
Analysis, Transformation and Improvements of
ebXML Choreographies based on Workflow

Patterns

Ja-Hee Kim? and Christian Huemer

Research Studios Austria Studio Digital Memory Engineering
ARC Seibersdorf research GmbH Thurngasse 8/20, A-1090 Wien

Department of Computer Science and Business Informatics, University of Vienna,
at Liebiggasse 4/3-4, 1010 Vienna, Austria.

kim@mminf.univie.ac.at christian.huemer@univie.ac.at

Abstract. In ebXML the choreography of a business process should be
modeled by UMM (UN/CEFACT Modeling Methodology) and is finally
expressed in BPSS (Business Process Specification Schema). Our analysis
of UMM and BPSS by workflow patterns shows that their expression
power is not always equivalent. We use the workflow patterns to specify
the transformation from UMM to BPSS where possible. Furthermore,
the workflow patterns help to show the limitations of UMM and BPSS
and to propose improvements.

1 Introduction

The trend towards service-oriented architectures resulted in a growing interest in
the choreography of B2B business processes, which is in the focus of this paper.
The most prominent example of an service-oriented architecture is Web Services
[1]. Web Services are defined as a software application identified by a URI, whose
interfaces and bindings are capable of being defined, described, and discovered
as XML artifacts. A Web Service supports direct interactions with other soft-
ware agents using XML-based messages exchanged via Internet-based protocols
[2]. The Web Services base standards are WSDL, UDDI and SOAP. However,
Web Services are isolated and opaque. Business processes require collections of
Web Services jointly used to realize more complex functionality [3]. This lead to
the development of the Business Process Execution Language for Web Services
(BPEL). BPEL’s primarily focuses on the orchestration of executable business
processes. In addition, BPEL supports so-called abstract processes for specifying
a choreography of business protocols between business partners [4].

Apart from Web Services, the ebXML framework is another important ap-
proach. In contrast to Web Services, ebXML has been developed specifically for
e-business. ebXML is also based on a service-oriented architecture. ebXML pro-
vides a set of loosely coupled specifications that enable so-called business service
? This work was partially supported by the Post-doctoral Fellowship Program of Korea

Science & Engineering Foundation (KOSEF).

interfaces (BSI) of different business partners to interoperate. These specifica-
tions span over the topics of messaging, registries, profiles & agreements, business
processes, and core (data) components. Accordingly, business serves interfaces
are expected to carry out standardized business processes. The ebXML archi-
tecture specification recommends to use the UML-based UN/CEFACT Model-
ing Methodology (UMM) for analyzing and designing the inter-organizational
business processes. Those aspects that are relevant for configuring the business
service interfaces are mapped to the XML-based business process specification
schema (BPSS). BPSS instances are stored in a registry and are referenced by
the profiles of companies supporting the corresponding business process.

As mentioned above, interoperability requires that collaborating business
partners implement a shared business logic. BPEL and UMM/BPSS provide
languages describing a share business logic with respect to the choreography of
a business process. Thus, it is important that these languages lead to unam-
biguous definitions of business processes. Furthermore, these languages must be
able to capture choreography requirements that appear in any B2B business pro-
cess. Inasmuch it is important to systematically evaluate the capabilities of these
languages. There does not exist a special metric for evaluating B2B processes.
However, a B2B business process might be considered as an inter-organizational
workflow. Aalst et al. developed workflow patterns to analyze executable work-
flows [5]. An evaluation of BPEL according to these patterns is provided in
Wohed et al. [6]. In our paper we use the same patterns to evaluate ebXML pro-
cesses. In other words, we analyze UMM version 12 [7] and BPSS 1.1 [8]. Both
UMM and BPSS describe a choreography rather than an executable process
orchestration. An ebXML process flow consists of collaborative activities that
are decomposed in a way that each of the two collaborating partners perform
exactly one activity (c.f. Section 2). From a specific partner’s view the process
flow is still the same, but instead of the collaborative activities the flow consists
only of the activities assigned to the corresponding partner. Thus, we feel that
the patterns are relevant even to analyze a choreography.

We demonstrate how the workflow patterns are realized in UMM and BPSS.
Patterns that cannot be realized usually indicate limitations of the current ver-
sions and give hints for improvements in future revisions. Showing how a pattern
is expressed in both standards, helps to identify mapping rules between the stan-
dards. This is important for automatically deriving a BPSS specification from a
UMM model, but also for reverse engineering.

The remainder of this paper is structured as follows. Section 2 gives an in-
troduction into the two standards of interest: UMM and BPSS. In Section 3 we
show how the 20 patterns, which are organized in 6 categories, are expressed
in both UMM and BPSS. Each pattern supported by the standards is demon-
strated by means of a practical example. The summary in Section 4 gives an
overview of the patterns supported and of the derived mapping rules.

2 Overview of UMM and BPSS

Since 1997 the United Nationss Centre for Trade Facilitation and Electronic
Business (UN/CEFACT) has been developing it modeling methodology UMM.
UMM concentrates on the business operational view (BOV) of the Open-edi
reference model [9]. The BOV is limited to those aspects regarding the making
of business decisions and commitments among organizations. This means that
UMM is independent of the technology - e.g. Web Services or ebXML - used to
implement a B2B partnership. UMM is based on UML. It defines a UML profile
for modeling the business aspects of inter-organizational business processes. The
UMM methodology covers 4 views: The business domain view (BDV) is used to
gather existing knowledge. It collects information about existing business pro-
cesses and does not construct new ones. The goal of the business requirements
view (BRV) is to identify possible business collaborations in the considered do-
main and to detail the requirements of these collaborations. The business trans-
action view (BTV) defines the choreography of the business collaboration and
structures the business information exchanged. The fundamental principle of
the business service view (BSV) is to describe the interactions between network
components.

The most important view for our evaluation is the BTV, since it deals with
the choreography of the inter-organizational business process called business
collaboration in UMM. A business collaboration is performed by two (= binary
collaboration) or more (multi-party collaboration) business partners. A business
collaboration might be complex involving a lot of activities between business
partners. However, the most basic business collaboration is a binary collabora-
tion realized by a request from one side and an optional response from the other
side. This simple collaboration is a unit of work that allows roll back to a defined
state before it was initiated. Therefore, this special type of collaboration is called
business transaction.

Consequently, a business transaction consists always of two collaborating ac-
tivities. Each activity is performed by one business partner. The initiating busi-
ness activity outputs information that is sent to the reacting business activity.
In case of a simple information distribution or notification the reacting business
activity processes the information and the transaction is completed. If a response
is expected the reacting business activity outputs the business information and
returns it to the initiating business activity. Note, that acknowledgments are not
explicitly modeled in the BTV, but time values assigned to a business activity
signify that they expect an acknowledgment from the collaborating activity in a
given time frame.

In UMM a business transaction is modeled by an activity graph. Fig.1 shows
the example of an authorize payment business transaction in UMM. Owing to
the strict well-formedness rules described above, a business transaction follows
always the same pattern as shown in Fig.1. In case of information distribution
and notification the object flow returning a business document is omitted. Due
to the strict choreography of the activities within a business transaction, our

Reacting Role: SellerInitiating Role: Customer

Request ResponseActivity

Initiate Payment

Response ResponseActivity

Confirm Payment

:AuthorizePayment

Envelope

:Confirm Payment

Envelope

[S
u
cc
es
s]

[C
o
n
tr
o
l
F
ai
l]

<<BusinessTransactionActivity>> Authorize Payment

Fig. 1. An example of a business transaction.

pattern based analysis in the following section does not consider the activities
within a business transaction.

A business collaboration is built by more business transactions. It is impor-
tant that the business collaboration defines an execution order for the business
transactions. In UMM, this choreography is defined by an activity graph called
business collaboration protocol. In the current version 12 of UMM all activities
of the business collaboration protocol must be stereotyped as business transac-
tion activities. A business transaction activity must be refined by the activity
graph of a business transaction. This means that recursively nesting business
collaborations is not possible in UMM. A business collaboration protocol is able
to model a multi-party collaboration. However, each business transaction in-
volves exactly two partners by definition. Our pattern-based analysis evaluates
the choreography of the business collaboration protocol. It checks whether a cer-
tain pattern is supported by the business collaboration protocol or not. All the
examples illustrated in Fig.3 to Fig.10 are business collaboration protocols. It is
important to note that UMM is based on UML 1.4. Therefore some limitations
are a result of limitations of UML 1.4. We will point out if they are solved by
UML 2.0.

The work on BPSS was based on the UMM meta model. However, it is not
mandatory to use UMM in order to create an BPSS instance. The goal of the
BPSS is to provide the bridge between e-business process modeling and speci-
fication of e-business software components [8]. It provides an XML schema to
specify a collaboration between business partners, and to provide configuration
parameters for the partners’ runtime systems in order to execute that collabo-
ration between a set of e-business software components. BPSS identified those
UMM modeling elements that are relevant for the runtime systems and discarded
the rest. The relevant modeling elements have been expressed in XML schema.

The UMM artefacts that are considered by BPSS are more or less the business
transaction and the business collaboration protocol. Nevertheless, the mapping
is not always straight forward as we will recognize in the next section. Again, our
analysis will not evaluate the activities within a business transaction due to its
strict choreography. Therefore, the analysis considers the business collaboration
protocol equivalent called binary collaboration. As the name indicates, BPSS
supports only the definition of collaborations between two partners. Multi-party

collaborations were deprecated in BPSS 1.1. In contrast to UMM, the activities
within a collaboration might not only refer to business transactions, but also to
other collaborations. Therefore, a recursive nesting of binary collaborations is
possible. In order to align with the UMM examples we will not use this concept in
our analysis. Fig.2 presents the XML schema definition for a binary collaboration
in BPSS.

BinaryCollaboration

name [0..1]

nameID [1]

pattern [0..1]

beginsWhen [0..1]

endsWhen [0..1]

preCondition [0..1]

postCondition [0..1]

timeToPerform [0..1]

initiatingRoleIDREF [0..1]

isInnerCollaboration [„false“]

Role

name [0..1]

nameID [1]

Start

name [0..1]

nameID [1]

toBusinessState [1]

toBusinessStateIDREF [0..1]

BusinessTransactionActivity

name [0..1]

nameID [1]

fromRole [1]

fromRoleIDREF [0..1]

toRole [1]

toRoleIDREF [0..1]

beginsWhen [0..1]

endsWhen [0..1]

preCondition [0..1]

postCondition [0..1]

businessTransaction [1]

businessTransactionIDREF [0..1]

isConcurrent [„true“]

isLegallyBinding [„true“]

timeToPerform [0..1]

CollaborationActivity

name [0..1]

nameID [1]

fromRole [1]

fromRoleIDREF [0..1]

toRole [1]

toRoleIDREF [0..1]

beginsWhen [0..1]

endsWhen [0..1]

preCondition [0..1]

postCondition [0..1]

binaryCollaboration [1]

binaryCollaborationIDREF [0..1]

Success

name [0..1]

nameID [1]

fromBusinessState [1]

fromBusinessStateIDREF [0..1]

conditionGuard [0..1]

ConditionExpression

expressionLanguage [1]

expression [1]

prefix [0..´1]

Failure

name [0..1]

nameID [1]

fromBusinessState [1]

fromBusinessStateIDREF [0..1]

conditionGuard [0..1]

Transition

name [0..1]

nameID [1]

fromBusinessState [1]

fromBusinessStateIDREF [0..1]

onInitiation [„false“]

toBusinessState [1]

toBusinessStateIDREF [0..1]

conditionGuard [0..1]

2

1.. 8

1.. 8

1.. 8

0.. 8

Fork

name [0..1]

nameID [1]

type [„OR“]

timeToPerform [0..1]

0.. 8

Join

name [0..1]

nameID [1]

waitForAll [„true“]

0.. 8

Decision

name [0..1]

nameID [1]

0.. 8

ConditionExpression

expressionLanguage [1]

expression [1]

prefix [0..´1]

ConditionExpression

expressionLanguage [1]

expression [1]

prefix [0..´1]

ConditionExpression

expressionLanguage [1]

expression [1]

prefix [0..´1]

Fig. 2. BPSS 1.1 binary collaboration element.

3 Workflow pattern based transformation

In this section we analyze UMM and BPSS based on well-known workflow pat-
terns proposed by Aalst et al. [5]. Since UMM is based on UML, analyzing UMM
is very similar to UML [10]. However, UMM’s meta model defines B2B-specific
tagged values. Sometimes a pattern is realized by these tagged values - which
is marked ‘t’ in Table 1 at the end of the paper. Furthermore, UMM does not
use all features of UML activity graphs due to a more restrictive meta model.
These workflow patterns are categorized into six classes - basic control patterns,
advanced branching and synchronization patterns, structural patterns, patterns
involving multiple instances, state-based patterns, and cancelation patterns. The
UMM and BPSS analysis for each class of patterns is presented in a separate
subsection. This analysis shows the expression power and the limitations both
of UMM and BPSS. It gives hints to improve the expression power of UMM
and BPSS. Furthermore, the analysis helps to derive the transformation rules
between UMM model and BPSS.

3.1 Basic control flow patterns

Aalst et al categorize basic control patterns into sequence, parallel split, syn-
chronization, exclusive choice, and simple merge. They are similar to definitions
of elementary control flow concepts provided by WfMC [11]. Both of UMM and
BPSS support all theses patterns.

Sequence. A sequence pattern means all activities are executed one by one.
Each subactivity state of UMM represents business transaction activity or col-
laboration transaction activity of BPSS and the state is connected to other state
by transition. Fig.3 illustrates a very simple binary collaboration for ordering
products. In this example, a request quote transaction is followed by the order
products transaction.

The UMM business collaboration protocol is based on a UML 1.4 activity
graph. BPSS was developed by mapping the UMM meta model of the busi-
ness collaboration protocol into an XML representation. However, not all UMM
concepts are represented one-to-one in BPSS. Therefore, a transformation from
UMM models to BPSS is not straightforward. A very significant difference be-
tween UMM and BPSS is the handling of final states. A final state of UMM
should be transformed to either success or failure element of BPSS. A single
UMM final state representing both a successful and an unsuccessful result must
be mapped to both a success and a failure element in BPSS. User input or nam-
ing convention of final state of UMM may be able to help the decision. Moreover,
UMM needs two concepts for a transition to a final state: The transition and
the state. However, the two concepts are merged into a single BPSS element,
representing both a transition and a state. The same concept applies to initial
states.

BusinessTransactionActivity

Order Products

BusinessTransactionActivity

Request Quote
005

004

016

008

012 014or

isConcurrent=“true”

preCondition=

“Customer.Register=true”

(a) UMM

</BinaryCollaboration>017

<Transition nameID="T1" fromBusinessState="Request Quote"/>016

conditionGuard="Failure" />015

<Failure nameID="FS2" fromBusinessState="Order Products" 014

conditionGuard="Success" />013

<Success nameID="FS1" fromBusinessState="Order Products"012

businessTransaction="Order Products" />011

preCondition="Customer.Register=true" 010

nameID="BTA2" fromRole="Customer" toRole="Seller"009

<BusinessTransactionActivity name="Order Products" 008

businessTransaction="Request Quote"isConcurrent="true" />007

nameID="BTA1" fromRole="Customer" toRole="Seller"006

<BusinessTransactionActivity name="Request Quote"005

<Start toBusinessState="Request Quote" nameID="SS1" />004

<Role name="Customer" nameID="Role2"/>003

<Role name="Seller" nameID="Role1" /> 002

<BinaryCollaboration nameID="BC1" timeToPerform="P2D">001

(b) BPSS

Fig. 3. An example of a sequence pattern.

Parallel split and synchronization. A parallel split pattern is a kind of
AND-fork, after which multiple succeeding threads are executed in parallel. For
example, after ordering products, the customer should authorize the payment. In
parallel to this authorization, the planning schedule and a subsequent shipping
schedule is defined. In UMM this parallel split pattern is modeled using pseudo
state fork depicted by a bar (c.f. in Fig. 4a). BPSS uses afork element of type or
(see line 041 in Fig. 4b). This means that its attribute type is set to or. This is
in opposite to xor which is discussed in the deferred choice pattern.

A synchronization pattern, a synonym for an AND-join, forms an antithesis
to the parallel split pattern. A successor of a synchronization pattern starts if all
its predecessors are completed. In Fig. 4a the seller ships the products after the
completion of both activities authorized payment and define shipping schedule.
This means that the notify shipment transaction must wait for the completion
of both preceding activities. In UMM the synchronization pattern is realized by
a synchronization pseudo state. Similarly to a fork state, the synchronization is
depicted as a bar. BPSS realizes this pattern using a join element whose wait
for all attribute is true (line 042 in Fig. 4b). This is in opposite to an OR-join
where the the wait for all attribute is set to false.

Exclusive choice and simple merge. After an exclusive choice pattern one
execution path is chosen from many alternative branches based on a decision.
UMM uses a decision pseudo state which is depicted as a diamond. Usually, the
decision is based on the state of a business object. For example, after requesting
quote the customer may want to order products. If the customer is registered,
the customer can order products right away. Otherwise the customer should
register himself before ordering. In 5a the decision is based on the state of the
customer information. If it is confirmed the next transaction is order products,
and register customers otherwise. BPSS realizes the exclusive choice pattern by a
decision element (line 028 in Fig. 5b). The decision element specifies a condition

BusinessTransactionActivity

Order Products

BusinessTransactionActivity

Authorize Payment

BusinessTransactionActivity

Define Planning Schedule

BusinessTransactionActivity

Define Shipping Schedule

BusinessTransactionActivity

Notify Shipment

005

004

041

024

008

011

014

042

017

020 022
or

026
028

030

032

035

038

(a) UMM

</BinaryCollaboration>043

<Join name="Join" nameID="J1" waitForAll="true" />042

<Fork name="Fork" nameID="F1" type="OR" />041

toBusinessState="Notify Shipment"/>040

fromBusinessState="Join before Notify Shipment" 039

<Transition nameID="T8" 038

toBusinessState="Join"/>037

fromBusinessState="Define Shipping Schedule" 036

<Transition nameID="T7" 035

toBusinessState="Define Shipping Schedule"/>034

fromBusinessState="Define Planning Schedule" 033

<Transition nameID="T6" 032

toBusinessState="Join" />031

<Transition nameID="T5" fromBusinessState="Authorize Payment"030

toBusinessState="Define Planning Schedule"/>029

<Transition nameID="T4" fromBusinessState="Fork"028

toBusinessState="Authorize Payment"/>027

<Transition nameID="T3" fromBusinessState="Fork"026

toBusinessState="Fork"/>025

<Transition nameID="T2" fromBusinessState="Order Products"024

conditionGuard="Failure"/>023

<Failure nameID="FS4" fromBusinessState="Notify Shipment"022

conditionGuard="Success"/>021

<Success nameID="FS3" fromBusinessState="Notify Shipment"020

businessTransaction="Notify Shipment"/>019

nameID="BTA6" fromRole="Seller" toRole="Customer" 018

<BusinessTransactionActivity name="Notify Shipment" 017

businessTransaction="Define Shipping Schedule"/>016

nameID="BTA5" fromRole="Customer" toRole="Seller" 015

<BusinessTransactionActivity name="Define Shipping Schedule"014

businessTransaction="Define Planning Schedule" />013

nameID="BTA4" fromRole="Customer" toRole="Seller"012

<BusinessTransactionActivity name="Define Planning Schedule"011

toRole="Seller" businessTransaction="Authorize Payment"/>010

nameID="BTA3" fromRole="Customer"009

<BusinessTransactionActivity name="Authorize Payment"008

toRole="Seller" businessTransaction="Order Products"/>007

nameID="BTA2" fromRole="Customer" 006

<BusinessTransactionActivity name="Order Products" 005

<Start toBusinessState="Order Products" nameID="SS2" />004

<Role name="Customer" nameID="Role2"/>003

<Role name="Seller" nameID="Role1" /> 002

<BinaryCollaboration nameID="BC2">001

(b) BPSS

Fig. 4. An example of a parallel split and a synchronization pattern

expression (line 020). All transitions starting from the decision (line 020 and
023) carry mutually exclusive condition guards with respect to the condition
expression. Another realization of an exclusive choice is using the result of binary
transaction activity. We detail this realization in arbitrary cycle.

A simple merge pattern, an antithesis of the exclusive choice pattern, merges
several alternative branches. For a simple merge pattern, neither any special
pseudo state nor any element is mandatory. Multiple transitions leading to one
state (business transaction activity order products) represent the pattern like
Fig.5a (line 023 and 026 in Fig. 5b). However, UMM also supports a merge state
depicted by a diamond as illustrated in Fig.5c. In this case, a merge state is
transformed to a join element (line 030 in Fig.5d) whose attribute wait for all is
false.

BusinessTransactionActivity

Request Quote

BusinessTransactionActivity

Register Customer

BusinessTransactionActivity

Order Products

CustomerInformation.confirm

No

Yes

Final state

Initial state004

014 016or

005

008

011

018

020 023

026

028

(a) UMM without merge state

</BinaryCollaboration>032

</Decision>031

expression="CustomerInformation.confirm" /> 030

<ConditionExpression expressionLanguage="DocumentEnvelopeNotation"029

<Decision nameID="D1" name="Test Customer Information">028

toBusinessState="Order Products"/> 027

<Transition nameID="T12" fromBusinessState="Register Customer"026

toBusinessState="Order Products" conditionGuard="Success" /> 025

fromBusinessState="Test Customer Information"024

<Transition nameID="T11"023

toBusinessState="Register Customer"conditionGuard="Failure"/> 022

fromBusinessState="Test Customer Information"021

<Transition nameID="T10"020

toBusinessState="Test Customer Information"/> 019

<Transition nameID="T9" fromBusinessState="Request Quote"018

conditionGuard="Failure" /> 017

<Failure nameID="FS6" fromBusinessState="Order Products"016

conditionGuard="Success" /> 015

<Success nameID="FS5" fromBusinessState="Order Products"014

toRole="Seller" businessTransaction="Order Products"/> 013

nameID="BTA2" fromRole="Customer"012

<BusinessTransactionActivity name="Order Products"011

toRole="Seller" businessTransaction="Register Customer"/> 010

nameID="BTA7" fromRole="Customer"009

<BusinessTransactionActivity name="Register Customer"008

toRole="Seller" businessTransaction="Request Quote"/> 007

nameID="BTA1" fromRole="Customer" 006

<BusinessTransactionActivity name="Request Quote"005

<Start toBusinessState="Request Quote" nameID="SS1" /> 004

<Role name="Customer" nameID="Role2"/>003

<Role name="Seller" nameID="Role1" /> 002

<BinaryCollaboration nameID="BS3">001

(b) BPSS without merge state

BusinessTransactionActivity

Request Quote

BusinessTransactionActivity

Register Customer

BusinessTransactionActivity

Order Products

CustomerInformation.confirm

No

Yes

Final state

Initial state004

014 016or

005

008

011

018

020 023

026

031

028

030

(c) UMM with merge state

</BinaryCollaboration>035

</Decision>034

expression="CustomerInformation.confirm" /> 033

<ConditionExpression expressionLanguage="DocumentEnvelopeNotation"032

<Decision nameID="D1" name="Test Customer Information">031

<Join nameID="J3" name="Simple Merge" waitForAll="false" /> 030

toBusinessState="Order Products"/> 029

<Transition nameID="T30" fromBusinessState="Simple Merge"028

toBusinessState="Simple Merge"/> 027

<Transition nameID="T12" fromBusinessState="Register Customer"026

toBusinessState="Simple Merge" conditionGuard="Success" /> 025

fromBusinessState="Test Customer Information"024

<Transition nameID="T11"023

toBusinessState="Register Customer"conditionGuard="Failure"/> 022

fromBusinessState="Test Customer Information"021

<Transition nameID="T10"020

toBusinessState="Test Customer Information"/> 019

<Transition nameID="T9" fromBusinessState="Request Quote"018

conditionGuard="Failure" /> 017

<Failure nameID="FS6" fromBusinessState="Order Products"016

conditionGuard="Success" /> 015

<Success nameID="FS5" fromBusinessState="Order Products"014

toRole="Seller" businessTransaction="Order Products"/> 013

nameID="BTA2" fromRole="Customer"012

<BusinessTransactionActivity name="Order Products"011

toRole="Seller" businessTransaction="Register Customer"/> 010

nameID="BTA7" fromRole="Customer"009

<BusinessTransactionActivity name="Register Customer"008

toRole="Seller" businessTransaction="Request Quote"/> 007

nameID="BTA1" fromRole="Customer" 006

<BusinessTransactionActivity name="Request Quote"005

<Start toBusinessState="Request Quote" nameID="SS1" /> 004

<Role name="Customer" nameID="Role2"/>003

<Role name="Seller" nameID="Role1" /> 002

<BinaryCollaboration nameID="BS3">001

(d) BPSS with merge state

Fig. 5. An example of an exclusive choice and a simple merge pattern.

3.2 Advanced branching and synchronization patterns

In this subsection we examine more advanced patterns for branching and merge.
This category includes multi choice, synchronizing merge, multi merge, and dis-
criminator.

Multi choice and synchronizing merge. After a multi choice pattern several
execution paths are chosen from many alternative threads based on a decision.
For example, after ordering products, the seller usually initiates both the issue
invoice transaction and the notify shipment transaction. Both must be completed
in order to authorize payment. However, notify shipment makes only sense if the
seller ships the products. If the customer collects the products this transaction
is not necessary. Therefore, its execution is based on the party accomplishing
the shipment. UMM supports this pattern by placing guards on the outgoing
transitions from a conditional fork. In Fig.6a the transition from a fork pseudo
state to activity state, notify shipment, is guarded by the decision on whether
the shipper is the selleror not. In BPSS the transitions (line 025 in Fig.6b) from
the fork element (line 011) with condition expressions (line 027) realize this
pattern. A fork pseudo state may have several guarded outgoing transitions. All
decisions must be evaluated before the first business transaction preceding the
multi choice is executed. The order of evaluating these condition expressions is
not important.

A synchronizing merge, an antithesis of the multiple choice, converges into
one continuing activity. UMM realizes this pattern in exactly the same way as
the synchronization pattern. By definition, the synchronization pseudo state does
not wait for threads that have not been started. Since BPSS does not support
this pattern directly, we need a work around to realize this pattern. This work
around uses a join element whose attribute wait for all is true like in the case
of the synchronization pattern (line 036 in Fig.6b). However the join element
cannot be executed since wait for all attribute indicates that the join element
must wait for all incoming threads to finish. Hence, the fork element (line 035)
includes an attribute time to perform. After the specified time is exceeded, all
the not executed transactions are skipped and the collaboration continues from
the corresponding join. Although a time to perform attribute makes this pattern
possible, this realization wastes time. Moreover, it is dangerous since we can ig-
nore not only pruned threads by guarded transitions but also binary transaction
activities that must be executed. For example, we assume the customer has a
responsibility of collecting the products in Fig.6. Even if the invoice is issued in
one hour, the authorize payment should wait for two days. More dangerous is
the case of not issuing the invoice for two days after ordering products, because
the customer should authorize payment anyway. For avoiding this problem, UML
2.0 recommends a decision node instead of a guarded transition like Fig.6c and
Fig.6d. A circle with a cross in Fig.6d is a flow final node. This node is supported
by UML 2.0 and means the termination of only a thread. The representation of
Fig.6c can be directly transformed to BPSS. If a type of a fork is xor and the cor-

Order.Shipper

=Seller

BusinessTransactionActivity

Order Products

BusinessTransactionActivity

Issue Invoice

BusinessTransactionActivity

Notify Shipment

BusinessTransactionActivity

Authorize Payment

004

017 019or

005

008

011

014

021

023 025

029

031

033

035

036

(a) UMM

</BinaryCollaboration>037

<Join name="Synchronize Merge" nameID="J3" waitForAll="true" />036

<Fork name="Multi Choice"nameID="F3"type="OR"timeToPerform="P2D"/>035

toBusinessState="Authorize Payment"/>034

<Transition nameID="T36" fromBusinessState="Synchronize Merge"033

toBusinessState="Synchronize Merge"/>032

<Transition nameID="T35" fromBusinessState="Notify Shipment"031

toBusinessState="Synchronize Merge"/>030

<Transition nameID="T34" fromBusinessState="Issue Invoice"029

expression="Order.Shipper = Seller" /> </Transition>028

<ConditionExpression expressionLanguage="OCL"027

toBusinessState="Notify Shipment" conditionGuard="Success">026

<Transition nameID="T33" fromBusinessState="Multi Chice"025

toBusinessState="Issue Invoice"/>024

<Transition nameID="T32" fromBusinessState="Multi Chice"023

toBusinessState="Multi Chice"/>022

<Transition nameID="T31" fromBusinessState="Order Products"021

conditionGuard="Failure" />020

<Failure nameID="FS21" fromBusinessState="Authorize Payment"019

conditionGuard="Success" />018

<Success nameID="FS20" fromBusinessState="Authorize Payment"017

businessTransaction="Authorize Payment"/>016

fromRole="Customer" toRole="Seller" 015

<BusinessTransactionActivity name="Authorize Payment"nameID="BTA3"014

businessTransaction="Notify Shipment"/>013

fromRole="Seller" toRole="Customer" 012

<BusinessTransactionActivity name="Notify Shipment" nameID="BTA6"011

businessTransaction="Inssue Invoice"/>010

fromRole="Seller" toRole="Customer" 009

<BusinessTransactionActivity name="Issue Invoice" nameID="BTA8"008

businessTransaction="Order Products"/>007

fromRole="Customer" toRole="Seller" 006

<BusinessTransactionActivity name="Order Products" nameID="BTA2"005

<Start toBusinessState="Order Products" nameID="SS2" />004

<Role name="Customer" nameID="Role2"/>003

<Role name="Seller" nameID="Role1" /> 002

<BinaryCollaboration nameID="BC2">001

(b) BPSS

BusinessTransactionActivity

Order Products

BusinessTransactionActivity

Issue Invoice

BusinessTransactionActivity

Notify Shipment

BusinessTransactionActivity

Authorize Payment

OrderShipper=Seller

yes
no

(c) UML using a decision state

BusinessTransactionActivity

Order Products

BusinessTransactionActivity

Issue Invoice

BusinessTransactionActivity

Notify Shipment

BusinessTransactionActivity

Authorize Payment

OrderShipper=Seller

yes

no

(d) UML using a flow final node

Fig. 6. An example of a multi choice and a synchronizing merge pattern.

responding join element is not reached in time to perform, a timeout exception
is generated.

Discriminator. A discriminator pattern is similar to the synchronization pat-
tern since multiple threads converge to one thread and the following thread is
executed only once. However, the continuing activity starts after the first preced-
ing thread finishes. We consider an example similar to the one used for explaining
multi choice and a synchronizing merge. The seller is always responsible for the
shipment. The customer authorizes the payment either if the invoice is issued
or if the seller notifies the shipment. UMM does not support this pattern, since
there is no semantically equivalent pseudo state. In UML 2.0, a join specifica-
tion might be assigned to a join node. This join specification decides when the
continuing thread is started (see Fig.7a). BPSS realizes the pattern by a join
element (line 034 in Fig.7b), whose wait for all’s value is false.

JoinSpec:=discriminator

BusinessTransactionActivity

Order Products

BusinessTransactionActivity

Issue Invoice

BusinessTransactionActivity

Notify Shipment

BusinessTransactionActivity

Authorize Payment

004

017 019or

005

008

011

014

021

023 025

027

029

031

033

034

(a) UMM

</BinaryCollaboration>035

<Join name="Discriminator" nameID="J2" waitForAll="false" />034

<Fork name="Parallel Split" nameID="F2" />033

toBusinessState="Authorize Payment"/>032

<Transition nameID="T18" fromBusinessState="Discriminator"031

toBusinessState="Discriminator"/>030

<Transition nameID="T17" fromBusinessState="Notify Shipment"029

toBusinessState="Discriminator"/>028

<Transition nameID="T16" fromBusinessState="Issue Invoice"027

toBusinessState="Notify Shipment"/>026

<Transition nameID="T15" fromBusinessState="Parallel Split"025

toBusinessState="Issue Invoice"/>024

<Transition nameID="T14" fromBusinessState="Parallel Split"023

toBusinessState="Parallel Split"/>022

<Transition nameID="T13" fromBusinessState="Order Products"021

conditionGuard="AnyProtocolFailure" />020

<Failure nameID="FS8" fromBusinessState="Authorize Payment"019

conditionGuard="Success" />018

<Success nameID="FS7" fromBusinessState="Authorize Payment" 017

toRole="Seller" businessTransaction="Authorize Payment"/>016

nameID="BTA3" fromRole="Customer"015

<BusinessTransactionActivity name="Authorize Payment" 014

businessTransaction="Notify Shipment"/>013

fromRole="Seller" toRole="Customer"012

<BusinessTransactionActivity name="Notify Shipment"nameID="BTA6"011

businessTransaction="Inssue Invoice"/>010

fromRole="Seller" toRole="Customer"009

<BusinessTransactionActivity name="Issue Invoice" nameID="BTA8"008

businessTransaction="Order Products"/>007

fromRole="Customer" toRole="Seller" 006

<BusinessTransactionActivity name="Order Products"nameID="BTA2"005

<Start toBusinessState="Order Products"nameID="SS2" />004

<Role name="Customer" nameID="Role2"/>003

<Role name="Seller" nameID="Role1" /> 002

<BinaryCollaboration nameID="BC4">001

(b) BPSS

Fig. 7. An example of a discriminator pattern.

Multi merge. After a multi merge pattern multiple threads are merged into
one continuing activity, which is executed whenever a precedence thread reaches
the multi merge pattern. UMM does not support it now, since the current UMM
is based on UML 1.4, which forces forks and joins to be well-nested. However, in
UML 2.0 this constraint disappears and a merge node following a fork node real-
izes this pattern. BPSS does not support the multi merge pattern either. Future
versions of BPSS need improvements to support this pattern. We recommend
to adopt the concept of UML 2.0. In UML 2.0 there exist both a pseudo state
merge node - depicted as a diamond - and a synchronization node - depicted
as bar. Currently, in BPSS there exists a single element join to realize simple
merge, synchronization and discriminator. We prefer a new element similar to
the UML diamond to realize simple merge and multi merge.

3.3 State-based patterns

If the execution of one activity depends on the state of another activity, the
pattern is categorized into the class of state-based patterns. Deferred choice,
interleaved parallel routing and milestone are categorized into this class of pat-
terns.

Deferred choice. A deferred choice pattern selects only one continuing activ-
ity from several candidates like an exclusive choice, but the decision is implicit.
For example, the seller ships the products after order products unless the cus-
tomer cancels the products before the shipment. In this example, we do not know
whether the next business transaction activity is notify shipment or cancel order
before one of them starts. In UMM the deferred choice is realized by events, e.g.
the shipment of the products or the decision to cancel the order. Furthermore,
the post condition of each activity in the deferred choice must be in contradiction
to the pre conditions of the other activities in the deferred choice. In BPSS, a
corresponding element for the deferred choice exists. BPSS realizes this pattern
using the element fork whose type attribute is xor (line 022 in Fig.8b). As soon as
a succeeding business transaction activity starts, the others become unavailable.

Interleaved parallel routing. An interleaved parallel routing pattern defines
the execution of a set of activities in an arbitrary order. Each activity of the
set is executed once. At a given point in time only one activity is executed.
The execution order is fixed at run time. Neither UMM nor BPSS supports the
interleaved parallel routing pattern.

Milestone. A milestone pattern is the start of an activity depends on the state
of one or more other activities. For example, order products in Fig.3 can be only
initiated after register customer and before unregistered customer in Fig.9. UMM
uses tagged values, pre condition and post condition for this pattern. The pre
condition and post condition are transformed as attributes of a business trans-
action activity in BPSS. Before initializing order products, (line 008 in Fig.3b),

BusinessTransactionActivity

Cancel Order

BusinessTransactionActivity

Notify Shipment

BusinessTransactionActivity

Order Products

shipping
cancellation

of the order

success

failure

004

005

010

008

012

014

020
018preCondition=

order.inProgress

postCondition=

order.shiped

postCondition=order.inProgress

preCondition=

order.inProgress

postCondition=

order.canceled

(a) UMM

</BinaryCollaboration>023

<Fork name="Deferred Choice" nameID="F4" type="XOR" />022

toBusinessState="Notify Shipment"/>021

<Transition nameID="T23" fromBusinessState="Deferred Choice"020

toBusinessState="Cancel Order"/>019

<Transition nameID="T22" fromBusinessState="Deferred Choice"018

toBusinessState="Deferred Choice"/>017

<Transition nameID="T21" fromBusinessState="Order Products"016

conditionGuard="Failure" />015

<Failure nameID="FS12" fromBusinessState="Cancle Order"014

conditionGuard="Success" />013

<Success nameID="FS11" fromBusinessState="Notify Shipment"012

fromRole="Seller"toRole="Customer"businessTransaction="Notify Shipment"/>011

<BusinessTransactionActivity name="Notify Shipment" nameID="BTA6"010

fromRole="Customer" toRole="Seller"businessTransaction="Cancel Order"/>009

<BusinessTransactionActivity name="Cancel Order" nameID="BTA10" 008

toRole="Seller" businessTransaction="Order Products" />007

nameID="BTA2" fromRole="Customer" 006

<BusinessTransactionActivity name="Order Products"005

<Start toBusinessState="Order Products" nameID="SS2" />004

<Role name="Customer" nameID="Role2"/>003

<Role name="Seller" nameID="Role1" /> 002

<BinaryCollaboration nameID="BC6" name="Deferred Choice">001

(b) BPSS

Fig. 8. An example of a deferred choice pattern.

its pre condition “Customer.Register=true” is checked (line 010 in Fig.3b). This
value is modified in register customer and unregister customer of another binary
collaboration using post condition (line 008 and 011 in Fig.9b).

3.4 Structural patterns

In this subsection we examine the structural patterns arbitrary cycle and implicit
termination. Preventing these patterns improves the readability and makes the
interpretation easier. However, neither UMM nor BPSS imposes structural re-
strictions on the model.

Arbitrary cycles. A structural cycle pattern is a loop that has only one entry
and only one exit point. The while and for statements of C language are examples
of structural cycles. Contrary to a structural cycle, an arbitrary cycle pattern
has no restriction on the number of entry and exit point. Some arbitrary cycles
are constructed by the combination of multiple decisions, xor-typed forks and
transitions. In this case UMM and BPSS are able to realize the arbitrary cycle.
However, arbitrary cycles might involve forks and joins as well. Since each fork
has a corresponding join, transitions can not cross the boundary of the fork-join-
block, UMM does not fully support the arbitrary cycle pattern. Since BPSS does
not include a similar well-formedness rule it fully supports the arbitrary cycle.

Fig.10 offers an example of an arbitrary cycle pattern. An undesirable situ-
ation, such as a lack of raw material, a natural disaster, or a strike, can prevent
the seller from shipping the exact number of products in time. In this case, the
seller should inform the customer about the situation and request for purchase

BusinessTransactionActivity

Unregister Customer

BusinessTransactionActivity

Register Customer
005

004

017

009

013 015or

postCondition=

“Customer.Register=true”

postCondition=

“Customer.Register=false”

(a) UMM

</BinaryCollaboration>018

<Transition nameID="T1" fromBusinessState="Request Quote"/>017

conditionGuard="Failure" />016

<Failure nameID="FS2" fromBusinessState="Order Products"015

conditionGuard="Success" />014

<Success nameID="FS1" fromBusinessState="Order Products"013

businessTransaction="Unregister Customer" />012

postCondition="Customer.Register=false"011

nameID="BTA31" fromRole="Customer" toRole="Seller" 010

<BusinessTransactionActivity name=“Unregister Customer" 009

postCondition=“Customer.Register=true"/>008

businessTransaction=“Register Customer"isConcurrent="true"007

nameID="BTA30" fromRole="Customer" toRole="Seller"006

<BusinessTransactionActivity name=“Register Customer"005

<Start toBusinessState=“Registering" nameID="SS30" />004

<Role name="Customer" nameID="Role2"/>003

<Role name="Seller" nameID="Role1" /> 002

<BinaryCollaboration nameID="BC30" >001

(b) BPSS

Fig. 9. An example of a milestone pattern.

BusinessTransactionActivity

Order Products

BusinessTransactionActivity

Request for

Purchase Order Change

BusinessTransactionActivity

Notify Shipments

Success

Initial state

Fail

Business

Failure

Business Success

Order Changable

Failure

Success

BusinessTransactionActivity

Request Purchase

Order Cancellation

004

005

017

008

011

014

019

022

024
026

029

032

035

037

(a) UMM

</BinaryCollaboration>041

</Decision>040

expression="OrderChangable" />039

<ConditionExpression expressionLanguage="DocumentEnvelopeNotation"038

<Decision name="OrderChange" nameID="D6">037

toBusinessState="Order Products" conditionGuard="Success" />036

<Transition nameID="T41" fromBusinessState="OrderChange"035

conditionGuard="Failure" />034

toBusinessState="Request Purchase Order Cancellation"033

<Transition nameID="T40" fromBusinessState="OrderChange"032

toBusinessState="Notify Shipment" conditionGuard="BusinessSuccess" />031

fromBusinessState="Request Purchase Order Change"030

<Transition nameID="T39"029

toBusinessState="OrderChange" conditionGuard="BusinessFailure" />028

fromBusinessState="Request Purchase Order Change"027

<Transition nameID="T38"026

toBusinessState="Notify Shipment" />025

<Transition nameID="T37" fromBusinessState="Order Products"024

toBusinessState="Request Purchase Order Change"/>023

<Transition nameID="T19" fromBusinessState="Order Products"022

conditionGuard="Failure" />021

fromBusinessState="Request Purchase Order Cancellation" 020

<Failure nameID="FS16"019

conditionGuard="Success" />018

<Success nameID="FS3" fromBusinessState="Notify Shipment"017

businessTransaction="RequestPurchaseOrderCancellation"/>016

nameID="BTA16" fromRole="Customer" toRole="Seller" 015

<BusinessTransactionActivity name="Request Purchase Order Cancellation"014

toRole="Customer" businessTransaction="Notify Shipment"/>013

nameID="BTA6" fromRole="Seller"012

<BusinessTransactionActivity name="Notify Shipment"011

businessTransaction="RequestPurchase OrderChange"/>010

nameID="BTA15" fromRole="Seller" toRole="Customer" 009

<BusinessTransactionActivity name="Request Purchase Order Change"008

toRole="Seller" businessTransaction="Order Products"/>007

nameID="BTA2" fromRole="Customer"006

<BusinessTransactionActivity name="Order Products"005

<Start toBusinessState="Order Products" nameID="SS2" />004

<Role name="Customer" nameID="Role2"/>003

<Role name="Seller" nameID="Role1" /> 002

<BinaryCollaboration nameID="BC5">001

(b) BPSS

Fig. 10. An example of an arbitrary cycle pattern.

order change. The choice between request for purchase order change and notify
shipment is realized by a deferred choice pattern. If the customer accepts the
request, the seller ships the products. Otherwise, the customer decides whether
he changes the order or cancels the order. If he decides to change the order, the
binary collaboration restarts from order products. Since the cycle (order products
→ request for purchase order change → order changable → order products) has
three exit points, this example includes an arbitrary cycle pattern.

Implicit termination. Both UMM and BPSS have an explicit final state (a
final state of UMM and a success and a failure element of BPSS) but they also
support a special kind of implicit termination pattern. An implicit termination
pattern means a situation where there is no activity to be done even if a final
state is not reached and at the same time the workflow is not in deadlock.
For example, binary collaboration has an attribute, time to perform (line 001
in Fig.3b). That is, the binary collaboration is forced to terminate in two days
although the final state has not been reached.

3.5 Patterns involving multiple instance

We examine patterns involving multiple instances in this subsection. These pat-
terns are categorized by the ability to launch multiple instances of activities
and synchronization among the instances. The patterns are multiple instances
without synchronization, multiple instances with a priori design time knowledge,
multiple instances with a priori run time knowledge, and multiple instances with-
out a priori run time knowledge.

Multiple instances with a priori design time knowledge and multiple instances
with a priori run time knowledge restrict the number of instances at design time
and run time, respectively. In contrast, multiple instances without synchroniza-
tion and multiple instances without a priori run time knowledge have no limita-
tion on the number of instances. While UML supports multiple instances with
a priori design time knowledge and multiple instances with a priori run time
knowledge [10], UMM does not use this feature.

Multiple instances without a priori run time knowledge can manage the re-
lationship among instances such as synchronization differently from multiple
instances without synchronization. BPSS supports only the multiple instances
without synchronization by assigning true to a business transaction activity’s at-
tribute is concurrent (line 007 in Fig.3b). Since the activity diagram of UML
does not support this pattern, is concurrent is expressed as a tag value of an
activity in UMM.

3.6 Cancelation patterns

Both cancel activity pattern and cancel case pattern are cancelation patterns. By
performing activities of the cancelation patterns other activities are withdrawn.

Cancel activity. A cancel activity pattern cancels an enabled activity. UML
supports through transition with triggers. However, UMM does not use this fea-
ture and BPSS does not support this pattern directly, either. This pattern can
be supported by a deferred choice pattern [5]. However, a business transaction
activity is composed of other activities in the business transaction view and each
activity of business transaction corresponds to other workflow in the company.
Moreover, we cannot interrupt the business transaction activity even using a
deferred choice. In Fig. 11 if define planning schedule fails, we do not need to
authorize payment any more. However, even if define planning schedule fails be-
fore the customer sends the authorize payment envelope, BPSS does not provide
a pattern to cancel the authorize payment transaction. The only workaround is
a milestone pattern using pre- and post-conditions.

Reacting Role: SellerInitiating Role: Customer

Request ResponseActivity

Initiate Payment

Response ResponseActivity

Confirm Payment

:AuthorizePayment

Envelope

:Confirm Payment

Envelope

[S
u
cc
es
s]

[C
o
n
tr
o
l
F
ai
l]

BusinessTransactionActivity

Define Planning Schedule

BusinessTransactionActivity

Defining Shipping Schedule

success
If define

planning

schedule is fail,

authorize

payment should

be canceled.

BusinessTransactionActivity Authorize Payment

Fig. 11. A problem of a cancel activity pattern.

Cancel case. A cancel case patterns terminates a binary collaboration. In UMM
(BPSS), as soon as a final state (a success or a failure element) is reached, the
binary collaboration is terminated. Even if other business transaction activities
remain, they do not open any more. In this case, a timeout exception can be
generated. Therefore, although a binary collaboration has several final states,
they should be mutually exclusive.

4 Conclusion

In this paper, we analyze the expression power of UMM and BPSS by workflow
patterns. We summarize the analysis in Table 1. A ‘+’ and a ‘-’ in a cell of the
table refer to direct support and no support, respectively. Even if a pattern is
rated as a ‘-’, we can realize the pattern partially by the combination of other
patterns [5]. A ‘t’ means that the pattern is realized as a tag value in UMM not
by a feature of an activity graph in UML. A ’2’ indicates that the pattern can
be supported if UMM will adapt UML 2.0.

According to the presentations of each pattern in both UMM and BPSS, we
are able to derive the transformation rules listed below. This list covers all known

UMM v. 12 BPSS v. 1.10

Sequence + +
Parallel Split + +
Synchronization + +
Exclusive Choice + +
Simple Merge + +
Multi Choice + +
Synchronizing Merge + -
Multi Merge 2 -
Discriminator 2 +
Arbitrary Cycles - +
Implicit Termination t +
MI without Synchronization t +
MI with a Priori Design Time Knowledge - -
MI with a Priori Runtime Knowledge - -
MI without a Priori Runtime Knowledge - -
Deferred Choice + +
Interleaved Parallel Routing - -
Milestone t +
Cancel Activity - -
Cancel Case + +

Table 1. Comparison of UMM and BPSS

rules necessary to transform a UMM business collaboration protocol to a BPSS
binary collaboration. Our future work includes representation of these rules in
a formal syntax and an implementation of the mapping from UMM business
processes represented in XMI [12] to BPSS.

– An initial state and an activity state are transformed to a start element and
a business transaction activity, respectively.

– A final state is transformed to a success or a failure element. We need some
convention for deciding whether final state is transformed to a success or a
failure element.

– A transition of UMM is transformed to a transition of BPSS. However, if
the transition leads to a final state, the transition becomes an attribute of a
success or a failure element. The same exception applies to transitions from
the initial state.

– A synchronization state with multiple incoming transitions is transformed
to a fork element whose type attribute is or. If some outgoing transitions are
guarded, the fork element needs a time to perform attribute.

– A synchronization state with multiple outgoing transitions is transformed to
a join element whose wait for all attribute is true.

– A decision state with multiple incoming transitions is transformed to a de-
cision element.

– A decision state with multiple outgoing transitions is transformed to a join
element whose wait for all attribute is false.

– If an business transaction activity has multiple outgoing transitions and each
transition is triggered by event, a fork element is inserted between business
transaction activity and its outgoing transitions. The type of the fork is xor
if triggering events are not concurrent.

– Tagged values, is concurrent and time to perform, are transformed to the
same named attributes of business transaction activity and binary collabora-
tion, respectively.

Our research resulted in the need for improvements for both UMM and BPSS.
Some patterns like an implicit termination and an arbitrary cycle are supported
by both. For reasons of readability these patterns should be avoided. Therefore,
we need to study well-formedness rules for prohibiting these patterns.

In spite of their similarity, the transformation between UMM and BPSS is
not straightforward since the sets of workflow patterns that the two languages
support are not exactly the same. For example, while BPSS realizes a discrim-
inator pattern, a BPSS instance derived from UMM will never use this pattern
since UMM cannot support the pattern yet. If a new UMM version adopts UML
2.0, the gap between UMM model and BPSS is reduced since the new UMM
supports more workflow patterns including a discriminator.

We can also apply the workflow pattern to transformations between other het-
erogeneous business process modeling languages such as BPEL4WS and XPDL.

References

1. Ferris, C., Farrell, J.: What are web services. Communications of the ACM 46
(2003) 31 – 35

2. W3C Web Services Architecture Working Group: Web services architecture re-
quirements; W3C working draft (2002) http://www.w3.org/TR/2002/WD-wsa-
reqs-20021114.

3. Leymann, F., Roller, D.: Modeling Business Processes with BPEL4WS. In: Pro-
ceedings of the 1st GI Workshop XML4BPM. (2004) 7–24

4. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36 (2003)
46 – 52

5. Van der Aalst, A., Hofsteded, A.T., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14 (2003) 5 – 51

6. Wohed, P., van der Aalst, W.M., Dumas, M., ter Hofstede, A.H.: Analysis of web
services composition languages: The case of bpel4ws. Lecture notes in computer
science 2813 (2003) 200–215

7. UN/CEFACT TMG: UN/CEFACT modeling methodology, revision 12 (2003)
http://www.untmg.org.

8. UN/CEFACT TMG: ebXML business process specification version 1.10 (2003)
9. ISO: Open-edi Reference Model. ISO/IEC JTC 1/SC30 ISO Standard 14662. ISO

(1995)
10. Dumas, M., ter Hofstede, A.H.: UML activity diagrams as a workflow specification

language. Lecture notes in computer science 2185 (2001) 76 – 90
11. WfMC: Workflow management coalition terminology & glossary. Technical Report

WFMC-TC-1011, WfMC (1999)
12. Jeckle, M.: OMG’s XML Metadata Interchange XMI. In: Proceedings of the 1st

GI Workshop XML4BPM. (2004) 25–42

