On-Line Analytical Processing on Large Databases
Managed by Computational Grids*

Bernhard FiSer, Umut Onan, Ibrahim Elsayed, Peter Brezany
Institute for Software Science, University of Vienna
Liechtensteinstrasse 22, A-1090 Vienna, Austria
E-mail: {brezany, elsayed, fiser,onan}@par.univie.ac.at

A Min Tjoa
Institute of Software Technology and Interactive Systems

Vienna University of Technology, Favoritenstrasse 9-11/E188, A-1040 Vienna, Austria
E-mail: tjoa@ifs.tuwien.ac.at

Abstract

Management of large data repositories integrated into
the Grid poses new challenges for Grid research. There al-
ready exist several successful Data Grid projects address-
ing processing files storing large volumes of scientific data
and projects developing services for accessing remote rela-
tional and XML databases. However, so far, no effort was
devoted to On-Line Analytical Processing (OLAP), an es-
sential support for modern decision support systems. In
this paper, we present our approach to the design and im-
plementation of a Grid-enabled OLAP server, which is one
functional building block of the GridMiner system, a novel
infrastructure for knowledge discovery in Grid databases.
We present the global architecture model of our solution,
describe how the OLAP components are integrated into the
GridMiner system, and present the software architecture
of our first prototype. The OLAP components were imple-
mented in Java on top of the software toolkit Globus 3.

1 Introduction

Grid computing has been identified as an important new
technology by a remarkable thread of scientific and en-
gineering fields as well as by many commercial and in-
dustrial enterprises [10]. Its goal is to virtually share
and manage computer resources across enterprises, indus-
try or workgroups independently of the operating charac-
teristics of their computer systems. It can be used to tem-

*This research is being carried out as part of the research project “Mod-
ern Data Analysis on Computational Grids” supported by the Austrian Re-
search Foundation.

porarily increase computational power and storage needs
on demand and, on the other hand, a system which cur-
rently is in idle state can be announced as usable for
others. So far, essentially all major Grid projects have
been built on protocols and services of the Globus Toolkit
(http://www.globus.org/toolkit/), which is an open architec-
ture, open source framework for Grid computing. It consists
of several services and software libraries. The latest Globus
version, Globus 3, is based on the Open Grid Services Ar-
chitecture (OGSA) [5].

Many advanced Grid applications are data intensive, that
is, significant processing is done on very large amounts of
heterogeneous and geographically distributed data. There-
fore, the management of data within Grids is a challeng-
ing research and development problem. In the past four
years, several Data Grid projects have been started ([11]),
with the aim of setting up a computational and data-
intensive Grid of resources for the processing and analy-
sis of data coming (mainly) from scientific explorations.
Almost all these applications are file-based, and until re-
cently, there has been relatively little effort applied to inte-
grating databases into the Grid [12]. The UK core e-Science
program’s OGSA-Database Access and Integration (DAI)
project (http://umbriel.dcs.gla.ac.uk/NeSC/general/) is cur-
rently designing and building wrappers for relational and
XML repositories so that they offer Grid-enabled services
conforming to the OGSA framework.

One important database architecture that has emerged in
the traditional database research and development fields in
the nineties is the data warehouse, a repository of mul-
tiple heterogeneous data sources, organized under a uni-
fied schema in order to facilitate management of decision
making [8]. Data warehouse technology includes data in-

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’'04)

1529-4188/04 $ 20.00 IEEE

YF]',F.

COMPUTER

SOCIETY

tegration and On-Line Analytical Processing (OLAP) [2].
OLAP allows interactive analysis of multi-dimensional data
of variable granularities with functionalities such as sum-
marization, consolidation, and aggregation, as well as the
ability to view information from different angles. This func-
tionality is based on a sophisticated data structure called the
datacube.

However, so far, to our best knowledge, in the Grid com-
munity, no effort has been devoted to the data warehous-
ing and associated technologies. Just these issues are ad-
dressed within the GridMiner project (www.gridminer.org)
in Vienna, Austria. Our recent paper [1] reports about the
Grid data integration and virtualization solution, based on
Grid data mediation technology, we have developed.

This paper deals with the OLAP functionality of the
GridMiner system and is organized as follows. Section 2
provides a brief introduction into OLAP and an overview
on the global architecture models we consider and shows
how our system fits into the Grid model. In Section 3 we
discuss our current OLAP engine, which is based on the se-
quential model, and in Section 4 we show how this engine
is integrated into the Grid. In Section 5, give an overview
of our planned future work, which is focused on a more ad-
vanced solution based on the parallel and distributed OLAP
model. Finally, we provide a brief conclusion in Section 6

2 Background and Architecture Models

On-Line Analytical Processing (OLAP) has become a
fundamental component of contemporary decision support
systems. In 1995, Gray et al. [7] introduced the datacube, a
relational operator/model used to compute summary views
of data that can, in turn, significantly enhance the response
time of core OLAP operations.

There are two standard datacube representations: RO-
LAP (set of relational tables) and MOLAP (multi-
dimensional array). The ROLAP’s summary records are
stored directly in standard relational tables without any need
for data conversion. However, a complex analytical query
is cumbersome to express in SQL and it might not be effi-
cient to execute. The array-based model, MOLAP (Multi-
dimensional OLAP), has the advantage that native arrays
provide an immediate form of indexing for cube queries.
Data is stored in a multidimensional structure which is a
more natural way to express the multi-dimensionality of the
enterprise or scientific data and is more suited for analysis.

OLAP applies aggregation functions to multi-
dimensional organized data. Typical aggregation functions
are accumulation of values, counting of the existence of
values and finding the minima or maxima of value sets.
The multi-dimensional organized data structure usually is
referred to as the datacube, the hypercube or simply just
the cube. Each dimension of the cube is associated with

a specific attribute, this could be the selling date of some
product, the color of a product or similar attributes. A
specific attribute value within a dimension, for example the
product color ’green”, is called a position or an item. The
value which is functionally dependend on the positions is
referred to as the measure. This, for example, could be the
number of products sold.

Aggregation functions are applied by either reducing the
number of dimensions or by reducing the depth of infor-
mation hierarchy, which is the structure within one dimen-
sion, which, for example, could be year — quarter —
month — day. In literature, OLAP operations are
usually referred to as slice-and-dice, roll-up, drill-down,
etc. In fact, these are subsequent compositions of inter-
dimensional and hierarchical aggregation.

We are following the MOLAP approach by virtually
building a multi-dimensional cube through sophisticated
encoding the positions of the dimensions (index encoding)
and using this as a linear address of the measures (because
conventional computer memory has one-dimensional orga-
nization).

The Grid is an architectural framework to join computer
systems of different capabilities and operating systems to
merge functionality, computational power and storage avail-
abilities. There are well defined workflows and proto-
cols to ensure communication and there is a framework for
database integration, the OGSA-DAI, which is Java-based.

To provide a new functional block for the Grid commu-
nity, especially for the GridMiner project, which is based
on OGSA-DALI and, hence, also Java-based, to reduce inter-
operability efforts, we build our OLAP service within this
framework in Java too.

Performance and usability of the system mostly depends
on the global architecture, hence, it has to be chosen thor-
oughly. Issues influencing the structure are performance
and memory considerations as well as communication costs
and complexity. Basically we distinguish between several
possible solutions.

1. Centralized: (a) sequential (We already have a first
prototype.); (b) parallel (Implementation is based on
message-passing mechanisms, e.g., MPL).

2. Geographically distributed: (a) sequential (This case
is similar to 1(a), however, communication costs are
much higher.); (b) parallel (A challenging task, which
is a part of our research agenda.).

The first approach is to build a centralized sequential en-
gine which, of course, is the most common method, which
is usually the most easiest way of implementation compared
to the other ones, but it can be used very well to gather infor-
mation about deeply buried problems, which occur during
implementation and to study different algorithms for cube
construction and storage, query processing and indexing in

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’'04)
1529-4188/04 $ 20.00 IEEE

Grid environment. Additionally, it more quickly leads to a
result because, as mentioned earlier, the Grid interoperabil-
ity is also of a high relevance. That’s why we first chose to
design and implement this type of architecture. We have al-
ready a well developed prototype ready and we present the
applied design and implementation concepts in following
Sections 3 and 4 whose purpose is to introduce the reader
into this complex field of data aggregation and querying.

The second kind of architecture is a centralized parallel
solution. This is done in a similar way than the first one,
but the query processor will partition the query sequence
and compute partial aggregates on different hosts. The host
intercommunication of this architecture could be based on
the Message Passing Interface standard (MPI) (http://www-
unix.mcs.anl.gov/mpi/). Some efforts have been done in this
area and are discussed in [6]. We’ll rely on these methods
and conclusions for our further developments.

Another parallel solution could be a geographically dis-
tributed architecture, but this is very similar to the central-
ized parallel solution with the great disadvantage of very
high communication costs because of presumably low net-
work bandwidth and high latency. Hence, we’ll not follow
this approach.

The really most challenging but probably also most re-
liable architecture is a distributed parallel solution. It con-
sists of at least two geographically distributed sites which
within could consist of parallel clustered nodes. Each site
appears to be one host and also is addressed by one IP ad-
dress. Thus communication can be done only between both
hosts, but not between a node from one location with a node
from the other location. Hence, this is the architecture we
plan to implement in the future. We outline our first design
concepts for this infrastructure in Section 5.

3 The Sequential OLAP Engine

From a global point of view, our sequential OLAP
server currently consists of the data cube structure, an index
database and function blocks for cube construction, query-
ing and connection handling (see Figure 1).

The data cube structure consists of an increasing number
of chunks, which again consist of a fixed maximum num-
ber of measures. A measure is the smallest unit of the cube,
one atomic element, and it actually contains just an integer
value. The chunk is a part of the whole cube. It has the same
dimension like the cube, which means it contains measures
associated with a number of positions of each dimension.
Because the amount of memory used by the whole cube
usually will be much higher than a system may provide,
each chunk offers methods for storing and loading its data
onto and from the disk storage. Thus, always only a limited
number of chunks is kept within the memory at the same
time. Storing and loading targeted chunks is called chunk

swapping and is a subsystem of the datacube structure im-
plementation. This is similar to paging in modern operating
systems with the distinction that our chunks may grow up to
a specific size, hence, the memory resident chunk location
table, which is a list of chunks which are currently resident
in memory, varies its size. This is because aggregation re-
sults are also stored within the same datacube.

The index database contains the literal positions, the
meta-information, of each dimension and maps unique in-
teger values, the position indexes, within each dimension
to them. Furthermore, it provides methods for linearizing
the multi-dimensional position indexes used for addressing
a specific measure. As already mentioned earlier, this is
necessary because of the one-dimensional (linear) organi-
zation of conventional computers memory. Several meth-
ods are available, e.g. hashing, bit encoded sparse structure
(BESS) [6], binary trees or others. Because we want to deal
with a huge number of tuples, which actually means billions
or more, we need an algorithm which is fast on one hand
and, on the other hand, is not limited to some upper bound-
ary. This is necessary to avoid multiple scans of the source
data and allow insertion of measure aggregations after cube
construction. We developed a method called dynamic bit
encoding (DBE) [4] which is based on BESS with the differ-
ence that the bits used for each dimension are kept within bit
masks which are extensible and mutually exclusive against
each other one from a binary point of view. The position in-
dexes are processed by the or operation using these masks,
which results in a linear measure address called the global
index.

L ﬁ % control input stream
origin input stream ‘ <I/O> P
Connection -
Tuples Handling
Raw Aggregate Result ¥
COnStI’uCthn measures measures Quel’ylng
Position- Non-functional ‘
indexes Metainformation

non-functional
Metainformation

Functional Metainformation

OLAP Server

Figure 1. The system architecture of the se-
quential prototype.

The cube Construction functional block reads one tuple
after the other, passes over the items to the index database,
retrieves its global index and then passes the (raw) measure
and its associated global index to the data cube structure.

The Querying functional block is some kind of highly
sophisticated, recursively nested loops for aggregation of

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’'04)
1529-4188/04 $ 20.00 IEEE

measures. Because the number of computational operations
of nested aggregation depends on the size of the dimensions
and thereby on the order in which dimensions are aggre-
gated, the engine uses a kind of query plan optimization to
select dimensions in a ”good” way. The procedure of di-
mension selection is done by traversing a tree which in lit-
erature usually is called the query lattice [6]. The task of ag-
gregation is realized sequentially by loading one chunk af-
ter the other and aggregating them one by one. To avoid re-
peated computation of same aggregates, they are also stored
into the cube structure as if they were raw measures and
also get index entries within the index database within the
appropriate dimensions.

Connection handling is the network interface which al-
lows user interaction with the system. A typical workflow
of system usage is like follows. After startup the index ta-
bles and the base cube are constructed. This is done upon
loading and parsing a structured or semi-structured text file
representing database tuples. It is called the origin input
stream (see Figure 1). To each position a unique index
value is assigned and this assignment is kept within the in-
dex database. Then all index values from a tuple are merged
together using the DBE algorithm. The encoded global in-
dex is used to uniquely locate and store the measure within
the cube. After the step of tuples import, the server opens
a listening TCP socket and accepts client connections. A
simple command language was defined [4] for communica-
tion between server and client. This is called the control in-
put(/output) stream. A client now is able to submit queries.
The server supports concurrent sessions which allows mul-
tiple users to login concurrently.

Complete system documentation, source code and re-
lated documents are available on the projects Internet site
(www.gridminer.org).

4 Integration into the Grid

Our OLAP server provides a simple TCP/IP interface for
client interaction (Section 3), hence, it’s open and adaptable
to near any higher layer architecture like the Grid by wrap-
ping software adapters around it. The GridMiner requires
service creation upon direct Java API calls and making the
new service available in the service factory of GridMiner.
To realize this, we provided an interface using the Java RMI
technology, describing all the available operations imple-
mented by the engine. These operations are saved in the
GridMiner Knowledge Base [9] and are thus accessible for
other services through the Dynamic Service Control Engine
(DSCE) [9], which itself is also a service in the GridMiner,
describing the state, and the results of all activities.

The kind of presentation of the results of our operations
is very important to provide a consistent workflow man-
agement in computational grids and thus are potential in-

put candidates for other services even either for the OLAP
service itself or for graphical output processing. The opera-
tions and the results provided by the Grid integration of our
OLAP server can be grouped into two categories.

The first category includes standard OLAP operations
such as roll-up, drill-down, point query and slice-and-dice.
However, so far to our best knowledge, there is no stan-
dard to represent the results of OLAP operations. That’s
why we designed the OLAP Modeling Markup Language
(OMML) [3] to provide consistent OLAP results. It serves
as a generic data format to carry multi-dimensional data.

The second category of operations consists of data min-
ing methods because the engine has a built-in association
rule mining functionality!, which is used to filter meaning-
ful patterns, the so-called strong association rules, from data
cubes. Furthermore, for the representation of the results of
our embedded association rule mining engine we decided
to use the Predictive Model Markup Language (PMML), a
standard defined by the Data Mining Group (www.dmg.org).

(GridMiner Service Factories >
\ \ \

v
GMPPS GMCMS GMOMS GMPRS
(transformation) (clustering) (spheres)

S N N
Figure 2. A typical workflow example of cre-

ation of a data cube and the application of

association rule mining on it [9].

The service provided by our OLAP engine is called
GridMiner Cube Management Service (GMCMS) and
the embedded association rule mining functionality the
GridMiner Online Analytical Mining Management Service
(GMOMS). Figure 2 shows a typical example of a work-
flow of creation of a data cube and application of association
rule mining on it. Because the cubes always contain prepro-
cessed data and they are constructed for a distinct task, it is
necessary to start preprocessing services (GMPPS) before
the cube is constructed. In the next step the cube manage-
ment service (GMCMS) creates an OLAP cube and after the
cube is constructed a data mining algorithm can be started,
which is the task of the OLAP mining within GMOMS.
The results of this step are pure PMML files as explained
above and they are serving as input for a presentation ser-
vice which prepares the results for output presentation to
the user.

Decision tree based classification and clustering will be also imple-
mented.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’'04)
1529-4188/04 $ 20.00 IEEE

In this phase of implementation, the OMML and PMML
outputs of our engine are stored onto the local file system. It
is one of the future works to accomplish performance tests
on how efficient these XML based results can be used as
input for various services throughout the GridMiner system
and bypassing the local storage because of its security im-
pacts.

5 Toward Distributed and Parallel Grid
OLAP Services

In the next phase, we are going to build a datacube on top
of a collection of geographically distributed Grid datasets.
This data cube can be distributed across a set of Grid hosts.
However, the system has to virtualize all these resources.
Therefore, for the end-user and other potential applications,
we consider this datacube as one large virtual cube, which
is distributed across a set of Grid hosts, which manage the
creation, updates and querying of the associated cube por-
tions. To develop appropriate scheduling mechanisms for
these management tasks, we consider that the virtual cube
is split into several smaller parts, called cube segments. But
a cube segment could furthermore also be split into smaller
segments and so on, till we achieve the level of chunks.
Thinking object-oriented, we use the term cube element for
all these cubes, cube segments and chunks, because they
only differ in storage size but they have all the same number
of dimensions and they all contain the same type elements
which again are cube elements. The cube elements can be
considered as program objects of the same class or as in-
stances of one generic service. They can then be assigned to
Grid hosts, having sequential or parallel computing power,
which are responsible for their management.

The challenge which comes up with this object oriented
approach is that there could no longer exist one global in-
dex for addressing measures so we will need methods for
splitting indexes into global and local sets of indexes which
are passed through the cube element hierarchy.

We will keep our method of storing aggregation results
within the same structure with the difference that then ev-
ery cube element will contain its own aggregates which are
again aggregated in hierarchically higher level cube ele-
ments and so on.

This solution will allow both to create new autonomous
Grid OLAP applications and federate existing geographi-
cally distributed OLAP applications as well.

6 Conclusions

OLAP is a kernel part of each modern decision support
system. So far, no research effort was devoted to the de-
velopment of Grid-enabled OLAP technology for analysing

data repositories integrated into the Grid. In this paper,
we described a sequential OLAP engine which was imple-
mented as a Grid service on top of the Globus Toolkit 3 in
Java. For this implementation, the new data indexing, data
materialization and querying techniques were developed,
which reflected the needs for processing and analysing large
data volumes. We also briefly introduced several origi-
nal design concepts developed for distributed and parallel
OLAP services, which we are planning to implement in the
near future.

References

[1] P. Brezany et al. Mediators in the architecture of grid
information systems. Proceedings of the Conference
PPAM’03, Czestochowa, Poland, September 2003.

[2] E. F. Codd. Providing OLAP (on-line analytical pro-
cessing) to user-analysts: An IT-mandate. Technical
report. E.F. Codd and Associates, 1993.

[3] I. Elsayed and U. Onan. Specification omml- olap
modelling markup language, March 2004.

[4] B. FiSer and P. Brezany. Approaches to the develop-
ment of olap engines. Techn. rep., Institute of Soft-
ware Science, University of Vienna, February 2004.

[5] I Foster, C. Kesselman, J. Nick, and S. Tuecke. The
physiology of the grid: An open grid services architec-
ture for distributed systems integration, January 2002.

[6] S. Goil. High Performance On-Line Analytical Pro-
cessing and Data Mining on Parallel Computers. PhD
thesis, Northwestern University Evanston, 1999.

[71 J. Gray, et al. Data Cube: A Relational Aggrega-
tion Operator Generalizing Group-By, Cross-Tab, and
Sub-Total, S. Y. W. Su (ed.), Proceedings of the 12th
Intern. Conf. on Data Engineering, pp. 152-159.

[8] J. Han. Data Mining. Concepts and Techniques. Mor-
gan Kaufmann, 2000.

[9] G. Kickinger and P. Brezany. The Grid Knowledge
Discovery Process and Corresponding Control Struc-
tures, Techn. Rep., Univ. of Vienna, March 2004.

[10] P. Messina. Foreward. In F. Berman, A. J. G. Hey, and
G. Fox, editors, Grid Computing: Making The Global
Infrastructure a Reality. John Wiley & Sons, 2003.

[11] R. Oldfield. Summary of existing and developing data
grids. White paper for the Remote Data Access group
of the Global Grid Forum 1, Amsterdam, March 2001.

[12] N. W. Paton, et al. Database Access and Integration
Services on the Grid, Technical Rep., February 2002.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’'04)
1529-4188/04 $ 20.00 IEEE

