
OPAX - An Open Peer-to-Peer Architecture
for XML Message Exchange

Bernhard Schandl, University of Vienna
bernhard.schandl@univie.ac.at

Users wishing to find multimedia material about interesting events from
all over the world are confronted with the problem of efficiently locating and
retrieving media that meets their personal interests. One possible solution
for this problem are peer-to-peer based networks to publish and broadcast
descriptions of such events; however, such networks require an efficient and
reliable infrastructure. Because of its properties, the hypercube concept al-
lows efficient broadcast of event notifications and thus may serve well for
such networks. In this paper we explore and discuss the quality of the hy-
percube concept as peer-to-peer topology. We provide a fully distributed
reference implementation and analyze its strengths, weaknesses, and robust-
ness, and compare it to one possible alternative, a hybrid hypercube network.
Our analysis indicates that maintenance of a fully distributed, peer-to-peer
based hypercube is questionable: In an environment where participants may
unexpectedly enter and leave the network at any time (e.g. a cell phone leav-
ing the area covered by the radio transmitting station), inconsistencies may
cause the system to run into undefined states.

1 Motivation and Contributions

Events of user interest happen all over the world, at any time. More and more, multime-
dia material about these events becomes available in digital form, published by different
providers through various channels. Also, more and more users become able to receive
and consume such multimedia material through various devices, including PCs, PDAs,
mobile phones, and DVB set-top boxes. The evolution of technology makes it easy to
publish multimedia content, but the amount of available material makes it hard to find
material which meets the users’ requirements.

One way to overcome this problem could be a middleware which allows for automated
filtering of multimedia events, based on data provided by the event publishers, and
incorporating user-defined selection criteria. MediÆther [1] is a multimedia event space
wherein content providers place descriptions of interesting events along with metadata

1



(topic, time, location), describing the digital representation of the event as well as the
event itself. Based on these descriptions, users are informed about published events if
they meet their interest profiles.

MediÆther was designed as a peer-to-peer network, allowing each peer to publish,
search for, and register notifications for multimedia events. Because high amounts of
event packages have to be broadcast in order to notify every participating peer, a net-
work topology which allows the implementation of an efficient broadcast algorithm is
required. Additionally, the network must be able to cope with high member fluctuation
and heterogeneous peer types: mobile devices, like cell phones or PDAs, may join or
leave the network at any time.

The diploma thesis “OPAX - An Open Peer-to-Peer Architecture for XML Message
Exchange” analyzes the adequacy and practicability of the hypercube topology concept,
as presented in [2], for constructing, operating and maintaining peer-to-peer networks,
especially such ones designed for broadcast of messages (like MediÆther is). The hy-
percube – as a way to arrange participants of a network – is well-known in the field of
multiprocessor systems: As it allows message transportation between any two partici-
pants in at most log N steps, it is an infrastructure to implement efficient (in terms of
messages sent) broadcasting, thus fulfilling a crucial requirement for appplications like
MediÆther.

In the course of the diploma thesis, the following efforts were made to evaluate the
suitability of the hypercube concept in the context of heterogeneous media networking:

1. Detailed discussion of the hypercube topology concept

2. Design and implementation of a topology- and platform-independent peer-to-peer
messaging infrastructure (OPAX )

3. Design and implementation of a fully distributed hypercube topology within OPAX

4. Detailed analysis of the suitability of the fully distributed hypercube topology for
a multimedia event space

Special attention has been paid to analyzing the robustness of the network: Sudden
exit of a node during a topology modification or a message broadcast may lead to
inconsistent topology information and may cause the network to be fragile, exhibit gaps,
or – in the worst case – to collapse. Two directions for solving these problems were
explored:

5. Implementation and evaluation of improvements and modifications of the fully
distributed hypercube

6. Design and implementation of a hybrid hypercube network

Both of these approaches do not lead to the desired result: While some of the problems
can be solved by extending or modifying the hypercube algorithms (work package 5), it
is always possible to produce situations that can not be captured adequately. Enriching

2



the P2P-based messaging with a centralized topology management (work package 6)
empowers the manager to satisfactorily handle such situations. However, it violates
the basic ideas of P2P networking (no peer being in a more prominent situation than
others), and introduces the disadvantages of server-based concepts (single point of failure,
performance overload, scalability problems, etc.).

The disadvantages of the proposed solutions lead to the conclusion that the hypercube
paradigma in its current form is not applicable for an environment like MediÆther, where
participants may fail randomly.

The remainder of this outline is organized as follows: In section 2, the OPAX frame-
work and a Java-based prototype implementation are presented. Section 3 analyzes the
distributed hypercube as a network topology, discusses its strengths and weaknesses,
and introduces possible extensions to make it more resistant against failures. A hybrid
network using a centralized topology manager is presented in section 4.

2 OPAX - A P2P Platform

In the course of this diploma thesis, an open P2P platform was designed to serve as an
environment for exploring, implementing, and testing P2P network topology concepts.
Its design principles include:

• Openness. To allow the integration of and communication between heterogeneous
systems and networks, the framework should be open in a way that allows an
implementation on various platforms.

• Extensibility. As requirements to a P2P network may change over time, it is
important to allow the framework to grow with its requirements, without the need
to reject previous efforts.

• Modularity. To satisfy different applications’ requirements, the main components
of the framework – esp. the topology manager component – should be replaceable
or switchable by configuration without the need to restart a running instance.

• Convenience. The framework should provide an easy-to-use API to be used by
the application, providing the following operations: peer creation, opening/join-
ing of spaces, message broadcast, message receipt, departure of spaces, and peer
destruction.

The basic architecture concept chosen for the framework is depicted in Fig. 1.
An application may create multiple peers, called local peers, running in parallel. Us-

ing a local peer, an application may open or join spaces. Each instance incorporates
components working independently from the corresponding components of other local
peers. These components include configuration management, logging, synchronization,
and topology managers. Through the network communication component, peers may
communicate with other peers.

3



Application

Network
Communication

Configuration

Logging

Synchronization

Topology Mgr.

Peer

Network
Communication

Configuration

Logging

Synchronization

Topology Mgr.

Peer

Network
Communication

Configuration

Logging

Synchronization

Topology Mgr.

Peer

Space 1

Space 2

Space 3
Space 1

Space 3

Space 4

Space 5

Space 6

Figure 1: OPAX architecture

Figure 2: OPAX demo application

4



OPAX defines a simple message transmission protocol, as well as a set of message
types, whereof the most important ones are Application and Topology. While the
former is used to broadcast application data through the network, the latter is used to
manage the network topology structure. Both of them are designed to be fully adaptable
to the application’s requirements: Application messages are able to incorporate com-
plete XML documents, which allows for the transfer of any application data; Topology
messages may be sub-typed and enriched with arbitrary properties.

A prototype of OPAX has been implemented in Java. Its classes provide API calls and
callback entry points for the application, hiding the implementation details of the net-
work layer. The application may adapt the OPAX subsystem using an open configuration
interface. Different topology implementations, which can be realized by implementing
an interface TopologyManager, may be registered to the OPAX subsystem and then
used as neccessary.

As one part of the prototype implementation, a demo application allows to open, join,
or leave networks, and to broadcast and receive application messages. The user may
control the internal details of the OPAX components in order to perform testing and
debugging. A screenshot of this application is depicted in Fig. 2.

3 The Hypercube as a Network Topology

In the hypercube network topology, peers are located at the nodes of a hypercube graph,
and peers are linked directly along the edges of the graph. Figure 3 shows hypercubes
of dimensions d = 0 . . . 4, with two possible depictions of a 4-dimensional hypercube.

d = 0 d = 1 d = 2 d = 3 d = 4 d = 4

Figure 3: Hypercubes with 0 to 4 dimensions

The hypercube may represent an adequate topology for a symmetric peer-to-peer
network, as it has the following properties:

• The maximum Hamming distance between any two nodes (the network diameter)
in the hypercube is d, with d = log N , and N being the maximum node capacity
of the network. This implies that every message does, presuming an appropriate
routing algorithm, in no case require more than d hops to reach its final destination
node.

• The network structure is symmetric. In terms of the network’s topology, no node
incorporates a more prominent position than others, which is crucial for load bal-
ancing in the network: Every node can become the source of a broadcast (i.e. the

5



root of a spanning tree of the network), yet the load of a broadcast will always be
shared equally.

• The topology allows to create an optimal spanning tree in terms of messages sent.
Crucial for an efficient broadcasting algorithm, it is always possible to create a
spanning tree, starting with any node of the hypercube, so that the maximum
number of message transmissions (the edges in the spanning tree) is N − 1, and
every node receives the message exactly once.

• The topology provides redundancy. The connectivity (the minimum number of
nodes to be removed in order to partition the graph) is optimal, i.e. equal to
log N .

• The network is scalable. The number of dimensions of the hypercube can be chosen
to adjust the network diameter according to the requirements of the application.
Additionally, if the network is designed so that peers may cover multiple positions
simultaneously, the topology allows the creation of networks with the number of
participants ranging from 1 to 2d.

However, the highly organized hypercube topology requires participating peers to
minutely follow a well-defined protocol, which manages data transfer in the course of
integration and departure of peers. Peers must communicate repeatedly during this
protocol to exchange the neccessary data about neighbour peers and their positions.
When a fully-distributed hypercube network is implemented, significant drawbacks of
this high communication effort become apparent. Two major issues have been discussed
in the report in detail:

• Algorithmic complexity. Particular calculations that network nodes have to per-
form during topology modification (i.e. integration or departure of nodes) are of
complexity O(N) resp. O(2d), with N being the maximum number of nodes in the
network and d being the dimensionality of the hypercube.

• Peer and link failures. A sudden failure of a peer or a link between two peers may
lead to the loss of messages. An abortive delivery of messages may cause peers
to remain in a state where they are no more able to continue their algorithmic
computations.

To resolve these issues, we present improvements and modifications to the original
algorithms and protocols. Some of them have been implemented to prove their function-
ality, others have only been discussed in theory.

• Dimension increase. To address the problem of algorithmic complexity, the hyper-
cube dimensionality is selected dynamically in a way that it is always high enough
for the hypercube to accommodate the actual number of nodes, but as low as
possible so that no dimensions remain “unused”.

6



• Topology modification rollback. To prevent the emergence of deadlocks caused by
peers or links failing during an topology modification, peers being in a transitional
state may fall back to the “normal” state after a certain period of waiting for an
acknowledgement message (timeout). However, this mechanism causes inconsistent
peer state combinations because peers may fall back independently and delayed.

• Stale peer ignoring. Albeit not actually being a solution to the problem of peer fail-
ures, ignoring peers in this context means that a failing peer is ignored for a certain
time and is then dropped from the topology. However, this causes major changes
in the algorithm for message broadcast since the stale peer must be bypassed in or-
der to ensure that all other peers receive broadcast messages, introducing another
level of complexity into the broadcast algorithm.

• Peer watch. To immediately detect peer failures, a monitor peer is assigned to
every member of the network. In the case of a peer failing, the monitor peer
performs the departure protocol on behalf of the lost peer. Thus, it is possible
to keep the topology in a consistent state. However, the peer watch concept is
ineffectual when a peer and its monitor fail simultaneously.

• Global shutdown and topology reconstruction. In this approach, whenever a certain
number of peers have failed, the topology is discarded and then subsequently re-
created “from scratch”. With this approach, problems arise when multiple peers
in different parts of the hypercube fail.

• Implicit coordinates. In the hypercube, a node joining a hypercube network is as-
signed a position (identified by coordinates) depending on the current arrangement
of nodes in the network. “Implicit coordinates” means that a node can determine
its position by itself, independent of the current situation or the moment of its join-
ing. This would eliminate the need for complex joining and departure protocols
and ease the recovery of peer failures.

Although some of the mentioned approaches led to improvements concerning network
stability, it was at all times possible to find a failure constellation which could not be
absorbed in a way that allowed the network to continue to exist, and be both usable
(in terms of application message broadcast) and administrable (in terms of topology
modifications).

Therefore, we developed a new approach by designing a hybrid network : A central
topology manager keeps all information about node arrangement, thus disburdening
peers from the topology administration, and simplifying the topology manipulation pro-
tocols, while message broadcast is still processed in peer-to-peer manner. This approach
is introduced in the following section.

4 A Hybrid Hypercube

To overcome the problem of distributedly managing a topology infrastructure, we intro-
duced a hybrid network : Topology management (i.e. the management of integration and

7



departure of peers) is performed by a topology server, while messaging is processed in
the same manner as in the pure P2P variant.

To fully represent the hypercube topology, a tree was selected as data structure for the
topology manager. This structure (i) is formally equal to a hypercube, (ii) can adapt
to an arbitrary number of dimensions, and (iii) can be easily divided, which allows to
distribute the management among multiple servers.

The disadvantage of the tree structure is its memory consumption: To represent a
d-dimensional hypercube, data about 2d nodes and 2d−1 · d edges has to be stored. To
address this problem, we can construct a reduced hypercube, where the number of edges
is limited to a fixed value for all dimensions di ≥ dred. Clearly, this data structure
is not suitable to hold a full representation of the hypercube. The reduced capacity of
higher-dimensional levels allows only the representation of a degenerated hypercube, i.e. a
hypercube wherein not all edges are present. Two degenerated hypercubes are depicted
in figure 4.

ba

Figure 4: Two degenerated hypercubes

It is obvious that for such a hypercube, the broadcast algorithm must be reformulated.
In the diploma thesis, a modification to the original broadcast algorithm is presented:
The modified algorithm is no more optimal in terms of messages sent, as every missing
edge of the cube must be bypassed.

5 Conclusion

In this paper, we defined the requirements for a multimedia event space network, where
participants publish events and users get notified about these events based on their per-
sonal interest profiles. To allow for efficient broadcast of event notifications, a hypercube
may be used as the topology of a network infrastructure: This particular topology’s prop-
erties provide the basis for efficient search and broadcasting algorithms. To explore and
analyze these properties, a peer-to-peer framework has been designed and implemented:
OPAX provides a messaging infrastructure to build P2P networks, using any topology.

However, the hypercube approach has significant disadvantages in the field of relia-
bility: the fully distributed implementation of the hypercube is not able to cope with
sudden peer failures or exits, which are commonplace in an environment of heterogeneous
mobile devices. The proposed extensions and modifications of the hypercube concept
improve the stability of the network, but it is always possible to precipitate failure sit-
uations which cannot be covered by the topology management. A different approach, a

8



hybrid hypercube, may satisfactory handle these situations, but violates the basic ideas
of P2P networking.

The results of this thesis can be seen as a starting point for further research in the
areas of peer-to-peer topologies (esp. hypercube and related types) and as origin for
further investigating methods to stabilize, yet optimize ad-hoc peer-to-peer networks.

References

[1] Boll, S. and Westermann, G. MediÆther - an Event Space for Context-Aware Mul-
timedia Experiences. In: Proceedings of International ACM SIGMM Workshop on
Experiential Telepresence (ETP’03), Berkeley, USA, 2003.

[2] Schlosser, M. Semantic Web Services. Technical Report, University of Hannover and
Stanford University, 2002.

The full reference list can be found in the appendix of the diploma thesis.

9


