
ebXML Business Processes -
Defined both in UMM and BPSS

Birgit Hofreiter1 and Christian Huemer1,2
1 Department of Computer Science and Business Informatics, University of Vienna,

Liebiggasse 4, 1010 Vienna, Austria
{birgit.hofreiter,christian.huemer}@univie.ac.at

2 Department of Information Systems, University Duisburg-Essen
Universitätsstrasse 9, 45141 Essen, Germany

huemer@wi-inf.uni-essen.de

Abstract. The ebXML framework consists of eight specifications for conducting e-
Business. The loosely coupled specifications span over the topics of messaging, reg-
istries, profiles & agreements, business processes, and core (data) components. The
choreography of business processes is defined by instances of the business processes
specification schema (BPSS). The BPSS is defined as an XML schema used by busi-
ness systems to support the execution of business collaborations. It is based on con-
cepts introduced by the UN/CEFACT Modelling Methodology (UMM), or the UMM
meta model to be more specific. Thus, BPSS provides the bridge between e-business
process modeling and specification of e-business software components. In this paper
we show how an ebXML business process is represented in both UMM and BPSS.

1 Introduction

In November 1999 UN/CEFACT and OASIS started the ebXML initiative. The vision of
ebXML is to create an electronic marketplace, where businesses can find each other,
agree to become trading partners and conduct business. All operations are performed
automatically by exchanging XML documents. In order to support the needs of small and
medium enterprises (SMEs), ebXML envisions that software industries will deliver com-
mercial off-the-shelf software (COTS) for Business-to-Business (B2B) scenarios to the
SMEs. This goal is expressed in the ebXML scenario between a large corporation (Com-
pany A) and a SME (Company B) as illustrated in Figure 1. The scenario is described in
the ebXML technical architecture specification [UO01].

Company A requests business details from the ebXML registry (step 1) and decides to
build its own ebXML-compliant application. Company A submits its own business pro-
file information to the ebXML registry. The business profile submitted to the ebXML reg-
istry describes the company's ebXML capabilities and constraints, as well as its supported
business scenarios. Company B, which uses an ebXML-compliant shrink-wrapped appli-
cation, discovers the business scenarios supported by Company A in the registry (step 4).
Company B sends a request to Company A stating that they would like to engage in a
business scenario (step 5). Before engaging in the scenario, company B submits a pro-
posed business arrangement directly to Company A's ebXML-compliant software inter-
face. The proposed business arrangement outlines the mutually agreed upon business
scenarios and specific agreements. Company A then accepts the business agreement.
Company A and B are now ready to engage in e-business using ebXML (step 6).

In order to support this secenario ebXML offers a modular suite of specifications. These
specifications provide a standard method to exchange business messages, conduct trading
relationships, communicate data in common terms and define/register business processes
[HHK02]. The current set of specification comprises the ebXML requirements, technical
architecture, messaging service, registry services specification, registry information
model, collaboration protocol profile and agreement specification, business process spec-
ification schema, and core components.

In this paper we concentrate on the ebXML business process specification schema
(BPSS) in its current version 1.10 [UN03c]. It is defined as an XML schema. The BPSS is
used to describe standard B2B business processes by defining a choreography of activites
amongst business partners. It usally refers to standard business documents that are
exchanged in the business process. A partner’s profile references the BPSS of a supported
process and the role(s) therein. Similarily, a business partners’ agreement references the
BPSS of a business process in which the business partners will collaborate.

Creating a BPSS does not require a specific process modeling methodology. However,
BPSS is based on concepts introduced by UN/CEFACT’s Modelling Methodology
(UMM). UMM is a methodology for defining the business aspects of a B2B collabora-
tion. It is based on UML [BJR98]. BPSS can be considered as an XML representation of
a subset of UMM’s meta model. In Section 2 we define an ebXML business process by
the means of UMM. The graphical UML syntax helps to quickly understand the basic
concepts. In Section 3 we show the equivalent business process in the XML syntax of
BPSS. We show how the UMM concepts are mapped to BPSS and point out the rare cases
where BPSS extends the UMM concepts. We conclude with a summary in Section 4.

ebXML Registry

Business Scenarios

Business Profiles
1: Request Business Details

3: Register Implementation Details
Register Company A‘s Profile

2: Build Local System
Implementation

4:
 Q

ue
ry

ab
ou

tC
om

pa
ny

 A
‘s

P

ro
fil

e

5: Agree on Business Arrangement

6: Do Business Transactions

Company B
(SME)

Company A
(Large enterprise)

ebXML Registry

Business Scenarios

Business Profiles
1: Request Business Details

3: Register Implementation Details
Register Company A‘s Profile

2: Build Local System
Implementation

4:
 Q

ue
ry

ab
ou

tC
om

pa
ny

 A
‘s

P

ro
fil

e

5: Agree on Business Arrangement

6: Do Business Transactions

Company B
(SME)

Company A
(Large enterprise)

Figure 1. ebXML Scenario

2 UN/CEFACT’s Modelling Methodology

ebXML does not require any specific modeling language or modeling methodology.
However, the architecture specification recommends that if implementers and users
decide to apply business process modeling, they shall use UMM [UO01]. The UMM con-
centrates on the business semantics of B2B partnerships. It captures the commitments that
are made by business partners when agreeing to a certain type of business processes.
These commitments are reflected in the resulting orchestration of the business process
involving information exchanges. UMM defines a procedure [UN03b] that describes the
necessary steps to create business collaboration models. These business collaboration
models are independent of the technology (e.g. ebXML) used to implement them. The
term "business collaboration" is used in UMM for a business process involving two or
more business partners to accomplish a common business goal.

In addition to the procedure, the reference ontologies, and the patterns, UMM delivers a
meta model [UN03a]. The UMM meta model puts the UML meta model into a small cor-
set defining those diagram types that are specific for B2B. The most important diagram
types are presented in the subsections below. The UMM procedure [UN03b] leads to
business collaboration models that are valid instances of the UMM meta model. These
business collaboration models contain more information than what is required for config-
uring ebXML compliant software, but not less than that. BPSS is based on the UMM
meta model. It uses only those concepts that are important for the configuration of the
ebXML software. Thus, BPSS is a subset of the UMM meta model, but expressed as
XML schema. One might use any methodology to create an BPSS instance. However,
UMM guarantees a consistent way for developing a business collaboration model that is a
superset of a BPSS instance.

Beforehand, we introduce the UMM by means of a simple example. In the next section
the resulting business collaboration model is mapped to the BPSS equivalent. It is not our
goal to introduce UMM in all the details. We limit ourselves to those features that help to
understand the concepts of BPSS.

The UMM procedure as well as the UMM meta model consists of 4 views in order to
describe business collaboration models. Firstly, the Business Domain View (BDV) pro-
vides a framework for understanding existing business processes and categorizing these
business processes into business areas and process areas. Secondly, the Business
Requirements View (BRV) identifies possible business collaborations and further elabo-
rates on these collaborations. It describes processes and resources used to achieve certain
objectives and the resulting commitments. In other words, the BRV focuses on the eco-
nomics of a system. Thirdly, the Business Transaction View (BTV) presents the view of
the business process analyst. It defines the orchestration of the business collaboration and
structures the business information exchanged. Finally, the Business Service View
(BSV) considers the interaction sequences between network components in order to map
the business collaboration semantics to collaborating application systems. The business
service view does not add any new information. Its artefacts are automatically created
from the information gained in the previous process steps. The BSV artefacts are not
mapped to the BPSS. Therefore, we do not detail the BSV in the following subsections.

2.1 Business Domain View (BDV)

The first workflow of UMM is used to gather existing knowledge. It identifies the busi-
ness processes in the domain of the business problems that are important to stakeholders.
It is important at this stage that business processes are not constructed, but discovered.
Stakeholders might describe intra-organizational as well as inter-organizational business
processes. Both types are recorded. However, the description concentrates on so-called
business interface tasks, where an organization communicates with its partners. All the
discovered business processes are classified according to a pre-defined classification
schema. The final result of the business domain view allows a business process analyst to
find opportunities for business collaborations that are constructed in the following view.

To demonstrate UMM and BPSS we use the example of a simple order management pro-
cess (see also [HH03, HHN04]). Note that this example does not include all the complex-
ity that might be involved in an order management process. The simplified process still
allows us to show the main concepts of UMM. In the first workflow the stakeholders in
the simple order management process are interviewed. Customers, sellers, and banks
(amongst others not included in the example) describe their business processes that are
important in the domain under consideration. These business processes are documented
by UML use cases. The resulting use case diagram is depicted in Figure 2. Each actor
(customer, seller, and bank) is associated with those business processes that are described
by the respective role. The details of each business process are described by completing a
worksheet. UMM provides a worksheet type designed to capture all the relevant aspects
of a business process. Due to space limitation we do not further concentrate on these
worksheets.

Figure 2. Business Processes to be Considered in Simple Order Mangement

Customer

Seller

Bank

«BusinessProcess»
Buy Products

«BusinessProcess»
Find Products

«BusinessProcess»
Compare Products

«BusinessProcess»
Prov ide Product

Catalog

«BusinessProcess»
Sell Products

«BusinessProcess»
Organize Transport

«BusinessProcess»
Check

Creditw orthiness

«BusinessProcess»
...

«BusinessProcess»
...

«BusinessCollaborationUseCase»
Simple Order
Management

«BusinessProcess»
Prov ide Credibility

Check

«BusinessProcess»
...

2.2 Business Requirements View (BRV)

The goal of the business requirements view is to identify possible business collaborations
in the considered domain and to detail the requirements of these collaborations. Business
collaborations span over multiple business processes discovered in the previous work-
flow. Thus, a use case for a business collaboration must consider the views of different
stakeholders. The description of the use case must present an harmonized view on the
business collaboration being developed.

In our example we identify a simple order management as a possible business collabora-
tion between a customer, a seller, and a bank. This simple order management depends on
business processes described in the previous workflow. The simple order management is
described again by a use case together with a worksheet especially designed for business
collaboration use cases. We show the simple order management use case already at the
bottom of Figure 2. This allows us to show the dependency of the business collaboration
use case on the business processes of the BDV.

Possible business collaborations identified in the BRV are multiparty as well as binary
business collaborations. Binary collaborations are between two business partners only.
More than two business partners participate in a multiparty collaboration. Business col-
laborations might be complex involving a lot of activities between business partners.
However, the most basic business collaboration is a binary collaboration realized by a
request from one side and an optional response from the other side. This simple collabo-
ration is a unit of work that allows roll back to a defined state before it was initiated.
Therefore, this special type of collaboration is called a business transaction.

Use cases and special worksheets document the requirements of multiparty business col-
laborations, binary business collaborations and business transactions. So-called business
collaboration protocol use cases define the needs of both multiparty and binary business
collaborations. The term “protocol” appears in the stereotype to express that a complex
protocol is needed to choreograph the activities of the collaboration. Less surprisingly, a
business transaction use case describes the requirements of a business transaction. A busi-
ness collaboration protocol use case usually requires other business collaborations and/or
business transactions to be included as part of it. This fact is denoted by “include”-rela-
tionships between the respective use cases (c.f. Figure 4). In the BRV all the business col-
laboration use cases are decomposed recursively until the lowest level, which is a
business transaction use case, is reached.

The simple order management collaboration is a multiparty collaboration since three
business partners (customer, seller, bank) are participating in this collaboration. BPSS
allows multiparty collaborations only if they are synthesized from two or more binary
collaborations. A multiparty collaboration is not able to reflect dependencies between
intermediate states of different business collaborations. For a better understanding we
anticipate what we will see later on: The purchasing process between a customer and a
seller involves multiple choreographed steps. Somewhere in the course of this process a
customer requests registration. The seller might check the credibility of the customer with
the customer’s bank before responding to the customer. This means that some activities of
one binary collaboration are performed during the course of the other. By strictly separat-
ing the two binary collaborations we loose this choreography information.

UMM is a little bit less restrictive than BPSS. A choreography for a collaboration might
include more than two parties. Important in UMM is that a business collaboration is
finally decomposed into business transactions, which are by default binary. These busi-
ness transactions do not overlap. This means that UMM does not support nested business
transactions. Note, that the UMM reference guide (currently only available as Chapter 8
of the old UMM Revision 10) mentions that business transactions can be nested - how-
ever the UMM meta model does not support it. Coming back to the example above, the
credibility check is nested in the registration transaction. This cannot be expressed
according to the UMM meta model. Nesting business transactions usually appear in mul-
tiparty collaborations. Only, binary collaborations are choreographed without the need for
nesting transactions. In our example, we split the multiparty collaboration simple order
management into two binary collaborations: (1) the simple purchase management per-
formed by customer and seller and (2) the credibility check performed by seller and bank.
Figure 3 shows this decomposition.

On first glance one might consider the weak support of multiparty collaborations as a
weak point of UMM. It is necessary to understand that UMM is especially designed for
modelling B2B partnerships focusing on the aspects regarding the making of business
decisions and commitments among the business partners. Therefore, a UMM-compliant
business collaboration model designs all the steps necessary to fulfill a contract. The busi-
ness collaboration considers all the parties fulfilling the contract. Most of the contracts in
real business life are between two parties. Returning to the example above, a contract is
made between the customer and the seller. This contract is independent of whether the
seller decides to check the credibility or not. UMM does not standardize any internal pro-
cesses or decisions.

The binary collaboration simple purchase management includes - according to the work-
sheet - the use cases of register customer, search product, and order products among oth-
ers not detailed here. Figure 4 shows the decomposition. The requirements of these use
cases are documented by corresponding worksheets. By completing the worksheet it is
easy to detect that each of these use cases can be realized by a business transaction. Con-
sequently, the use cases are stereotyped as business transaction use cases. It follows, that
the bottom layer is reached and no more decomposition is necessary.

«BusinessCollaborationUseCase»
Simple Order
Management

«BusinessCollaborationProtocolUseCase»
Simple Purchase

Management

«BusinessCollaborationProtocolUseCase»
Credibility Check

Customer

Seller

Bank

«include»«include»

Figure 3. Decomposing Multiparty Collaborations into Binary Collaborations

According to UMM, a business collaboration is best designed by a choreography of busi-
ness state changes. Thus, it is important to analyze the effects of activities on the business
state of the collaboration or, better, on the business states of business entities, which have
a life-cycle during the business collaboration. Figure 5 depicts the business state changes
in the business transaction register customer. It defines preconditions, post-conditions
and inter-mediate states of the customer information during the transaction.

«BusinessCollaborationProtocolUseCase»
Simple Purchase

Management

Customer Seller

«BusinessTransactionUseCase»
Register Customer

«BusinessTransactionUseCase»
Search Product

«BusinessTransactionUseCase»
Order Products

«BusinessTransactionUseCase
...

«include»

«include»«include»

«include»

Figure 4. Decomposing a Binary Collaboration into Business Transactions

Buyer Sel ler

:CustomerInformation
[Pending]

Request
Registration

:CustomerInformation
[Tendered]

Ev aluate
Registration

Request

:CustomerInformation
[Accepted]

:CustomerInformation
[NotAccepted]

Submit
Registration
Response
(Positiv e)

Submit
Registration
Response
(Negativ e)

:CustomerInformation
[Assigned]

:CustomerInformation
[Confirmed]

:CustomerInformation
[Rejected]

[negative][posi tive]

Figure 5. Business Entity States for Customer Information

2.3 Business Transaction View (BTV)

The BTV defines the choreography for the business collaboration as well as the structure
of the business information exchanges. The business transaction view covers three main
types of artefacts: the business collaboration protocol, the business transaction diagram
and the class diagram on business information structures.

The first step of the BTV models the business collaboration according to the correspond-
ing use case description. The resulting activity graph is called business collaboration pro-
tocol. An extract of the business collaboration protocol for the binary collaboration
simple purchase management is presented in Figure 6. The use case diagram of the BRV
in Figure 4 defines that simple purchase management includes register customer, search
products and order products among others. All the included use cases are mapped in the
BTV to activities of the business collaboration protocol. Business transaction use cases
are mapped to business transaction activities and business collaboration protocol use
cases to collaboration activities. Each business transaction activity is further detailed by
the activity graph for a business transaction (see further below). A collaboration activity
is refined by another business collaboration protocol. However, UMM mentions the con-
cept of collaboration activity, but does not support it by the current meta model. It follows
that a collaboration activity must be recursively replaced by its detailing business collab-
oration protocol. Finally, a business collaboration protocol is built by business transac-
tions activities only. We think that the concept of collaboration activities - which is
supported by BPSS - is certainly useful and should be considered in future revisions of
the UMM meta model.

For each business transaction activity the maximum performance time is documented by
the timeToPerform property. If this time is exceeded, the initiating partner has to send a
failure notice. Furthermore, the isConcurrent property defines whether or not more than

Initial
State

«BusinessT ransactionActivi ty»

Search Product
...

«BusinessT ransactionActivi ty»

Register Customer

«BusinessT ransactionActivi ty»

Order Products

PurchaseManagement.
Failed

PurchaseManagement.
Succeded

[PurchaseOrderContract.Establ ished]
[CustomerInformation.Rejected]

[CustomerInformation.Confirmed]

[CustomerInformation.Confirmed][NOT CustomerInformation.Confi rmed]

[Products.Found AND Products.Wanted]

[Products.NotFound]

Figure 6. Business Collaboration Protocol for Simple Purchase Management

timeToPerform: 4hrs
isConcurrent: false

one business transaction activity can be open at one time. In our example register cus-
tomer is not concurrent and most be performed in 4 hours at most.

The business collaboration protocol defines the choreography amongst the business trans-
action activities. The transitions between the activities are guarded by business states of
business entities. For example, a transition from search product to order product requires
that products were found and that these products are wanted (by the customer). Further-
more, the customer must be registered at the seller, i.e. she must have a confirmed cus-
tomer information.

The next step in the BTV is to detail each business transaction activity by its own activity
graph. This graph defines the choreography of a business transaction. The activity graph
of a business transaction is always composed of two business actions, a requesting busi-
ness activity performed by the initiator and a responding business activity performed by
the other business partner. We stick here to the UMM terms, although initiating and react-
ing business activities would be better terms, since not each transaction is a request /
response one. In the UML notation, a business action is assigned to the swimlane of the
respective business partner. In a one-way transaction business information is exchanged
only from the requesting business activity to the responding business activity. In case of
two-way transaction the responding business activity returns business information to the
requesting business activity. The exchange of business information is shown by object
flows. Figure 7 shows the business transaction register customer.

In UMM we distinguish two different types of one-way transactions. If the business infor-
mation sent is a formal non-reputable notification, the transaction is called notification.
Otherwise the transaction is known as information distribution. Furthermore, there exist
four different types of two-way transactions. If the responder already has the information

: Customer : Sel ler

Initial
State

«RequestResponse»

request registration

«RespondingBusinessActivi ty»

perform registration

:RegistrationRequestEnv elope

Final
State -

Success

Final
State -
Control

Fail

:RegistrationResponseEnv elope

[control fai l][success]

timeToAcknowledgeReceipt: null
timeToAcknowledgeAcceptance: null
timeToPerform: 4 hrs
isAuthorizationRequired: false
isNonRepudiationRequired: false
isNonRepudiationOfReceiptRequired: null
retryCount: 3

timeToAcknowledgeReceipt: null
timeToAcknowledgeAcceptance: null
timeToPerform: 4 hrs
isAuthorizationRequired: false
isNonRepudiationRequired: false

isConfidential: true
isTamperProof: false
isAuthenticated:false

isConfidential: true
isTamperProof: false
isAuthenticated:false

Figure 7. Business Transaction for Register Customer

available, it is a query/response transaction. If the responder does not have the informa-
tion, but no pre-editor context validation is required before processing, the transaction is a
request/confirm one. If the latter is required, the next question is whether the transaction
results in a residual obligation between the business partners to fulfill terms of a contract.
In case of a “yes” it is a commercial transaction and a request/response transaction other-
wise. These types of business transactions cover all known legally binding interactions
between two decision making applications as defined in Open-edi [ISO95]. They have
proven to be useful in RosettaNet. In the UML notation the requesting business activity is
stereotyped according to the transaction type.

The different types of business transaction patterns differ in the default values for the
parameters that characterize the activities in the business transaction: timeToAcknowledg-
eReceipt, timeToAcknowledgeAcceptance, timeToPerform, isAuthorizationRequired, and
isNonRepudiationRequired. The values for isNonRepudiationOfReceiptRequired and for
retryCount are only defined for the requesting business activity. Note, an acknowledge of
receipt is sent after grammar validation, sequence validation, and schema validation. An
acknowledge of acceptance is sent after an additional content validation. Retry count is
the number of retries in case of control failures.

The object flow states of a business transaction refer to instances of business information
envelopes. The business information envelope and the included business information is
modeled in a class diagram. The business information is commonly called a business doc-
ument. Since UMM is not a document-centric approach and only exchanges information
necessary for a business state change, we stick to the term business information.

In order to guarantee reusability, the business information must be built by common
building blocks. Unfortunately, the current version of UMM does not reflect this require-
ment. The meta model only defines that the business information exchanged is built by
recursively structured information entities. Recently it was agreed that the business infor-
mation should be based on ebXML core components. A core components is defined as “a
building block that contains pieces of business information that belong to a single con-
cept. Core components are characterized by the fact that they appear in many different
circumstances of business information and in many different areas of business.” [UN03d]
Currently, UN/CEFACT is building a library of core components which will become the
richest and cross-industry harmonized source for assembling business information.

In order to model the class diagram for a business information exchange, one must deter-
mine the business entities that are effected by the transaction. Each business entity is
described by the information needed to change its business state. This information is built
by re-using core components of the library. Thus, one must select suitable core compo-
nents from the library and customize them to the needs of the business transaction. Cus-
tomizing means setting the core components into the context of the business transaction.
This is when the core component becomes a so called business information entity. In the
resulting class diagram a basic business information entity (BBIE) is represented by an
attribute and an aggregate business information entity by a class or a group of classes.

Figure 8 presents a class diagram for the registration request. The registration request
envelope includes the business information, i.e. the registration request. The registration
request aggregates the header details and the affected business entities. In this case the
only business entity is the customer information. The customer information must include

all the information necessary to change its state from “tendered” to “accepted” and finally
“confirmed”. Therefore existing core component types are set into the context of our reg-
istration transaction. Setting into context means e.g. selecting only those attributes from
the more than 20 attributes that are assigned to the core component address. Due to space
limitation we do not explain this process in detail but refer to the core components speci-
fication [UN03d].

3 From UMM to BPSS

In this section we describe how the UMM model developed in the previous section is
equally represented in a BPSS instance. As mentioned earlier BPSS is based on a subset
of the UMM meta model. This subset is more or less identical to the Business Transaction
View (BTV). Thus, BPSS might be viewed as an “XML-ification” of the BTV artefacts:
business collaboration protocol and business transaction with references to exchanged
documents. The UMM is an approach intended to specify business collaborations from
top down, re-using existing lower level content as much as possible. In BPSS it does not
matter whether an top-down or bottom-up approach is used. For educational purposes we
use a bottom up approach to describe the concepts of BPSS.

3.1 Business Documents / Business Information

In BPSS, the business information exchanged in a business transaction is called a busi-
ness document. Thus the UMM concept of business information must be mapped to an

«ABIE»
HeaderInformationDetails

+ «BBIE» ReferenceIdentifier: Identi fierType
+ «BBIE» RespondByDate: DateT ype

«BusinessInformation»
RegistrationRequest

«InformationEnvelope»
RegistrationRequestEnv elope

«BusinessEnti ty»
CustomerInformation

«ABIE»
PartyDetails

+ «BBIE» LegalName: NameType
+ «BBIE» ShortName: NameType
+ «BBIE» Official_RegistrationNumberIdentifier: IdentifierT ype

«ABIE»
AddressDetails

+ «BBIE» Addressee: NameType
+ «BBIE» Street: NameT ype
+ «BBIE» StreetNumber: TextType
+ «BBIE» HouseNumber: T extT ype
+ «BBIE» Bui ldingNumber: TextType
+ «BBIE» FloorNumber: TextType
+ «BBIE» Postcode: Identi fierT ype
+ «BBIE» Country: Identi fierType

«ABIE»
AccountDetails

+ «BBIE» BankIdenti fier: Identi fierType
+ «BIE» Type: CodeType
+ «BBIE» Identi fication: Identi fierType
+ «BBIE» HolderName: NameT ype
+ «BBIE» StartDate: DateT ype
+ «BBIE» EndDate: DateType
+ «BBIE» Balance: AmountType

«ABIE»
ContactDetails

+ «BBIE» Business_PhoneNumber: TextType
+ «BBIE» Mobile_PhoneNumber: T extType
+ «BBIE» Fax_PhoneNumer: TextType
+ «BBIE» EMai lAddress_UniformRessourceIdenti fier: Identi fierType

+CreditCard

0..1+ShippingAddress+Bi l l ingAddress

+BuyerParty

Figure 8. Class Diagram for Registration Request

BPSS equivalent. BPSS does not by itself support the definition of business document
types, nor does any other ebXML specification. It is assumed that the various business
document standard organizations will define the rules on how to map the business infor-
mation entities to their specific document types.

A BPSS instance points to the resulting business document types. If the document type is
XML-based, BPSS will use the business document element to point to an external
schema. We assume that this is the case in our example below. However, it is possible to
define documents of any other structure, e.g. UN/EDIFACT, or completely unstructured
documents as attachments. The following two code fragments show the XML schema for
the attribute group name used in BusinessDocument and many other BPSS elements, and
the XML schema for BusinessDocument. Each defined business document carries a glo-
bally unique Id (GUID) in the nameID attribute. The logical name of the business docu-
ment, which corresponds to the class name for business information in UMM, is defined
in the name attribute. Either specificationLocation or specificationID are used to point to
the external schema.

<xsd:attributeGroup name="name">
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="nameID" use="required">

<xsd:simpleType> <xsd:restriction base="GUID"/> </xsd:simpleType>
</xsd:attribute>

</xsd:attributeGroup>

<xsd:element name="BusinessDocument">
<xsd:complexType>

<snip/>
<xsd:attributeGroup ref="name"/>
<xsd:attribute name="specificationLocation" type="xsd:anyURI"/>
<xsd:attribute name="specificationID" type="xsd:anyURI"/>
<snip/>

</xsd:complexType>
</xsd:element>

The valid instances for pointing to external XML schemas that define the document types
for registration request and registration response are the following:

<BusinessDocument nameID="BPSS-XML4BPM-Document-001" name="RegistrationRequest"
specificationLocation="http://www.xml4bpm.org/RegistrationRequest.xsd"/>
<BusinessDocument nameID="BPSS-XML4BPM-Document-002" name="RegistrationResponse"
specificationLocation="http://www.xml4bpm.org/RegistrationResponse.xsd"/>

3.2 Business Transactions

BPSS uses the concept of business transactions more or less identically to UMM. This
means a business transaction is built by two business actions - the requesting business
activity and the responding business activity. The request document flow is mandatory
and the responding one is optional. We recommend to read this subsection in conjunction
with Figure 7 showing a UMM business transaction.

The information exchanged in a UMM business transaction is represented by an object
flow state. This object flow state is an instance of a business information envelope which
covers the business information. For this purpose, BPSS defines the element Document-
Envelope. The envelope has a GUID (attribute nameID) and a logical name (attribute
name). Its attribute businessDocumentIDREF references one of the business documents

described above. Furthermore, the attribute businessDocument contains the logical name
of this document. In the example further below the business document envelope Registra-
tionRequestEnvelope is created with its unique Id (BPSS-XML4BPM-Envelope-000001).
This envelope references the business document RegistrationRequest (BPSS-XML4BPM-
Document-000001).

Both BPSS and UMM define the security parameters isAuthenticated, isConfidential, and
isTamperDetectabel (in UMM: isTamperProof) for the information exchanged. In UMM
these parameters are booleans. BPSS uses a more sophisticated differentiation with four
possible values: none, transient, persistent, and transient-and-persistent. Transient secu-
rity focuses on the delivery to the receiving message service handler. Persistence security
applies as soon as the document leaves the receiving message handler. Transient security
is what is considered by UMM. Therefore, a UMM true for a security parameter maps to
transient in BPSS. Persistence security cannot be mapped automatically. In UMM, each
subpart within a business information envelope might have its own security parameters.
In BPSS the security parameters are the same for the envelope and its content. By map-
ping UMM to BPSS the highest security identified for a subpart must be set for the whole
envelope. In our UMM example we already used the security parameters only on the
envelope level. Therefore, the code fragment for the registration request envelope looks
as follows (c.f. Figure 7): isConfidential is set to transient, whereas isAuthenticated and
isTamperDetectable are set to none.

<xsd:element name="DocumentEnvelope">
<xsd:complexType>

<snip/>
<xsd:attributeGroup ref="name"/>
<xsd:attribute name="businessDocument" type="xsd:string" use="required"/>
<xsd:attribute name="businessDocumentIDREF" type="GUIDREF"/>
<xsd:attribute name="isPositiveResponse" type="xsd:boolean"/>
<xsd:attributeGroup ref="documentSecurity"/>

</xsd:complexType>
<snip/>

</xsd:element>
<xsd:attributeGroup name="documentSecurity">

<xsd:attribute name="isAuthenticated">
<xsd:simpleType>

<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="none"/> <xsd:enumeration value="transient"/>
<xsd:enumeration value="persistent"/><xsd:enumeration value="transient-and-persistent"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name="isConfidential">

<xsd:simpleType> <snip>identical to isAuthenticated</snip></xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="isTamperDetectable">

<xsd:simpleType> <snip>identical to isAuthenticated</snip></xsd:simpleType>
</xsd:attribute>

</xsd:attributeGroup>

<DocumentEnvelope nameID="BPSS-XML4BPM-Envelope-001" name="RegistrationRequestEnvelope"
businessDocument="RegistrationRequest" businessDocumentIDREF="BPSS-XML4BPM-Document-001"
isAuthenticated="none" isConfidential="transient" isTamperDetectable="none"/>

Next, we consider the requesting activity and the responding activity. Both are subtypes
of business action in UMM and BPSS. Each business action has a GUID and a name. In
BPSS, the requesting business activity includes the child element document envelope cre-
ated by the requesting business activity itself. Since the requesting flow is mandatory, the
child element is mandatory as well. The responding activity includes an optional docu-
ment envelope. Note, there is a bug in the BPSS 1.10, since a responding business activity

might output even more document envelopes. We corrected this in the code fragment
below. In BPSS there is no explicit link between a business document envelop and the
business action that receives this input. The receiving business action is always the one
that does not create the business document envelope.

The most significant difference to UMM is the fact, that BPSS does not assign any roles
to the business actions on the transaction level. In addition, the parameters characterizing
the business actions differ in UMM and BPSS. timeToAcknowledgeReceipt and time-
ToAcknowledgeAcceptance are used similar. A value is assigned to each of these
attributes, if the acks are required. In UMM an acknowledgment of receipt is sent after
schema validation. The BPSS equivalent requires the flag isIntelligibleCheck to be set,
otherwise the ack is sent after receiving the information without any validation. In BPSS
there is no attribute like timeToPerform, since the only significant time is the one for the
overall transaction that is defined in the business transaction activity. Both isNonRepudi-
ationRequired and isNonRepudiationOfReceiptRequired are attributes of both business
action types - in UMM the latter does not exist for the responding business activity. The
retryCount for the requesting business activity is also used as in UMM. The isAuthoriza-
tionRequired attribute is defined, but deprecated, because it cannot be supported by cur-
rent ebXML business service interfaces.

In our example (c.f. Figure 7) the requesting business activity is request registration.
Both non-repudiation requirements do not apply. The retry count is set to 3. Time values
for the acknowledgments must not be specified, since no acks are sent. Request registra-
tion outputs the registration request envelope. The responding business activity is per-
form registration. Non-repudiation is not required. The acks attributes must be omitted as
well. Since both acknowledgments do not require acknowledgments of receipt, the isIn-
telligibleCheckRequired parameter is not useful.

<xsd:complexType name="BusinessAction">
<snip/>
<xsd:attributeGroup ref="name"/>
<xsd:attribute name="isAuthorizationRequired" type="xsd:boolean" default="false">

<xsd:annotation> <xsd:documentation>deprecated</xsd:documentation> </xsd:annotation>
</xsd:attribute>
<xsd:attribute name="isIntelligibleCheckRequired" type="xsd:boolean" default="false"/>
<xsd:attribute name="isNonRepudiationRequired" type="xsd:boolean" default="false"/>
<xsd:attribute name="isNonRepudiationReceiptRequired" type="xsd:boolean" default="false"/>
<xsd:attribute name="timeToAcknowledgeReceipt" type="xsd:duration"/>
<xsd:attribute name="timeToAcknowledgeAcceptance" type="xsd:duration"/>

</xsd:complexType>
<xsd:element name="RequestingBusinessActivity">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="BusinessAction">
<xsd:sequence><xsd:element ref="DocumentEnvelope"/></xsd:sequence>
<xsd:attribute name="retryCount" type="xsd:int"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
<xsd:element name="RespondingBusinessActivity">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="BusinessAction">
<xsd:sequence>

<xsd:element ref="DocumentEnvelope" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

<RequestingBusinessActivity nameID="BPSS-XML4BPM-Action-001" name="RequestRegistration" retryCount="3"
isNonRepudiationRequired="false" isNonRepudiationReceiptRequired="false">

<DocumentEnvelope nameID="BPSS-XML4BPM-Envelope-001" name="RegistrationRequestEnvelope" ... />
</RequestingBusinessActivity>
<RespondingBusinessActivity nameID="BPSS-XML4BPM-Action-002" name="PerformRegistration"
isNonRepudiationRequired="false">

<DocumentEnvelope nameID="BPSS-XML4BPM-Envelope-002" name="RegistrationResponseEnvelope" ... />
</RespondingBusinessActivity>

A business transaction is defined by the sequence of the requesting business activity and
the responding business activity. In UMM each business transaction follows one out of
six legally binding business patterns. The attribute pattern of the BPSS element Busi-
nessTransaction specifies the underlying pattern type. Furthermore, the attribute isGuar-
anteedDeliveryRequired signals that reading partners must employ a delivery channel
that provides a delivery guarantee. UMM always assumes guaranteed delivery if neces-
sary.

The business transaction register customer (c.f. Figure 7) includes the requesting business
activity request registration and the responding business activity perform registration. Its
underlying pattern is a query/response transaction. Furthermore, we assume a guaranteed
delivery channel.

<xsd:element name="BusinessTransaction">
<xsd:complexType>

<xsd:sequence>
<snip/>
<xsd:element ref="RequestingBusinessActivity"/>
<xsd:element ref="RespondingBusinessActivity"/>

</xsd:sequence>
<xsd:attributeGroup ref="name"/>
<xsd:attribute name="pattern" type="xsd:anyURI"/>
<xsd:attribute name="isGuaranteedDeliveryRequired" type="xsd:boolean" default="false"/>

</xsd:complexType>
<snip/>

</xsd:element>

<BusinessTransaction nameID="BPSS-XML4BPM-Transaction-001" name="RegisterCustomer"
pattern="QueryResponseActivity" isGuaranteedDeliveryRequired="true">

<RequestingBusinessActivity nameID="BPSS-XML4BPM-Action-001" name="RequestRegistration" ... >
<snip/>

</RequestingBusinessActivity>
<RespondingBusinessActivity nameID="BPSS-XML4BPM-Action-002" name="PerformRegistration" ... >

<snip/>
</RespondingBusinessActivity>

</BusinessTransaction>

<BusinessTransactionActivity name="RegisterCustomer" nameID="BPSS-XML4BPM-Activity-001"
businessTransaction="RegisterCustomer" businessTransactionIDREF="BPSS-XML4BPM-Transaction-001"
fromRole="customer" fromRoleIDREF="BPSS-XML4BPM-Role-001" toRole="seller" toRoleIDREF="BPSS-
XML4BPM-Role-002" isConcurrent="false" timeToPerform="PT4H" preCondition="some text" beginsWhen="some
text" endsWhen="some text" postCondition="some text"/>

3.3 Binary Collaboration

A binary collaboration is always conducted by two roles. They perform one or more busi-
ness activities. In BPSS, a business activity is either a business transaction activity or a
collaboration activity. We first concentrate on business transaction activities. Collabora-
tion activities are briefly explained at the end of this subchapter. A business transaction
activity points to a business transaction. The semantic of a business transaction activity is
the same as in UMM (c.f. Figure 6). The business transaction activity is identified by its
own nameID and name. It is quite common that the name of the referenced business

transaction is identical. However, this is not a must. The IDREF to the business transac-
tion ensures unambiguouty. For each business transaction activity an initiating role (from-
Role) and an reacting role (toRole) together with IDREFs to the role definitions are
specified. The fromRole will perform the requesting business activity of the business
transaction. The responding business activity is performed by the toRole. The UMM
parameters isConcurrent and timeToPerform characterizing a business transaction activ-
ity exist in BPSS as well. Further attributes assigned to the BPSS business transaction
activity are preCondition, beginsWhen, endsWhen and postCondition. Values for these
attributes are usually defined in the transaction use case template (worksheet) of UMM.

The code fragment further below shows the definition of the register customer business
transaction activity (c.f. Figure 6). It is a non-concurrent business transaction activity
which must be executed within 4 hours. The customer initiates the referenced business
transaction, which is defined in the previous subsection. The seller is the responder.

<xsd:complexType name="BusinessActivity">
<xsd:attributeGroup ref="name"/>
<xsd:attribute name="fromRole" type="xsd:string" use="required"/>
<xsd:attribute name="fromRoleIDREF" type="GUIDREF"/>
<xsd:attribute name="toRole" type="xsd:string" use="required"/>
<xsd:attribute name="toRoleIDREF" type="GUIDREF"/>
<xsd:attribute name="beginsWhen" type="xsd:string"/>
<xsd:attribute name="endsWhen" type="xsd:string"/>
<xsd:attribute name="preCondition" type="xsd:string"/>
<xsd:attribute name="postCondition" type="xsd:string"/>

</xsd:complexType>

<xsd:element name="BusinessTransactionActivity">
<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="BusinessActivity">
<snip/>
<xsd:attribute name="businessTransaction" type="xsd:string" use="required"/>
<xsd:attribute name="businessTransactionIDREF" type="GUIDREF"/>
<xsd:attribute name="isConcurrent" type="xsd:boolean" default="true"/>
<snip/>
<xsd:attribute name="timeToPerform" type="xsd:duration"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

<BusinessTransactionActivity name="RegisterCustomer" nameID="BPSS-XML4BPM-Activity-001"
businessTransaction="RegisterCustomer" businessTransactionIDREF="BPSS-XML4BPM-Transaction-001"
fromRole="customer" fromRoleIDREF="BPSS-XML4BPM-Role-001" toRole="seller" toRoleIDREF="BPSS-
XML4BPM-Role-002" isConcurrent="false" timeToPerform="PT4H" preCondition="some text" beginsWhen="some
text" endsWhen="some text" postCondition="some text"/>

In UMM the business collaboration protocol choreographs the business transaction activ-
ities. This choreography is defined in BPSS by a binary collaboration. Figure 9 shows the
subelement structure for a binary collaboration. Due to space limitation we do not present
the XML schema code for each of these elements. The details of the binary collaboration
are best explained by means of the example depicted in the business collaboration proto-
col of Figure 6 and mapped to the code fragment further below.

The binary collaboration simple purchase management is identified by a unique id
(BPSS-XML4BPM-BinaryCollaboration-001). The attribute isInnerCollaboration is a
flag indicating that the binary collaboration can only be used as subpart of another binary
collaboration. Since this is not the case in our example it is set to false. The initiating-
RoleIDREF references the role that initiates the first business transaction activity. This
attribute is only relevant if a binary collaboration is subpart of another one (see further

below). Another attribute indicates a pattern of a binary collaboration. Since these types
of patterns are currently in development, this attribute is for future use only. A maximum
time for a binary collaboration is defined by timeToPerform - a concept that does not exist
on this level in UMM. The attributes preCondition, beginsWhen, endsWhen and postCon-
ditions are gathered in UMM by the business collaboration protocol use case.

Exactly two roles participate in a binary collaboration. In our example these roles are a
customer and a seller, which are defined by Role elements. The nameID of a role must be
unique for all binary collaborations regardless the fact that a role with the same name
exists in another binary collaboration. The next element Start maps the UMM transition
from the initial pseudo state to the first business transaction activity, which is Search
Products. This business transaction activity is referenced by name (toBusinessState) and
id (toBusinessStateIDREF). The referenced business transaction activity must be in the
following list of all business transaction activities of the binary collaboration. Thus, the
next elements define the business transaction activity search products as well as order
products and register customer. The definition of business transaction activities was
explained in detail above.

Next, the Success element specifies the successful completion, i.e. the transition from
Order Products to the successful end state. The last business transaction activity Order
Products is referenced by name (from BusinessState) and id (fromBusinessStateIDREF).
The value BusinessSuccess for conditionGuard of the transition is taken from an enumer-
ated list of different success and failure types. Similarly, the Failure elements specify the
transitions from Register Customer and from Order Products to the failing end state.

Only then all the other transitions between the business activities are declared. A transi-
tion has its own id and references both source and target business transaction activity by

Figure 9. XML Schema for a Binary Collaboration

name and id. Again a transition guard from the enumerated list of success and failure
types might be specified in conditionGuard. In addition the child element ConditionEx-
pression enables a more complex specification reflecting the UMM business entity states.
In our example we use an OCL syntax to denote the guards on the transitions. The Deci-
sion element - which follows the transition declarations - is the equivalent to the UML
decision (depicted as rhombus). The underlying decision must be given in the subelement
ConditionExpression; e.g. the OCL statement on whether the customer information is in
state Confirmed or not. Other BPSS elements - not used in our example - include Fork for
alternative flows and Join for parallel flows. Transitions reference not only business
transaction activities as source and target, but also Fork, Join, and Decision. For example,
the first transition statement is from Search Product to the decision node guarded by the
fact that products are in state Found and substate Wanted.

UMM business collaboration protocols are always built by business transaction activities
and do not include collaboration activities. These might be used in BPSS only. A collabo-
ration activity references another binary collaboration which thereby becomes part of the
parent binary collaboration. The other attributes of the collaboration activity are the same
as for the business transaction activity except that timeToPerform and isConcurrent are
not appropriate. The fromRoleIDREF of the collaboration activity binds to the initiating-
Role of the included binary collaboration. Note, that the id values must be different and
the names of the roles might be different. This allows to bind e.g. a buyer role from the
parent collaboration to a customer role of the included collaboration.

<BinaryCollaboration name="SimplePurchaseManagement" nameID="BPSS-XML4BPM-BinaryCollaboration-001"
initiatingRoleIDREF="BPSS-XML4BPM-Role-001" isInnerCollaboration="false" pattern="nopatterns exist yet"
timeToPerform="P1D" preCondition="some text" beginsWhen="some text" endsWhen="some text"
postCondition="some text">

<Role name="customer" nameID="BPSS-XML4BPM-Role-001"/>
<Role name="seller" nameID="BPSS-XML4BPM-Role-002"/>
<Start nameID="BPSS-XML4BPM-Start-001" toBusinessState="SearchProducts"
toBusinessStateIDREF="BPSS-XML4BPM-Activity-002"/>
<BusinessTransactionActivity name="SearchProducts" nameID="BPSS-XML4BPM-Activity-002" ... />
<BusinessTransactionActivity name="OrderProducts" nameID="BPSS-XML4BPM-Activity-003" ... />
<BusinessTransactionActivity name="RegisterCustomer" nameID="BPSS-XML4BPM-Activity-001"... />
<Success nameID="BPSS-XML4BPM-Success-002" fromBusinessState="OrderProducts"
fromBusinessStateIDREF="BPSS-XML4BPM-Activity-003" conditionGuard="BusinessSuccess"/>
<Failure nameID="..." fromBusinessState="OrderProducts" ... conditionGuard="Failure"/>
<Failure ... fromBusinessState="RegisterCustomer" ... conditionGuard="Failure"/>
<Transition nameID="Transition-002-F001" fromBusinessState="SearchProduct"
fromBusinessStateIDREF="BPSS-XML4BPM-Activity-002" toBusinessState="Decision1"
toBusinessStateIDREF="BPSS-XML4BPM-Decision-001" conditionGuard="BusinessSuccess">

<ConditionExpression expressionLanguage="OCL"
expression="Products.oclInState(Found::Wanted) = TRUE"/>

</Transition>
<Transition ... fromBusinessState="Decision1" ... toBusinessState="RegisterCustomer" ...>

<ConditionExpression ... expression="CustomerInformation.oclInState(Confirmed) = FALSE"/>
</Transition>
<Transition ... fromBusinessState="Decision1" ... toBusinessState="OrderProducts" ... >

<ConditionExpression ... expression="CustomerInformation.oclInState(Confirmed) = TRUE"/>
</Transition>
<Transition ... fromBusinessState="RegisterCustomer" ... toBusinessState="OrderProducts" ...
ConditionGuard="BusinessSuccess">

<ConditionExpression ... expression="CustomerInformation.oclInState(Confirmed) = TRUE"/>
</Transition>
<Decision name="Decision1" nameID="BPSS-XML4BPM-Decision-001">

<ConditionExpression ... expression="CustomerInformation.oclInState(Confirmed)"/>
</Decision>

</BinaryCollaboration>

3.4 Mulitparty Transaction

The current version of BPSS 1.10 uses binary collaborations only. The XML schema
allows the specification of multiparty transaction, but it is not recommended to use them.
The concepts for multiparty collaborations might change considerably within the next
revision. Multiparty collaborations are always synthesized by binary collaborations.
However, the multiparty statement does not list the included binary collaborations.
Instead the multiparty statement list the business partner roles that participate in the mul-
tiparty collaboration. Each business partner role includes one or more Performs elements
to bind roles of binary collaborations. Since the id of a role is unique for all binary collab-
orations, the binary collaborations are also unambiguously identified.

The business partners in our example simple order management are buyer, seller and
bank. The buyer takes on the role of customer in the simple purchase management. The
seller binds the role of seller in the simple purchase management and the role of the cred-
ibility requestor in check credibility. The bank supports the role of a bank in check credi-
bility. Furthermore, transitions between business transaction activities of different binary
collaborations are supported. Since the business transaction activities of our example are
nested this concept is not used in the code fragment below.

<MultiPartyCollaboration name="SimpleOrderManagement" nameID="BPSS-XML4BPM-MultiParty-001">
<BusinessPartnerRole name="buyer" nameID="BPSS-XML4BPM-MultiRole-001">

<Performs nameID="" role="customer" roleIDREF="BPSS-XML4BPM-Role-001"/>
</BusinessPartnerRole>
<BusinessPartnerRole nameID="BPSS-XML4BPM-MultiRole-002" name="seller">

<Performs nameID="" role="seller" roleIDREF="BPSS-XML4BPM-Role-002"/>
<Performs nameID="" role="credibilityRequestor" roleIDREF="BPSS-XML4BPM-Role-003"/>

</BusinessPartnerRole>
<BusinessPartnerRole nameID="" name="bank">

<Performs nameID="" role="bank" roleIDREF="BPSS-XML4BPM-Role-004"/>
</BusinessPartnerRole>

</MultiPartyCollaboration>

4 Summary

The BPSS specification states that its goal is to provide the bridge between e-business
process modeling and specification of e-business software components. BPSS does not
require any particular e-business process modeling methodology. Nevertheless, main con-
cepts of BPSS are based on UMM, or better its meta model. Thus it is close at hand to
model e-business collaborations with UMM and to map these models to XML-based
BPSS. The gap between UMM and BPSS is quite close. This approach enables e-business
software to interpret the choreography specified by UMM business collaboration models.

In this paper we first presented UMM as a top-down approach. Apart from introducing
UMM’s methodology, this section helps to understand the background of many BPSS
concepts. Then the UMM business collaboration models are mapped to BPSS. We
explained the mapping the other way round by a bottom-up approach. It is demonstrated
that most of the UMM semantics - except those for requirements gathering - result in a
equivalent BPSS counterpart. Most of them use the same terms and structures. Only very
few UMM concepts are not supported by BPSS. Additional concepts available in BPSS
but not supported in UMM are rare exceptions. These might be considered in future revi-
sions of UMM.

From the arguments above it becomes obvious that alignment of BPSS and UMM is
desirable. However, BPSS must also be aligned with the other ebXML specifications.
The BPSS team has done a good job to deal with these sometimes conflicting interests. At
the end of the 18-month ebXML initiative UN/CEFACT and OASIS agreed that ebXML
business process specifications are maintained by UN/CEFACT. UN/CEFACT has sig-
naled steps toward UMM BRV alignment in BPSS 2.0 and towards BDV alignment in
BPSS 3.0. OASIS has formed its new ebXML business process technical committee in
October 2003. Therefore, we stick with the current version 1.10 and await BPSS’s future.

5 References

[BJR98] Booch, G., Jacobson, I., Rumbaugh J.: The Unified Modeling Language User Guide.
Addison Wesley Object Technology Series, Reading, (1998)

[HHK02] Hofreiter, B., Huemer, C., Klas, W.: ebXML: Status, Research Issues and Obstacles. Proc.
of 12th Int. Workshop on Research Issues on Data Engineering (RIDE02), San Jose (2002)

[HHN04] Hofreiter, B., Huemer, C., Naujok, K.-D.: UN/CEFACT’s Business Collaboration
Framework - Motivation and Basic Concepts. Proc. of MKWI’04 Track on Co-ordination
in Value Creation networks / Agent Technology for Business Applications, LNI GITO
(2004)

[HH03] Hofreiter, B., Huemer, C.: Modeling Business Collaborations in Context. Proc. of On The
Move to Meaningful Internet Systems 2003: OTM 2003 Workshops, Springer LNCS,
Catania (2003)

[ISO95] ISO: Open-edi Reference Model. ISO/IEC JTC 1/SC30 ISO Standard 14662 (1995)
[UN03a] UN/CEFACT TMG: UN/CEFACT Modelling Methodology - Meta Model, Revision 12.

(2003), http://www.untmg.org/downloads/General/approved/UMM-MM-V20030117.zip
[UN03b] UN/CEFACT TMG: UMM User Guide, Revision 12. (2003)

http://www.untmg.org/downloads/General/approved/UMM-UG-V20030922.zip
[UN03c] UN/CEFACT TMG: UN/CEFACT – ebXML Business Process Specification Schema,

Version 1.10, http://www.untmg.org/downloads/General/approved/ebBPSS-v1pt10.zip
[UN03d] UN/CEFACT TMG: Core Components Technical Specification – Part 8 of the ebXML

Framework, Version 2.01, (2003),
http://www.untmg.org/downloads/General/approved/CEFACT-CCTS-Version-2pt01.zip

[UO01] UN/CEFACT, OASIS: ebXML Technical Architecture Specification v1.0.4. (2001),
http://www.ebxml.org/specs/ebTA.pdf

