to offer
a special SOAP interface, as introduced in Section 8.2. If there is no further
information in the WSDL, it is assumed that the network address in the port
of the corresponding binding offers this interface. However, it is possible to
override this default by adding a <tx:address> element to the port. Then,
all TWSO communication will be directed to this network address. This
element, which resides in the twso namespace, is shown in Listing 8.2.

Listing 8.2: TWSO port address
<element name="address">

<xs:complexType >

<xs:attribute name="location" type="xs:string" use="required"/>

</xs:complexType >

</element >

CHAPTER 8. TWSO ENABLED WEB SERVICES 85

To give an example, flight booking service WSDL descriptions including
TWSO capabilities are presented. Listing 8.3 shows the port type of the
flight booking service. There are two operations. bookFlight is used to
book a flight and bookLounge to reserve a place in an airport lounge. It
should be noted that the input and output messages are omitted for the sake
of clarity.

Listing 8.3: Flight booking port type
<wsdl:portType name="FlightBooking">

<wsdl:operation name="bookFlight">

<wsdl:input message="tns:bookFlightRequest" />

<wsdl:output message="tns:bookFlightResponse" />

</wsdl:operation >

<wsdl:operation name="bookLounge">

<wsdl:input message="tns:bookLoungeRequest"></wsdl:input >

<wsdl:output message="tns:bookLoungeResponse"></wsdl:output >

</wsdl:operation >

</wsdl:portType >

The first binding that is presented in Listing 8.4 associates an implemen-
tation of the flight booking port type that offers full TWSO capabilities for
both operations, whereas “full” refers to the basic transaction primitive set
presented in Section 6.2. Thus, bookFlight and bookLounge business logic
calls can be facilitated by begin, commit, abort and compensate transaction
primitives. The delegate primitive is not Web service effective and needs
not to be mentioned. All primitives support synchronization via the two
phase commit protocol. Thus, it is possible to achieve valid atomic outcomes
of this implementation together with other services.

Listing 8.4: Port type scope TWSO binding
<wsdl:binding name="StarAllianceFlightBookingSOAP" type="tns:FlightBooking">

<soap:binding style="document"

transport="http:// schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="bookFlight">

<soap:operation soapAction="http: //www.star.org/bookFlight"/>

<wsdl:input ><soap:body use="literal"/></wsdl:input >

<wsdl:output ><soap:body use="literal"/></wsdl:output >

</wsdl:operation >

<wsdl:operation name="bookLounge">

<soap:operation soapAction="http: //www.star.org/bookFlight"/>

<wsdl:input ><soap:body use="literal"/></wsdl:input >

<wsdl:output ><soap:body use="literal"/></wsdl:output >

</wsdl:operation >

<tx:capabilities >

<tx:primitives >

<tx:primitive type="tx:begin"

syncProtocol="tx:twoPhaseCommit"/>

<tx:primitive type="tx:commit"

syncProtocol="tx:twoPhaseCommit"/>

CHAPTER 8. TWSO ENABLED WEB SERVICES 86

<tx:primitive type="tx:abort"

syncProtocol="tx:twoPhaseCommit"/>

<tx:primitive type="tx:compensate"

syncProtocol="tx:twoPhaseCommit"/>

</tx:primitives >

</tx:capabilities >

</wsdl:binding >

The binding shown in Listing 8.5 is for a SOAP flight booking port type
implementation that supports different TWSO capabilities for each opera-
tion. bookFlight cannot be compensated. Hence, it offers no more than
ACID style transaction support. Synchronization for atomic outcomes in
combination with other services is possible using the two phase commit pro-
tocol. bookLounge cannot be aborted but only compensated. Consequently,
state changes are final and cannot be undone without traces. In terms of
business logic, reservations of lounge seats go into effect immediately and
only the use of special forward actions can achieve the cancellation of reser-
vations. Furthermore, it is not possible to synchronize the service to achieve
atomic outcomes in combination with other services.

Listing 8.5: Operation scope TWSO binding
<wsdl:binding name="LHFlightBookingSOAP" type="tns:FlightBooking">

<soap:binding style="document"

transport="http:// schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="bookFlight">

<soap:operation soapAction="http: //www.lh.org/bookFlight"/>

<wsdl:input ><soap:body use="literal"/></wsdl:input >

<wsdl:output ><soap:body use="literal"/></wsdl:output >

<tx:capabilities >

<tx:primitives >

<tx:primitive type="tx:begin"

syncProtocol="tx:twoPhaseCommit"/>

<tx:primitive type="tx:commit"

syncProtocol="tx:twoPhaseCommit"/>

<tx:primitive type="tx:abort"

syncProtocol="tx:twoPhaseCommit"/>

</tx:primitives >

</tx:capabilities >

</wsdl:operation >

<wsdl:operation name="bookLounge">

<soap:operation soapAction="http: //www.lh.org/bookLounge"/>

<wsdl:input ><soap:body use="literal"/></wsdl:input >

<wsdl:output ><soap:body use="literal"/></wsdl:output >

<tx:capabilities >

<tx:primitives >

<tx:primitive type="tx:begin"/>

<tx:primitive type="tx:compensate"/>

</tx:primitives >

CHAPTER 8. TWSO ENABLED WEB SERVICES 87

</tx:capabilities >

</wsdl:operation >

</wsdl:binding >

The Star Alliance Web service offers its TWSO communication interface
at a different address than its flight–booking interface. Listing 8.6 shows the
according service section of its WSDL description.

Listing 8.6: Operation scope TWSO binding
<wsdl:service name="StarAllianceFlightBooking">

<wsdl:port binding="tns:StarAllianceFlighBookingSOAP"

name="StarAllianceFlighBookingSOAP">

<soap:address location="http: //www.staralliance.org/flightBooking"/>

<tx:address location="http: //www.staralliance.org/twso/flightBooking"/>

</wsdl:port >

</wsdl:service >

8.2 Interface: Transaction Monitor and Web

service

To communicate TWSO related matters to Web services, a TWSO enabled
Web service has to offer a standardized TWSO SOAP interface. Depending
on the TWSO capabilities of a Web service, particular parts of this inter-
face have to be present. When certain TWSO capabilities are present in a
Web service’s WSDL description, TWSO components (i.e. primarily trans-
action monitors) rely on the presence of matching operations. Using these
operations require the presence of an appropriate transaction context in the
SOAP call. Otherwise, the Web service cannot identify the affected transac-
tion properly. The transaction context is described in Chapter 5.

WSDL details of the implemented TWSO SOAP interface need not to
be described in the Web service’s WSDL. The interface is standardized, the
mapping of a capability to a SOAP operation is inherently known in the
system and thus an additional occurrence would result in unnecessary re-
dundancy. However, to be concise the interface is presented using WSDL
port types and messages here.

The interface consists of three remote procedure call style operations as
follows. Since a single component may offer TWSO transaction interfaces

CHAPTER 8. TWSO ENABLED WEB SERVICES 88

for multiple Web services, such a component has to be aware which Web
service is managed by which transaction: That is, when a transaction ti is
aborted at Web service transaction component ca, ca has to know exactly
which Web service’s work has to be undone to take appropriate measures.
To associate a transaction with a Web service, the begin operation as shown
in Listing 8.7 is used. It takes a qualified name for the desired binding
(bindingNamespace and bindingName) and a name for the desired binding
operation (beginOperation).

Listing 8.7: begin operation
<wsdl:message name="beginRequest">

<wsdl:part name="bindingNamespace" type="xsd:string"/>

<wsdl:part name="bindingName" type="xsd:string"/>

<wsdl:part name="bindingOperation" type="xsd:string"/>

</wsdl:message >

<wsdl:message name="beginResponse">

<wsdl:part name="beginReturn" type="xsd:string"/>

</wsdl:message >

<wsdl:portType name="TWSO">

<wsdl:operation name="begin">

<wsdl:input message="impl:beginRequest" name="beginRequest"/>

<wsdl:output message="impl:beginResponse" name="beginResponse"/>

</wsdl:operation >

</wsdl:portType >

To execute a primitive, the doPrimitive operation is used. It is shown
in Listing 8.8. It takes the type of the transaction primitive as described in
Table 6.3 and may return a status. In case of an erroneous situation, a fault
message may be thrown.

Listing 8.8: doPrimitive Operation
<wsdl:message name="doPrimitiveResponse">

<wsdl:part type="xsd:string" name="status"/>

</wsdl:message >

<wsdl:message name="doPrimitiveRequest">

<wsdl:part type="xsd:string" name="primitiveType"/>

</wsdl:message >

<wsdl:message name="primitiveFailed">

<wsdl:part name="primitiveFailed" type="xsd:string"/>

</wsdl:message >

<wsdl:portType name="TWSO">

<wsdl:operation name="doPrimitive">

<wsdl:input message="twso:doPrimitiveRequest" />

<wsdl:output message="twso:doPrimitiveResponse" />

<wsdl:fault name="primitiveFailed" message="twso:primitiveFailed"/>

</wsdl:operation >

</wsdl:portType >

CHAPTER 8. TWSO ENABLED WEB SERVICES 89

In case the Web service supports the two phase commit protocol (the de-
fault synchronization protocol in TWSO systems) for synchronization, a Web
service has to offer a method to support the prepare phase, as discussed in
Subsection 3.2.3. The doPrepare operation as presented in Listing 8.9 is used
for that. It takes the type of the transaction primitive (see Table 6.3) that is
about to be synchronized. Thus, it is possible to achieve an agreed outcome
across multiple distributed Web services on arbitrary primitives — not only
on a commit. For example, an agreed outcome of an abort or compensate is
possible. It returns a status code that indicates the readiness to execute the
considered primitive. Additionally, in case of erroneous situations, a fault
message can be thrown.

Listing 8.9: preparePrimitive Operation
<wsdl:message name="preparePrimitiveResponse">

<wsdl:part name="status" type="xsd:string"/>

</wsdl:message >

<wsdl:message name="preparePrimitiveRequest">

<wsdl:part name="primitiveType" type="xsd:string"/>

</wsdl:message >

<wsdl:message name="prepareFailed">

<wsdl:part name="prepareFailed" type="xsd:string"/>

</wsdl:message >

<wsdl:portType name="TWSO">

<wsdl:operation name="preparePrimitive">

<wsdl:input message="twso:preparePrimitiveRequest"/>

<wsdl:output message="twso:preparePrimitiveResponse"/>

<wsdl:fault name="prepareFailed" message="twso:prepareFailed"/>

</wsdl:operation >

</wsdl:portType >

Chapter 9

TWSO Tourism Scenario
Orchestrations

9.1 City Trip Scenario

The requirements of this scenario are presented in detail in Scenario 2.1.
Figure 9.1 depicts a suitable orchestration workflow.

Because no service charges any booking attempt in first place, perfor-
mance is maximized and all bookings occur concurrently: Let d(si) be the
duration to finish the call of Web service si. The duration of the orches-
tration will be max(d(sbook flight), . . . , t(dbook sight tickets)). The orchestration
logic is completed herewith and transaction logic is left to be added. This is
presented in Figure 9.2 exemplary for two Web services. The other services
are embraced by completely analogous transaction logic and are indicated by
“. . . ” in the figure.

The darker dots in Figure 9.2 refer to transaction related activities. First,
all to be used transactions are initiated and transaction dependencies (as
discussed below in detail) have to be installed. Thereafter (for each service
booking) a particular transaction is started. If the outcome of the book-
ing is considered to be successful, the transaction is committed immediately
and isolation is violated apparently. In order to guarantee isolation, services
would have to lock tentatively booked resources for other customers until
all other services bookings are finished. Since the hotel room booking needs
approximately two days and all other bookings are finished within seconds,
each service would have to hide tentatively booked resources for two days in
order to wait for the hotel booking. Such tight dependencies between orga-

90

CHAPTER 9. TWSO TOURISM SCENARIO ORCHESTRATIONS 91

Figure 9.1: Non–transactional Vienna city trip orchestration

Figure 9.2: Transactional Vienna city trip orchestration

CHAPTER 9. TWSO TOURISM SCENARIO ORCHESTRATIONS 92

nizationally independent services are most likely deprecated. Thus, isolation
can not be achieved. Consequently, compensation is used to undo committed
bookings. In case a transaction is considered to be unsuccessful, it is aborted.

The tourist preferences can be expressed fully by transaction dependency
logic. According dependencies are as follows, whereas the notation will be
the same as used in Section 6.3: σstatename(ttx1) denotes that state statename
of transaction tx1 is in effect, and pprimitive(ttx2) means issuing primitive
primitive to transaction tx2. Left of “⇒” is the source state and right the
effect.

• σaborted(tflight) ∨ σaborted(ttransfer) ∨ σaborted(thotel) ∨ σaborted(tcatering)
⇒
pcompensate(tflight), pcompensate(ttransfer), pcompensate(thotel),
pcompensate(tcatering), pcompensate(tevents), pcompensate(tsights)

• σaborted(tsights) ∧ σaborted(tevents)
⇒
pcompensate(tflight), pcompensate(ttransfer), pcompensate(thotel),
pcompensate(tcatering), pcompensate(tevents), pcompensate(tsights)

In other words, when booking of a mandatory service (flight, airport
transfer, hotel or catering) fails, all services have to be compensated. In case
both, the booking of sight tickets and the booking of event tickets fail, all
services have to be compensated. It should be noted that compensation has
only to take place if necessary and a TWSO component acts accordingly:
A service that has not been started does not need to be compensated. The
same is true for a service that has been aborted. Because of the concurrent
processing and the usage of transaction dependencies it can happen that —
in terms of the current transaction state — invalid transaction primitives are
issued. For example, it can happen that a commit is issued from the orches-
tration on a transaction that has been already compensated by a transaction
dependency before. Such events are anticipated and ignored safely. It should
be noted that for the sake of clarity this scenario implementation does not
consider erroneous behavior of transaction related processing per se. That
is, unlikely situations where transaction primitives fail are ignored and not
handled.

The resulting XPDL orchestration with interspersed TWSOL elements is
shown in Appendix C.1.

CHAPTER 9. TWSO TOURISM SCENARIO ORCHESTRATIONS 93

Scenario 2.1 needs some adjustments over time. To react accordingly to
the claim that the flight booking service starts charging each booking at-
tempt, the concurrent order of the workflow needs to be changed as shown
in Figure 9.3.

Here, the flight booking happens after all other bookings have been fin-
ished to minimize flight booking attempts. In case at least one service apart
from the flight booking fails, all transactions (including the transaction that
manages the flight booking) are compensated. In this situation the flight
booking Web service would be compensated before any (business logic) ac-
tion has been performed. A business logic call to the flight booking Web
service after the compensation of its related transaction is valid, but will not
have any effect. Thus, it will not be charged. A pcommit on a transaction that
is in state σcompensated (as it will be the case in this orchestration) is invalid
and will cause an exception. Such an exception (as also discussed above) is
anticipated and is ignored by the orchestration safely. It should be noted
that the transaction logic remains exactly the same and is not affected in
any way by the required modification of the orchestration.

To pay tribute to the new customer preference as required by Scenario 2.1
(i.e. customers prefer to have both, event tickets and sight tickets), it is only
necessary to change the dependencies. The orchestration workflow remains
completely untouched. The dependency system is as follows:

• σaborted(tflight) ∨ σaborted(ttransfer) ∨ σaborted(thotel)∨
σaborted(tcatering) ∨ σaborted(tsights) ∨ σaborted(tevents)
⇒
pcompensate(tflight), pcompensate(ttransfer), pcompensate(thotel),
pcompensate(tcatering), pcompensate(tevents), pcompensate(tsights)

Just a single dependency is necessary now. It should be noted, that the
transaction logic holds some atomic characteristics now. However, ACID
transactions still cannot be used because preserving isolation would intro-
duce tight and deprecated dependencies between the involved services, as
discussed above.

The XPDL orchestration of the adapted orchestration is presented in Ap-
pendix C.2.

CHAPTER 9. TWSO TOURISM SCENARIO ORCHESTRATIONS 94

Figure 9.3: Adapted transactional Vienna city trip orchestration

CHAPTER 9. TWSO TOURISM SCENARIO ORCHESTRATIONS 95

Figure 9.4: Transactional Crete car tour orchestration

9.2 Rental Car Tour Scenario

For the rental car tour in Crete as introduced in Scenario 2.2, the services do
not charge booking requests. Thus, the orchestration and the orchestration’s
transaction related parts can be adopted from the initial Vienna City Trip
scenario, as described in Section 9.1 and depicted in Figure 9.2. The result-
ing orchestration for 2 services (the other ones are analogous and indicated
using “. . .”) is shown in Figure 9.4.

All further logic can be expressed using transaction dependencies. For
the flexible traveler type, the transaction dependencies are as follows:

• σaborted(tflight) ⇒
pcompensate(tcar), pcompensate(thotelHeraklion),
pcompensate(thotelChania), pcompensate(thotelAgiosNikolaos)

• σaborted(tcar) ∧ σaborted(thotelHeraklion) ⇒
pcompensate(tflight), pcompensate(tcar), pcompensate(thotelHeraklion),
pcompensate(thotelChania), pcompensate(thotelAgiosNikolaos)

CHAPTER 9. TWSO TOURISM SCENARIO ORCHESTRATIONS 96

In other words, when no flight can be booked, all other services should
be compensated and when both, the hotel in Heraklion and the rental car
cannot be booked, all other services should be compensated, too.

For the not so flexible traveler, the orchestration remains totally the same.
Only the transaction dependencies have to be adapted as shown next:

• σaborted(tflight) ∨ σaborted(tcar) ∨ σaborted(thotelHeraklion)
⇒
pcompensate(tflight), pcompensate(tcar), pcompensate(thotelHeraklion),
pcompensate(thotelChania), pcompensate(thotelAgiosNikolaos)

• σaborted(thotelChania) ∧ σaborted(thotelAgiosNikolaos)
⇒
pcompensate(tflight), pcompensate(tcar), pcompensate(thotelHeraklion)

Here, all services should be compensated in case the flight booking, or
the car booking or the booking for the hotel in Heraklion fails. In addition,
if no hotel on the tour — i.e. no hotel in Chania and in Agios Nikolaos —
can be booked, all services should be compensated, too.

Please note that also this scenario implementation does not consider erro-
neous behavior of transaction related processing per se for the sake of clarity.
Exceptions that stem from unlikely erroneous processing of transaction prim-
itives are ignored.

An XPDL orchestration with interspersed TWSOL constructs that imple-
ments the orchestration for both, flexible and not so flexible tourists, is given
in Appendix C.3. In this orchestration, an appropriate dependency set is in-
stalled dynamically, depending on the current tourist type the orchestration
instance is executed for.

9.3 Summary

Coordination issues in the scenario virtual enterprise are easily tackled by
using TWSO constructs. As one can see, the efficient concurrent processing
in the scenario is coordinated only by few TWSO transaction dependencies.
Trying to manage this concurrency with orchestration means alone would
result in additional massive control flow logic expressed in the orchestration
language. Consequently, a faster development process can be achieved when
using TWSO instead of plain orchestration technology.

CHAPTER 9. TWSO TOURISM SCENARIO ORCHESTRATIONS 97

The implementation of the scenario clearly shows that TWSO can be
integrated with Web service orchestrations seamlessly. The XPDL orches-
trations in Appendix C.1 present a way to include TWSO constructs that fit
in the hosting XPDL orchestration perfectly. This method even allows work-
flow engines without TWSO capabilities to execute the TWSO orchestration
by omitting the transaction logic1. For other Web service orchestration tech-
nologies like BPEL4WS, accurate TWSO integrations are certainly feasible
without any hassles, too. However, developing a TWSO integration proposal
for various Web service orchestration technologies is out of scope of this the-
sis.

Arbitrary transaction semantics are put in operation fast and easily. For
example, the alteration of user preferences in the Vienna city trip scenario
causes the modification of transaction semantics. In that case, simply adjust-
ing the transaction dependencies accomplishes this. Moreover, transaction
semantics can be even installed on–the–fly, as shown in the Crete scenario.
Depending on the type of tourist that initiates the orchestration, different
transaction semantics go into action here.

The usage pattern of applying transaction–oriented processing in the sce-
nario Web service orchestrations follows the common transaction usage pat-
tern as used in various transaction systems nowadays. A transaction is begun
and terminated by transaction primitives and influences the effects of exe-
cuted business logic. However, the scenario also shows that the usage pattern
is enriched significantly. Coordinating a system of multiple transactions by
defining transaction dependencies and advanced types of transaction primi-
tives are not part of common transaction processing systems nowadays.

By separating transaction logic and workflow logic to a high degree, sep-
aration of concerns is honored and the design of the orchestrations stays
remarkably clean. Quality of the orchestration is enhanced and errors of the
orchestration itself (i.e. the separated orchestration without its participating
Web services) are avoided at design time: High quality fault prevention takes
place in a TWSO orchestration implicitly. The high separation of workflow
and transaction logic and thus the clean design is observable in the scenario
orchestrations: Modifications of the transaction logic do not affect workflow
logic and vice versa. Logic is implemented using two different independent
layers.

1It should be noted that executing the bare workflows of the scenario use cases without
any transaction logic would omit important semantics.

CHAPTER 9. TWSO TOURISM SCENARIO ORCHESTRATIONS 98

Moreover, through anticipating errors a priori at the design time in a
highly effective and efficient way by using TWSO transactional concepts,
emerging faults most likely do not affect the correct behavior of the or-
chestration and failure management is facilitated significantly. Occurring
errors at runtime are detected and handled effectively. Fault tolerance of the
orchestration is improved. The scenario orchestrations consequently check
the outcome of Web services for faults and handle them accordingly by us-
ing TWSO concepts. Thus, correct processing of the total orchestration is
hardly affected by such faults. In terms of [26], the scenario orchestrations
show that availability, reliability, safety, integrity and maintainability of the
orchestrations is enhanced by providing means of fault prevention and fault
tolerance, whereas TWSO concepts provide such means.

Part III

Implementation of a TWSO
Environment

99

Chapter 10

TWSO Prototype
Implementation

To prove the feasibility of the theoretical foundations in Part II, a work-
ing software prototype of a TWSO system (protoTWSO) was developed.
This system includes an interface for a single orchestration technology, a
TWSO transaction monitor and sample Web services that are TWSO en-
abled. protoTWSO should form a proof of concept to evaluate current and
future TWSO related concepts. It cannot fulfill all necessary requirements of
a production quality TWSO system. However, since extensibility potentials
and elegance of the prototype system are on a high level, protoTWSO may
build a base for future production grade TWSO systems.

10.1 Overall Architecture

protoTWSO consists of three independent areas. SOAP handles communi-
cation between remote components in the entire system. protoTWSO offers
an implementation of TWSO4J as described in Subsection 6.4.2. Hence,
Java Web service orchestration is the only orchestration technology than can
be used in a protoTWSO system. The central element of protoTWSO is a
TWSO transaction monitor implementation that complies with Chapter 7.
Thus, it is a Web service whose interface conforms to the WSDL definition
presented in Appendix B. It should be noted that the transaction moni-
tor could be also used with other orchestration technologies besides Java,
but Java is the only orchestration technology protoTWSO supports at the
moment. To test TWSO orchestration concepts effectively, protoTWSO pro-
vides means to conveniently generate TWSO enabled Web services.

100

CHAPTER 10. TWSO PROTOTYPE IMPLEMENTATION 101

For protoTWSO, orchestrations are expressed in Java. protoTWSO’s
TWSO4J implementation provides an application programming interface
that is used in the Java orchestration and encapsulates communication be-
tween the orchestration and the transaction monitor. If necessary, the trans-
action monitor forwards transaction related commands to the TWSO enabled
Web services. In addition, the Java orchestration calls Web service business
logic, whereas these calls include a reference to a related transaction.

10.2 TWSO4J Implementation

The TWSO4J implementation of protoTWSO uses Apache AXIS Client tools
for SOAP communication. It follows exactly the TWSO4J interfaces as de-
scribed sufficiently in Subsection 6.4.2, besides the following noteworthy ex-
ceptions.

It is not possible to give dependencies using XML as shown in Figure 6.4.
Just Dependency objects can be used to define transaction dependencies.

In addition to the pure TWSO4J recommendations, protoTWSO’s TWSO4J
includes an interface Ec3TransactionMonitor that extends the Transac-

tionMonitor interface by convenience methods:

• createTransactionContext(): This method can be used to trigger
the generation of up to date SOAP header context information. The
context will include a session identifier as returned from the protoTWSO
SOAP transaction monitor component.

• createTransactionContext(String transactionId): In addition to
createTransactionContext(), it is possible to define a transaction
identifier that is included in the context.

• getLocationURI(): Returns the URI of the transaction monitor

• getTransactionMonitorStub(): Returns a low–level SOAP client stub
object that can do SOAP communication. Using this object it is pos-
sible to initiate all possible low–level SOAP calls.

• resetStub(): Replaces the existing SOAP client stub with a com-
pletely new one. For example, it is used to delete any created SOAP
header information.

CHAPTER 10. TWSO PROTOTYPE IMPLEMENTATION 102

All TransactionMonitor instances that are created by protoTWSO’s Trans-
actionMonitorFactory comply with both interfaces, TransactionMonitor
and Ec3TransactionMonitor.

10.3 TWSO Transaction Monitor Implemen-

tation

The implementation of the transaction monitor component in protoTWSO
is written in Java and externalizes its functionalities for clients via SOAP.
Its WSDL definition and thus its published interfaced including methods,
parameters and datatypes can be seen in Appendix B. Since the usage is
covered in detail in Chapter 7, this chapter concentrates on noteworthy im-
plementation details and strategies.

The protoTWSO transaction monitor is based on the Apache AXIS SOAP
toolkit. The center of the implementation builds the WSDL document. Us-
ing AXIS WSDL tools, suitable server skeleton classes are generated from
this WSDL document. Moreover, all complex XML Schema datatypes found
in the WSDL are transformed automatically to Java classes using AXIS tools,
too. The TransactionMonitorServerImplementation class implements the
interface and is the starting point for all functionalities.

To keep track of particular clients, a proprietary session handling is used1.
After logging in with the login() method, a session identifier is returned to
the client. This identifier has to be included in the transaction context for
all calls during a session as described in Chapter 5. On the server–side,
stateful objects are bound to the session identifier in order to preserve the
object’s state across all SOAP calls in a session. The code for the server–side
session handling is included in the TransactionMonitorServerImplemen-

tation class.

Transaction dependencies are represented using the Dependency class. In
order to evaluate dependencies, the following strategy is used. The BSHDe-

pendency class extends Dependency and contains evaluation and execution
logic for evaluating whether the source state is in effect and — if so — to
execute the effect. To check whether the source state is in effect, scripting

1Although there are standardized approaches for Web service session management like
WSRF, it was decided to create a proprietary simple session handling. Clients simply
have to add the session identifier to the transaction context, which is needed anyway. The
complexity of using WSRF outweighs its advantages for protoTWSO.

CHAPTER 10. TWSO PROTOTYPE IMPLEMENTATION 103

technologies are used. The data related to the source state in the Depen-

dency object is converted to a script2 on the fly. The script is executed and
returns true or false. Additionally, it is possible to apply the effect of a de-
pendency by using the doEffect() method. Source states of dependencies
are evaluated immediately after they were installed and after a primitive is
executed. When the evaluation reports that the source state is in effect, the
dependency’s effect is executed.

A primitive request on a transaction is executed mainly by forwarding it
to affected Web services. This logic is located in the PrimitiveExecutor

class. A transaction that manages multiple Web services has to assure a
valid outcome across all involved Web services for a primitive. protoTWSO
uses the two phase commit protocol to achieve such an outcome. When a
PrimitiveExecutor object detects that a transaction is related to multiple
Web services, it precedes a prepare phase and — when the prepare phase
indicated success — forwards the primitive to all Web services.

A delegation for termination causes no forwarding but stores the de-
sired delegation. In detail, a transaction has a collection of delegates and
is responsible to terminate each transaction in this delegate collection. The
collection is empty where there are no delegates. When termination of tj
and tk should be delegated to ti, tj and tk are added to the delegates col-
lection of ti. When ti is terminated by ptermination type, the software iterates
through ti’s collection of delegate transactions and terminates each entry
in the collection with ptermination type. Hence, tj and tk are terminated by
ptermination type. When a transaction has delegates, it must be assured that
a primitive leads to an agreed and valid outcome across the transaction and
its delegates. Consequently, the two phase protocol is applied in this case,
too, as it is described above. It should be noted, that delegates could have
delegates themselves, and recursive processing (including two phase commit
actions) could take place.

10.4 TWSO Enabled Web Services in pro-

toTWSO

protoTWSO provides a convenience class for TWSO enabled Web services.
Classes that extend the TWSOWebservice class obtain a full TWSO compat-
ible interface that can be published via Web service means as it is. Further-

2Beanshell scripting is used in protoTWSO.

CHAPTER 10. TWSO PROTOTYPE IMPLEMENTATION 104

more, some utility functions are provided. Besides a rudimentary but func-
tional doPrimitive() operation, the Web service will include two phase com-
mit protocol functionality. However, WSDL definitions that include TWSO
capabilities as described in Section 8.1, are not created automatically and
have to be developed by hand.

10.5 Limitations of Prototype Implementa-

tion

protoTWSO is a playground to test TWSO concepts. It does not assert
claims to be a production grade Web service transaction system. Thus,
protoTWSO has the following limitations that are irrelevant regarding the
purpose of protoTWSO:

• no distribution of compiled source code,

• lack of installation/integration/deployment auxiliaries,

• Apache Tomcat on Linux is the only tested platform,

• only most essential configuration possibilities,

• no performance optimization,

• rudimentary error handling and input verification.

protoTWSO does not provide any installation auxiliaries. The compo-
nents are available as sourcecode. Compilation, deployment and integration
have to be performed manually without any software assistance.

Web applications of protoTWSO comply with Java Servlet specifications
and definitely run on the Apache Tomcat Servlet container under Linux. It
may be possible to use other Servlet containers on other operation systems
as well, but this is not tested.

Moreover, only essential configuration options are provided in configura-
tion files. There is no user–friendly interface to change these options.

Generally, protoTWSO does not focus performance related optimizations.
There are several areas of code that are not optimized in terms of perfor-
mance. However, these areas are marked, so that they can be spotted and
refactored quickly.

CHAPTER 10. TWSO PROTOTYPE IMPLEMENTATION 105

Error handling and input verification are marginally implemented. The
exception system is very coarse grained and lacks a common strategy on how
exceptions should be propagated. Moreover, inputs from outside are not
checked at all. It is assumed that all participating components behave cor-
rectly and give and receive correct data only. This is the most problematic
area in protoTWSO and has to be addressed primarily when protoTWSO
should be upgraded to production quality.

Chapter 11

Evaluation

To demonstrate the operativeness of protoTWSO, the Crete rental car tour
scenario (as introduced in Scenario 2.2, developed in Section 9.2, and instan-
tiated with XPDL in Appendix 9.4) was realized using protoTWSO. The
resulting Java orchestration is shown and explained in detail in Appendix
C.2.

11.1 Performed Testing

Numerous test runs demonstrated that ProtoTWSO is able to execute the
scenario correctly. The used test design is as follows. For each booking action,
a test Web service was created that pretends to offer the desired functionality.
Moreover, it is possible to configure each test Web service either to pretend
success or failure, whereas the failure type can be determined in detail. The
possible failure types (see also Table 1.1) are as follows: Transfer failures,
expected service failures, and unexpected service failures. For example, it is
possible to configure the systems as follows: The booking of a hotel room in
Chania delivers a Nullpointer exception (unexpected service failure), the host
of the car booking service in Heraklion is temporarily unavailable (transfer
failure), and there are no hotel rooms left in Heraklion (expected service fail-
ure).

Numerous test runs have been executed, which were composed as follows.
Based on the assumptions above, there are 4 service outcomes (success, trans-
fer failure, expected service failure, unexpected service failure) and 5 services
(flight booking, car booking, hotel booking Heraklion, Chania, and Agios
Nikolaos). Thus, a total of 45 = 1024 test cases exist. Because the tests

106

CHAPTER 11. EVALUATION 107

Figure 11.1: Transactional Crete car tour orchestration measurements

involve significant manual activities, it was decided to scale the test cases
down reasonably. Thus, the possible outcomes were reduced to two options:
Either success, or — randomly chosen — transfer failure, expected or unex-
pected service failure. This results in 25 = 32 systematic test cases, which
seem to be sufficient to validate protoTWSO.

Each test run has been applied to the flexible tourist’s and not so flexi-
ble tourist’s orchestration. The outcomes have been validated manually and
have been all considered to be valid. Therefore, it stands to reason that the
protoTWSO system acts correctly in terms of the TWSO approach.

11.2 Performance Measurements

To get an idea of performance implications when using a TWSO system,
runtime behavior of the Crete rental car tour scenario implementation in
protoTWSO has been measured. The protoTWSO orchestration was com-
pared to an orchestration that does not consider transactions at all.

Figure 11.1 shows the duration of orchestration executions related to the
average duration of Web service processing. There is a constant significant

CHAPTER 11. EVALUATION 108

overhead of TWSO related processing. It stands to reason, that the longer
services in an orchestration need to fulfill their tasks, the lower is the signif-
icance of TWSO related processing time. The measurements were observed
on a 3.6GHz Pentium 4 Linux system that executed protoTWSO in a Tomcat
5.5 container using Sun Java 1.4.2.

11.3 Towards an Automated Test Environ-

ment for Web Service Transaction Sys-

tems

The burden of manually testing Web service transaction systems as it was
necessary for the validation of protoTWSO raises the wish for an automated
test environment for Web service transaction systems. On the one hand,
such a test environment reduces the efforts to test Web services transac-
tion systems. On the other hand side, standardized test environments allow
meaningful comparisons of different Web service transaction systems in terms
of correctness and performance. Such a test environment may be designed
as follows.

To objectively validate the correctness of the outcome of a transactional
Web service orchestration instance executed in a transactional orchestration
system, the following factors have to be taken into account.

First of all, the set of final states of the participating Web services has
to be checked. Since the types of possible final Web service states depend
on the particular domain, orchestration, and Web service, a universal set of
final Web service states cannot be defined. For example, a particular flight
booking Web service may have the states success, flight unavailable,
and failure whereas a Web service of a hotel provides only the states suc-
cess and failure.

Also, the final states of the transaction instances have to be considered
because they have to be consistent with the final states of the participating
Web service. For example, let transaction ti manage su. A final state σfailure

for Web service su and σfailure for transaction ti may imply an erroneous
inconsistency. However, again the consistency conditions depend on the par-
ticular domain, orchestration, and Web service(s).

CHAPTER 11. EVALUATION 109

Since no universal relationships between final Web service states, final
transaction states, and orchestration validity can be deduced, validity con-
straints have to be developed for each particular testing. Given a particular
orchestration, such constraints should express a combination of final Web ser-
vice states and final transaction states that indicate a valid orchestration’s
outcome.

To provide valuable test settings, the test environment must be able to
influence the activities of participating Web services. Mock–up Web services,
that do not provide any business related functionality, but can be configured
to simulate relevant behavior for testing purposes, are necessary. Three con-
figuration dimensions of such Web services are noteworthy.

The states a Web services can have and a realistic external visible be-
havior related to a state must be simulated. For example, a mock–up Web
service for the hotel booking stated above has two states and returns a suc-
cess message when it enters the success state and a failure message when it
enters the failure state.

A statistical concept should be used to determine which kind of state the
mock–up Web service should enter when it is called. For example, it should
be possible to specify that the flight booking mock–up Web service should
go into the flight unavailable state with a probability of 80%, into the
success state with 18% probability, and into the failure state with a prob-
ability of 2%.

Also, the time dimension should be considered to provide a realistic test
environment. A mock–up Web service should simulate the response time
as subject to some kind of statistical concept and the intended state. For
instance, when the hotel booking mock–up is intended to enter the success

state, the response time should adhere to a particular Gaussian distribution.

To test Web service transaction systems on the basis of the Crete rental
car tour Scenario for the not so flexible tourist, the test framework may be
composed as follows. It should be noted, that this test configuration tries to
approximate the scenario as good as possible.

There are 5 mock–up Web services that are shown in Table 11.1. All
these Web services are configured to have some states, which are entered
with some probability and have a response time that adheres to a certain
statistical distribution. A set of validity constraints in natural language may

CHAPTER 11. EVALUATION 110

Table 11.1: Test mock–up Web Services for Crete rental tour

Mock–
Up

Success Expected
Service Fail-
ure

Unexpected
Service Failure

Transfer Fail-
ure

Pentry Dtime Pentry Dtime Pentry Dtime Pentry Dtime

Flight 0.8 N(µ = 2,

σ2 = 0.01)

0.1 N(µ = 3,

σ2 = 0.02)

0.05 χ2(k = 3) 0.05 χ2(k = 3)

Car 0.5 N(µ = 7000,

σ2 = 0.5)

0.2 N(µ = 4000,

σ2 = 0.4)

0.1 χ2(k = 5) 0.2 χ2(k = 4)

Hotel
Herak-
lion

0.7 N(µ = 1000,

σ2 = 0.1)

0.2 N(µ = 1400,

σ2 = 0.3)

0.02 χ2(k = 4) 0.08 χ2(k = 5)

Hotel
Chania

0.4 N(µ = 2000,

σ2 = 0.25)

0.3 N(µ = 500,

σ2 = 0.5)

0.2 χ2(k = 3) 0.1 χ2(k = 4)

Hotel
Agios
Niko-
laos

0.3 N(µ = 3000,

σ2 = 0.4)

0.1 N(µ = 3500,

σ2 = 0.2)

0.2 χ2(k = 4) 0.4 χ2(k = 5)

Pentry : Probability of a mock–up service to enter a state
Dtime: Response time distribution

χ2(k=n): Chi–Square distribution with n degrees of freedom
N(µ = i, σ2 = k): Gaussian distribution with mean i and standard deviation k

be as follows:

• Definition: A Web service failed when it is in state expected service

failure, unexpected service failure, or transfer failure.

• The transactional orchestration is valid when

– flight service and car service succeeded, and

– hotel booking in Heraklion succeeded, and

– hotel booking in Chania or in Agios Nikolaos succeeded.

• All transactions that are associated to failed services must have been
aborted or compensated.

Moreover, to allow systematic testing, a generator should be able to con-
figure the mock–up Web services during a test session according to some
given strategy. The Crete rental car scenario, for example, has 1024 possi-
ble combinations of Web service end states as described above. A generator
could generate all these end states without manual intervention to test the
transaction system entirely.

Part IV

Epilogue

111

Chapter 12

Conclusion

Web services offer possibilities to invoke functionalities on remote systems
using the Internet. As the maturity of basic Web service technology meets
the requirements of many domains by now, demands for combining the func-
tionalities of several Web services — i.e. using Web service and Internet tech-
nologies for complex distributed systems like virtual enterprises — emerge.
A first step towards the support of these demands is a simple combination
of multiple Web services by so–called Web service orchestration technologies.

Transactional processing is an imperative for established distributed sys-
tems technologies like CORBA or Enterprise Java (J2EE). These technologies
offer such functionality as a matter of course. However, existing transactional
processing concepts can only be used marginally in distributed Web service
systems since they were built for intra–organizational and short–time in-
teractions. Distributed Web service systems typically cross the boundaries
of organizations and involve long–time interactions. Thus, approaches for
transactional processing in Web service systems have been developed and
published as proposals. However, they did not succeed until now. These
proposals lack sufficient integration in Web service orchestrations, sufficient
semantical adaptability for usage in arbitrary domains, and a clear usage
concept.

The major result of this thesis is TWSO, a transaction–processing system
for Web service orchestrations. TWSO is based on a sound scientific base
and forms a programmatic transaction processing system for Web services.
The TWSO approach presents concepts that overcome the shortcomings of
recent Web service transaction proposals.

112

CHAPTER 12. CONCLUSION 113

To be able to use TWSO in virtually any domain, it is possible to define
arbitrary transaction semantics. Virtually anything, ranging from traditional
ACID transactions over Sagas to own custom transaction semantics, is possi-
ble. TWSO concepts were developed to enable integration with Web service
orchestration technologies. Consequently, integration with virtually any kind
of Web service orchestration technology like BPEL4WS, XPDL or even Java
is achievable in a straightforward way. This thesis presents an XPDL in-
tegration as well as a Java integration. Moreover, TWSO provides a clear
usage pattern that resembles the usage pattern that is used in common cur-
rent transaction systems. Thus, Web service orchestration designers are able
to grasp the advantages of, understand, and use a TWSO system without
major difficulties quickly.

The goals defined in Section 1.2 have been achieved by this thesis. On the
basis of relevant scenarios it has been shown, that TWSO can be integrated
in Web service orchestrations in order to fit them out with transactional be-
havior, and that arbitrary transaction logic can be arranged without hassles.
Moreover, it has been demonstrated that the resulting orchestrations provide
fault tolerance and fault prevention and hence enhance dependability. The
scenario implementations also emphasized the clear usage pattern of TWSO.
Other goals related to the use of TWSO in virtual enterprises as presented
in Section 2.2 were accomplished, too. It has been shown, that TWSO is
able to cut coordination efforts in virtual enterprises and has the ability to
accelerate the creation and adaptation of virtual enterprises significantly.

Chapter 13

Future Steps

Future work will focus on a production quality TWSO system implemen-
tation. The prototype presented in Part III allows efficient and accurate
hands–on testing of TWSO concepts, but lacks features required for produc-
tion quality like stability, performance and ease of use. Thus, the prototype
will be consequently improved and enhanced to offer a production grade Web
service transaction system that can be used in real world distributed systems.

The usage of such a production grade TWSO system in real world sys-
tems like a virtual enterprise in the tourism domain as introduced in Chapter
2 may provide significant feedback. Thus, another future goal is to gather as
much feedback as possible. These valuable experiences will be integrated in
future versions of TWSO systems. Again, feedback of future versions will be
collected and used for improvements, and so on. Consequently, the TWSO
approach and its implementations will be improved by a continuous integra-
tion process.

Furthermore, an automatic test environment for Web service transaction
systems as proposed in Chapter 11 will be developed. Such a test environ-
ment will offer invaluable support for validating and comparing Web service
transaction systems. Moreover, to spur on Web service transaction com-
puting in the Web service community, contests similar to other Web service
composition contests like [23] should be held. In such a contest, different
Web service transaction systems would compete and be ranked based on the
results achieved in the test environment.

The developed prototype provides a TWSO integration for Java Web ser-
vice orchestrations only. Compared to Java Web service orchestrations, XML
Web service orchestrations operate on a higher conceptual level to reduce

114

CHAPTER 13. FUTURE STEPS 115

complexity. In many domains, this reduced complexity is sufficient. XML
Web service orchestrations may be preferred to Java orchestrations in such
domains. Thus, it is necessary to provide TWSO integration concepts with
prominent XML Web service orchestration technologies. For XPDL, such a
concept has been developed and is shown in Appendix C.1. Besides XPDL,
another crucial orchestration technology at the moment is BPEL4WS. An
approach for an integration of TWSOL in BPEL4WS orchestrations is abso-
lutely needed and will be created in a next step.

Moreover, to execute TWSO XML Web service orchestrations adequately,
TWSO enabled orchestration engines are necessary. A reasonable possibil-
ity to create TWSO enabled orchestration engines is the extension of ex-
isting Web service orchestration engines. For XPDL and BPEL4WS, there
are high–quality Web service orchestration engines, that are distributed as
open–source software. It is possible to add TWSO functionality to those or-
chestration engines without major hurdles. To support TWSO in BPEL4WS
processes, the ActiveBPEL [1] engine will be enhanced. For XPDL orches-
trations including TWSO concepts, Enhydra’s XPDL engine Shark [45] will
be extended.

Part V

Appendices

116

Appendix A

Web Service Description
Language

Web services are described using the Web Service Description Language
(WSDL) [12]. The main components of a WSDL description are as described
below and presented in Figure A.1.

Figure A.1: Elements of a WSDL definition

• The hub of a WSDL Web service description is the PortType, which
represents an implementation neutral interface to some service.

117

APPENDIX A. WEB SERVICE DESCRIPTION LANGUAGE 118

• A PortType consists of one or more operations. An operation operates
on an input message and returns an output message. These messages
are of particular types, which are normally defined using XML–Schema
[43].

• Bindings define message formats and protocol details for operations and
messages defined by a particular portType. It is possible that there are
multiple bindings for a single PortType. In this case, there are multiple
implementations of a PortType.

• Ports define network endpoints of bindings. In case of a SOAP binding,
a port contains the URL of the SOAP Web service. A binding can have
multiple ports and a single port can have multiple bindings. Thus, a
port can implement multiple bindings and a binding can have different
alternative implementations.

• Services group such related ports together. For example, ports that
are associated to bindings that share the same PortType are related
and grouped in a single service to express that these ports can be used
alternatively.

Appendix B

TWSO Transaction Monitor
WSDL

Listing B.1 presents the complete WSDL interface description of a TWSO
transaction monitor. TWSO transaction monitors are described in detail in
Chapter 7.

Listing B.1: Transaction Monitor WSDL Definition
<?xml version="1.0" encoding="UTF -8"?>

<wsdl:definitions name="TransactionMonitor"

targetNamespace="http://move.ec3.at/twso/TransactionMonitor/"

xmlns:soap="http: // schemas.xmlsoap.org/wsdl/soap/"

xmlns:twso="http: //move.ec3.at/twso/TransactionMonitor/"

xmlns:wsdl="http: // schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org /2001/ XMLSchema">

<wsdl:types >

<xsd:schema xmlns:xsd="http://www.w3.org /2001/ XMLSchema"

targetNamespace="http://move.ec3.at/twso/TransactionMonitor/">

<xsd:complexType name="wsReferenceCollection">

<xsd:sequence >

<xsd:element name="webServiceReference" type="twso:webServiceReference" minOccurs="1"

maxOccurs="unbounded">

</xsd:element >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="webServiceReference">

<xsd:sequence >

<xsd:element name="wsdlURI" type="xsd:string"></xsd:element >

<xsd:element name="binding" type="twso:qualifiedName"></xsd:element >

<xsd:element name="bindingOperation" type="xsd:string" minOccurs="0"></xsd:element >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="qualifiedName">

<xsd:sequence >

<xsd:element name="namespace" type="xsd:string"></xsd:element >

<xsd:element name="localName" type="xsd:string"></xsd:element >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="transactionState">

<xsd:sequence >

<xsd:element name="type" type="xsd:string"></xsd:element >

<xsd:element name="transactionID" type="xsd:string"></xsd:element >

</xsd:sequence >

</xsd:complexType >

119

APPENDIX B. TWSO TRANSACTION MONITOR WSDL 120

<xsd:complexType name="operator">

<xsd:sequence maxOccurs="unbounded" minOccurs="1">

<xsd:element name="operator" type="twso:operator" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="transactionState" type="twso:transactionState" minOccurs="0"

maxOccurs="unbounded">

</xsd:element >

</xsd:sequence >

<xsd:attribute name="type" type="xsd:string"></xsd:attribute >

</xsd:complexType >

<xsd:complexType name="dependency">

<xsd:sequence >

<xsd:element name="sourceState">

<xsd:complexType >

<xsd:choice >

<xsd:element name="transactionState" type="twso:transactionState"></xsd:element >

<xsd:element name="operator" type="twso:operator"></xsd:element >

</xsd:choice >

</xsd:complexType >

</xsd:element >

<xsd:element name="effect">

<xsd:complexType >

<xsd:sequence >

<xsd:element name="primitive" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType >

<xsd:sequence ></xsd:sequence >

<xsd:attribute name="type" type="xsd:string"></xsd:attribute >

<xsd:attribute name="source" type="xsd:string"></xsd:attribute >

<xsd:attribute name="target" type="xsd:string"></xsd:attribute >

</xsd:complexType >

</xsd:element >

</xsd:sequence >

</xsd:complexType >

</xsd:element >

</xsd:sequence >

</xsd:complexType >

</xsd:schema >

</wsdl:types >

<wsdl:message name="createTransactionResponse">

<wsdl:part name="id" type="xsd:string" />

</wsdl:message >

<wsdl:message name="createTransactionRequest">

<wsdl:part name="name" type="xsd:string" />

<wsdl:part name="wsReferenceCollection" type="twso:wsReferenceCollection" />

</wsdl:message >

<wsdl:message name="doPrimitiveResponse">

<wsdl:part name="status" type="xsd:string" />

</wsdl:message >

<wsdl:message name="doPrimitiveRequest">

<wsdl:part name="primitiveType" type="xsd:string" />

<wsdl:part name="sourceTransactionID" type="xsd:string" />

</wsdl:message >

<wsdl:message name="setDependencyResponse">

<wsdl:part name="status" type="xsd:string" />

</wsdl:message >

<wsdl:message name="setDependencyRequest">

<wsdl:part name="dependency" type="twso:dependency" />

</wsdl:message >

<wsdl:message name="doPrimitiveException">

<wsdl:part name="doPrimitiveException" type="xsd:string" />

</wsdl:message >

<wsdl:message name="primitiveOnInvalidTransactionStateException">

<wsdl:part name="primitiveOnInvalidTransactionStateException" type="xsd:string"/>

</wsdl:message >

<wsdl:message name="setDependencyException">

<wsdl:part name="setDependencyException" type="xsd:string" />

</wsdl:message >

<wsdl:message name="createTransactionException">

<wsdl:part name="createTransactionException" type="xsd:string" />

</wsdl:message >

<wsdl:message name="loginResponse">

<wsdl:part name="sessionId" type="xsd:string" />

</wsdl:message >

<wsdl:message name="loginRequest" />

<wsdl:message name="logoutResponse">

<wsdl:part name="status" type="xsd:string" />

</wsdl:message >

<wsdl:message name="logoutRequest" />

APPENDIX B. TWSO TRANSACTION MONITOR WSDL 121

<wsdl:portType name="TransactionMonitor">

<wsdl:operation name="createTransaction">

<wsdl:input message="twso:createTransactionRequest" />

<wsdl:output message="twso:createTransactionResponse" />

<wsdl:fault name="createTransactionException" message="twso:createTransactionException" />

</wsdl:operation >

<wsdl:operation name="doPrimitive">

<wsdl:input message="twso:doPrimitiveRequest" />

<wsdl:output message="twso:doPrimitiveResponse" />

<wsdl:fault name="doPrimitiveException" message="twso:doPrimitiveException" />

<wsdl:fault name="primitiveOnInvalidTransactionStateException"

message="twso:primitiveOnInvalidTransactionStateException"/>

</wsdl:operation >

<wsdl:operation name="setDependency">

<wsdl:input message="twso:setDependencyRequest" />

<wsdl:output message="twso:setDependencyResponse" />

<wsdl:fault name="setDependencyException" message="twso:setDependencyException" />

</wsdl:operation >

<wsdl:operation name="login">

<wsdl:input message="twso:loginRequest" />

<wsdl:output message="twso:loginResponse" />

</wsdl:operation >

<wsdl:operation name="logout">

<wsdl:input message="twso:logoutRequest" />

<wsdl:output message="twso:logoutResponse" />

</wsdl:operation >

</wsdl:portType >

<wsdl:binding name="TransactionMonitorSOAP" type="twso:TransactionMonitor">

<soap:binding style="rpc" transport="http:// schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="createTransaction">

<soap:operation soapAction="http: //move.ec3.at/twso/TransactionMonitor/createTransaction" />

<wsdl:input >

<soap:body use="literal" namespace="http: //move.ec3.at/twso/TransactionMonitor/" />

</wsdl:input >

<wsdl:output >

<soap:body use="literal" namespace="http: //move.ec3.at/twso/TransactionMonitor/" />

</wsdl:output >

<wsdl:fault name="createTransactionException">

<soap:fault namespace="http://move.ec3.at/twso/TransactionMonitor/" use="literal"

name="createTransactionException" />

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name="doPrimitive">

<soap:operation soapAction="http: //move.ec3.at/twso/TransactionMonitor/doPrimitive" />

<wsdl:input >

<soap:body use="literal" namespace="http: //move.ec3.at/twso/TransactionMonitor/" />

</wsdl:input >

<wsdl:output >

<soap:body use="literal" namespace="http: //move.ec3.at/twso/TransactionMonitor/" />

</wsdl:output >

<wsdl:fault name="doPrimitiveException">

<soap:fault namespace="http://move.ec3.at/twso/TransactionMonitor/" use="literal"

name="doPrimitiveException" />

</wsdl:fault >

<wsdl:fault name="primitiveOnInvalidTransactionStateException">

<soap:fault namespace="http://move.ec3.at/twso/TransactionMonitor/" use="literal"

name="primitiveOnInvalidTransactionStateException" />

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name="setDependency">

<soap:operation soapAction="http: //move.ec3.at/twso/TransactionMonitor/setDependency" />

<wsdl:input >

<soap:body use="literal" namespace="http: //move.ec3.at/twso/TransactionMonitor/" />

</wsdl:input >

<wsdl:output >

<soap:body use="literal" namespace="http: //move.ec3.at/twso/TransactionMonitor/" />

</wsdl:output >

<wsdl:fault name="setDependencyException">

<soap:fault namespace="http://move.ec3.at/twso/TransactionMonitor/" use="literal"

name="setDependencyException" />

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name="login">

<soap:operation soapAction="http: //move.ec3.at/twso/TransactionMonitor/login" />

<wsdl:input >

<soap:body use="literal" namespace="http: //move.ec3.at/twso/TransactionMonitor/" />

</wsdl:input >

<wsdl:output >

<soap:body use="literal" namespace="http: //move.ec3.at/twso/TransactionMonitor/" />

</wsdl:output >

APPENDIX B. TWSO TRANSACTION MONITOR WSDL 122

</wsdl:operation >

<wsdl:operation name="logout">

<soap:operation soapAction="http: //move.ec3.at/twso/TransactionMonitor/logout" />

<wsdl:input >

<soap:body use="literal" namespace="http: //move.ec3.at/twso/TransactionMonitor/" />

</wsdl:input >

<wsdl:output >

<soap:body use="literal" namespace="http: //move.ec3.at/twso/TransactionMonitor/" />

</wsdl:output >

</wsdl:operation >

</wsdl:binding >

<wsdl:service name="TransactionMonitor">

<wsdl:port binding="twso:TransactionMonitorSOAP" name="TransactionMonitorSOAP">

<soap:address location="http: //move.ec3.at:8080/twso/services/TransactionMonitorSOAP" />

</wsdl:port >

</wsdl:service >

</wsdl:definitions >

Appendix C

Scenario Orchestrations

C.1 XPDL Scenario Orchestrations

C.1.1 TWSOL in XPDL

To intersperse TWSOL elements into XPDL orchestrations (i.e. to enrich
XPDL orchestrations with TWSO transactions) an existent XPDL extensi-
bility mechanism is used. XPDL provides <ExtendedAttribute> elements
to express additional entity characteristics that are not offered by XPDL
itself. TWSOL elements are inserted in <ExtendedAttribute> elements of
XPDL <Activity> elements. Thus, when a TWSO(L)–enabled workflow
engine executes an activity and comes across a TWSOL extended attribute
in this activity, it fulfills the stated TWSO related tasks.

C.1.2 TWSOL XPDL Scenario Orchestration Docu-
ments

This section presents XPDL orchestrations that implement the scenarios in
Section 2.1 and 2.2. These orchestrations use TWSOL to tackle coordination
and error management tasks. For the sake of clarity, exceptions that stem
from transaction processing per se are ignored and as parameter passing
details are omitted. Listing C.1 shows the initial Vienna city trip scenario
orchestration and Listing C.2 the adapted one. The Crete rental car tour
scenario orchestration is presented in Listing C.3.

Listing C.1: Initial Vienna City Trip in XPDL
<?xml version="1.0" encoding="UTF -8"?>

<Package Id="viennaCityTour" Name="viennaCityTour" xmlns="http://www.wfmc.org /2002/ XPDL1 .0"

xmlns:twso="http: //move.ec3.at/twso /20060101"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http: //www.wfmc.org /2002/ XPDL1 .0

123

APPENDIX C. SCENARIO ORCHESTRATIONS 124

 http://wfmc.org/standards/docs/TC -1025 _schema_10_xpdl.xsd">

<PackageHeader >

<XPDLVersion >1.0</XPDLVersion >

<Vendor >Together </Vendor >

<Created >2006 -01 -31 17 :22:28 </Created >

</PackageHeader >

<WorkflowProcesses >

<WorkflowProcess Id="viennaCityTour1" Name="viennaCityTour1">

<ProcessHeader >

<Created >2006 -01 -31 17 :23:32 </Created >

</ProcessHeader >

<Participants >

<Participant Id="OrchestrationEngine">

<ParticipantType Type="SYSTEM" />

</Participant >

</Participants >

<Applications >

<Application Id="starAllianceBooking" Name="starAllianceBooking">

<ExternalReference location="http:// webservices.staraliance.com/flightBooking"

namespace="http:// webservices.staraliance.com/flightBooking" xref="bookFlight" />

</Application >

<Application Id="viennaAirport" Name="viennaAirport">

<ExternalReference location="http:// webservices.viennaairport.com/"

namespace="http:// webservices.viennaairport.com" xref="bookCityTransfer" />

</Application >

<Application Id="tiscover" Name="tiscover">

<ExternalReference location="http://ws.tiscover.com/booker"

namespace="http://ws.tiscover.com/booker" xref="bookAccomodation" />

</Application >

<Application Id="lokaltipp" Name="lokaltipp">

<ExternalReference location="http://www.lokaltipp.at/webservice"

namespace="http://www.lokaltipp.at" xref="book_coupons" />

</Application >

<Application Id="events" Name="events">

<ExternalReference location="http://soap.events.at/" namespace="http://www.events.at"

xref="tickets" />

</Application >

<Application Id="vienna_service" Name="vienna_service">

<ExternalReference location="http://www.wien.gv.at/soap"

namespace="http://www.wien.gv.at/" xref="purchase_sight_tickets" />

</Application >

</Applications >

<Activities >

<Activity Id="installDependencies" Name="installDependencies">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="AND">

<TransitionRefs >

<TransitionRef Id="viennaCityTour1_tra1" />

<TransitionRef Id="viennaCityTour1_tra4" />

<TransitionRef Id="viennaCityTour1_tra13" />

<TransitionRef Id="viennaCityTour1_tra14" />

<TransitionRef Id="viennaCityTour1_tra15" />

<TransitionRef Id="viennaCityTour1_tra16" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:initiate id="txFlight">

<twso:activityRef >book_flights </twso:activityRef >

</twso:initiate >

<twso:initiate id="txTransfer">

<twso:activityRef >book_airport_transfer </twso:activityRef >

</twso:initiate >

<twso:initiate id="txHotel">

<twso:activityRef >book_hotel </twso:activityRef >

</twso:initiate >

<twso:initiate id="txCatering">

<twso:activityRef >book_catering </twso:activityRef >

APPENDIX C. SCENARIO ORCHESTRATIONS 125

</twso:initiate >

<twso:initiate id="txEvents">

<twso:activityRef >book_event_tickets </twso:activityRef >

</twso:initiate >

<twso:initiate id="txSights">

<twso:activityRef >book_sight_tickets </twso:activityRef >

</twso:initiate >

<twso:dependency >

<twso:sourceState >

<twso:operator type="or">

<twso:transactionState type="twso:aborted" transactionID="txFlight" />

<twso:transactionState type="twso:aborted" transactionID="txTransfer" />

<twso:transactionState type="twso:aborted" transactionID="txHotel" />

<twso:transactionState type="twso:aborted" transactionID="txCatering" />

</twso:operator >

</twso:sourceState >

<twso:effect >

<twso:primitive type="twso:compensate" target="txFlight" />

<twso:primitive type="twso:compensate" target="txTransfer" />

<twso:primitive type="twso:compensate" target="txHotel" />

<twso:primitive type="twso:compensate" target="txCatering" />

<twso:primitive type="twso:compensate" target="txSights" />

<twso:primitive type="twso:compensate" target="txEvents" />

</twso:effect >

</twso:dependency >

<twso:dependency >

<twso:sourceState >

<twso:operator type="and">

<twso:transactionState type="twso:aborted" transactionID="txSights" />

<twso:transactionState type="twso:aborted" transactionID="txEvents" />

</twso:operator >

</twso:sourceState >

<twso:effect >

<twso:primitive type="twso:compensate" target="txFlight" />

<twso:primitive type="twso:compensate" target="txTransfer" />

<twso:primitive type="twso:compensate" target="txHotel" />

<twso:primitive type="twso:compensate" target="txCatering" />

<twso:primitive type="twso:compensate" target="txSights" />

<twso:primitive type="twso:compensate" target="txEvents" />

</twso:effect >

</twso:dependency >

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="synchronize">

<Route />

<TransitionRestrictions >

<TransitionRestriction >

<Join Type="AND" />

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_flights">

<Implementation >

<Tool Id="starAllianceBooking" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour1_tra3" />

<TransitionRef Id="viennaCityTour1_tra6" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_airport_transfer">

<Implementation >

<Tool Id="viennaAirport" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

APPENDIX C. SCENARIO ORCHESTRATIONS 126

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour1_tra12" />

<TransitionRef Id="viennaCityTour1_tra9" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_event_tickets">

<Implementation >

<Tool Id="events" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour1_tra24" />

<TransitionRef Id="viennaCityTour1_tra36" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_catering">

<Implementation >

<Tool Id="lokaltipp" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour1_tra34" />

<TransitionRef Id="viennaCityTour1_tra21" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_hotel">

<Implementation >

<Tool Id="tiscover" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour1_tra33" />

<TransitionRef Id="viennaCityTour1_tra20" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_sight_tickets">

<Implementation >

<Tool Id="vienna_service" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour1_tra35" />

<TransitionRef Id="viennaCityTour1_tra22" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="commit_txFlight">

<Implementation >

<No />

</Implementation >

APPENDIX C. SCENARIO ORCHESTRATIONS 127

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txFlight" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txAirportTransfer">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txTransfer" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txHotel">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txHotel" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txCatering">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txCatering" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txEvents">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txEvents" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txSights">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txSights" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txFlight">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txFlight" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txFlight">

<Implementation >

<No />

APPENDIX C. SCENARIO ORCHESTRATIONS 128

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txFlight" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txAirportTransfer">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txTransfer" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txAirportTransfer">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txTransfer" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txHotel">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txHotel" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txHotel">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txHotel" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txCatering">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txCatering" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txCatering">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txCatering" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txEvents">

<Implementation >

APPENDIX C. SCENARIO ORCHESTRATIONS 129

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txEvents" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txEvents">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txEvents" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txSights">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txSights" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txSights">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txSights" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

</Activities >

<Transitions >

<Transition From="installDependencies" Id="viennaCityTour1_tra4" To="begin_txFlight" />

<Transition From="installDependencies" Id="viennaCityTour1_tra1"

To="begin_txAirportTransfer" />

</Transition >

<Transition From="begin_txFlight" Id="viennaCityTour1_tra2" To="book_flights" />

<Transition From="book_flights" Id="viennaCityTour1_tra3" To="commit_txFlight" />

<Transition From="commit_txFlight" Id="viennaCityTour1_tra5" To="synchronize" />

<Transition From="book_flights" Id="viennaCityTour1_tra6" To="abort_txFlight">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="abort_txFlight" Id="viennaCityTour1_tra7" To="synchronize" />

<Transition From="begin_txAirportTransfer" Id="viennaCityTour1_tra8"

To="book_airport_transfer" />

<Transition From="book_airport_transfer" Id="viennaCityTour1_tra9"

To="commit_txAirportTransfer" />

<Transition From="commit_txAirportTransfer" Id="viennaCityTour1_tra10" To="synchronize" />

<Transition From="abort_txAirportTransfer" Id="viennaCityTour1_tra11" To="synchronize" />

<Transition From="book_airport_transfer" Id="viennaCityTour1_tra12"

To="abort_txAirportTransfer1">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="installDependencies" Id="viennaCityTour1_tra13" To="begin_txHotel" />

<Transition From="installDependencies" Id="viennaCityTour1_tra14" To="begin_txCatering" />

<Transition From="installDependencies" Id="viennaCityTour1_tra15" To="begin_txSights" />

<Transition From="installDependencies" Id="viennaCityTour1_tra16" To="begin_txEvents" />

<Transition From="begin_txHotel" Id="viennaCityTour1_tra17" To="book_hotel" />

<Transition From="begin_txCatering" Id="viennaCityTour1_tra18" To="book_catering" />

<Transition From="begin_txSights" Id="viennaCityTour1_tra19" To="book_sight_tickets" />

<Transition From="book_hotel" Id="viennaCityTour1_tra20" To="commit_txHotel" />

<Transition From="book_catering" Id="viennaCityTour1_tra21" To="commit_txCatering" />

<Transition From="book_sight_tickets" Id="viennaCityTour1_tra22" To="commit_txSights" />

<Transition From="begin_txEvents" Id="viennaCityTour1_tra23" To="book_event_tickets" />

<Transition From="book_event_tickets" Id="viennaCityTour1_tra24" To="commit_txEvents" />

APPENDIX C. SCENARIO ORCHESTRATIONS 130

<Transition From="commit_txHotel" Id="viennaCityTour1_tra25" To="synchronize" />

<Transition From="abort_txHotel" Id="viennaCityTour1_tra26" To="synchronize" />

<Transition From="commit_txCatering" Id="viennaCityTour1_tra27" To="synchronize" />

<Transition From="abort_txCatering" Id="viennaCityTour1_tra28" To="synchronize" />

<Transition From="commit_txSights" Id="viennaCityTour1_tra29" To="synchronize" />

<Transition From="abort_txSights" Id="viennaCityTour1_tra30" To="synchronize" />

<Transition From="commit_txEvents" Id="viennaCityTour1_tra31" To="synchronize" />

<Transition From="abort_txEvents" Id="viennaCityTour1_tra32" To="synchronize" />

<Transition From="book_hotel" Id="viennaCityTour1_tra33" To="abort_txHotel">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="book_catering" Id="viennaCityTour1_tra34" To="abort_txCatering">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="book_sight_tickets" Id="viennaCityTour1_tra35" To="abort_txSights">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="book_event_tickets" Id="viennaCityTour1_tra36" To="abort_txEvents">

<Condition Type="EXCEPTION" />

</Transition >

</Transitions >

</WorkflowProcess >

</WorkflowProcesses >

</Package >

Listing C.2: Adapted Vienna City Trip in XPDL
<?xml version="1.0" encoding="UTF -8"?>

<Package Id="viennaCityTour" Name="viennaCityTour" xmlns="http://www.wfmc.org /2002/ XPDL1 .0"

xmlns:twso="http: //move.ec3.at/twso /20060101"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http: //www.wfmc.org /2002/ XPDL1 .0

 http://wfmc.org/standards/docs/TC -1025 _schema_10_xpdl.xsd">

<PackageHeader >

<XPDLVersion >1.0</XPDLVersion >

<Vendor >Together </Vendor >

<Created >2006 -01 -31 17 :22:28 </Created >

</PackageHeader >

<WorkflowProcesses >

<WorkflowProcess Id="viennaCityTour2" Name="viennaCityTour2">

<ProcessHeader >

<Created >2006 -01 -31 17 :23:32 </Created >

</ProcessHeader >

<Participants >

<Participant Id="OrchestrationEngine">

<ParticipantType Type="SYSTEM" />

</Participant >

</Participants >

<Applications >

<Application Id="starAllianceBooking" Name="starAllianceBooking">

<ExternalReference location="http:// webservices.staraliance.com/flightBooking"

namespace="http:// webservices.staraliance.com/flightBooking" xref="bookFlight" />

</Application >

<Application Id="viennaAirport" Name="viennaAirport">

<ExternalReference location="http:// webservices.viennaairport.com/"

namespace="http:// webservices.viennaairport.com" xref="bookCityTransfer" />

</Application >

<Application Id="tiscover" Name="tiscover">

<ExternalReference location="http://ws.tiscover.com/booker"

namespace="http://ws.tiscover.com/booker" xref="bookAccomodation" />

</Application >

<Application Id="lokaltipp" Name="lokaltipp">

<ExternalReference location="http://www.lokaltipp.at/webservice"

namespace="http://www.lokaltipp.at" xref="book_coupons" />

</Application >

<Application Id="events" Name="events">

<ExternalReference location="http://soap.events.at/" namespace="http://www.events.at"

xref="tickets" />

</Application >

<Application Id="vienna_service" Name="vienna_service">

<ExternalReference location="http://www.wien.gv.at/soap"

namespace="http://www.wien.gv.at/" xref="purchase_sight_tickets" />

</Application >

</Applications >

APPENDIX C. SCENARIO ORCHESTRATIONS 131

<Activities >

<Activity Id="installDependencies" Name="installDependencies">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="AND">

<TransitionRefs >

<TransitionRef Id="viennaCityTour2_tra1" />

<TransitionRef Id="viennaCityTour2_tra4" />

<TransitionRef Id="viennaCityTour2_tra13" />

<TransitionRef Id="viennaCityTour2_tra14" />

<TransitionRef Id="viennaCityTour2_tra15" />

<TransitionRef Id="viennaCityTour2_tra16" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:initiate id="txFlight">

<twso:activityRef >book_flights </twso:activityRef >

</twso:initiate >

<twso:initiate id="txTransfer">

<twso:activityRef >book_airport_transfer </twso:activityRef >

</twso:initiate >

<twso:initiate id="txHotel">

<twso:activityRef >book_hotel </twso:activityRef >

</twso:initiate >

<twso:initiate id="txCatering">

<twso:activityRef >book_catering </twso:activityRef >

</twso:initiate >

<twso:initiate id="txEvents">

<twso:activityRef >book_event_tickets </twso:activityRef >

</twso:initiate >

<twso:initiate id="txSights">

<twso:activityRef >book_sight_tickets </twso:activityRef >

</twso:initiate >

<twso:dependency >

<twso:sourceState >

<twso:operator type="or">

<twso:transactionState type="twso:aborted" transactionID="txFlight" />

<twso:transactionState type="twso:aborted" transactionID="txTransfer" />

<twso:transactionState type="twso:aborted" transactionID="txHotel" />

<twso:transactionState type="twso:aborted" transactionID="txCatering" />

<twso:transactionState type="twso:aborted" transactionID="txSights" />

<twso:transactionState type="twso:aborted" transactionID="txEvents" />

</twso:operator >

</twso:sourceState >

<twso:effect >

<twso:primitive type="twso:compensate" target="txFlight" />

<twso:primitive type="twso:compensate" target="txTransfer" />

<twso:primitive type="twso:compensate" target="txHotel" />

<twso:primitive type="twso:compensate" target="txCatering" />

<twso:primitive type="twso:compensate" target="txSights" />

<twso:primitive type="twso:compensate" target="txEvents" />

</twso:effect >

</twso:dependency >

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="join">

<Route />

<TransitionRestrictions >

<TransitionRestriction >

<Join Type="XOR" />

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_flights">

<Implementation >

APPENDIX C. SCENARIO ORCHESTRATIONS 132

<Tool Id="starAllianceBooking" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Join Type="AND" />

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour2_tra3" />

<TransitionRef Id="viennaCityTour2_tra6" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_airport_transfer">

<Implementation >

<Tool Id="viennaAirport" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour2_tra12" />

<TransitionRef Id="viennaCityTour2_tra9" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_event_tickets">

<Implementation >

<Tool Id="events" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour2_tra24" />

<TransitionRef Id="viennaCityTour2_tra36" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_catering">

<Implementation >

<Tool Id="lokaltipp" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour2_tra34" />

<TransitionRef Id="viennaCityTour2_tra21" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_hotel">

<Implementation >

<Tool Id="tiscover" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour2_tra33" />

<TransitionRef Id="viennaCityTour2_tra20" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

APPENDIX C. SCENARIO ORCHESTRATIONS 133

<Activity Id="book_sight_tickets">

<Implementation >

<Tool Id="vienna_service" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="viennaCityTour2_tra35" />

<TransitionRef Id="viennaCityTour2_tra22" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="commit_txFlight">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txFlight" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txAirportTransfer">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txTransfer" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txHotel">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txHotel" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txCatering">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txCatering" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txEvents">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txEvents" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txSights">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

APPENDIX C. SCENARIO ORCHESTRATIONS 134

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txSights" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txFlight">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txFlight" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txFlight">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txFlight" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txAirportTransfer">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txTransfer" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txAirportTransfer">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txTransfer" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txHotel">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txHotel" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txHotel">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txHotel" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txCatering">

<Implementation >

<No />

</Implementation >

APPENDIX C. SCENARIO ORCHESTRATIONS 135

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txCatering" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txCatering">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txCatering" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txEvents">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txEvents" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txEvents">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txEvents" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txSights">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txSights" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txSights">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txSights" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

</Activities >

<Transitions >

<Transition From="installDependencies" Id="viennaCityTour2_tra4" To="begin_txFlight" />

<Transition From="installDependencies" Id="viennaCityTour2_tra1"

To="begin_txAirportTransfer">

</Transition >

<Transition From="begin_txFlight" Id="viennaCityTour2_tra2" To="book_flights" />

<Transition From="book_flights" Id="viennaCityTour2_tra3" To="commit_txFlight" />

<Transition From="commit_txFlight" Id="viennaCityTour2_tra5" To="join" />

<Transition From="book_flights" Id="viennaCityTour2_tra6" To="abort_txFlight">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="abort_txFlight" Id="viennaCityTour2_tra7" To="join" />

APPENDIX C. SCENARIO ORCHESTRATIONS 136

<Transition From="begin_txAirportTransfer" Id="viennaCityTour2_tra8"

To="book_airport_transfer" />

<Transition From="book_airport_transfer" Id="viennaCityTour2_tra9"

To="commit_txAirportTransfer" />

<Transition From="commit_txAirportTransfer" Id="viennaCityTour2_tra10" To="book_flights" />

<Transition From="abort_txAirportTransfer" Id="viennaCityTour2_tra11" To="book_flights" />

<Transition From="book_airport_transfer" Id="viennaCityTour2_tra12"

To="abort_txAirportTransfer">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="installDependencies" Id="viennaCityTour2_tra13" To="begin_txHotel" />

<Transition From="installDependencies" Id="viennaCityTour2_tra14" To="begin_txCatering" />

<Transition From="installDependencies" Id="viennaCityTour2_tra15" To="begin_txSights" />

<Transition From="installDependencies" Id="viennaCityTour2_tra16" To="begin_txEvents" />

<Transition From="begin_txHotel" Id="viennaCityTour2_tra17" To="book_hotel" />

<Transition From="begin_txCatering" Id="viennaCityTour2_tra18" To="book_catering" />

<Transition From="begin_txSights" Id="viennaCityTour2_tra19" To="book_sight_tickets" />

<Transition From="book_hotel" Id="viennaCityTour2_tra20" To="commit_txHotel" />

<Transition From="book_catering" Id="viennaCityTour2_tra21" To="commit_txCatering" />

<Transition From="book_sight_tickets" Id="viennaCityTour2_tra22" To="commit_txSights" />

<Transition From="begin_txEvents" Id="viennaCityTour2_tra23" To="book_event_tickets" />

<Transition From="book_event_tickets" Id="viennaCityTour2_tra24" To="commit_txEvents" />

<Transition From="commit_txHotel" Id="viennaCityTour2_tra25" To="book_flights" />

<Transition From="abort_txHotel" Id="viennaCityTour2_tra26" To="book_flights" />

<Transition From="commit_txCatering" Id="viennaCityTour2_tra27" To="book_flights" />

<Transition From="abort_txCatering" Id="viennaCityTour2_tra28" To="book_flights" />

<Transition From="commit_txSights" Id="viennaCityTour2_tra29" To="book_flights" />

<Transition From="abort_txSights" Id="viennaCityTour2_tra30" To="book_flights" />

<Transition From="commit_txEvents" Id="viennaCityTour2_tra31" To="book_flights" />

<Transition From="abort_txEvents" Id="viennaCityTour2_tra32" To="book_flights" />

<Transition From="book_hotel" Id="viennaCityTour2_tra33" To="abort_txHotel">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="book_catering" Id="viennaCityTour2_tra34" To="abort_txCatering">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="book_sight_tickets" Id="viennaCityTour2_tra35" To="abort_txSights">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="book_event_tickets" Id="viennaCityTour2_tra36" To="abort_txEvents">

<Condition Type="EXCEPTION" />

</Transition >

</Transitions >

</WorkflowProcess >

</WorkflowProcesses >

</Package >

Listing C.3: Crete Rental Car Tour in XPDL
<?xml version="1.0" encoding="UTF -8"?>

<Package Id="viennaCityTour" Name="viennaCityTour" xmlns="http://www.wfmc.org /2002/ XPDL1 .0"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http: //www.wfmc.org /2002/ XPDL1 .0

 http://wfmc.org/standards/docs/TC -1025 _schema_10_xpdl.xsd">

<PackageHeader >

<XPDLVersion >1.0</XPDLVersion >

<Vendor >Together </Vendor >

<Created >2006 -01 -31 17 :22:28 </Created >

</PackageHeader >

<WorkflowProcesses >

<WorkflowProcess Id="creteCarTour" Name="creteCarTour">

<ProcessHeader >

<Created >2006 -01 -31 17 :23:32 </Created >

</ProcessHeader >

<Participants >

<Participant Id="OrchestrationEngine">

<ParticipantType Type="SYSTEM" />

</Participant >

</Participants >

<Applications >

<Application Id="starAllianceBooking" Name="starAllianceBooking">

<ExternalReference location="http:// webservices.staraliance.com/flightBooking"

namespace="http:// webservices.staraliance.com/flightBooking" xref="bookFlight" />

</Application >

<Application Id="heraklionRentalCars" Name="heraklionRentalCars">

APPENDIX C. SCENARIO ORCHESTRATIONS 137

<ExternalReference location="http:// webservices.rentalcars.heraklion.com/"

namespace="http:// webservices.rentalcars.heraklion.com/" xref="bookCar" />

</Application >

<Application Id="creteHotels" Name="creteHotels">

<ExternalReference location="http://ws.creteHotels.org/accomodationBooking"

namespace="http://ws.creteHotels.org/" xref="book" />

</Application >

</Applications >

<Activities >

<Activity Id="initiate_transactions">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="creteCarTour_tra38" />

<TransitionRef Id="creteCarTour_tra37" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:initiate id="txFlight">

<twso:activityRef >book_flights </twso:activityRef >

</twso:initiate >

<twso:initiate id="txCar">

<twso:activityRef >book_airport_transfer </twso:activityRef >

</twso:initiate >

<twso:initiate id="txHotelHeraklion">

<twso:activityRef >book_hotel </twso:activityRef >

</twso:initiate >

<twso:initiate id="txHotelChania">

<twso:activityRef >book_catering </twso:activityRef >

</twso:initiate >

<twso:initiate id="txHotelAgiosNikolaos">

<twso:activityRef >book_event_tickets </twso:activityRef >

</twso:initiate >

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="flexibleTouristDependencies" Name="flexibleTouristDependencies">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

</Activity >

<Activity Id="synchronize">

<Route />

<TransitionRestrictions >

<TransitionRestriction >

<Join Type="AND" />

</TransitionRestriction >

</TransitionRestrictions >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:dependency >

<twso:sourceState >

<twso:transactionState type="twso:aborted" transactionID="txFlight" />

</twso:sourceState >

<twso:effect >

<twso:primitive type="twso:compensate" target="txCar" />

<twso:primitive type="twso:compensate" target="txHotelHeraklion" />

<twso:primitive type="twso:compensate" target="txHotelChania" />

<twso:primitive type="twso:compensate" target="txHotelAgiosNikolaos" />

</twso:effect >

</twso:dependency >

APPENDIX C. SCENARIO ORCHESTRATIONS 138

<twso:dependency >

<twso:sourceState >

<twso:operator type="and">

<twso:transactionState type="twso:aborted" transactionID="txCar" />

<twso:transactionState type="twso:aborted" transactionID="txHotelHeraklion" />

</twso:operator >

</twso:sourceState >

<twso:effect >

<twso:primitive type="twso:compensate" target="txFlight" />

<twso:primitive type="twso:compensate" target="txCar" />

<twso:primitive type="twso:compensate" target="txHotelHeraklion" />

<twso:primitive type="twso:compensate" target="txHotelChania" />

<twso:primitive type="twso:compensate" target="txHotelAgiosNikolaos" />

</twso:effect >

</twso:dependency >

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="inflexibleTouristDependencies" Name="inflexibleTouristDependencies">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:dependency >

<twso:sourceState >

<twso:operator type="or">

<twso:transactionState type="twso:aborted" transactionID="txFlight" />

<twso:transactionState type="twso:aborted" transactionID="txCar" />

<twso:transactionState type="twso:aborted" transactionID="txHotelHeraklion" />

</twso:operator >

</twso:sourceState >

<twso:effect >

<twso:primitive type="twso:compensate" target="txFlight" />

<twso:primitive type="twso:compensate" target="txCar" />

<twso:primitive type="twso:compensate" target="txHotelHeraklion" />

<twso:primitive type="twso:compensate" target="txHotelChania" />

<twso:primitive type="twso:compensate" target="txHotelAgiosNikolaos" />

</twso:effect >

</twso:dependency >

<twso:dependency >

<twso:sourceState >

<twso:operator type="and">

<twso:transactionState type="twso:aborted" transactionID="txHotelChania" />

<twso:transactionState type="twso:aborted" transactionID="txHotelAgiosNikolaos" />

</twso:operator >

</twso:sourceState >

<twso:effect >

<twso:primitive type="twso:compensate" target="txFlight" />

<twso:primitive type="twso:compensate" target="txCar" />

<twso:primitive type="twso:compensate" target="txHotelHeraklion" />

<twso:primitive type="twso:compensate" target="txHotelChania" />

<twso:primitive type="twso:compensate" target="txHotelAgiosNikolaos" />

</twso:effect >

</twso:dependency >

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="join">

<Route />

<TransitionRestrictions >

<TransitionRestriction >

<Join Type="XOR" />

<Split Type="AND">

<TransitionRefs >

<TransitionRef Id="creteCarTour_tra13" />

<TransitionRef Id="creteCarTour_tra1" />

<TransitionRef Id="creteCarTour_tra4" />

<TransitionRef Id="creteCarTour_tra14" />

<TransitionRef Id="creteCarTour_tra15" />

</TransitionRefs >

</Split >

APPENDIX C. SCENARIO ORCHESTRATIONS 139

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_flights">

<Implementation >

<Tool Id="starAllianceBooking" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="creteCarTour_tra3" />

<TransitionRef Id="creteCarTour_tra6" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_rental_car">

<Implementation >

<Tool Id="heraklionRentalCars" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="creteCarTour_tra12" />

<TransitionRef Id="creteCarTour_tra9" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="book_hotel_heraklion">

<Implementation >

<Tool Id="creteHotels" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="creteCarTour_tra33" />

<TransitionRef Id="creteCarTour_tra20" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="commit_txFlight">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txFlight" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txRentalCar">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txRentalCar" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txHotelHeraklion">

<Implementation >

<No />

</Implementation >

APPENDIX C. SCENARIO ORCHESTRATIONS 140

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txHotelHeraklion" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txFlight">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txFlight" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txFlight">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txFlight" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txRentalCar">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txRentalCar" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txRentalCar">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txRentalCar" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="begin_txHotelHeraklion">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txHotelHeraklion" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txHotelHeraklion">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txHotelHeraklion" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txHotelChania">

<Implementation >

<No />

APPENDIX C. SCENARIO ORCHESTRATIONS 141

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txHotelChania" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txHotelChania">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txHotelChania" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="book_hotel_chania">

<Implementation >

<Tool Id="creteHotels" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

<TransitionRef Id="creteCarTour_tra201" />

<TransitionRef Id="creteCarTour_tra331" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="begin_txHotelChania">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txHotelChania" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="abort_txHotelAgiosNikolaos">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:abort" target="txHotelAgiosNikolaos" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="commit_txHotelAgiosNikolaos">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:commit" target="txHotelAgiosNikolaos" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

<Activity Id="book_hotel_agiosNikolaos">

<Implementation >

<Tool Id="creteHotels" Type="APPLICATION" />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<TransitionRestrictions >

<TransitionRestriction >

<Split Type="XOR">

<TransitionRefs >

APPENDIX C. SCENARIO ORCHESTRATIONS 142

<TransitionRef Id="creteCarTour_tra332" />

<TransitionRef Id="creteCarTour_tra202" />

</TransitionRefs >

</Split >

</TransitionRestriction >

</TransitionRestrictions >

</Activity >

<Activity Id="begin_txHotelAgiosNikolaos">

<Implementation >

<No />

</Implementation >

<Performer >OrchestrationEngine </Performer >

<ExtendedAttributes >

<ExtendedAttribute Name="twsol">

<twso:primitive type="twso:begin" target="txHotelAgiosNikolaos" />

</ExtendedAttribute >

</ExtendedAttributes >

</Activity >

</Activities >

<Transitions >

<Transition From="join" Id="creteCarTour_tra1" To="begin_txRentalCar" />

<Transition From="begin_txFlight" Id="creteCarTour_tra2" To="book_flights" />

<Transition From="book_flights" Id="creteCarTour_tra3" To="commit_txFlight" />

<Transition From="commit_txFlight" Id="creteCarTour_tra5" To="synchronize" />

<Transition From="book_flights" Id="creteCarTour_tra6" To="abort_txFlight1">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="abort_txFlight1" Id="creteCarTour_tra7" To="synchronize" />

<Transition From="begin_txRentalCar" Id="creteCarTour_tra8" To="book_rental_car" />

<Transition From="book_rental_car" Id="creteCarTour_tra9" To="commit_txRentalCar" />

<Transition From="commit_txRentalCar" Id="creteCarTour_tra10" To="synchronize" />

<Transition From="abort_txRentalCar" Id="creteCarTour_tra11" To="synchronize" />

<Transition From="book_rental_car" Id="creteCarTour_tra12" To="abort_txRentalCar">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="join" Id="creteCarTour_tra13" To="begin_txHotelHeraklion" />

<Transition From="begin_txHotelHeraklion" Id="creteCarTour_tra17"

To="book_hotel_heraklion" />

<Transition From="book_hotel_heraklion" Id="creteCarTour_tra20"

To="commit_txHotelHeraklion" />

<Transition From="commit_txHotelHeraklion" Id="creteCarTour_tra25" To="synchronize" />

<Transition From="abort_txHotelHeraklion" Id="creteCarTour_tra26" To="synchronize" />

<Transition From="book_hotel_heraklion" Id="creteCarTour_tra33"

To="abort_txHotelHeraklion">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="join" Id="creteCarTour_tra4" To="begin_txFlight" />

<Transition From="initiate_transactions" Id="creteCarTour_tra37"

To="inflexibleTouristDependencies">

<Condition Type="OTHERWISE" />

</Transition >

<Transition From="initiate_transactions" Id="creteCarTour_tra38"

To="flexibleTouristDependencies">

<Condition Type="CONDITION">flexibleTourist ==true</Condition >

</Transition >

<Transition From="inflexibleTouristDependencies" Id="creteCarTour_tra39" To="join" />

<Transition From="flexibleTouristDependencies" Id="creteCarTour_tra40" To="join" />

<Transition From="book_hotel_chania" Id="creteCarTour_tra201" To="commit_txHotelChania" />

<Transition From="book_hotel_chania" Id="creteCarTour_tra331" To="abort_txHotelChania">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="begin_txHotelChania" Id="creteCarTour_tra171" To="book_hotel_chania" />

<Transition From="book_hotel_agiosNikolaos" Id="creteCarTour_tra202"

To="commit_txHotelAgiosNikolaos" />

<Transition From="book_hotel_agiosNikolaos" Id="creteCarTour_tra332"

To="abort_txHotelAgiosNikolaos">

<Condition Type="EXCEPTION" />

</Transition >

<Transition From="begin_txHotelAgiosNikolaos" Id="creteCarTour_tra172"

To="book_hotel_agiosNikolaos" />

<Transition From="join" Id="creteCarTour_tra14" To="begin_txHotelChania" />

<Transition From="join" Id="creteCarTour_tra15" To="begin_txHotelAgiosNikolaos" />

<Transition From="commit_txHotelChania" Id="creteCarTour_tra16" To="synchronize" />

<Transition From="abort_txHotelChania" Id="creteCarTour_tra18" To="synchronize" />

<Transition From="commit_txHotelAgiosNikolaos" Id="creteCarTour_tra19" To="synchronize" />

<Transition From="abort_txHotelAgiosNikolaos" Id="creteCarTour_tra21" To="synchronize" />

</Transitions >

</WorkflowProcess >

</WorkflowProcesses >

APPENDIX C. SCENARIO ORCHESTRATIONS 143

</Package >

C.2 Java Scenario Orchestration

The Java orchestration starts by generating objects that represent references
to Web services and creating transactions for each booking action. Depending
on the type of tourist (flexible or not flexible), a suitable object that models
a transaction dependency is created. Then the transactions are started using
begin. In case an exception occurs at this point, the orchestration cannot
be executed and is aborted. The orchestration is shown in Listing C.4.

Java threads are used to do concurrent processing of the booking actions.
For that reason, a class called ThreadedServiceCall as presented in List-
ing C.5 is introduced. This class includes the logic to book a resource, and
because it extends Java’s Thread class, it is possible to execute this logic con-
currently, i.e. multithreaded. The booking logic in a ThreadedServiceCall

object is as follows. First, a Web service is invoked. In case an exception1

occurs, the Web service should be aborted. That abort can cause two types
of exceptions. abort may be invalid because it is issued on a transaction
that is currently in an inappropriate state for an abort. This case is antici-
pated and considered as correct, as described in detail in Section 9.1. Other
exceptions should not occur but cannot be ignored safely. Thus, such excep-
tions are stored when they occur for later treatment. In case the Web service
call succeeds, i.e. no exception occurs, it is committed. Exception handling
related to a commit is the same as when doing an abort, as described above.

For each booking action, an appropriate ThreadedServiceCall is cre-
ated and started to do booking actions concurrently. After that, a loop waits
until all booking actions have finished, which means that the orchestration
terminates.

Listing C.4: Crete Rental Car Tour in Java
public class RentalTourOrchestration {

private static final int THREAD_POLL_INTERVAL = 100;

1It should be noted that such an exception may stem from both, business logic reasons
(e.g. no more free resources) or technical reasons (e.g. service is not reachable due to
network errors).

APPENDIX C. SCENARIO ORCHESTRATIONS 144

private static final String ABORTED = "aborted";

private static final String COMPENSATE = "COMPENSATE";

private static final String BEGIN = "BEGIN";

public static void main(String [] args) throws Exception {

boolean isFlexibleTourist = true;

int iterations = 5;

doTransactionalCreteCarTourOrchestration(isFlexibleTourist);

}

private static void doTransactionalCreteCarTourOrchestration(

boolean flexibleTourist) throws WSDLException ,

TransactionMonitorCreationException , TransactionCreationException ,

DependencyCreationException , InterruptedException {

// get WSDL4J port of used transaction monitor

Port endpoint = Utilities.getTransactionMonitorPort ();

// create transaction monitor proxy

TransactionMonitor monitor = new SoapTransactionMonitorFactory ()

.getTransactionMonitor(endpoint);

// create Web service references for transactions

WebServiceReference starAllianceBookingRef = Utilities

.createWSReference(

"http ://ec3 -55. ec3.at :8080/ twso_scenario/services/starAllianceBooking?wsdl",

"http ://ec3 -55. ec3.at :8080/ twso_scenario/services/starAllianceBooking",

"starAllianceBookingSoapBinding", "FlightBookerService", "FlightBooker");

WebServiceReference heraklionRentalCarsRef = Utilities

.createWSReference(

"http ://ec3 -55. ec3.at :8080/ twso_scenario/services/heraklionRentalCars?wsdl",

"http ://ec3 -55. ec3.at :8080/ twso_scenario/services/heraklionRentalCars",

"heraklionRentalCarsSoapBinding", "CarBookingService", "CarBooking");

WebServiceReference creteHotelsRef = Utilities.createWSReference(

"http ://ec3 -55. ec3.at :8080/ twso_scenario/services/creteHotels?wsdl",

"http ://ec3 -55. ec3.at :8080/ twso_scenario/services/creteHotels",

"creteHotelsSoapBinding", "BookService", "Book");

// initiate transactions

Transaction t_flight = monitor.createTransaction("t_flight",

new WebServiceReference [] { starAllianceBookingRef });

Transaction t_car = monitor.createTransaction("t_car",

new WebServiceReference [] { heraklionRentalCarsRef });

Transaction t_hotelHeraklion = monitor.createTransaction(

"t_hotelHeraklion", new WebServiceReference [] { creteHotelsRef });

Transaction t_hotelChania = monitor.createTransaction("t_hotelChania",

new WebServiceReference [] { creteHotelsRef });

Transaction t_hotelAgiosNiklaos = monitor.createTransaction(

"t_hotelAgiosNiklaos", new WebServiceReference [] { creteHotelsRef });

// install transaction dependencies dynamically (depends on type of

// tourist)

if (flexibleTourist) {

Dependency dep = new Dependency ();

DependencySourceState sourceState = new DependencySourceState ();

sourceState.setTransactionState(Utilities.createTransactionState(

t_flight , ABORTED));

DependencyEffectPrimitive [] effects = new DependencyEffectPrimitive [] {

Utilities.createEffect(t_car , COMPENSATE),

Utilities.createEffect(t_hotelHeraklion , COMPENSATE),

Utilities.createEffect(t_hotelChania , COMPENSATE),

Utilities.createEffect(t_hotelAgiosNiklaos , COMPENSATE) };

dep.setSourceState(sourceState);

dep.setEffect(effects);

monitor.setDependency(dep);

} else {

Dependency dep = new Dependency ();

DependencySourceState sourceState = new DependencySourceState ();

APPENDIX C. SCENARIO ORCHESTRATIONS 145

Operator booleanAND = new Operator ();

booleanAND.setType("and");

booleanAND.setTransactionState(new TransactionState [] {

Utilities.createTransactionState(t_flight , ABORTED),

Utilities.createTransactionState(t_car , ABORTED) });

sourceState.setOperator(booleanAND);

DependencyEffectPrimitive [] effects = new DependencyEffectPrimitive [] {

Utilities.createEffect(t_flight , COMPENSATE),

Utilities.createEffect(t_car , COMPENSATE),

Utilities.createEffect(t_hotelHeraklion , COMPENSATE),

Utilities.createEffect(t_hotelChania , COMPENSATE),

Utilities.createEffect(t_hotelAgiosNiklaos , COMPENSATE) };

dep.setSourceState(sourceState);

dep.setEffect(effects);

monitor.setDependency(dep);

}

// Try to begin all transaction . When the bgein of a singel transaction

// fails , exit orchestartion

try {

t_flight.doPrimitive(BEGIN);

t_car.doPrimitive(BEGIN);

t_hotelHeraklion.doPrimitive(BEGIN);

t_hotelChania.doPrimitive(BEGIN);

t_hotelAgiosNiklaos.doPrimitive(BEGIN);

} catch (Exception beginFailure) {

beginFailure.printStackTrace ();

return;

}

// For concurrent Web service calls , create Thread objects

// (" ThreadedServiceCall ") that

// do the booking.

ThreadedServiceCall flightBooker = new ThreadedServiceCall(

t_flight , starAllianceBookingRef , "bookFlight", new Object [] { "Vienna",

"Heraklion", "2006 -07 -01", "2006 -07 -15", "2pax" });

ThreadedServiceCall carBooker = new ThreadedServiceCall(

t_car , heraklionRentalCarsRef , "bookCar", new Object [] { "2006 -07 -01",

"2006 -07 -15", "C" });

ThreadedServiceCall heraklionHotelBooker = new ThreadedServiceCall(

t_hotelHeraklion , creteHotelsRef , "hotelRoomBooking", new Object [] {

"2006 -07 -01", "2006 -07-4", "Heraklion", "2pax" });

ThreadedServiceCall chaniaHotelBooker = new ThreadedServiceCall(

t_hotelChania , creteHotelsRef , "hotelRoomBooking", new Object [] {

"2006 -07 -04", "2006 -07 -09", "Chania", "2pax" });

ThreadedServiceCall agiosNikolaosHotelBooker = new ThreadedServiceCall(

t_hotelAgiosNiklaos , creteHotelsRef , "hotelRoomBooking", new Object [] {

"2006 -07 -09", "2006 -07 -15", "Agios Nikolaos", "2pax" });

// Start threaded calls

flightBooker.start ();

carBooker.start ();

heraklionHotelBooker.start ();

chaniaHotelBooker.start ();

agiosNikolaosHotelBooker.start ();

// wait for all calls to finish

while (flightBooker.isAlive () || carBooker.isAlive ()

|| heraklionHotelBooker.isAlive () || chaniaHotelBooker.isAlive ()

|| agiosNikolaosHotelBooker.isAlive ()) {

Thread.sleep(THREAD_POLL_INTERVAL);

}

}

}

APPENDIX C. SCENARIO ORCHESTRATIONS 146

Listing C.5: Booking Thread Class Rental Car Tour
package at.ec3.move.twso.creteRentalTour;

public class ThreadedServiceCall extends Thread {

private static final String COMMIT = "COMMIT";

private static final String ABORT = "ABORT";

private Transaction transaction;

private WebServiceReference wsRef;

private String wsOperation;

private Object [] wsParams;

private Vector transactionLogicExceptions = new Vector ();

public ThreadedServiceCall(Transaction transaction ,

WebServiceReference wsRef , String wsOperation , Object [] wsParams) {

super ();

setTransaction(transaction);

setWsRef(wsRef);

setWsOperation(wsOperation);

setWsParams(wsParams);

}

public void run() {

/*

* business logic , business logic level exceptions (that are much more

* likely than transaction logic exceptions) are caught and result in an

* abort

*/

try {

System.out.println("Booking " + wsRef.getWsdlURI ());

Service service = new Service ();

Call call = (Call) service.createCall ();

call.setTargetEndpointAddress(wsRef.getBinding (). getNamespace ());

call.setOperation(getWsOperation ());

call.invoke(wsParams);

} catch (Exception e) {

e.printStackTrace ();

/*

* abort transaction , transaction logic related exceptions (although

* they should be extremely unlikely) are caught and stored

*/

try {

getTransaction (). doPrimitive(ABORT);

return;

} catch (PrimitiveOnInvalidTransactionStateException invalidStateEception) {

// Exception is anticipated and considered ok

return;

} catch (PrimitiveException abortFailure) {

abortFailure.printStackTrace ();

getTransactionLogicExceptions ().add(abortFailure);

return;

}

}

/*

* business logic succesful commit transaction , transaction logic

* related exceptions (although they should be extremely unlikely) are

* caught and stored

*/

try {

getTransaction (). doPrimitive(COMMIT);

} catch (PrimitiveOnInvalidTransactionStateException invalidStateException) {

// Exception is anticipated and considered ok

}

catch (PrimitiveException commitFailure) {

commitFailure.printStackTrace ();

getTransactionLogicExceptions ().add(commitFailure);

}

}

public Transaction getTransaction () {

return transaction;

}

public void setTransaction(Transaction transaction) {

APPENDIX C. SCENARIO ORCHESTRATIONS 147

this.transaction = transaction;

}

public String getWsOperation () {

return wsOperation;

}

public void setWsOperation(String wsOperation) {

this.wsOperation = wsOperation;

}

public Object [] getWsParams () {

return wsParams;

}

public void setWsParams(Object [] wsParams) {

this.wsParams = wsParams;

}

public WebServiceReference getWsRef () {

return wsRef;

}

public void setWsRef(WebServiceReference wsRef) {

this.wsRef = wsRef;

}

public Vector getTransactionLogicExceptions () {

return transactionLogicExceptions;

}

public void setTransactionLogicExceptions(Vector transactionLogicExceptions) {

this.transactionLogicExceptions = transactionLogicExceptions;

}

}

Bibliography

[1] ActiveBPEL LLC. ActiveBPEL Engine – Open Source BPEL Server.
http://www.activebpel.org/, 2005. cited on 2006-03-08.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-
King, and S. Angel. A Pattern Language. Oxford University Press, New
Jork, USA, 1st edition, 1977.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weer-
awarana. Business Process Execution Language for Web Services Version
1.1. http://www.ibm.com/developerworks/library/ws-bpel/, May
2003. cited on 2005-01-28.

[4] Apache Software Foundation. Apache Kandula. http://ws.apache.

org/kandula/. cited on 2006-01-19.

[5] Arjuna Technologies. Arjuna Transaction Service for Web Ser-
vices. http://www.arjuna.com/products/arjunats/ws.html. cited
on 2006-01-19.

[6] A. Biliris, S. Dar, N. H. Gehani, H. V. Jagadish, and K. Ramamritham.
ASSET: A System for Supporting Extended Transactions. In R. T.
Snodgrass and M. Winslett, editors, Proceedings of the 1994 ACM SIG-
MOD International Conference on Management of Data, pages 44–54,
Minneapolis, Minnesota, 1994.

[7] T. Bray, D. Hollander, and A. Layman. Namespaces in XML. http:

//www.w3.org/TR/REC-xml-names/, 1999. cited on 2005-01-28.

[8] S. Brown. Simon Brown’s Weblog. http://www.simongbrown.com/

blog/2003/04/22/how_do_you_define_business_logic.html, 2003.
cited on 2006-01-17.

148

BIBLIOGRAPHY 149

[9] D. Bunting, M. Chapman, O. Hurley, M. Little, J. Mischkinsky,
E. Newcomer, J. Webber, and K. Swenson. Web Services Composite
Application Framework. http://developers.sun.com/techtopics/

webservices/wscaf/primer.pdf, 2003. cited on 2005-01-28.

[10] L. F. Carbrera, G. Copeland, M. Feingold, T. Freund, J. Johnson,
C. Kahler, J. Klein, D. Langworthy, F. Leymann, A. Nadalin, D. Or-
chard, I. Robinson, J. Shewchuk, T. Storey, and S. Thatte. Web Ser-
vices Coordination, Web Services Business Activity Framework, Web
Services Atomic Transaction. http://www.ibm.com/developerworks/

library/specification/ws-tx/, 2004. cited on 2005-01-28.

[11] A. Ceponkus, S. Dalal, T. Fletcher, P. Furniss, A. Green,
and B. Pope. Business Transaction Protocol. http://www.

oasis-open.org/committees/business-transactions/documents/

specification/2002-06-03.BTP_cttee_spec_1.0.pdf, 2002. cited
on 2005-01-28.

[12] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Services Description Language (WSDL) 1.1. http://www.w3.org/TR/

wsdl, 2001. cited on 2005-10-20.

[13] P. K. Chrysanthis and K. Ramamritham. Synthesis of Extended Trans-
action Models Using ACTA. ACM Transactions on Database Systems,
19(3):450–491, 1994.

[14] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, 1999. cited on 2005-02-04.

[15] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, October 1997.

[16] J. Dorn. Management and Optimization of Business Processes in Virtual
Enterprises. Research note, EC3 - Electronic Commerce Competence
Center, 2001.

[17] J. Dorn, P. Hrastnik, and A. Rainer. Web Service Discovery and Com-
position with Move. In Proceedings of the 2005 IEEE International Con-
ference on e-Technology, e-Commerce and e-Service (EEE ’05), pages
791–792, Washington DC, USA, March 2005. IEEE Computer Society.

[18] J. Eliot and B. Moss. Nested Transactions: An Approach to Reliable
Distributed Computing. PhD thesis, MIT, Dept. of Electrical Engineer-
ing and Computer Science, 1981.

BIBLIOGRAPHY 150

[19] A. K. Elmagarmid. Database Transaction Models for Advanced Appli-
cations. Morgan Kaufmann Publishers, San Mateo, California, 1992.

[20] A. Fekete, P. Greenfield, D. Kuo, and J. Jang. Transactions in Loosely
Coupled Distributed Systems. In Proceedings of the Fourteenth Aus-
tralasian database conference on Database technologies, volume 17, Ade-
laide, Australia, 2003. Australian Computer Society, Inc.

[21] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and C. Diot. Packet–Level Traffic Measurements from the
Sprint IP Backbone. IEEE Network Magazine, 17(6), November 2003.

[22] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the 1987
ACM SIGMOD international conference on Management of data, pages
249–259, New York, USA, 1987. ACM Press.

[23] Georgetown University. Web Service Challenge. http://www.

ws-challenge.org/, 2005. cited on 2006-03-17.

[24] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers, San Francisco, California, 9th
edition, 2002.

[25] Hewlett Packard. HP Web Services Transactions. http:

//www.hpmiddleware.com/HPISAPI.dll/hpmiddleware/products/

webservices_transactions/default.jsp, 2005. cited on 2006-01-19.

[26] M. Hillebrandt, J. Götze, and P. Müller. Creating Dependable Web Ser-
vices Using User–Replica. In Next Generation Web Services Practices,
pages 303–312, Seoul, Korea, August 2005. IEEE.

[27] P. Hrastnik. Execution of Business Processes Based on Web Services.
International Journal of Electronic Business, 2(5):550–556, 2004.

[28] P. Hrastnik and W. Winiwarter. An Advanced Transaction Meta–Model
For Web Services Environments. In The Sixth International Conference
on Information Integration and Web–based Applications & Services (ii-
WAS2004), pages 303–312, Jakarta, Indonesia, September 2004. Aus-
trian Computer Society.

[29] P. Hrastnik and W. Winiwarter. TWSO – Transactional Web Service
Orchestrations. In Next Generation Web Services Practices, pages 45–
50, Seoul, Korea, August 2005. IEEE.

BIBLIOGRAPHY 151

[30] P. Hrastnik and W. Winiwarter. Using Advanced Transaction Meta-
Models for Creating Transaction-Aware Web Service Environments. In-
ternational Journal of Web Information Systems, 1(2), 2005.

[31] P. Hrastnik and W. Winiwarter. TWSO – Transactional Web Service
Orchestrations. Journal of Digital Information Management, 4(1):56–
62, 2006.

[32] J. Kannegaard. Foreword to Designing Enterprise Applications with
the J2EE Platform. http://java.sun.com/blueprints/guidelines/

designing_enterprise_applications/foreword.html, 2000. cited
on 2005-10-10.

[33] H. Kopetz. Real-Time Systems. Kluwer Academic Publishers, Norwell,
Massachusetts, USA, 1st edition, 1997.

[34] D. Matthews. Web Services Atomic Transaction for WebSphere Ap-
plication Server. http://www.alphaworks.ibm.com/tech/wsat, 2003.
cited on 2006-01-19.

[35] M. Mickos. MySQL Database Now Provides Full Transaction
Support. http://www.mysql.com/news-and-events/press-release/
release_2002_11.html, 2002. cited on 2005-10-10.

[36] N. Mitra. SOAP Part 0: Primer. http://www.w3.org/TR/

soap12-part0/, 2003. cited on 2005-10-20.

[37] ObjectWeb. ObjectWeb Forge: Project Info - JOTN. http://forge.

objectweb.org/projects/jotm/. cited on 2006-01-19.

[38] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why Do Internet Ser-
vices Fail, And What Can Be Done About It? In In Proc. 4th USENIX
Symposium on Internet Technologies and Systems (USITS ’03), Seattle,
WA, March 2003.

[39] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot. Mea-
surement and Analysis of Single–Hop Delay on an IP Backbone Net-
work. IEEE Journal on Selected Areas in Communications, 21(6), Au-
gust 2003.

[40] M. Potts, B. Cox, and B. Pope. Business Transaction Protocol Primer.
http://www.oasis-open.org/committees/business-transactions/

documents/primer/, 2002. cited on 2005-01-28.

BIBLIOGRAPHY 152

[41] M. Prochazka. Advanced Transactions in Component-Based Software
Architectures. PhD thesis, Charles University, Faculty of Mathematics
and Physics, Department of Software Engineering, Malostranske namest
i 25, 118 00 Prague 1, Czech Republic, 2002.

[42] J. Roberts and K. Srinivasan. Tentative Hold Protocol Part 1: White
Paper. http://www.w3.org/TR/2001/NOTE-tenthold-1-20011128/,
2001. cited on 2005-10-12.

[43] C. M. Sperberg-McQueen and H. Thompson. XML Schema. http:

//www.w3.org/TR/xml-schema/, 2006. cited on 2006-03-17.

[44] SUN Microsystems. Java 2 Platform, Enterprise Edition (J2EE). http:
//java.sun.com/j2ee/index.jsp, October 2005. cited on 2005-10-10.

[45] Together Teamsolutions. Open Source Java XPDL Workflow. http://

www.enhydra.org/workflow/shark/index.html, 2006. cited on 2006-
03-08.

[46] G. Weikum and H. J. Schek. Multi–Level Transactions and Open Nested
Transactions. In Data Engineering, volume 14, pages 60–64, Los Alami-
tos, California, March 1991. IEEE Computer Society Press.

[47] Wikipedia. MySQL – Criticisms. http://en.wikipedia.org/wiki/

MySQL#Criticisms_of_MySQL, 2005. cited on 2005-10-10.

[48] Workflow Management Coalition. Workflow Process Definition Inter-
face – XML Process Definition Language. http://www.wfmc.org/

standards/docs/TC-1025_10_xpdl_102502.pdf, 2002. cited on 2005-
01-28.

Curriculum Vitae

Personal Data

Name: Peter Hrastnik

Date of Birth: 1975-05-18

Place of Birth: Salzburg, Austria

Gender: male

Nationality: Austria

E–Mail: peter@hrastnik.at

Address: Aegidigasse 7-11/2/23, A-1060 Vienna, Austria

Education

1981 – 1984: Elementary school at Volksschule Hallwang bei Salzburg

1984 – 1993: High school at Christian Dopplergymnasium Salzburg

1994 – 1999: Master studies (Business Informatics) at University of

Vienna and Vienna University of Technology

Master thesis: XML/EDI for Machine–To–Machine

Communication

2003 – 2006: PhD studies at Vienna University of Technology

Career Overview

1992 – 1998: Internships at Bundesländer Insurances Company, Reader’s

Digest, Salzburg Festivals, Österreichische Lotterien

Cooperation, Datenwerk Corporation

1999 – 2001: tele.ring Telecom Service Corporation

(Developer of Dataservices)

since 2001: EC3 – E-Commerce Competence Center

(Software Developer, since 2003 Researcher)

