
EMMA – A Query Algebra for Enhanced
Multimedia Meta Objects

Sonja Zillner, Utz Westermann, and Werner Winiwarter

Department of Computer Science and Business Informatics
University of Vienna, Austria

{sonja.zillner,gerd-utz.westermann,werner.winiwarter}@univie.ac.at

Abstract. Enhanced Multimedia Meta Objects (EMMOs) are a novel
approach to multimedia content modeling, combining media, semantic
relationships between those media, as well as functionality on the media,
such as rendering, into tradeable knowledge-enriched units of multime-
dia content. For the processing of EMMOs and the knowledge they con-
tain, suitable querying facilities are required. In this paper, we present
EMMA, an expressive query algebra that is adequate and complete with
regard to the EMMO model. EMMA offers a rich set of formally-defined,
orthogonal query operators that give access to all aspects of EMMOs,
enable query optimization, and allow the representation of elementary
ontology knowledge within queries. Thereby, EMMA provides a sound
and adequate foundation for the realization of powerful EMMO querying
facilities.

1 Introduction

Multimedia content formats we find today (e.g. SMIL[1], HyTime [2], and SVG
[3]) primarily encode the presentation of content but not the information the
content conveys. However, this presentation-oriented modeling only permits the
hard-wired presentation of multimedia content; for advanced operations like re-
trieval and reuse of content, automatic composition, and adaptation of content
to a user’s needs, valuable information about the semantics of content is lack-
ing. In parallel to research on the Semantic Web [4], one is able to observe a
shift in paradigm towards a semantic modeling of multimedia content: not the
presentation of media is described but their semantic interrelationships.

In order to facilitate a semantic modeling of multimedia content in con-
tent sharing and collaborative applications, we have developed Enhanced Mul-
timedia Meta Objects (EMMOs) [5] in the context of the EU-funded CULTOS
project1. EMMOs establish tradeable knowledge-enriched units of multimedia

1 CULTOS was carried out from 2001 to 2003 by partners from 11 EU countries and
Israel and aimed at providing a collaborative multimedia platform for researchers in
intertextual studies enabling them to share and communicate their knowledge about
the relationships between cultural artifacts. See http://www.cultos.org for more
information.

content that indivisibly combine three of the content’s aspects into a single ob-
ject:

– The media aspect: an EMMO encapsulates the basic media objects of which
the multimedia content consists.

– The semantic aspect: an EMMO further encapsulates semantic associations
between its media objects.

– The functional aspect: an EMMO may define arbitrary, domain-specific op-
erations on the content that can be invoked by applications, e.g. an operation
dynamically rendering the EMMO considering the user’s context.

EMMOs are versionable, enabling the collaborative authoring of multimedia
content, and can be bundled and moved in their entirety including all three
aspects and the versioning information enabling content sharing applications.

As part of the CULTOS project, a distributed infrastructure of EMMO con-
tainers [6] and an authoring tool for the creation of EMMOs were developed.
The missing part in this infrastructure has been an adequate query mechanism
for the access to and the processing of the information captured by EMMOs.

The contribution of this paper is to provide this missing part. We introduce
EMMA, a query algebra for EMMOs. EMMA is adequate and complete with
regard to the EMMO model, addressing the media, semantic, and functional
aspects of an EMMO. Featuring an extensive set of orthogonal, formally de-
fined query operators consisting of extraction operators, navigational operators,
selection predicates, constructors, and a join operator, EMMA allows one to
pose complex queries against EMMOs and facilitates sound query rewriting and
optimization. The operators of EMMA are sufficiently expressive to represent
elementary ontological knowledge within queries, such as supertype/subtype re-
lationships, transitive and inverse associations, etc. Thus, EMMA constitutes a
solid foundation for the implementation of advanced queries on EMMOs.

The remainder of the paper is organized as follows. Section 2 explains the
EMMO model in more detail. Section 3 analyzes the requirements of a query
algebra for EMMOs. Section 4 takes a look at related approaches and Sect. 5
presents the structure of EMMA and its major operator classes. Section 6 con-
cludes this paper and gives an outlook to current and future work.

2 The EMMO Model

As mentioned before, an EMMO is a self-contained unit of multimedia content
that encompasses three aspects, i.e. the media, semantic, and functional aspect,
and provides versioning support. We use Fig. 1 showing the EMMO “Dracula
Movies” to illustrate the EMMO model.

The formal constituents of the EMMO model are the so-called entities, which
occur in four different kinds: logical media parts, ontology objects, associations,
and EMMOs themselves. Each entity, regardless of its kind, is globally and
uniquely identified by a UUID and carries a human-readable name, e.g. “The
Cabinet of Dr. Caligari”, which we employ in our figures for enhanced readability.

Hooper

Director

Dracula Movies
inspire inspire

Salem’s Lot

http://.../Salem183.avi

Movie

http://.../Salem112.avi

The Cabinet of
Dr. Caligari

Movie

Wiene

Director

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

format: MPEG
......

duration: 183min
format: AVI
.....

duration: 112min
format: AVI
.....

RenderingImplementation

Rendering

logical media part

ontology object

association

EMMO

media profile

attributeoperation

entity-type

Symbols:

http://../Caligari.mpeg

format : MPEG
......

Fig. 1. EMMO “Dracula Movies” (emovies)

An EMMO addresses the media aspect of the piece of content it models by
means of logical media parts. Logical media parts represent media objects or
parts of media objects at a logical level. Media data that physically manifests
these logical media objects can be attached to logical media parts via an arbi-
trary number of media profiles. A media profile not just directly embeds media
data or – if embedding is not feasible, e.g., because of the size of the data or the
media data is a live stream – references media data via an URI; it also carries
arbitrary low-level, physical metadata about the media data in form of simple
attribute-value pairs. In our example figure, this is illustrated with the logical
media part “Salem’s Lot” logically representing the corresponding movie. The
attached media profiles indicate that there are two video files of the movie avail-
able (“Salem183.avi” and “Salem112.avi”). As expressed by the profiles’ meta-
data attribute values, both video files are in AVI format and of 183 minutes and
112 minutes duration, respectively.

Addressing the content’s semantic aspect, the EMMO model facilitates a
semantically rich description of entities. An entity can be given an arbitrary
number of types, thereby obtaining meaning. An entity type is a concept taken
from an ontology, with the concept being represented as an ontology object thus
being an entity itself. In our figure, for example, it is expressed that the logical
media part “Salem’s Lot” is of type “Movie”. The EMMO model does not define
an ontology itself; this has to be done by applications. As we have not developed
a dedicated ontology language for EMMOs so far, we rely on existing languages
like OWL[7] and RDF[8] Schema.

Murnau

Director

Nosferatu

Dracula Studies

inspire remake

RenderImplementation

Rendering

source-for

Researcher

Movie
Vampyre

Text

1819

Creationdate

Dracula

Novel

Stoker

Author

Person

Dracula Movies

Ancient Text

Elizabeth
Miller

state

http://.../Vampyre.txt

format : txt
......

http://.../Dracula.pdf

format : PDF
......

http://.../Nosferatu.mpeg

format : MPEG
......

Fig. 2. EMMO “Dracula Studies”(estudies)

Semantic relationships between entities can be modeled by associations, which
establish a binary directed relationship between a source and target entity. As
associations are entities as well, the type of the relationship is given by the associ-
ation’s entity type. In this way, graph-based knowledge structures can be created.
In the figure, for instance, it is stated by associations of type “inspire” between
the depicted logical media parts that the movie “The Cabinet of Dr. Caligari”
inspired the movie “Nosferatu”, which again inspired “Salem’s Lot”. Moreover,
as associations are first-class entities, they can take part in associations as well,
effectively permitting the reification of statements within the EMMO model. For
example, Fig. 2 articulates that the researcher “Elizabeth Miller” (represented
as an ontology object of the same name) states that “Dracula” was inspired by
“Vampyre”.

As a further means of description, an arbitrary number of attribute-value
pairs can be attached to an entity, with the attribute being again a concept of
the ontology captured by an ontology object and the value being an object of
arbitrary type. In Fig. 2, the attribute “Director” is attached to the logical media
part “Nosferatu” with a string value “Murnau”, expressing that the movie was
directed by Friedrich Murnau.

EMMOs, finally, allow the grouping of semantically interrelated entities into
a logical unit, thereby establishing pieces of semantically modeled multimedia
content. In Fig. 1, the semantic descriptions of the logical media parts “The
Cabinet of Dr. Caligari”, “Nosferatu”, and “Salem’s Lot” are grouped in the
single EMMO “Dracula Movies”. As EMMOs themselves are entities, they can

be included within other EMMOs as well. Thus, EMMOs can be arbitrarily
nested into hierarchical structures, a powerful means for the logical organization
of multimedia content. The EMMO “Dracula Studies” in Fig. 2, for example,
contains the EMMO “Dracula Movies”. Also, an EMMO can take part in asso-
ciations just like any other entity, allowing the expression of knowledge about
the EMMO. Within the EMMO “Dracula Studies” it is stated that the novel
“Dracula” was the source for the construction of EMMO “Dracula Movies”.

Addressing the functional aspect of multimedia content, the EMMO model
allows an EMMO to offer a set of operations. Each operation consists of an
ontology object acting as the operator’s designator, and the operation’s imple-
mentation, which can be any mathematical function, taking an EMMO and an
arbitrary sequence of parameters as its arguments. For example, EMMO “Drac-
ula Movies” of Fig. 1 features an operation “rendering” that refers to a mathe-
matical function which generates either an HTML or a SMIL document of the
EMMO depending on the value of its single parameter.

In order to allow the collaborative construction of EMMOs in distributed
scenarios, the EMMO model incorporates dedicated versioning support. An en-
tity can refer to an arbitrary number of entities of the same kind as predecessor
versions and an arbitrary number of entities as successor versions. As the ver-
sion of an entity constitutes again an entity, different versions of an entity can be
interrelated just like any other entities, allowing one to establish semantic rela-
tionships between versions. Fig. 3 shows several versions of the EMMO “Dracula
Movies” and their interrelationships.

Dracula Movies Dracula Movies V1

Dracula Movies
V2

pred succ pred succ

Fig. 3. The versioning information of EMMO “Dracula Movies”

3 Requirements of a Query Algebra for EMMOs

As a foundation for the querying of EMMO structures as described in the pre-
vious section, an algebra providing a set of formal query operators suiting the
EMMO model is needed. In the following, we highlight essential requirements
for such a query algebra.

First and most importantly, a proper EMMO query algebra has to be ade-
quate and complete with regard to the EMMO model. Thus, the algebra should

offer operators for the access to all three aspects of multimedia content that are
covered by an EMMO:

– Media aspect: Operators should be available that give access to logical media
parts and their media profiles in queries.

– Semantic aspect: The algebra should further offer operators for the querying
of all kinds of entities contained in an EMMO, for the querying of the types
of these entities and their attribute values, as well as for the traversal of
the associations between them. The operators must be expressive enough to
cope with the more advanced constructs of the EMMO model, such as the
reification of associations and the nesting of EMMOs.

– Functional aspect: The algebra should give access to and permit the execu-
tion of the operations of an EMMO.

In order to fully suit the EMMO model, the algebra should also be able
to deal with versioning and provide operators for the traversal of versioning
relationships between entities.

Secondly, an EMMO query algebra should satisfy classic query algebra re-
quirements. Its operators should be formally defined with precise semantics to
lay the ground for query rewriting and optimization. The operators should also
be orthogonal and arbitrarily nestable to facilitate expressive queries.

Thirdly, the algebra should support joins between entities in order to allow
the correlation of information contained in different EMMOs. Furthermore –
even though the construction and manipulation of EMMOs is not our primary
intention in this paper (there exists a graphical authoring tool for EMMOs) – a
suitable algebra should support some basic operators for this purpose, such as
union, intersection, and difference.

Since the EMMO model makes use of concepts of an ontology (i.e., ontology
objects) to describe the meaning of the entities contained in an EMMO and
the associations between them, a suitable EMMO query algebra finally should
be expressive enough to capture basic ontological knowledge within a query.
For instance, it should be possible to reflect supertype/subtype relationships,
transitive and inverse associations, etc.

4 Related Approaches

On the search for a suitable query algebra for EMMOs, we take a look at related
query algebras and languages in the context of multimedia content and examine
their adequacy and completeness with regard to the EMMO model.

In the literature, several query algebras for multimedia content have been
proposed, such as GCalculus/S [9], Algebraic Video [10], or the Multimedia Pre-
sentation Algebra (MPA) [11]. These algebras have in common that they largely
address the media aspect of multimedia content. They focus on the querying of
the temporal and spatial presentation relationships between the basic media of

multimedia content and the construction of new presentations out of these me-
dia. However, they ignore semantic relationships between media as well as the
functional aspect of multimedia content.

In the context of the Semantic Web, several standards have emerged that
can be used to model the semantic relationships between the basic media of
multimedia content addressing the content’s semantic aspect, such as RDF [12,
8], Topic Maps [13], and MPEG-7 (especially MPEG-7’s Graph tools for the
description of content semantics [14]). For these standards, a variety of proposals
for query languages and algebras have been made.

Since the RDF data model, compared to the EMMO model, rather neglects
the media aspect of multimedia content, it does not address the functional aspect
of content, and does not provide explicit support for versioning and a hierarchical
structuring of resource descriptions; the same is generally true for RDF-based
query approaches as well. This leaves these approaches incomplete and inade-
quate with regard to the EMMO model.

Moreover, we find that many proposals of RDF query languages (representa-
tive examples are RQL [15] and SquishQL [16]) lack formally rigid definitions of
the semantics of their operators and thus do not provide sound foundations for
query evaluation, rewriting, and optimization. The only formal RDF query alge-
bra we know of that has been developed with the optimization of RDF queries
in mind is RAL [17].

The situation for Topic Maps is quite similar to RDF. The Topic Map data
model focuses on the semantic aspect as well and – considering the EMMO
model’s ability to include raw media data and metadata about the media by
means of media profiles within an EMMO – neglects the media and functional
aspects of multimedia content. Moreover, although Topic Maps like EMMOs can
be hierarchically nested, they have no explicit versioning support. Consequently,
query languages for Topic Maps are generally incomplete and inadequate with
regard to the EMMO model.

Within the context of the ongoing standardization of a Topic Maps query
language TMQL [18], several query approaches, such as Tolog [19], TMPath [20],
XTMPath [21], or [22] have been introduced. But again, those proposals remain
on the syntactic level and do not provide formal definitions of their operators.
No formal algebra as a sound foundation for the querying of Topic Maps exists
so far.

Concerning the querying of semantic descriptions of multimedia content on
the basis of MPEG-7’s Graph tools, we find quite a few approaches adapting
XQuery for the querying of MPEG-7 media descriptions [23]. But these ap-
proaches do not provide specific operators that would allow a reasonable pro-
cessing of the Graph tools.

To summarize, we have not been able to find a formally sound foundation
that would allow an adequate querying of EMMOs. Although there are some for-
mal algebras available for querying the media aspect of multimedia content like
GCalculus/S, Algebraic Video, or MPA, and the semantic aspect of multimedia
content such as the RDF-based RAL, they are neither adequate nor complete

with regard to the EMMO model, which addresses the media, semantic, as well
as the functional aspects of multimedia content (not to mention the EMMO
model’s inherent support for versioning).

As a consequence, we were forced to develop a dedicated algebra to obtain
a sound foundation for EMMO querying. At least for the design of this algebra,
however, we were able to gain valuable insights from the approaches examined
above and to incorporate aspects of their design.

5 EMMA – The EMMO Algebra

The design of the EMMO query algebra EMMA was in the first place driven by
the requirement of accessing the complete information stored within an EMMO,
i.e. the access to the three aspects of the EMMO, as well as its versioning in-
formation. To enable query optimization, the query algebra’s operators are of
limited complexity and orthogonal. Through the combination and nesting of
modular operators, complex queries can be formulated.

EMMA’s query operators can be divided into five general classes: the extrac-
tion operators provide means to query an EMMO’s three aspects, as well as its
versioning information. The navigational operators allow the navigation along
an EMMO’s semantic graph structure and also facilitate the integration of basic
ontological knowledge. The selection predicates enable the selection of only those
entities fulfilling a specific characteristic. The constructors allow one to modify,
combine, and create new EMMOs, and finally, the join operator relates several
entities or EMMOs with a join condition.

In the following subsections, we introduce all five classes of EMMA oper-
ators along illustrative examples. Due to limited space, we only discuss some
representative examples of operators and cannot provide the formal definitions
of these operators. The complete list of operators and their formal definition can
be found in [24]. Finally, we conclude this section with a summary explaining
how these operators contribute to fulfil the requirements for an EMMO query
algebra.

5.1 Extraction Operators

The extraction operators allow access to the information stored within an EMMO.
In the following, we show examples of extraction operators for the three different
aspects, as well as for the versioning information.

Media Aspect

Logical media parts model media objects at a logical level, and additionally
maintain connections to media profiles representing these objects along with
their metadata. For attaining all logical media parts contained within an EMMO,
the operator lmp can be used, e.g. the operation

lmp(emovies) = {lcaligari, lnosferatu, lsalem}

yields the three logical media parts “The Cabinet of Dr. Caligari”, “Nosferatu”
and “Salem’s Lot” contained within EMMO “Dracula Movies”in Fig. 1.

The operator MediaProfiles can be used for locating media profiles. Applying
the operator MediaProfiles to a logical media part returns the union of all its
associated media profiles, e.g. the query expression

MediaProfiles(lsalem) = {(www.../Salem183.avi, {(“duration”, 183min), (“format”, AVI)}),
(www.../Salem112.avi, {(“duration”, 112min), (“format”, AVI)})}

gives a set of two media profiles, each of them consisting of a URI locating the
media data and a metadata set describing the low-level characteristics of the
media data. The algebra provides further operators to extract the media data
as well as the metadata from a given media profile, e.g.

MediaInstance((www.../Salem183.avi, {(“duration”, 183min, . . .)})) = www.../Salem183.avi,

extracts the URI pointing to the media data from the given media profile. Sim-
ilarly, the operator Metadata extracts the physical metadata from the profile.

Semantic Aspect

By attaching concepts of an ontology, entities get meaning. The operator types
retrieves an entity’s set of classifying ontology objects. For example, applying the
operator types to the logical media part “Nosferatu”, yields the set containing
the ontology object “Movie”:

types(lnosferatu) = {omovie}.
The operator types accepts only one entity as input value. If we intend to com-
pute all types classifying not only one, but a set of entities, the operator types
can be used in combination with the operators Apply and Elements. The opera-
tor Apply takes a function and a set as input values and returns a set consisting
of the return values of the specified function being applied to each element in the
specified set. For example, for accessing all ontology objects used for classifying
logical media parts within EMMO “Dracula Studies” in Fig. 2, we execute the
operator Apply with the operator types and the set of logical media parts of
EMMO “Dracula Studies” specified as input values, e.g.

Apply(types, lmp(estudies)) =
= Apply(types, {lvampyre, ldracula, lnosferatu}) =
= {types(lvampyre), types(ldracula), types(lnosferatu)} =
= {{oancient-text, otext}, {onovel}, {omovie}}

The operator Elements is used to flatten data returned by other operations, e.g.
applying the operator Elements to the result set of the above query, i.e.

Elements({{oancient-text, otext}, {onovel}, {omovie}}) =
= {oancient-text, otext, onovel, omovie},

returns the set of all ontology objects used for classifying the logical media parts
within EMMO “Dracula Studies”.

For querying the attribute values of an entity, the operator attributes can be
used. Requesting, for example, all attribute-value pairs of the logical media part
“Nosferatu”, i.e.

attributes(lnosferatu) = {(odirector, “Murnau”)},

yields the set including only one specified attribute-value pair, i.e. the ontology
object “Director” with the string-value “Murnau”.

EMMOs describe a graph-like knowledge structure of entities. The algebra in-
troduces the operator nodes for accessing all entities contained within an EMMO,
e.g. the query operation

nodes(estudies) = {lvampyre, ldracula, lnosferatu, emovies, omiller,

ava→dr, adr→no, adr→mo, ami→(va→dr)}

provides a set consisting of the logical media parts representing the movie “Vam-
pyre”, Stoker’s novel “Dracula”, and the movie “Nosferatu”; the EMMO “Drac-
ula Movies”; the ontology object representing the researcher “Elizabeth Miller”;
and additionally the associations representing the semantic relationships be-
tween those entities, i.e. the associations “Vampyre → Dracula”, “Dracula →
Nosferatu”, “Dracula → Dracula Movies”, and “Elizabeth Miller → (Vampyre
→ Dracula)”.

The algebra also features operators for the traversal of the semantic associ-
ations between entities. These will be explained in Subsect. 5.2.

EMMOs can be nested hierarchically. The operator AllEncEnt can be used
for accessing all encapsulated ent ities of an EMMO, i.e. it computes all entities
recursively contained within an EMMO. For example, the query expression

AllEncEnt(estudies) = nodes(estudies) ∪ nodes(emovies) =
= {lvampire, ldracula, lnosferatu, emovies, omiller,

ava→dr, adr→no, adr→mo, ami→(va→dr),

lcaligari, lsalem, aca→no, ano→sa}

unifies the nodes of EMMO “Dracula Studies” with the nodes of EMMO “Drac-
ula Movies”, because this EMMO is the only one contained within EMMO “Drac-
ula Studies” and contains no further EMMOs.

Functional Aspect

EMMOs offer functions for dealing with their content. The operator Designators
can be used to receive all ontology objects labeling an EMMO’s functions, e.g.
the result set of the query

Designators(emovies) = {orendering}

indicates that EMMO “Dracula Movies” in Fig. 1 offers a rendering functionality,
and the operator ImpToName allows access to the corresponding implementation
represented by a mathematical function, i.e.

ImpToName(emovies, orendering) = frender

with frender being some rendering function. For the execution of an EMMO’s
functionality, the query algebra EMMA specifies the operator Execute. Applying
the operator Execute to EMMO “Dracula Movies”, the ontology object “render-
ing”, and the parameter HTML, i.e.

Execute(emovies, orendering, HTML) = frender(emovies, HTML) = DraculaMovies.html,

returns an HTML-document representing the content of EMMO “Dracula Movies”,
for example, an HTML-document of a table with the rows being the EMMO’s
associations as illustrated in the left part of Fig. 4.

Applying the operator Execute to the same EMMO and the same ontology
object, but the parameter SMIL, i.e.

Execute(emovies, orendering, SMIL) = frender(emovies, SMIL) = DraculaMovies.smil,

yields a SMIL-document about the EMMO’s content, for example, a SMIL-
document sequentially representing the EMMO’s associations as illustrated in
the right part of Fig. 4.

<html>
<body>
<h1>EMMO Dracula Movies</h1>
<table border="1">
<tr><th>Source</th>
<th>Association</th>
<th>Target</th></tr>
<tr><td>
The ..Caligari</td>
<td>Inspire</td>
<td>Nosferatu</td></tr>
<tr><td>Nosferatu</td>
<td>Inspire</td>
<td>Salem's Lot

Salem's Lot
</td></tr>
</table>
</body>
</html>

<smil>
<head><layout>
<root-layout height="200" width="620"/>
<region id="l" left="0"/>
</layout></head>
<body> <seq>
<par end="60s" >
<video src="./Caligari.mpeg" type="video/mpeg" region="l"/>
<text src="./inspire.txt" type="text/plain" region="m"/>
<video src="./Nosfertatu.mpeg" type="video/mpeg" region="r"/>
</par>
<par end="60s" >
<video src="./Nosferatu.mpeg" type="video/mpeg" region="l"/>
<text src="./inspire.txt" type="text/plain" region="m"/>
<video src="./Salem183.avi" type="video/mpeg" region="r"/>
</par>
</seq></body>
</smil>

Fig. 4. DraculaMovies.html and DraculaMovies.smil

Versioning

Each entity describes a set of succeeding and a set of preceding versions. The
operator successors can be used for accessing all direct successors of an entity,
e.g. the query expression

successors(emovies) = {emoviesV 1}

returns EMMO “Dracula Movies – V1”, the one direct successor version of
EMMO “Dracula Movies” (see Fig. 3). For accessing all succeeding versions,
the operator AllSuccessors is applied, e.g.

AllSuccessors(emovies) = {emoviesV 1, emoviesV 2}.

For the access of an entity’s preceding versions, EMMA also provides the oper-
ators predecessors and AllPredecessors, which are defined in a similar way.

5.2 Navigational Operators

An EMMO establishes a graph-like knowledge structure of entities with asso-
ciations being labeled by ontology objects describing the edges in the graph
structure. The navigational operators provide means for traversing the semantic
graph structure of an EMMO. Navigation through an EMMO’s graph structure
is controlled by a navigation path defined as a set of sequences of ontology ob-
jects. A mapping for each ontology object in the sequence to the corresponding
association of an EMMO defines the traversal path of the graph structure. We
have defined regular path expressions over ontology objects for describing the
syntax of a navigation path. Navigational operators take a regular path expres-
sion as input and specify how this syntactic expression is applied to navigate the
graph structure. For example, for a given EMMO, start entity, and regular path
expression, the navigational operator JumpRight returns the set of all entities
that can be reached by traversing the navigation path in the right direction,
i.e. by following associations from source to target entities. Applying the opera-
tor JumpRight to EMMO “Dracula Movies – V1”(see Fig. 5), the starting entity
“The Cabinet of Dr. Caligari”, and the regular path expression consisting of only
one single ontology object “oinspire” yields the logical media part representing
the movie “Nosferatu”:

JumpRight(emoviesV1, lcaligari, oinspire) = {lnosferatu}.

The basic building blocks of regular path expressions are ontology objects which
can be modified and combined using conventional regular expression operators.
For example, adding the operator “+” to the regular path expression of the above
query returns two logical media parts representing the movies “Nosferatu” and
“Salem’s Lot”:

JumpRight(emoviesV1, lcaligari, oinspire+) = {lnosferatu, lsalem}.

Regular path expressions can also be concatenated and defined as optional. For
example, applying the operator JumpRight to EMMO “Dracula Movies – V1”,
the start entity “The Cabinet of Dr. Caligari” and the regular path expression
“oinspireorework?”, yields the logical media parts “Nosferatu” and “Van Helsing”:

JumpRight(emoviesV1, lcaligari, oinspireorework?) = {lnosferatu, lhelsing}.

The choice operator “|” can be used to combine regular path expression as
alternate versions, e.g.

JumpRight(emoviesV1, lnosferatu, oinspire |orework) = {lsalem, lhelsing}.
By adding the operator “−” to a regular path expression, the inversion of the reg-
ular path expression, i.e. the change of direction of navigation, can be expressed,
e.g.

JumpRight(emoviesV1, lhelsing, orework−) = {lnosferatu}.
Traversal along the opposite direction of associations can also be expressed with
the navigational operator JumpLeft, e.g.

JumpLeft(emoviesV1, lhelsing, orework) = JumpRight(emoviesV1, lhelsing, orework−).

Dracula Movies – V1

rework

Van HelsingMovie

Sommers

Director

http://.../Helsing.avi

format : AVI
......

Hooper

Director

inspire inspire

Salem’s Lot

http://.../Salem183.avi

Movie

http://.../Salem112.avi

The Cabinet of
Dr. Caligari

Movie

Wiene

Director

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

format: MPEG
......

duration: 183min
format: AVI
.....

duration: 112min
format: AVI
.....

http://../Caligari.mpeg

format : MPEG
......

Fig. 5. EMMO “Dracula Movie – V1” (emovieV 1)

Navigational accessors provide the basis for the integration of basic ontological
knowledge into queries. For example, the transitivity of association types, such
as the transitivity of associations of type “inspire”, can be reflected by replac-
ing the navigation path oinspire by the navigation path oinspire+ (see example
above). Knowledge about inverse association types, such as the association types

“rework” and “is-reworked”, can be integrated within the queries as well, for in-
stance, by replacing the navigation path ois−reworked by the navigation path
ois−reworked |orework−, e.g.

JumpRight(emoviesV1, lhelsing, ois−reworked |orework−) = {lnosferatu}.

5.3 Selection Predicates

The selection predicates allow the selection of only those entities satisfying a
specific characteristic. They basically use the result values of extraction operators
to create Boolean operators. The selection predicates can be combined with
the generic Select operator, which takes a predicate and an arbitrary set as
input values, and returns all elements of the set that satisfy the condition of
the specified predicate. For instance, applying the operator IsType to the logical
media part “Dracula” and the set of the one ontology object “Book” returns
false:

IsType(ldracula, {obook}) = false.

By taking a set of ontology objects as input parameter, the operator IsType
enables the integration of supertype/subtype relationships within queries. The
ontological knowledge about a subtype relationship, for example, the subtype
relationship between the ontology objects “Novel” and “Book” can be reflected
within the query expression, e.g.

IsType(ldracula, {obook, onovel}) = true.

Assuming that ontological knowledge about supertype/subtype relationships was
represented within EMMOs (e.g. in EMMO eontology) as well, e.g., by means of
associations of type “is a”, the subtypes of “Book” in the previous query would
not need to be hardwired but could also be dynamically calculated during query
execution using an appropriate JumpRight expression:

IsType(ldracula, JumpRight(eontology, obook, ois a∗)) = true.

Although we have not developed a language yet which governs the expression
of such ontology knowledge within the EMMO model, the query algebra in this
manner is prepared for exploiting this knowledge once it becomes available.

If we apply the Select operator to the selection predicate IsType with the set
consisting of the ontology objects “Book”and “Novel” as fixed parameter value
and to the logical media parts contained within EMMO “Dracula Studies” (see
Fig. 2), the result set consists of the logical media part representing Stoker’s
novel “Dracula”:

Select(IsType[$,{obook,onovel}], lmp(estudies)) = {ldracula}.
By combining selection predicates with logical predicates, such as And, Or, and
Not, we can ask, for example, for all logical media parts within EMMO “Dracula
Studies” which are not of type “Novel”:

Select(Not(IsType[$,{onovel}], lmp(estudies))) = {lvampyre, lnosferatu}.

Being based on the return values of extraction operators, the list of selection
predicates has the same length as the list of extraction operators. Any infor-
mation which can be accessed by the extraction operators is again used for the
selection of entities.

Thus, for example, selection predicates allow the selection of all logical media
parts within EMMO “Dracula Movies”(see Fig. 1) associating a media profile
encompassing media data in AVI format, i.e.

Select(HasMediaProfileValue[$,“format”,“AVI”,=], lmp(emovies)) = {lsalem},

yields the logical media part “Salem’s Lot” encompassing two media profiles
which both describe the attribute “format” with value “AVI” within their sets
of metadata.

5.4 Constructors

EMMA specifies five constructors for EMMOs, i.e. the operators Union, Nest,
Flatten, Difference, and Intersection. All the constructors take at least one
EMMO and possibly other parameters as input value, and return exactly one
EMMO as output value. For example, the Difference operator takes two EMMOs
and a string value. It creates a new EMMO which is denoted by the specified
string value. The new EMMO’s nodes encompass all entities belonging to the
first, but not the second EMMO, and additionally the source and target enti-
ties of each association contained within the first EMMO. Otherwise, an EMMO
constructed by the Difference operator could encompass incomplete associations
without source or target entity. The remaining properties of the new EMMO,
such as its operations or predecessors sets are specified as empty set. Applying

Newcomers

rework

Nosferatu

Movie

Murnau

Director

Van Helsing Movie

Sommers

Director

http://../Helsing.avi

format: AVI
....

http://../Nosferatu.mpeg

format: MPEG
....

Fig. 6. EMMO “Newcomers”(enewcomers)

the Difference operator to the successor EMMO “Dracula Movies – V1” and the
original EMMO “Dracula Movies”, generates a new EMMO “Newcomers” (see
Fig. 6) consisting of the logical media parts describing the movies “Nosferatu”

and “Van Helsing”, as well as their connecting “reworking” association, i.e.

Difference(emoviesV1, emovies, “Newcomers”) = enewcomers

with nodes(enewcomers) = {lnosferatu, ano→he, lhelsing}.
The Nest operator maps the information stored within an association, i.e. the
triple consisting of source entity, association, and target entity, into an EMMO
knowledge structure. It takes an EMMO, a string value, and a set of associations
as input values and creates a new EMMO encompassing a subgraph consisting
of only those associations together with their source and target entities. Ap-
plying the Nest operator to EMMO “Dracula Studies” (see Fig. 2) and to the
associations which were stated by “Elizabeth Miller”, i.e. the return value of the
operation JumpRight(estudies, omiller, ostate):

Nest(estudies, “Miller’s Statements”, JumpRight(estudies, omiller, ostate)) = emiller

with nodes(emiller) = {lvampyre, ava→dr, ldracula}
constructs a new EMMO encompassing three entities, i.e. the ancient text “Vam-
pyre”, the book “Dracula”, and the connecting association of type “inspire” as
illustrated in Fig. 7.

Miller‘s Statements

inspire

Vampyre

http://../Vampyre.txt

format: txt
....

Text

1819

Creationdate

Dracula Book

Stoker

Author

Ancient Text

http://../Dracula.pdf

format: PDF
....

Fig. 7. EMMO ”Miller’s Statements” (emiller)

5.5 Join Operator

The Join operator renders it possible to extend queries across multiple EMMOs.
It specifies how to relate n sets of entities, possibly originating from different
EMMOS, within a query. The join operator takes n entity sets, n operators, and
one predicate as input value. We compute the Cartesian product of the n entity
sets and select only those tuples that satisfy the predicate after applying the
n operators to the n entities. The result set of tuples is projected onto the
first entry. For example, asking for all successors of EMMO “Dracula Movies”
which constitute an extended version of the original version, i.e. asking for all

succeeding EMMOs which at least encompass the entities contained within the
original EMMO “Dracula Movie”, corresponds to the query expression

Join(AllSuccessors(emovies), {emovies},nodes,nodes,⊇) = {emoviesV1}
and yields EMMO “Dracula Movies – V1” (see Fig. 5) , because this succeed-
ing EMMO encompasses – in addition to the entities already contained within
EMMO “Dracula Movies” – two further entities, i.e. the “reworking” association
with the logical media part “Van Helsing” as target entity.

The join operator is a generalization of the Select operator accounting for
constraints defined on not only one but several entity sets. Defining the identity
function id, i.e. id(x) = x, any select operation can be expressed by a join
expression taking only one set, one operator, and one predicate p as input value,
e.g.

Join(nodes(estudies), id, p) = Select(p,nodes(estudies)).

5.6 Summary of EMMA Operators

Figure 8 summarizes the contribution of the EMMA operators introduced in the
preceding subsections in satisfying the requirements of an EMMO query algebra
as described in Sect. 3.

ad
eq

ua
cy

an

d
co

m
pl

et
en

es
s

media
aspect

semantic
aspect

functional
aspect versioning

or
th

og
on

al
ity

jo
in

s

co
ns

tr
uc

tio
n

an
d

m
an

ip
ul

at
io

n

pr
es

en
ta

tio
n

of

on
to

lo
gi

ca
l k

no
w

le
dg

e

lmp

MediaProfiles

types
attributes

nodes
AllEncEnt

JumpRight
JumpLeft

Designators

ImpToName

Execute

Successors
Predecessors

AllSuccessors
AllPredecessors

Select

Apply
Elements

Nest

Join Union
Intersection
Difference
Nest
Flatten

types
IsType

JumpRight
JumpLeft

Fig. 8. EMMA operators addressing the EMMA requirements

By offering operators to access the three aspects and the versioning informa-
tion, EMMA is adequate and complete with regard to the EMMO model. The
access to EMMO’s media aspect is realized by the operator lmp retrieving all
logical media parts, and the operator MediaProfiles returning all media profiles
of a logical media part. For accessing the semantic aspect, EMMA provides the

operator types accessing the types of an entity, the operator attributes return-
ing an entity’s attribute values, the operator nodes yielding all entities within
an EMMO, the operator AllEncEnt attaining all recursively contained entities
within an EMMO, and the operators JumpRight and JumpLeft enabling the nav-
igation of an EMMO’s graph structure. The operators Designator, ImpToName,
and Execute address the functional aspect, and the operators successors (prede-
cessors) and AllSuccessors (AllPredecessors) ensure the access to the versioning
information.

The ability to arbitrarily nest and combine operators indicates the high or-
thogonality of EMMA’s operators. The basic Select operator takes a selection
predicate and an arbitrary set – possibly the return set of another EMMA oper-
ation. The operator Apply allows one to use a specified operator not only for a
single input value, but for a set of input values. As some of the operator’s output
values are represented in a format which cannot be directly used as input value
for other operators, EMMA provides operators to transform and prepare the
data for the use by other operators: the operator Elements allows the flattening
of data sets and the Nest operator facilitates the nesting of an arbitrary set of
associations into an EMMO knowledge container.

By extending queries across multiple EMMOs and entities, the join opera-
tor allows one to correlate the information contained in different EMMOs. The
construction operators establish primitive operators for the construction and
manipulation of EMMOs.

Finally, EMMA allows one to capture basic ontological knowledge within a
query. Within the EMMO model, ontological knowledge is represented by on-
tology objects. The operator types accesses the classification of an entity (rep-
resented by a set of ontology objects) and the operator IsType the entities of
specific types. As the operators JumpRight and JumpLeft allow the specification
of navigation along associations by means of powerful regular path expressions,
they are able to consider basic ontological knowledge such as transitive and
inverse association types, and supertype/subtype relationships.

6 Conclusion

In this paper, we have introduced the EMMA query algebra for EMMOs, a
novel approach to semantic multimedia content modeling for collaborative and
content sharing applications. EMMA is adequate and complete with regard to the
EMMO model and formally defined and orthogonal, establishing a foundation
for the querying of EMMOs and a formally sound basis for query rewriting and
optimization. EMMA is expressive, featuring orthogonal, arbitrarily combinable
operators that range from simple selection and extraction operators to more
complex navigational operators and joins and even rudimentary operators for the
construction and manipulation of EMMOs. Furthermore, EMMA is capable of
capturing basic ontological knowledge within queries, such as supertype/subtype
relationships, transitive or inverse association types.

Currently, we are implementing the algebra and developing a cost model
for its operators based on the experiences with this implementation. Based on
the cost model, we will derive and formally prove elementary query rewriting
rules with a high potential of saving query evaluation time. Furthermore, we are
in the process of providing the proof for elementary, formal properties of the
algebra, such as completeness, etc. Moreover, we are developing a language for
the definition of ontologies that is compatible with EMMOs to allow the seamless
integration of ontological knowledge into query processing.

Acknowledgement

We would like to thank Bernhard Haslhofer for his work on the implementation
of the EMMA query algebra.

References

1. Ayars, J., et al.: Synchronized Multimedia Integration Language (SMIL 2.0). W3C
Recommendation, World Wide Web Consortium (W3C) (2001)

2. ISO/IEC JTC 1/SC 34/WG 3: Information Technology – Hypermedia/Time-Based
Structuring Language (HyTime). International Standard 15938-5:2001, ISO/IEC
(1997)

3. Ferraiolo, J., Jun, F., Jackson, D.: Scalable Vector Graphics (SVG) 1.1. W3C
Recommendation, World Wide Web Consortium (W3C) (2003)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

5. Schellner, K., Westermann, U., Zillner, S., Klas, W.: CULTOS: Towards a World-
Wide Digital Collection of Exchangeable Units of Multimedia Content for Inter-
textual Studies. In: Proceedings of the Conference on Distributed Multimedia
Systems (DMS 2003), Miami, Florida (2003)

6. Westermann, U., Zillner, S., Schellner, K., Klas, W.: EMMOs: Tradeable Units
of Knowledge Enriched Multimedia Content. In Srinivasan, U., Nepal, S., eds.:
Managing Multimedia Semantics. IDEA Group Publishing, Hershey PA, USA (to
appear)

7. Schneider, P., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics and
Abstract Syntax. W3C Recommendation, World Wide Web Consortium (W3C)
(2004)

8. Brickely, D., Guha, R.: Resource Description Framework (RDF) Vocabulary De-
scription Language 1.0: RDF Schema. W3C Working Draft, World Wide Web
Consortium (W3C) (2002)

9. Lee, T., et al.: Querying Multimedia Presentations Based on Content. IEEE
Transcations on Knowledge and Data Engineering 11 (1999)

10. Duda, A., Weiss, R., Gifford, D.: Content Based Access to Algebraic Video. In:
Proceedings of the IEEE First International Conference on Multimedia Computing
and Systems, Boston, MA,USA (1994)

11. Adali, S., Sapino, M., Subrahmanian, V.: A Multimedia Presentation Algebra. In:
Proceedings of the ACM SIGMOD International Conference on Management of
Data, Philadelphia, Pennsylvania, USA (1999)

12. Lassila, O., Swick, R.: Resource Description Framework (RDF) Model and Syntax
Specification. W3C Recommendation, World Wide Web Consortium (W3C) (1999)

13. ISO/IEC JTC 1/SC 34/WG 3: Information Technology – SGML Applications –
Topic Maps. ISO/IEC International Standard 13250:2000, International Organi-
zation for Standardization/International Electrotechnical Commission (ISO/IEC)
(2000)

14. ISO/IEC JTC 1/SC 29/WG 11: Information Technology – Multimedia Content
Description Interface – Part 5: Multimedia Description Schemes. Final Draft In-
ternational Standard 15938-5:2001, ISO/IEC (2001)

15. Karvounarakis, G., et al.: RQL: A Declarative Query Language for RDF. In:
Proceedings of the 11th International World Wide Web Conference (WWW 2002),
Honolulu, Hawaii (2002)

16. Miller, L., Seaborn, A., Reggiori, A.: Three Implementations of SqishQl, a Simple
RDF Query Language. In: Proceedings of the first International Semantic Web
Conference (ISWC2002), Sardinia, Italy (2002)

17. Frasincar, F., et al.: RAL: An Algebra for Querying RDF. In: Proceedings of the
Third International Conference on Web Information Systems Engineering (WISE
2000), Singapore (2002)

18. ISO/IEC JTC1 SC34 WG3: New Work Item Proposal, Topic Map Query Lan-
guage (TMQL). New Proposal, International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC) (2000)

19. Garshol, L.: tolog 0.1. Ontopia Technical Report, Ontopia (2003)
20. Bogachev, D.: TMPath – Revisited. Online Article, available under

http://homepage.mac.com/dmitryv/TopicMaps/TMPath/TMPathRevisited.html
(2004)

21. Barta, R., Gylta, J.: XTM::Path – Topic Map management, XPath
like retrieval and construction facility. Online Article, available under
http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html (2002)

22. Widhalm, R., Mück, T.: Topic Maps (in German). Springer, Berlin Heidelberg,
Germany (2002)

23. Manjunath, B., Salembier, P., Sikora, T., eds.: Introduction to MPEG-7. John
Wiley & Sons, West Sussex, UK (2002)

24. Zillner, S.: The EMMA Algebra for EMMOs – Compendium. Technical Re-
port TR 2004 301, Department of Computer Science and Business Informatics,
University of Vienna (2004) available at http://www.ifs.univie.ac.at/˜sz/EMMA-
Compendium.pdf.

