
Controlled Experiment on the Supportive Effect of
Architectural Component Diagrams for Design

Understanding of Novice Architects

Thomas Haitzer and Uwe Zdun

Research Group Software Architecture
University of Vienna

Austria
{thomas.haitzer | uwe.zdun}@univie.ac.at

Abstract. Today, architectural component models are often used as a central view
of architecture descriptions. So far, however, only a very few rigorous empirical
studies relating to the use of component models in architectural descriptions of
software systems have been conducted. In this paper, we present the results of a
controlled experiment regarding the supportive effect of architectural component
diagrams for design understandability. In particular, the goal of the experiment was
to determine whether architectural component diagrams, provided in addition to a
non-trivial software system’s source code, have a supportive effect on the ability
of novice architects to answer design and architecture related questions about that
system. Our study provides initial evidence that architectural component diagrams
have a supportive effect for understanding the software design and architecture, if
a direct link from the component diagram’s elements to the problem that requires
understanding can be made. If such a direct link cannot be made, we found evidence
that it should not be assumed that architectural component diagrams help in design
understanding, for instance only by providing a big picture view or some general
kind of orientation.

Keywords: Software Architecture, Architectural Component Diagrams, Design and Ar-
chitecture Understanding, Empirical Study, Controlled Experiment

1 Introduction

Today a software architecture description is usually comprised of multiple views [5, 19,
20]. The component and connector model (or component model for short) of an architec-
ture is a view that is often considered to contain the most significant architectural informa-
tion [5]. This view deals with the components, which are units of runtime computation or
data-storage, and the connectors which are the interaction mechanisms between compo-
nents [5, 29]. An architectural component model is a high-level abstraction of the entities
in the source code of the software system, as the software architecture concerns only the
major design decisions about a software system, and abstracts from irrelevant details [21].

While much research work has been done in component-related research areas such
as modelling languages for component and connector models, component implementation
technologies, component composition, and the formal semantics of components, only a
very few rigorous empirical studies relating to the use of component models in architec-
tural descriptions of software systems have been conducted. Such foundational research



is however essential to provide guidelines and tools to software architects, based on sound
evidence, to help them understand how to design component models that are appropriate
for the architectural understanding of a software system.

In this paper, we present the results of a controlled experiment regarding the support-
ive effect of architectural component diagrams for design understandability. In particular,
the goal of the experiment was to determine whether architectural component diagrams,
provided in addition to a non-trivial software system’s source code, have a supportive ef-
fect on the ability of novice architects to answer design and architecture related questions
about that system. This goal is interesting to study, as today it is unclear whether compo-
nent diagrams alone are sufficient to help architects to understand complex architectural
relationships in a given system in a better way than just studying the source code of that
system. While the literature suggests a supportive effects of component diagrams (see e.g.
[5, 31]) for design understanding, there is little empirical evidence so far.

In addition, many existing approaches seem to assume seasoned architects as their
main target group. Assuming that component diagrams alone are a useful help to gain
a better architectural understanding of a system, as some of the software architecture
literature suggests, it is unclear whether this effect can also be observed for novice archi-
tects. As software architecture has the goal to convey the big picture of a software system
and novices who start on a new project especially require help to gain such a big pic-
ture quickly, it is highly interesting whether there is indeed a supportive effect on design
understanding for them. Hence, we particularly focus on novice architects.

The experiment presented in this paper studies the experiment goal by letting 60 stu-
dents with medium programming experience answer seven questions about the design
and architecture of a given software system (the computer game FreeCol). One half of
the participants, the control group, received the source code of that system as the main
source of information, while the other half of the participants, the experiment group, ad-
ditionally received architectural component diagrams for FreeCol. By showing that the
quality of the answers improves for certain questions, our study provides initial evidence
on how architectural component diagrams help in understanding the design and architec-
ture of software systems. The results indicate that architectural component diagrams are
especially useful if a direct link from the component diagram’s elements to the problem
that requires understanding can be made and that they have in such cases indeed a sup-
portive effect for software design and architecture understanding. In contrast, if no such
direct link can be made, we found evidence that it should not be assumed that architec-
tural component diagrams help in design understanding, for instance only by providing a
big picture view or some general kind of orientation.

This paper is organized as follows: In Section 2 we briefly discuss the related work.
Next, in Section 3 we introduce our experiment, including the goal, the hypotheses, the
parameters and variables, the experimental design, and the execution. Section 4 describes
the statistical analysis and the testing of the hypotheses. Section 5 provides the validity
evaluation. Finally, Section 6 concludes and discusses possible future research directions.

2 Related Work

The general notion of empirical studies in software architecture has been studied by Fa-
lessi et al. [8]. They conclude from their study that a greater synergy between empirical
software engineering and software architecture would support the emergence of a body



of knowledge consisting of more widely accepted and well-formed theories on software
architecture and the empirical maturation of the software architecture area.

Only a few of the empirical studies in the area of software architecture are directly
related to architecture design or design understanding. Boucke et al. [4] introduce an
approach that explicitly supports compositions of models, together with relations among
models in an architecture description language. In an empirical study they show that their
approach reduces the number of manually specified elements and manual changes.

van Heesch et al. study in two surveys the reasoning process of architects, one with
students [16] and one with professionals [18]. A related study performs a controlled ex-
periment about the supportive effect of patterns in architecture decision recovery [17].

Many empirical studies in the field of software architecture study other aspects, like
quality aspects or other views. For instance, a number of studies related to evaluating
architectures have been conducted. Barbar et al. [2] performed an empirical study aim-
ing at understanding the different factors involved in evaluating architectures in industry.
The influence of software visualization on source code comprehensibility was studied by
Umphress et al. [35] based on control structure diagrams and complexity profile graphs.
Biffl. et al. [3] study the impact of experience and team size on the quality of scenarios
for architecture evaluation. A number of empirical studies aim at better understanding
the relation of architecture and requirements [11, 26]. Various empirical studies relating
architecture to certain qualities or metrics have been conducted. For example, Hansen et
al. study the relation of product quality metrics and architecture metrics [15].

A number of papers focus on the comprehension of UML diagrams. Some focus on
dynamic models [28], while others focus on specific diagrams or models like sequence
diagrams [13], state charts [7], or class diagrams [30]. The influence of the level of detail
in class and sequence diagrams on the maintainability of software has been studied by
Fernández-Sáez et al. [10]. These papers focus on factors that influence the understand-
ability of the diagrams itself, while we focus on the effects of component diagrams on the
architecture understanding of novice architects.

Even though we found no rigorous empirical studies of architectural component
model understandability so far, aspects like reuse or fault density of components have
been studied empirically before. Fenton and Ohlsson have studied the relations of fault
density and component size in a large telecom system [9]. Mohagheghi et al. provide
a study comparing software reuse with defect density and stability [27]. Their study
is based on historical data on defects, modification rate, and software size. Malaiya
and Denton provide an analysis of a number of studies and identify the component
partitioning and implementation as influencing, competing factors to determine the
“optimal” component size with regard to fault density [24]. Graves et al. have studied
the software change history of components to create a fault prediction model [14]. Our
experiment and these studies have in common, that they make a link between component
models and software quality, but in contrast to our experiment they only study aspects
that can solely be studied using the software systems and their historical data. In contrast,
we consider the (novice) architect’s perception of understandability as well as expert
opinions on their results. In addition, in those other studies components are understood
as implemented software modules, rather than architectural abstractions.

A number of approaches suggest that other aids are needed to gain a better under-
standing of the design or architecture, such as architectural views [5, 19, 20] or architec-
tural decision models [23, 34, 38], which would contain or augment component models.



Both research directions only focus on complementing component models with additional
knowledge, but do not research on the effects of the component models on the understand-
ability of a software architecture or design. Other literature suggests that it might be hard
to understand the source code only with models, and traceability links [1] between com-
ponents and code are needed to make the connection [12].

3 Experiment Description

For the design of the experiment we followed the guidelines by Kitchenham et al. [22] and
Wohlin et al. [37]. In our experiments, the guidelines by Kitchenham et al. were primarily
used in the planning phase of the experiments, while the advice by Wohlin et al. was used
as a reference for the analysis and interpretation of the results.

3.1 Goal and hypotheses

The goal of the experiment was to determine whether architectural component diagrams,
provided in addition to a non-trivial software system’s source code, have a supportive
effect on the ability of novice architects to answer questions about the design and archi-
tecture of that system. Depending on the question asked, the guidance or help provided by
architectural component diagrams can vary greatly. The two extreme cases are that com-
ponent diagrams readily provide the answer without any need to study other information
(like the source code) and that component diagrams provide no clue for answering the
question. Intentionally we left out these two extreme cases and studied the shades of grey
in between. In particular, we further distinguished the following three types of questions
in our experiment:

– QT1: A question about the software system’s design and architecture for which the
component diagrams provide some guidance or help, but the information in the com-
ponent diagrams alone is not enough to answer the question fully.

– QT2: A question about the software system’s design and architecture for which the
component diagrams provide some guidance or help, but the same information is
easily visible from the source code.

– QT3: A question about the software system’s design and architecture for which the
component diagrams provide no direct guidance or help, only vague orientation in
related components and connectors; digging in the source code is required for an-
swering the question.

Hypotheses: We postulate the following three hypotheses about the effects of architec-
tural component diagrams (in addition to the source code) on the quality of answers that
novice architects provide to questions about a software system’s design and architecture.

– In case of QT1, i.e. if the component diagrams provide architectural guidance for
answering the question,
• the null hypothesis is that the quality does not improve, H0 QT1 : µ ≤ µ0;
• the alternative hypothesis is that the quality improves, HQT1 : µ > µ0.

– In case of QT2, i.e. if the component diagrams provide architectural guidance for
answering the question, but the same information is visible from the source code,
• the null hypothesis is that the quality does not improve, H0 QT2 : µ ≤ µ0;



• the alternative hypothesis is that the quality improves, HQT2 : µ > µ0.
– In case of QT3, i.e. if the component diagrams provide no direct guidance or help,

only vague orientation in related components and connectors,
• the null hypothesis is that the quality does not improve, H0 QT3 : µ ≤ µ0;
• the alternative hypothesis is that the quality improves, HQT3 : µ > µ0.

Expectations: Our expectations for the three hypotheses are:

– For design questions of type QT1, we expect that the null hypothesis can be rejected.
That is, component diagrams have a supportive effect on the answers that novice
architects provide to questions about a software system’s design and architecture, if
the component diagrams provide architectural guidance for answering the question.

– For design questions of type QT2, we expect that the null hypothesis can not be
rejected. That is, component diagrams are helpful, but that novice architects with
medium software development experience are able to see the same information in
the source code, if it is easily visible. However, this expectation might be wrong as
possibly the visual information in the component diagrams might be more readily
accessible to novice architects than the easily visible information in the source code.

– For design questions of type QT3, we expect that the null hypothesis can not be
rejected, as there is no direct relation between the question and the additional infor-
mation provided by the component diagrams. However, this might be wrong as com-
ponent diagrams might have an indirect supportive effect, for instance by providing
some kind of general orientation that helps in answering this type of questions.

3.2 Parameters and variables

Dependent variable One dependent variable was observed during the experiment, as
shown in Table 1: the quality of the answer to the design question. The quality of the an-
swers was assessed by three independent software architecture researchers with multiple
years of practical software development and architecture experience (later also referred
to as analysts) using an interval scale, ranging from 0 (worst) to 10 (best). The interval
scale nature of the rating system was explained to the analysts before their analysis (i.e.,
that equal distances between the points on the scale can be assumed), as this is important
for applying parametric statistical tests [33]. The analysts were assigned per question,
and each analyst rated each of the assigned questions completely in both experiment and
control group, to make sure that each question is homogeneously assessed. Two analysts
rated two of the questions, and one analyst rated three of the questions. Each of the an-
alysts studied the two software systems used in the experiments before their analysis in
depth and reference answers were created before the evaluation to ensure fair evaluation.
The ratings were left to the analysts’ own experience and interpretation, but they were
asked to specifically take the displayed architectural understanding into account. The par-
ticipants of the experiments were also reminded before the beginning of the experiments
that they should focus on the architectural dimension of the questions.

Independent variables Table 1 also shows other variables that could influence the depen-
dent variables. They concern characteristics and previous experiences of the participants.



Type Description Scale Type Unit Range
Dependent
Variable

Quality of the answer to de-
sign question

Interval Points 0 (worst) to 10 (best)

Independent
Variable

Group Nominal N/A Possible values: experiment
group, control group

Programming experience Ordinal Years 4 classes: 0-1, 1-3, 3-6, >6
Commercial programming
experience in industry

Ordinal Years 4 classes: 0, 0-1, 1-3, >3

Experience in program-
ming computer games

Ordinal Years 4 classes: 0, 0-1, 1-3, >3

Table 1: Observed Variables

3.3 Experiment design

To test the hypotheses, we conducted the experiment in the context of the Software Archi-
tecture course at the Faculty of Computer Science, University of Vienna in spring 2012.

Subjects The subjects of the experiment are 60 students of the Software Architecture
course. The subjects were randomly assigned into two equally sized groups of 30 students:
experiment group and control group.

Objects The basis of the experiment is the source code of the Freecol computer game1,
an open source version of the classic computer game Colonization (a turn-based strategy
game) with multi-player support, implemented in Java. Both experiment group and con-
trol group were provided with access to the complete source code of Freecol. In order to
avoid any bias caused by complex Integrated Development Environments (IDEs) or code
editors, source code access was only provided using the Browser-based code navigation
tool that is integrated with our locally hosted installation of Gitorious2.

Instrumentation The participants of both groups received the following materials: The
Browser-based access to the source code of Freecol was provided in a Lab environment
on prepared computers. All other materials were provided on paper. The participants re-
ceived a questionnaire about the independent variables regarding the participants’ experi-
ences. Both groups also received 7 different questions about the design and architecture
of Freecol (see below). In addition, the experiment group received an additional docu-
ment with 6 UML component diagrams showing: a FreeCol Architecture Overview, the
FreeCol Server Architecture, the FreeCol Client Architecture, a Detailed View: FreeCol
Server - Control, the FreeCol MetaServer Architecture, and a Detailed View: FreeCol
Commons. The component diagrams have been created in an architectural reconstruction
of FreeCol that took place before the experiment and was independent of the experiment.

In the experiment we have tested 7 different questions about the design and architec-
ture of Freecol. The questions have been confirmed by the independent analysts as being
relevant questions for understanding Freecol’s design and architecture. The questions and
their classifications are shown in Table 2. We have classified the questions into the ques-
tion types from Section 3.1 as follows:

1 See http://www.freecol.org/.
2 See http://www.gitorious.org/.



– QT1: For 3 questions (Q1,Q5,Q7) the component diagrams provide direct guidance
or help to better understand Freecol’s design and architecture, but the information in
the component diagrams alone is not enough to answer the question fully.

– QT2: For 1 question (Q2) the answer can be deduced both from the component dia-
grams and the source code organization (in packages) alike.

– QT3: For 3 questions (Q3, Q4, Q6) the component diagrams provide no obvious
information, only vague orientation, and digging in the source code is required to
answer the question.

We asked 3 questions of type QT1 and 3 questions of type QT3, so clearly those
two question types are our main focus. We also checked QT2, but only once, as it is a
rather seldom occurring option somewhat in between QT1 and QT3 that some design
aspects are directly visible from the source code organization. To illustrate the difference
between the two extremes in our experiment, QT1 and QT3, and let us briefly explain
the difference in the level of detail modelled:

– Example for Type QT3: For question Q3 of type QT3 there is only a component AI
visible in the FreeCol Server Architecture model. It has a single connector with the
interface AIPlayer to the Model component. This provides only vague orientation for
answering question Q3, as it enables the participants to know that AI concerns are
implemented in the server packages and that there is a link to the model classes, but
it does not provide details for answering the question.

– Example for Type QT1: For question Q1 of type QT1 there are significantly more
details and links to all important aspects of the question in the component diagrams.
First of all in the FreeCol Client Architecture model, we can see a component Con-
troller that is linked through a connector with an interface GameControl to the Ac-
tions component and through another connector with an interface UpdateHandler to
the GUI component. This enables participants to understand how GUI Actions use
InGameController (and another class ConnectController) to perform model, game,
etc. updates using basic controls. It also makes it easy to find various basic control
tasks in the game’s client, which can then easily be found in the source code. The
Controller also has a connector to a port with the Model interface, which links to
details in the Commons and Server Architecture component models. In the server,
the Model component is linked to another Control component which is modelled in a
detailed view, the FreeCol Server: Control component diagram. This enables partici-
pants to understand (1) the client-server relationship for control and the synchroniza-
tion through models and (2) the event handling for changes through model messages.

Clearly, the level of detail for question type QT1 is much higher. We hope this example
helps to illustrate what we mean by “providing direct guidance or help” for QT1 in
contrast to “vague orientation” for QT3.

3.4 Execution

The experiment was executed in the context of the Software Architecture course at the
Faculty of Computer Science, University of Vienna in the summer semester 2012/2013.
Before the experiment took place, the participants were randomly assigned to experiment
group and control group. Each of the two groups consisted of 30 participants (total par-
ticipant number: 60).



ID Type Question Classification Details
Q1 QT1 Explain the role of the class

“InGameController” in the Pack-
age “net.sf.freecol.client.control”.
What is its purpose?

Component diagrams provide detailed ori-
entation through related components and
connectors, and also hint at interesting ar-
chitectural concerns not easily seen from
the source code. Connection to the source
code must be made for providing the full
answer.

Q2 QT2 How many and which independent
executable programs belong to this
game?

Component diagrams provide detailed ori-
entation. The answer can be deduced from
component model, but also from the pack-
age structure in the source code.

Q3 QT3 Explain how the computer players
(AI) are integrated into the game.
Which classes are responsible for the
integration and implementation of the
AI players? In which of the exe-
cutable program(s) (see Q2) do they
run?

Component diagrams provide vague ori-
entation through components. The source
code is the main source of information.

Q4 QT3 What is the role of the
class “DOMMessage” in the
“net.sf.freecol.common.networking”
Package? How is it used in the game?

Component diagrams provide no details
for answering the question, only vague
orientation. The source code is the main
source for getting the required informa-
tion.

Q5 QT1 What is the role of classes in the pack-
age “net.sf.freecol.metaserver”?

Component diagrams provide detailed ori-
entation through related components and
connectors. Connection to the source code
must be made for providing the full an-
swer.

Q6 QT3 What are the roles of the
classes in the packages
“net.sf.freecol.server.model”,
“net.sf.freecol.client.control”,
“net.sf.freecol.common.model”?
How are they related to each other?

Component diagrams are useful for basic
orientation, but not for answering the ques-
tion. The source code is the main source of
information.

Q7 QT1 In order to show a consistent game
state to all players, the programs of
the different players must be updated
regularly. How and by which classes
is this mechanism realized? Sketch
the control flow from one class (or ob-
ject) to the next one.

Component diagrams show related com-
ponents and connectors, and a few details
helpful for answering the question. Com-
ponent diagrams also hint at the architec-
tural big picture not easily seen only from
the source code.

Table 2: Questions and Classification of Questions



Figure 1 shows the previous experience of the participants for the control group and
the experiment group. In particular, the figure shows the programming experience of the
participants, which is quite comparable in the two groups, with slightly more participants
with longer experience in the experiment group. The industry programming experience is
low in both groups, with a few participants with 1, 1-3, or even more than 3 years of indus-
try experience in both groups. Finally, the very few participants with game programming
experience are equally present in both groups.

Control Group Exp. Group

Programming Experience

0
5

10
15

20
25

0 to 1 years
1 to 3 years
3 to 6 years
More than 6 years

Control Group Exp. Group

Industry Programming Exp.

0
5

10
15

20
25

30

No experience
Up to 1 year
1 to 3 years
More than 3 years

Control Group Exp. Group

Game Programming Exp.

0
10

20
30

40

No experience
Up to 1 year
1 to 3 years
More than 3 years

Fig. 1: Experience of the Participants

Before the experiment started, the materials explained in Section 3.3 were handed out
to the participants and the tasks were briefly explained to both groups. After 15 minutes
of introduction, the participants were given time to fill out the questionnaire about their
experiences. After all participants were ready, the answering of the questions started. The
answers were provided by the participants on paper. This main phase of the experiment
lasted for two hours.

The data collection was performed as planned in the design. No participants dropped
out and no deviations from the study design occurred.

The experiment took place in a controlled environment. The experiment was con-
ducted for both groups in different rooms, equipped with computers to which the partic-
ipants had logins. At least one experimenter was present in each room during the whole
experiment time to assure that participants behaved as expected. After the experiment, all
materials were collected by the experimenters before any of the participants left the room.
There were no situations in which participants behaved unexpectedly.

4 Analysis

4.1 Descriptive Statistics

Figure 2 shows the medians and means for the quality of the answers given to the seven
questions Q1–Q7 for both control group and experiment group (the values can also be
seen below in Table 4). As can be seen, the medians and means for questions of typeQT1
(Q1, Q5, Q7) are always higher in the experiment group than those in the control group.



For the question of type QT2 (Q2) the control group yields a slightly better result. The
medians and means for questions of type QT3 (Q3, Q4, Q6) of the experiment group
show the same or slightly better results than those of the control group.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Medians
0

2
4

6
8

10
12

Control Group
Experiment Group

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Means

0
2

4
6

8
10

12

Control Group
Experiment Group

Fig. 2: Medians and means for the seven questions

4.2 Data Set Reduction
The deviations from the means for the ratings of all questions are in a corridor that roughly
corresponds to our previous experiences from other exercises with participants in our
courses. Hence, we did not want to exclude individual participants from the data set, as
excluding data points would have introduced a potential vulnerability for the study results.

An interesting outlier in the medians and means for the seven questions is Question
Q7, where both groups performed rather poorly. Hence, we studied the answers for this
question in depth to understand whether it is necessary to exclude Question Q7 from the
further analysis, for instance because it was too hard to answer or simply because the
participants did not have enough time for answering the question (which was the last
question). First we checked the protocols of the experiment and most participants have
finished before the end of the 2 hours slot, so the limited time frame does not seem to be
the cause of the poor results. To study whether the question was too difficult, we did an in
depth study of answers without knowledge whether the individual answers were from the
control group or the experiment group. The results are: Indeed, QuestionQ7 seems to be a
difficult question that requires complex design and architecture understanding and making
connections across multiple parts of the FreeCol system’s design and architecture. Most
participants failed and reached 0-3 points. Very few participants are in the middle ranks
of 4-6 points. Only 6 out of the 60 participants managed to provide a sufficient answer to
the question (with a score > 6 points). As this means that 10% of the participants were
able to answer the question sufficiently, it does not seem impossible for novice architects
to answer Question Q7, just difficult. Hence, we decided to not exclude the question from
further analysis but rather view it as a case to study a difficult question of type QT1.

4.3 Hypotheses testing
Testing the normality of the data As a first step in analysing the data, we tested the
normality of the data by applying the Shapiro-Wilk test [32], in order to see whether



we can apply parametric tests like the t-test that assume the normal distribution of the
analysed data. The null hypothesis H0 for the Shapiro-Wilk test states that the input data
is normally distributed. H0 is tested at the significant level of α = 0.05 (i.e., the level of
confidence is 95%). That is, if the calculated p-value is lower than 0.05 the null hypothesis
is rejected and the input data is not normally distributed. If the p-value is higher than 0.05,
we can not reject the null hypothesis that the data is normally distributed.

Group N Shapiro-Wilk test p-value
Q1 Q2 Q3 Q4 Q5 Q6 Q7

Control
Group

30 0.06505 6.528e-05 0.07345 0.0852 0.005865 7.255e-05 1.362e-06

Experiment
Group

30 0.01998 9.035e-05 0.04852 0.3658 0.0002576 3.028e-05 0.0007023

Table 3: Results of the Shapiro-Wilk normality test

In the Table 3 the p-values for the Shapiro-Wilk normality test for the seven ques-
tions Q1–Q7 for both control group and experiment group are shown. As can be seen,
most questions do not have a normal distribution (i.e., hypothesis H0 is rejected). Some
other questions show a p-value right above 0.05 which means a very weak tendency of
being normally distributed. In order to test the normality of the variables with a p-value
above 0.05, we graphically examined how well these variables fit the normal distribution
using the normal Q-Q plot. Q-Q plot is a graphical method for comparing two probabil-
ity distributions by plotting their quantiles against each other [36]. Normal Q-Q plot is
a method for graphically comparing the probability distribution of the given data sample
with the normal distribution. While some of the resulting plots fit the normal distribution
pretty well, for none of the questions both control group and experiment group showed a
strong tendency to be normally distributed. Based on these considerations of normality,
we decided to pursue non-parametric statistical tests with our data.

Comparison of the means between two variables To compare the means of the variable
for the control group and experiment group of a question, we applied the Wilcoxon rank-
sum test [25]. The Wilcoxon rank-sum test is a non-parametric test for assessing whether
one of two data samples of independent observations is stochastically greater than the
other. The null hypothesis of the one-tailed Wilcoxon test (appropriate for the hypotheses
in our experiment) is that the means of the first variable’s distribution is less than or equal
to the means of the second variable’s distribution,so that we can write H0 : A ≤ B.
The Wilcoxon rank-sum test tries to find a location shift in the distributions, i.e., the
difference in means of two distributions. The corresponding alternative hypothesis HA

could be written as HA : A > B. If a p-value for the test is smaller than 0.05 (level of
significance), the null hypothesis is rejected and the distributions are shifted. If a p-value
is larger than 0.05, the null hypothesis can not be rejected, and we can not claim that there
is a shift between the two distributions.

In the Table 4 the p-values for the Wilcoxon rank-sum test are shown, together with
means and medians. The raw material for these results can be downloaded from https:

//swa.univie.ac.at/CDE. Based on the obtained p-values, we can assess that the
following distributions show a statistically significant shift between each other: Q1, Q5,
and Q7. None of the other variables shows a statistically significant shift.

https://swa.univie.ac.at/CDE
https://swa.univie.ac.at/CDE


ID Control
Group: Mean

Experiment
Group: Mean

Control
Group: Me-
dian

Experiment
Group: Me-
dian

p-value

Q1 6.3 7.466667 7 7.5 0.02021
Q2 7.466667 7.1 9 8 0.4818
Q3 3.866667 4.3 4 4 0.263
Q4 4.266667 4.333333 4 4 0.494
Q5 3.133333 5.266667 2.5 6 0.01512
Q6 7.9 8.066667 8.5 9 0.2212
Q7 1.166667 2.433333 1 2 0.006899

Table 4: Results of the Wilcoxon rank-sum test

Testing Hypothesis HQT1 In our experiment, we have introduced 3 questions related to
HQT1: Q1, Q5, and Q7. Each of the three questions shows a significant location shift
in their distributions, and in each of them the experiment group shows better results than
the control group in their means and medians. This provides evidence that H0 QT1 can be
rejected. That is, indeed there is evidence that augmenting the source code with architec-
tural component diagrams improves the quality of answers that novice architects provide
to questions about a software system’s design and architecture, if the component diagrams
provide architectural guidance for answering the question.

It is interesting to note that the difficult QuestionQ7 shows the same result (even with
the highest significance level) as Questions Q1 and Q5 (of medium difficulty). While
many of the participants in the experiment group failed as well, all but one of the suffi-
cient answers were in the experiment group. This result seems to indicate that component
diagrams can be especially helpful for problems that require making complex design and
architecture connections across multiple parts of the system.

Testing Hypothesis HQT2 In our experiment, we have introduced 1 question related to
HQT2: Q2. For this question we can observe higher means and medians for the control
group than for the experiment group, however the location shift is not statistically sig-
nificant. Therefore H0 QT2 can not be rejected. As expected, there is no evidence that
augmenting the source code with architectural component diagrams does improve the
quality of answers that novice architects provide to questions about a software system’s
design and architecture, if the component diagrams provide architectural guidance for
answering the question, but the same information is visible from the source code.

Testing Hypothesis HQT3 In our experiment, we have introduced 3 questions related
to HQT3: Q3, Q4, and Q6. The medians and means of the experiment group show the
same or slightly better results than those of the control group. None of the three questions
shows a significant location shift in their distributions so H0 QT3 can not be rejected.
As expected, there is no evidence that augmenting the source code with architectural
component diagrams does improve the quality of answers that novice architects provide
to questions about a software system’s architecture, if the component diagrams provide
no direct guidance or help, only vague orientation in related components and connectors.

5 Validity evaluation

Several levels of validity have to be considered in this experiment. We consider the clas-
sification scheme for validity in experiments by Cook and Campbell [6].



Internal validity The internal validity is the degree to which conclusions can be drawn
about cause-effect of independent variables on the dependent variables.

– The subjects’ experiences in the two groups have approximately the same degree with
regard to programming, industrial, and game programming experience. Of course, a
certain differences in experience between the two groups can not be entirely excluded.

– All subjects’ have at least medium programming experiences and have passed several
courses on programming and design at our university. Hence, we consider their re-
sponses as valid, keeping in mind that our goal was to analyse the supportive effects
component diagrams have on novice architects.

– The experiment lasted about 2 hours so fatigue effects were not considered relevant.
– The experiment happened in a controlled environment in separate rooms under su-

pervision of at least one experimenter. While it is not possible to completely exclude
misbehaviour or interaction among participants, it is not very likely that misbehaviour
or interactions have had a big influence on the outcomes of the experiment.

– Possibly the analysts could have been biased towards the experiment group in some
way. We tried to exclude this threat to validity by not revealing to the analysts the
identity of the participants or in which of the two groups they have participated.
Hence, it is rather unlikely that this threat occurred.

External validity The external validity is the degree to which the results of the study can
be generalized to the broader population under study. The greater the external validity, the
more the results of an empirical study can be generalised to software engineering practice.

– We used students of our software architecture lecture as subjects. As discussed , they
have medium programming and design experience, but limited professional experi-
ence. Hence, we believe them to be well representative for the target group of novice
architects, but if and how the results can be translated to more experienced architects
is open to future study. We plan to replicate the experiment with other target groups.

– The instrumentation and object in the experiment might have been unrealistic, not rep-
resentative, or too simple to allow generalization. For instance, FreeCol as an open
source game might be too simple or no representative software system for typical
architectural studies. The component diagrams used might not be representative or
unrealistic. Or the questions asked might not be typical design or architecture ques-
tions. All these considerations might impede the generalizability of our results. We
do not think that this is the case as FreeCol is a widely used, non-trivial software sys-
tem implemented in Java. The component diagrams were created in an architectural
reconstruction effort that took place before the experiment and was independent of
the experiment. The questions have been confirmed by the independent analysts as
being relevant questions for understanding design and architecture of FreeCol.

– The experimenters could have biased the measurements of the independent variables.
We mitigated this risk by assigning the quality ratings to independent analysts that
had no knowledge about the goals of the experiment. Furthermore the analysts did
not know the identities nor the groups of the participants.

Conclusion validity The conclusion validity defines the extent to which the conclusion is
statistically valid. The statistical validity might be affected by the size of the sample (60
participants, 30 in each group). The size can be increased in replications of the study in
order to reach normality of the obtained data. We plan to replicate the study with different
systems and by engaging subjects who work in industry in our future work.



Construct validity The construct validity is the degree to which the independent and the
dependent variables are accurately measured by their appropriated instruments. As only
one object, the FreeCol implementation and associated component diagrams, was used in
the experiment, there is the risk that the cause construct is under-represented. Possibly,
the results could look different if multiple systems and sets of diagrams would be used
for the recovery. We assume that the used system is representative for large and medium-
size object-oriented systems. This threat, however, can not totally be ignored. Another
potential threat to validity is that we only used one variable to measure the quality of
answers. This does not allow cross-checking the results with different measures.

6 Conclusions

Our study provides initial evidence on how architectural component diagrams help in
understanding the design and architecture of software systems. The results indicate that
architectural component diagrams are especially useful if a direct link from the component
diagram’s elements to the problem that requires understanding can be made. Component
diagrams seem to help in such cases to understand the bigger architectural connections
that are hard to see from studying the source code alone and/or they provide orientation
in the source code to understand such problems. However, there is a different situation for
problems that are readily solvable by looking at the source code (like the question of type
QT2 in our experiment) or for problems that are only vaguely linked to what is depicted in
the component diagrams (like the question of type QT3 in our experiment). As expected,
we found no evidence that architectural component diagrams help, for instance, just by
providing a big picture view or providing some general kind of orientation.

We can conclude for the design of architectural component diagrams that they should
be designed with specific important architectural problems in mind and that elements of
the component diagrams should explicitly represent links to those problems. That is, com-
ponents, connectors, and other model elements for providing an abstract understanding of
the design that resolves the problem should be shown in the diagrams. The component
models related to questions of type QT1 in our experiment achieve this by leaving out
irrelevant details and showing high-level connections of system parts that are hard to re-
construct by just studying the low-level source code classes. It also seems to be important
that these links from component models to the problem in focus are modelled in enough
detail. Only vaguely showing a problem-related component in its context of other compo-
nents and connectors that are not related to the problem is not enough.

It seems plausible, based on our results, that such details could also be provided
through other architectural views or through architectural knowledge models. Further,
it seems that making links to the source code is important for the supportive effect re-
vealed in our study. Such links can be made explicit through traceability links. Hence, it
also seems plausible that establishing traceability links between architectural component
models and code might have a further supportive effect. We plan to study these aspects
in further studies in our future work. From the combined results of this and future studies
we plan to develop design guidelines for architectural component diagrams. Regarding
generalizability, our results are strictly limited to the target group of novice architects
with medium programming experience. We expect that similar results will also show for
seasoned architects, but potentially they can make more use of vague information in ar-
chitectural component diagrams. Again, we plan to investigate this in our future research.



Acknowledgement This work was partially supported by the Austrian Science Fund
(FWF), Project: P24345-N23.

Bibliography

[1] IEEE Standard Glossary of Software Engineering Terminology. Tech. rep. (1990)
[2] Babar, M.A., Bass, L., Gorton, I.: Factors influencing industrial practices of software archi-

tecture evaluation: an empirical investigation. In: Proceedings of the International Conference
on the Quality of Software Architectures. pp. 90–107. QoSA’07, Springer-Verlag, Berlin, Hei-
delberg (2007)

[3] Biffl, S., Ali Babar, M., Winkler, D.: Impact of experience and team size on the quality of
scenarios for architecture evaluation. In: Proceedings of the 12th international conference on
Evaluation and Assessment in Software Engineering. pp. 1–10. EASE’08, British Computer
Society, Swinton, UK, UK (2008)

[4] Boucké, N., Weyns, D., Holvoet, T.: Composition of architectural models: Empirical analysis
and language support. J. Syst. Softw. 83(11), 2108–2127 (Nov 2010)

[5] Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.: Documenting
Software Architectures: Views and Beyond. Pearson Education (2002)

[6] Cook, T.D., Campbell, D.T.: Quasi-Experimentation: Design and Analysis Issues for Field
Settings. Houghton Mifflin (1979)

[7] Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assessing the under-
standability of uml statechart diagrams with composite states–a family of empirical studies.
Empirical Softw. Engg. 14(6), 685–719 (Dec 2009)

[8] Falessi, D., Babar, M.A., Cantone, G., Kruchten, P.: Applying empirical software engineering
to software architecture: challenges and lessons learned. Empirical Softw. Engg. 15(3), 250–
276 (Jun 2010)

[9] Fenton, N.E., Ohlsson, N.: Quantitative analysis of faults and failures in a complex software
system. IEEE Trans. Softw. Eng. 26(8), 797–814 (Aug 2000)

[10] Fernández-Sáez, A.M., Genero, M., Chaudron, M.R.V.: Does the level of detail of uml models
affect the maintainability of source code? In: Proceedings of the 2011th international confer-
ence on Models in Software Engineering. pp. 134–148. MODELS’11 (2012)

[11] Ferrari, R., Miller, J.A., Madhavji, N.H.: A controlled experiment to assess the impact of
system architectures on new system requirements. Requir. Eng. 15(2), 215–233 (Jun 2010)

[12] Galster, M.: Dependencies, traceability and consistency in software architecture: towards a
view-based perspective. In: Proceedings of the 5th European Conference on Software Archi-
tecture: Companion Volume. ECSA ’11, ACM (2011)

[13] Genero, M., Cruz-Lemus, J.A., Caivano, D., Abrahão, S., Insfran, E., Carsı́, J.A.: Assessing
the influence of stereotypes on the comprehension of uml sequence diagrams: A controlled ex-
periment. In: Proceedings of the 11th international conference on Model Driven Engineering
Languages and Systems. pp. 280–294. MoDELS ’08, Springer-Verlag (2008)

[14] Graves, T.L., Karr, A.F., Marron, J.S., Siy, H.: Predicting fault incidence using software
change history. IEEE Trans. Softw. Eng. 26(7), 653–661 (Jul 2000)

[15] Hansen, K.M., Jonasson, K., Neukirchen, H.: Controversy corner: An empirical study of soft-
ware architectures’ effect on product quality. J. Syst. Softw. 84(7), 1233–1243 (Jul 2011)

[16] van Heesch, U., Avgeriou, P.: Naive architecting - understanding the reasoning process of
students: a descriptive survey. In: Proceedings of the 4th European conference on Software
architecture. pp. 24–37. ECSA’10, Springer-Verlag, Berlin, Heidelberg (2010)

[17] van Heesch, U., Avgeriou, P., Zdun, U., Harrison, N.: The supportive effect of patterns in
architecture decision recovery - a controlled experiment. Sci. Comput. Program. 77(5), 551–
576 (May 2012)



[18] Heesch, U.v., Avgeriou, P.: Mature architecting - a survey about the reasoning process of
professional architects. In: Proceedings of the 2011 Ninth Working IEEE/IFIP Conference on
Software Architecture. pp. 260–269. WICSA ’11, IEEE Computer Society, Washington, DC,
USA (2011)

[19] Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley (2000)
[20] ISO: ISO/IEC CD1 42010, Systems and software engineering — Architecture description (Jan

2010)
[21] Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions. In: Pro-

ceedings of the 5th Working IEEE/IFIP Conference on Software Architecture. pp. 109–120.
WICSA ’05, IEEE Computer Society, Washington, DC, USA (2005)

[22] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K.,
Rosenberg, J.: Preliminary guidelines for empirical research in software engineering. Software
Engineering, IEEE Transactions on 28(8), 721–734 (Aug 2002)

[23] Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural knowledge.
In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) Quality of Software Architectures, Lecture
Notes in Computer Science, vol. 4214, pp. 43–58. Springer Berlin / Heidelberg (2006)

[24] Malaiya, Y.K., Denton, J.: Module size distribution and defect density. In: Proceedings of the
11th International Symposium on Software Reliability Engineering. pp. 62–. ISSRE ’00, IEEE
Computer Society, Washington, DC, USA (2000)

[25] Mann, H.B., R., W.D.: On a test of whether one of two random variables is stochastically
larger than the other. Annals of Mathematical Statistics 18(1), 50–60 (1947)

[26] Miller, J.A., Ferrari, R., Madhavji, N.H.: An exploratory study of architectural effects on re-
quirements decisions. J. Syst. Softw. 83(12), 2441–2455 (Dec 2010)

[27] Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H.: An empirical study of software reuse
vs. defect-density and stability. In: Proceedings of the 26th International Conference on Soft-
ware Engineering. pp. 282–292. ICSE ’04, IEEE Computer Society, Washington, DC, USA
(2004)

[28] Otero, M.C., Dolado, J.J.: Evaluation of the comprehension of the dynamic modeling in uml.
Information and Software Technology 46(1), 35 – 53 (2004)

[29] Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT Softw.
Eng. Notes 17(4), 40–52 (Oct 1992)

[30] Purchase, H.C., Colpoys, L., McGill, M., Carrington, D., Britton, C.: Uml class diagram syn-
tax: an empirical study of comprehension. In: Proceedings of the 2001 Asia-Pacific sympo-
sium on Information visualisation - Volume 9. pp. 113–120. APVis ’01, Australian Computer
Society, Inc., Darlinghurst, Australia, Australia (2001)

[31] Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley Professional (2005)

[32] Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 3(52) (1965)

[33] Stevens, S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946)
[34] Tyree, J., Akerman, A.: Architecture decisions: Demystifying architecture. IEEE Software 22,

19–27 (2005)
[35] Umphress, D.A., Hendrix, T.D., II, J.H.C., Maghsoodloo, S.: Software visualizations for im-

proving and measuring the comprehensibility of source code. Science of Computer Program-
ming 60(2), 121 – 133 (2006)

[36] Wilk, M.B., Gnanadesikan, R.: Probability plotting methods for the analysis of data.
Biometrika 55(1), 1–17 (Mar 1968)

[37] Wohlin, C.: Experimentation in Software Engineering: An Introduction: An Introduction.
Kluwer Academic (2000)

[38] Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing architectural
decision models with dependency relations, integrity constraints, and production rules. Journal
of Systems and Software 82(8), 1249–1267 (2009)


	Controlled Experiment on the Supportive Effect of Architectural Component Diagrams for Design Understanding of Novice Architects 

