Transforming UMM Business
Collaboration Models to BPEL

Birgit Hoftreiter and Christian Huemer

Department of Computer Science and Business Informatics
University of Vienna, Liebiggasse 4, 1010 Vienna, Austria
{birgit.hofreiter,christian.huemer} @univie.ac.at

Abstract. UN/CEFACT’s Modeling Methodology (UMM) has been
developed to analyze and design B2B business processes independent of the
underlying exchange technology. It became the methodology of choice for
developing ebXML business processes. Another technology for realizing
B2B partnerships is Web Services. Currently, the business process execution
languages (BPEL) seems to be the winner amongst the Web Services
languages for orchestration and choreography. If Web Services is used as
underlying exchange technology for B2B, the semantics of UMM business
processes must be represented in BPEL. The goal of this paper is to verify
whether BPEL is appropriate to capture UMM business collaborations or not.
For this purpose we describe a transformation from UMM to BPEL.

1 Introduction

The OMG’s Model Driven Architecture (MDA) is an effort to create applications by
transforming models to executable software. MDA starts with the well-known and long
established idea of separating the specification of the operation of a system from the de-
tails of the way that system uses the capabilities of its platform. The MDA Guide [9]
identifies 4 very high level steps: (1) specifying a system independently of the platform
that supports it, (2) specifying platforms, (3) choosing a particular platform for the sys-
tem, and (4) transforming the system specification into one for a particular platform.
The MDA approach should lead to a re-use of analysis & design artefacts as well as im-
plementations. This should reduce the complexity of software development and result
in lower costs. Furthermore, the approach of separating specification and implementa-
tion enables the portability of applications to existing and future technologies. Another
goal of MDA is interoperability even across platforms. Strict methods guarantee that
applications based on different technologies implement the same business logic.

In first place, the MDA approach focuses on the development of enterprise systems.
However, we feel that there are no restrictions to follow a similar approach to intercon-
nect systems of different enterprises in B2B e-Commerce. This is also in-line with the
Open-edi reference model, which was developed in the electronic data interchange
community and which became an ISO standard in 1997 [5]. Open-edi distinguishes a
business operational view (BOV) and a functional service view (FSV). BOV related
standards provide the tools for formal business description(s) of the external behavior
of organizations, as seen by other organizations, in view of achieving a business goal.

These will address the rules for inter-organizational business processes, like operational
conventions, agreements, or mutual obligations, as well as the semantics of business
data exchanged. The FSV standards address the supporting services meeting the mech-
anistic needs of Open-edi. Consequently, FSV standards focus on the IT infrastructure
for inter-organizational systems.

UN/CEFACT’s Modeling Methodology (UMM) defines a development process for
BOV standards on top of the UML [13]. It provides a UML profile for modeling B2B.
In terms of the MDA, UMM fits into step (1) specifying a system independently of the
platform. Candidate B2B platforms on the FSV and for MDA step (2) are typically im-
plemented by the concepts of UN/EDIFACT, ebXML, and Web Services. In step (3)
one has to select one of these standards for implementing the B2B system. The MDA
requires a well-defined set of rules and techniques for mapping the platform indepen-
dent model to the target technology in step (4). Thus, the definition of these rules and
techniques is a critical task for the success of the MDA.

We are mainly interested in the choreography of business collaborations. Therefore,
it is our goal to define the mapping from UMM business collaborations to the different
choreography languages for B2B platforms. In other publications we concentrated on
the mapping between UMM and ebXML choreography language BPSS [11]. A critical
evaluation of these two standards is included in this conference proceedings [6]. Al-
though UMM is not a mandatory part of ebXML, BPSS might be considered as “XML-
ification” of parts of the UMM meta model. Owing to the close relationship between
UMM and BPSS, the mapping rules are rather simple [4].

Currently, the adoption of Web Services standards by industry is rather quick. It
seems that industry support for Web Services is much higher than for ebXML. There-
fore, it is important to define a mapping between UMM and Web Services. The winner
amongst the different choreography / orchestration languages seems to be the business
process execution language (BPEL) [1], which combines WSFL [7] and XLANG [10].
This paper presents a first approach for a mapping from UMM version 12 [13] (that is
based on UML 1.4) to BPEL 1.1. Before we go into the details of this transformation in
Section 3, Section 2 briefly describes those UMM concepts that are relevant for the run-
time systems.

2 UMM Concepts for Run-time Systems

The UMM meta model consists of 4 views in order to describe business collaboration
models. Due to space limitations we will not go into the details of each view. We con-
centrate on the business transaction view (BTV) which captures most of the concepts
relevant for a run-time system: business transaction and business collaboration proto-
col. The interested reader is referred to the UMM Meta Model [12] and the UMM User
Guide [13], and our overview article [3].

A business process is defined as an organized group of related activities that togeth-
er create customer value [2]. A business collaboration is a special type of a business
process that involves two or more partners. A business collaboration is about aligning
the information systems of the business partners, i.e. keeping all relevant business ob-
jects (e.g. purchase orders, line items, etc.) in an aligned state. If a business partner rec-

ognizes an event that changes the state of a business object, it initiates a communication
to synchronize with the collaborating business partner. It follows that this communica-
tion is an atomic unit that leads to a synchronized state in both information systems.
Hence, this special type of business collaboration is called a business transaction. It is
the basic building block for more complex business collaborations. Although UMM is
a top-down process, we start our explanation bottom-up from business transactions for
educational purposes.

2.1 Business Transaction

The requirements of a business transaction are documented by a business transac-
tion use case. Each business transaction use case results in exactly one business trans-
action that is represented by an activity graph. The activity graph of a business transac-
tion is always built by exactly two business actions, a requesting business activity and
a responding activity. Each business action is performed by exactly one authorized role
executed by a business partner. The assignment of the business action to an authorized
role is realized by the UML concept of swimlanes. The requesting business activity is
assigned to the initiating role and the responding activity is assigned to the reacting role.
The exchange of business information is shown by an object flow. One business action
sets an information object flow state that is consumed by the other business action. An
information object flow state refers to an information envelope exchanged between the
business actions. Since we concentrate on the choreography in this paper, we do not fur-
ther discuss the assembly of the content within the information envelope.

We distinguish two types of one-way transactions - information distribution and no-
tification - as well as four types of two-way transactions - query/response, request/con-
firm, request/response, and commercial transaction. These six types cover all known le-
gally binding interactions between two decision making applications as defined in
Open-edi. The different types of business transaction patterns differ in the default val-
ues for the attributes that characterize business actions: is authorization required, is
non-repudiation required, time to perform, time to acknowledge receipt, and time to ac-
knowledge acceptance. The values for is non-repudiation of receipt required and for re-
try count are only defined for the requesting business activity. Most of these attributes
are self-explanatory. An acknowledgment of receipt is usually sent after grammar val-

“Buyer timeToPerform: 4 hrs - “Seller
timeToAckr pt: null

timeToAcknowledgeAcceptance: null

isAuthoriztionRequired: false

isNonRepudiationRequired: false

+ | isNonRepudiationOfReceiptRequired: null

retryCount: 3

i esponse)|
Envelope

A

'
'
'

v

RegistrationRequest | ___ | o <<RespondingBusinessActivity>>
Envelope perform registration
g

-
Q
/

[Control Fail]
[Success]

timeToPerform: 4 hrs ‘
timeToAcknowledgeReceipt: null
timeToAcknowledgeAcceptance: null
isAuthoriztionRequired: false
isNonRepudiationRequired: false

Fig. 1. Business Transaction "Register Customer"

idation, sequence validation, and schema validation. However, if the is intelligible
check required flag is set to false, the acknowledgment is sent immediately after receipt
without any validation. An acknowledgment of acceptance is sent after validating the
content against additional rules to ensure that the content is processable by the target
application. Retry count is the number of retries in case of time-outs.

Accordingly, a business transaction follows always a rather strict pattern. The ac-
tivity graph of register customer depicted in Fig. 1 is a typical example of a two-way
transaction. In case of a one-way transaction the responding object flow is omitted. A
business expert provides the characteristic of register customer in a business transaction
use case. The buyer starts a request registration activity. This activity creates a regis-
tration request envelope that triggers the perform registration activity of the seller. Ac-
cording to UMM business transaction semantics, request registration does not end after
sending the envelope - it is still alive. The perform registration activity outputs the reg-
istration response envelope, which is returned to the request registration activity. It be-
comes obvious that the activity graph of a business transaction shows only the exchange
of business information in the corresponding envelopes, but does not show any business
signals for acknowledgements. The need for acknowledgements is documented in the
tagged values only. Register customer does not need any acknowledgements.

2.2 Business collaboration protocol

The business transaction is the basic building block for more complex business collab-
orations. Consequently, a business collaboration covers a number of business transac-
tions. It is important that the business collaboration defines an execution order for the
business transactions, i.e. a business collaboration choreography. Each business collab-
oration protocol use case specifies the requirements for the choreography that is de-
fined by an activity graph called business collaboration protocol. Currently, all activi-
ties of the business collaboration protocol must be stereotyped as business transaction
activity. A business transaction activity must be refined by the activity graph of a busi-
ness transaction. A business collaboration protocol might describe the choreography
of multi-party collaborations. Each business transaction activity is executed by exactly
two parties. Since a business collaboration protocol describes the contractual obliga-
tions between business partners and since most contracts are bilateral, a business col-
laboration protocol usually defines a binary collaboration.

ControlFail
<<BusinessTransactionActivity>> [ControlFail]
Request for Quote

[NOT Customerinformation.Confirmed] [Customerinformation.Confirmed]

GBusinessTransactionActivity» [Customerinformation.Confirmed] ﬂBusinessTransactionActivityi

Register Customer ~_/ "N\ Order Products

l [ControlFail] é

Fig. 2. Business Collaboration Protocol "Order Management"

The transition from one business transaction activity to another is triggered by two
types of events: the completion of the previous business transaction and (in addition)
the availability of a business object in a certain state. In addition to business transaction
activities a business collaboration protocol includes the pseudo states used in UML ac-
tivity diagrams: initial state, final state, decisions and merge, as well as _fork and join.
Fig. 2 shows the business collaboration protocol for a very simple order manage-
ment between a buyer and a seller. It is an over-simplified example showing only those
aspects that are needed to understand the main concepts of a business collaboration pro-
tocol and, later, its transformation to BPEL. Thus, we have omitted any complex excep-
tional cases. The business collaboration starts with a request for quote. After the quote
is made, i.e. the transaction is completed, a registered buyer can initiate order products.
If the buyer is not registered, register customer is required prior to order products. Con-
trol failures of request for quote and register customer terminate the business collabo-
ration. The register customer business transaction activity is refined by the activity
graph in Fig. 1. The refinements of the other activities follow later in Fig. 3 and Fig. 4.

3 Transformation to BPEL

UMM defines the business semantics of a (usually binary) business collaboration with-
out considering any specific exchange technology. In this section we concentrate on
mapping the choreography of the business collaboration from UMM to BPEL. As the
acronym indicates, BPEL defines executable business processes within a company.
However, BPEL can be used for specifying so-called business protocols. A business
protocol specifies the potential sequencing of messages exchanged by one particular
partner with its other partners to achieve a business goal [8]. According to this defini-
tion, a business protocol is able to capture the B2B choreography defined in UMM.
BPEL uses the concept of an abstract process to realize a business protocol. Abstract
processes use all the concepts of BPEL but data handling might be more abstract han-
dling only protocol-relevant data[1].

3.1 Transformation to WSDL

A business process defines how to coordinate the interactions with a business partner.
In a Web Service environment this means a BPEL process definition coordinates activ-
ities representing the execution of Web Services. An activity is either receiving a mes-
sage from a business partner via one’s own Web Service or invoking a partner’s Web
Service. The interface of each Web Service is described by the means of WSDL. It fol-
lows that a BPEL process references Web Services interfaces defined in a WSDL file.

A UMM model defines which type of services are expected from which type of
business partner. Therefore, a WSDL file—including port types and operations as well
as messages used as input/output to the operations—can be derived from a UMM mod-
el. Each business partner of the collaboration results in its own port type. In our order
management example a buyer collaborates with a seller. Hence, we create a buyer port
type (lines 1 to 17) and a seller port type (lines 18 to 39).

In a UMM business transaction each partner performs exactly one activity. This ac-
tivity sends and/or receives message envelopes. In case of asynchronous messaging (c.f.

[1]<portType name="BuyerPortType"> [18]<portType name="SellerPortType">
[2] <operation name="ReceiveResponseForRequestRegistration"> [19] <operation name="calculateQuote">

[3] <input message="RegistrationResponseEnvelope"/> [20] <input message="RequestForQuoteEnvelope"/>

[4] </operation> [21] <output message="QuoteEnvelope"/>

[5] <operation name="ReceiveResponseForPlaceOrder"> [22] </operation>

[6] <input message="PurchaseOrderResponseEnvelope"/> [23] <operation name="performRegistration">

[7] </operation> [24] <input message="RegistrationRequestEnvelope"/>
[8] <operation name="AckReceipt"> [25] </operation>

[9] <input message="BusinessSignalAckReceipt"/> [26] <operation name="processOrder">

[10] </operation> [27] <input message="PurchaseOrderEnvelope"/>

[11] <operation name="AckAcceptance"> [28] <output message="PurchaseOrderResponseEnvelope"/>
[12] <input message="BusinessSignalAckAcceptance"/> [29] </operation>

[13] </operation> [30] <operation name="AckReceipt">

[14] <operation name="ControlFailure"> [31] <input message="BusinessSignalAckReceipt"/>
[15] <input message="BusinessSignalControlFailure"/> [32] </operation>

[16] </operation> [33] <operation name="AckAcceptance">

[17]</portType> [34] <input message="BusinessSignalAckAcceptance"/>

[35] </operation>

[36] <operation name="ControlFailure">

[37] <input message="BusinessSignalControlFailure"/>

[38] </operation>

[39]</portType>
subsections 3.4 register customer and 3.5 order product) each activity that receives a
message becomes an operation of the corresponding partner’s port type. The operation
is called exactly as the acitivity. In case of an requesting activity we add receive re-
sponse for... at the beginning of the name. In case of synchronous messaging (c.f. sub-
section 3.3 request quote) only the responding activity becomes an operation. Addition-
ally, each port type needs operations to receive acknowledgment of receipt, acknowl-

edgement of acceptance and control failure messages (c.f. subsection 3.5).

3.2 Transformation of Partner Links

A BPEL file defines the exchanges with different partners - in case of a binary collab-
oration it is exactly one partner. The partner is connected to the process by a partner link
type. A partner link type defines a relationship between two services and their roles
within. Each role refers to a port type of the WSDL file. A binary collaboration requires
exactly one partner link type (lines 40 to 43). Our example defines the partner link type
buyer seller link type (line 40). The buyer role (line 41) refers to the buyer port type (line
1) and the seller role (line 42) to the seller port type (line 18).

[40] <partnerLinkType name="BuyerSellerLinkType">

[41] <role name="Buyer"> <portType name="BuyerPortType"/> </role>
[42] <role name="Seller"> <portType name="SellerPortType"/> </role>
[43] </partnerLinkType>

A UMM model describes a business collaboration between business partners from
an overall point of view. BPEL describes a business process always from the point of
view of a particular partner. Consequently, a UMM model results in multiple BPEL pro-
cesses, one for each business partner involved. Of course these BPEL processes must
be compliant to each other. Partner links define the relationships of the process owner
with its partners. In the process definition for the buyer the partner link is defined in
lines 44 to 46. The partner link (line 45) refers to the buyer seller link type (line 40).
Since the buyer is the owner of the process, the myRole attribute refers to the buyer role
(line 41) of the partner link type and the partnerRole attribute to the seller role (line 42).
The partner link in lines 47 to 49 defines the pendant for the process owned by the seller.

[44] <partnerLinks> [47] <partnerLinks>

[45] <partnerLink name="LinkToSeller" [48] <partnerLink name="LinkToBuyer"
partnerLinkType="BuyerSellerLinkType" partnerLinkType="BuyerSellerLinkType"
myRole="Buyer" partnerRole="Seller" /> myRole="Seller" partnerRole="Buyer" />

[46] </partnerLinks> [49] </partnerLinks>

3.3 Transformation of Request For Quote (Synchronous)

In subsection 3.1 we already explained that the Web Services operations are derived
from the requesting and responding activities of UMM business transactions. The basic
activities in a BPEL process refer to these operations. The activity <invoke> is used to
call an operation of a partner’s port type and the activity <receive> for receiving mes-
sages from a partner via an operation of one’s own port type. In addition, <reply> is
used to specify a synchronous response following a <receive> activity.

In UMM, a business transaction is the basic building block for interactions between
the business partners. Hence, we transfer each business transaction into a set of BPEL
activities, that will be a building block for assembling a BPEL process (c.f. subsection
3.6). We demonstrate a mapping for the three business transactions of our example,
each representing a different type of complexity. Fig. 3 depicts the request for quote
transaction which is the one of the lowest complexity. It is stereotyped as query/
response business transaction. This means the responding business partner has the in-
formation available prior to the request. No acknowledgments are needed. Due to this

characteristics the request for quote is realized by a synchronous interaction in BPEL.

: Buyer | : Seller
T

timeToPerform: 1 min

timeToAcknowledgeReceipt: null

+| timeToAcknowledgeAcceptance: null

/ retryCount: 1

<<QuenyResponse>> N _____ QuoteEnvelope
obtain quote

A
1
1

:
|
v 1

RequestFor Quote | ___ | . <<RespondingBusinessActivity>>
Envelope calculate quote

.
’
.
’
e

[Control Fail]

[Success]

timeToPerform: 1 min
timeToAcknowledgeReceipt: null
timeToAcknowledgeAcceptance: null

Fig. 3. Business Transaction "Request for Quote"”

The synchronous interaction is realized by a single operation calculate quote on the sell-
er port type. This operation expects a request for quote envelope as input and outputs a
quote envelope. In the BPEL file for the buyer process the interaction is defined by the
simple activity <invoke> (lines 50 to 53). It references the partnership with the seller
defined in the partner link named link to seller (line 45). Furthermore, <invoke> refer-
ences the calculate quote operation (line 19) of the seller port type (lines 18 to 39). The
inputVariable and the outputVariable are used for data handling of sent and received
messages in executable processes. They are optional in abstract processes. Neverthe-
less, we include them to hint on the type of input/output message. Additionally, the
presence of an outputVariable signifies a synchronous invocation, because an asyn-
chronous invocation needs an input but no output. The <source> statements in line 51
and 52 are explained later in subsection 3.6.

[50] <invoke partnerLink="LinkToSeller" portType="SellerPortType" operation="calculateQuote"
inputVariable="SentRequestForQuote" outputVariable="ReceivedQuote">
[51] <source linkName="RequestForQuote2RegisterCustomer"
transitionCondition="bpws:getVariableData('CustomerinformationConfimed') = 0"/> <!--ref line 118 -->
[52] <source linkName="RequestForQuote20rderProduct”
transitionCondition="bpws:getVariableData('CustomerinformationConfimed') = 1"/> <!--ref line 119 -->
[53] </invoke>

The BPEL file for the seller’s process includes the activity <sequence> (line 54) that is
built by a <receive> activity (line 55) and a <reply> activity (line 56). Both included
activities must reference the same operation: calculate quote (line 19). Consequently,
the values for partnerLink, portType and operation must be the same in both cases (c.f.
line 55 and 56).

[54] <sequence>

[65] <receive partnerLink="LinkToBuyer" portType="SellerPortType" operation="calculateQuote"
variable="ReceivedRequestForQuote"/>

[66] <reply partnerLink="LinkToBuyer" portType="SellerPortType" operation="calculateQuote"
variable="SentQuote"/>

[57] </sequence>

3.4 Transformation of Register Customer (Asynchronous)

Register customer is the next business transaction we consider. We already used regis-
ter customer (Fig. 1) to illustrate UMM business transactions in section 2.1. It is stereo-
typed as request/response transaction. This means a decision process at seller side is
stimulated by the request and must be finished before a response. Therefore, the request
and the response are defined as two asynchronous interchanges. Register customer does
not need any acknowledgements. According to the retry count, the buyer has to restart
the transaction three times if he does not receive an response. If the buyer does not suc-
ceed after three trials, UMM requires him to send a control failure message.

Owing to space limitations we only illustrate the buyer’s process in lines 58 to 85.
Note, in this code we do not show partner links and message variables anymore. An
<invoke> activity (line 69) is used to call the perform registration operation (line 23).
Next the buyer expects to receive a message via its receive response for request regis-
tration operation. We use a <pick> activity that awaits the occurrence of one of a set of
events and then performs the activity associated with the event that occurred. The first

[58] <sequence>

[59] <target linkName="RequestForQuote2RegisterCustomer"/> <!-- references line 118 -->
[60] <source linkName="RegisterCustomer20rderProduct"/> <!-- references line 120 -->
[61] <assign>

[62] <copy>

[63] <from expression="3"/>

[64] <to variable="PerformRegistrationRetryCount"/>

[65] </copy>

[66] </assign>
[67] <while condition="bpws:getVariableData('PerformRegistrationRetryCount') > 0 AND
bpws:getVariableData('PerformRegistrationRetryCount') = NULL">

[68] <sequence>

[69] <invoke ... portType="SellerPortType"operation="performRegistration" ... />

[70] <pick>

[71] <onMessage ... portType="BuyerPortType" operation="ReceiveResponseForRequestRegistration"
variable="ReceivedRegistrationResponse">

[72] <empty/>

[73] </onMessage>

[74] <onAlarm for="PT4H">

[75] <assign> <!-- decrement Perform RegistrationRetryCount --> </assign>

[76] </onAlarm>

[77] </pick>

[78] </sequence>

[79] </while>

[80] <switch>

[81] <case condition="bpws:getVariableData('PerformRegistrationRetryCount’) = 0">

[82] <throw faultName="RequestForQuoteControlFail"/>

[83] </case>
[84] </switch>
[85] </sequence>

event is given in the <onMessage> element (line 71) receiving a message from the re-
ceive response for request registration (line 2). The other event is stated in the
<onAlarm> element (line 74) which is effective if a time frame of 4 hours is exceeded.
In this case one retry is consumed. Hence, the perform registration retry count variable
- which is initiated at the beginning of the transaction in lines 61 to 66 - must be decre-
mented (line 75). The <while> loop (lines 67 to 79) continues if no message was re-
ceived and the maimum number of retrys is not reached. If the while loop is stopped
because no retrys are left, the condition of the <case> statement (line 81) in the
<switch> (lines 80 to 84) holds, and a control failure exception is thrown (line 82).

3.5 Transformation of Order Product (with Acks)

Finally, we take a look at the order product business transaction, which is the most com-
plex one. It is stereotyped as commercial transaction. In UMM this means that the busi-
ness transaction results in a residual obligation between the business partners to fulfill
terms of a contract. A commercial transaction requires acknowledgments to be sent.
These acknowledgements are not the ones on the network level. An acknowledgment
of receipt is sent after grammar validation, sequence validation, and schema validation.
An acknowledgment of acceptance is sent after validating the content against additional
rules to ensure that the content is processable by the target application.

: Buyer, | : Seller
T
timeToPerform: 24 hrs
timeToAcknowledgeReceipt: 4 hrs
¢| timeToAcknowledgeAcceptance: 6 hrs
’
/
/! retryCount: 3
£
<<CommercialTransaction>> PurchaseOrder
place order ResponseEnvelope

T A

1)
= = ! 1
| 3 v '
o I
o ° 123 i i Vil
g g § PurchaseOrder | ___J N <<RespondingBusinessActivity>>
§ 8| 3 Envelope process order
O, —

timeToPerform: 1 min s

timeToAcknowledgeReceipt: null -

timeToAcknowledgeAcceptance: 4 hrs

Fig. 4. Business Transaction "Order Product"

The code in lines to 112 represent the order product business transaction in the buyer’s
process. We do not detail the transaction for the seller’s process. The idea of this code
pattern is similar to the one used in the previous subsection. This time the request results
in three return messages, two acknowledgements and the response. A control failure
must be raised, if any one of these is not received in the permitted time frame. As a con-
sequence, we recursively nest <pick> elements (lines 95 and 97) within the <onMes-
sage> elements of the previously "picked" message.

[86] <sequence joinCondition="bpws:getLinkStatus('RequestForQuote20rderProduct’)
OR bpws:getLinkStatus('RegisterCustomer2OrderProduct’)">
] <target linkName="RequestForQuote20rderProduct"/> <!-- references line 119 -->
] <target linkName="RegisterCustomer20OrderProduct"/> <!-- references line 120 -->
[89] <assign> <!-- initiate OrderProductRetryCount --> </assign>
]

[90 <while condition="bpws:getVariableData('OrderProductRetryCount') > 0 AND
bpws:getVariableData('ReceivedPurchaseOrderResponse') = NULL">

[91] <sequence>

[92] <invoke partnerLink="LinkToSeller" portType="SellerPortType"

operation="processOrder" inputVariable="SentPurchaseOrder" />

[93] <pick>

[94] <onMessage ... portType="BuyerPortType" operation="AckReceipt" ... >

[95] <pick>

[96] <onMessage ... portType="BuyerPortType" operation="AckAcceptance" ...>

[97] <pick>

[98] <onMessage ... portType="BuyerPortType" operation="ReceiveResponseForPlaceOrder">
[99] <invoke ... portType="SellerPortType" operation="AckAcceptance" ... />

[100] </onMessage>

[101] <onAlarm for="PT18H"> <!-- decrement OrderProductRetryCount --> </onAlarm>
[102] </pick>

[103] </onMessage>

[104] <onAlarm for="PT2H"> <!-- decrement OrderProductRetryCount --></onAlarm>

[105] </pick>

[106] </onMessage>

[107] <onAlarm for="PT4H"> <!-- decrement OrderProductRetryCount --> </onAlarm>

[108] </pick>

[109] </sequence>

[110] </while>

[111] <switch> <!-- Throw exception if OrderProductRetryCount = 0 --> </switch>

[112] </sequence>

3.6 Transformation of Business Collaboration Protocol

A UMM business collaboration protocol choreographs the business transactions of the
business collaboration. So far we detailed the choreography within a business transac-
tion. Now we define the flow between the business transactions in order to finalize the
BPEL process. For this purpose BPEL provides the structured activity called flow. A
flow is a group of activities. It completes when all of the activities in the flow have com-
pleted. Completion of an activity in a flow includes the possibility that it will be skipped
if its enabling condition turns out to be false [1]. Additionally, the flow specifies syn-
chronization dependencies between activities. A link element is used to express a tran-
sition from one activity to the other. The link has a unique name within the process. The
activity that is the source for the link includes a source element that references the link
by name. Similarly, the target activity includes a target element that references the cor-
responding link by name. Furthermore, the source element may specify a transition con-
dition. If an activity includes more than one target element, it is useful to specify a join
condition for its activation. By default the status of at least one incoming link has to be
positive to start an activity.

Code lines 113 to 133 represent the buyer’s process of the order management col-
laboration shown in Fig. 2. After a starting <process> element the partner link to the
seller (copy of lines 44 to 46) and a definition of all variables follow. Next, the main
part groups all activities of the business collaboration into a <flow> element (lines 116
to 125). All sub-processes representing the business transactions request for quote
(lines 50 to 53), register customer (lines 58 to 85) and order product (lines to 112) are
defined as part of the flow.

Prior to these sub-processes all the transitions between the transactions are defined.
According to Fig. 2, three synchronization dependencies exist: (1) from request for
quote to register customer (line 118), (2) from request for quote to order product (line
119), and (3) from register customer to order product (line 120). The first two transi-
tions start from the request for quote sub-process (lines 50 to 53). Consequently, the
<invoke> activity covering the whole sub-process includes two <source> elements
(lines 51 and 52) referencing the two links. Since the two links are mutually exclusive
depending on the status of the customer information, corresponding transition condi-

tions are included in the <source> elements. The third transition starts from the register
customer sub-process that includes a related <source> element (line 60). Since this ac-
tivity is also the destination of the first transition, it includes a corresponding <target>
element in line 59. Both the second and the third transition end at the order product sub-
process, which is marked by the <farget> elements in lines 87 and 88. If any of the two
transitions becomes active, order product should start. Therefore, the join condition of

the <sequence> element (line) is a Boolean OR.
[113]<process>

[114] <!--insert partner links; lines 44 - 46 -->

[115] <!--insert varaible definitions, not shown in this paper -->

[116] <flow>

[117] <links>

[118] <link name="RequestForQuote2RegisterCustomer"/>
[119] <link name="RequestForQuote20rderProduct"/>
[120] <link name="RegisterCustomer20rderProduct"/>
[121] </links>

[122] <!-- insert invoke statement of Transaction Request For Quote lines 50 - 53 -->
[123] <l-- insert sequence statement of Transaction Register Customer lines 58 - 85 -->
[124] <I-- insert sequence statement of Transaction Order Product lines 84 - 108 -->
[125] </flow>

[126] <faultHandlers>

[127] <catch faultName="RequestForQuoteControlFail">

[128] <invoke ... portType="SellerPortType" operation="ControlFailure" ... />
[129] <terminate/>

[130] </catch>

[131] <catch faultName="OrderProductControlFail"> ... </catch>

[132] </faultHandlers>
[133]</process>

The flow automatically starts with the request for quote sub-process, because it
does not include an incoming synchronization dependency. The process automatically
ends after the order product sub-process, because all other activities were active before.
Note, register customer might be skipped according to the transition condition. The
control failures thrown in lines 82 and 111 also terminate the process. These control
failures are subject to the fault handlers in lines 126 to 132.

4 Summary

UN/CEFACT’s modeling methodology (UMM) is a UML-based methodology for cap-
turing the business semantics according to the BOV of Open-edi. ebXML and Web Ser-
vices are to popular technologies for implementing B2B processes on the FSV of Open-
edi. The Open-edi concept is very similar to the MDA - it separates the specification
from the implementation. This approach guarantees reusability, portability, and interop-
erability. A key success factor is a well-defined set of rules and techniques to map from
the UMM model to the different B2B implementation technologies. Our current re-
search is directed towards the B2B choreography. In our previous work we concentrat-
ed on the mapping from UMM to ebXML’s BPSS. Since BPSS is based on the UMM
meta model the mapping is comparatively easy. Owing to the growing popularity of
Web Services, BPEL is gaining more and more acceptance by industry. Hence, there is
a desire to transform UMM models to BPEL processes. This paper presents a first eval-
uation to what extent UMM models can be transformed to BPEL. Future work will in-
clude a detailed analysis on the strengths and limitations of both BPSS and BPEL to ex-
press business collaborations.

In this paper we show how the UMM artefacts business transaction and business
collaboration protocol are represented in BPEL. Whereas a transformation from UMM
to BPSS results in a single process definition for all partners, a transformation to BPEL
results in a different process definitions for each partner. BPSS is able to capture
UMM’s security requirements on the activities and exchanged messages. BPEL is not.
Instead other Web Services standards must capture the security semantics. Neverthe-
less, we are able to represent all the UMM choreography information in BPEL. We
demonstrated the transformation by means of a simple example. Since UMM business
transactions have a very strict structure, the resulting transformations provide useful
patterns. Furthermore, the transformation of the business process protocol follows a
clear approach based on grouping all business transaction activities to BPEL flow struc-
ture and transforming the UMM transition to BPEL link elements.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, 1., Weerawarana, S.; Business Process Execution
Language for Web Services, Version 1.1, May 2003
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbizspec/html/bpel1-1.asp

2. Hammer, M., Champy, J.; Reengineering the Corporation: Manifesto for Business
Revolution; Harper Business; 1993

3. Hoftreiter, B., Huemer, C.; Modeling Business Collaborations in Context; Proceedings of On
The Move to Meaningful Internet Systems 2003: OTM 2003 Workshops; Springer LNCS;
November 2003

4. Hofreiter, B., Huemer, C.; ebXML Business Processes -Defined both in UMM and BPSS;
Proceedings of the 1st GI Workshop on XML Interchange Formats for Business Process
Management at 7th GI Conference Modellierung 2004, Marburg Germany, March 2004
http://wi.wu-wien.ac.at/~mendling/ XML4BPM/xml4bpm-2004-proceedings-bpss.pdf

5. ISO; Open-edi Reference Model. ISO/IEC JTC 1/SC30 ISO Standard 14662. ISO; 1997

6. Kim, J.-H.., Huemer, C.; Analysis, Transformation and Improvements of ebXML
Choreographies based on Workflow Patterns; Proceedings of On The Move to Meaningful
Internet Systems 2003: CooplS, DOA, and ODBASE; Springer LNCS; October 2004

7. Leymann, F.; Web Services Flow Language (WSFL 1.0); May 2001
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

8. Leymann, F., Roller, D.; Modeling Business Processes with BPEL4WS; Proceedings of the
1st GI Workshop on XML Interchange Formats for Business Process Management at 7th GI
Conference Modellierung 2004, Marburg Germany, March 2004
http://wi.wu-wien.ac.at/~mendling/XML4BPM/xml4bpm-2004-proceedings-bpeldws.pdf

9. Miller, J., Mukerji, J.; MDA Guide Version 1.0.1; OMG omg/2003-06-01,
http://www.omg.org/docs/omg/03-06-01.pdf

10. Thatte, S.; XLANG - Web Services for Business Process Design; June 2001;
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

11. UN/CEFACT; ebXML - Business Process Specification Schema v1.10; October 2003;
http://www.untmg.org/downloads/General/approved/ebBPSS-v1pt10.zip

12. UN/CEFACT; UMM Meta Model, Revision 12; January 2003;
http://www.untmg.org/downloads/General/approved/ UMM-MM-V20030117.zip

13. UN/CEFACT; UMM User Guide, Revision 12; September 2003;
http://www.untmg.org/downloads/General/approved/ UMM-UG-V20030922.zip

