
Supporting Software Evolution by Integrating DSL-based
Architectural Abstraction and Understandability Related

Metrics

Srdjan Stevanetic, Thomas Haitzer, and Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
srdjan.stevanetic|thomas.haitzer|uwe.zdun@univie.ac.at

ABSTRACT
Software architecture erosion and architectural drift are well
known software evolution problems. While there exist a
number of approaches to address these problems, so far in
these approaches the understandability of the resulting ar-
chitectural models (e.g., component models) is seldom stud-
ied. However, reduced understandability of the architectural
models might lead to problems similar to architecture ero-
sion and architectural drift. To address this problem, we
propose to extend our existing DSL-based architecture ab-
straction approach with empirically evaluated understand-
ability metrics. While the DSL-based architecture abstrac-
tion approach enables software architects to keep source code
and architecture consistent, the understandability metrics
extensions enables them, while working with the DSL, to
continuously judge the understandability of the architectural
component models they create with the DSL. We studied the
applicability of our approach in a case study of an existing
open source system.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.8 [Software Engineering]: Metrics

General Terms
Experimentation, Measurement, Design

Keywords
DSL, Architectural Abstraction, Architectural Component
Views, Software Evolution, Understandability, Software
Metrics, Empirical Evaluation

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ECSAW, August 25 - 29 2014, Vienna, Austria

Copyright 2014 ACM 978-1-4503-2778-7/14/08 ...$15.00.

http://dx.doi.org/10.1145/2642803.2642822.

Software systems must evolve constantly or they will be-
come obsolete [14]. During the evolution of software sys-
tems, software architectures tend to erode as requirements
change or new features are implemented [21] (also known
as architectural erosion). In addition, the intended, docu-
mented architecture and the implemented architecture of a
system often drift apart during the system’s evolution [12]
(also known as architectural drift).
To address these problems, many approaches have been

proposed [18, 19, 7]. For instance, in our previous work
[11] we proposed a semi-automatic approach for keeping
the architecture and source code consistent throughout the
software evolution. In this approach, we used a Domain
Specific Language (DSL) that allows architects to specify
architectural abstraction specifications. These architecture
abstraction specifications enable the architects to define ar-
chitectural components based on the source code. Based
on the architecture abstraction specifications we then auto-
matically generate an architectural component view of the
system and its current state. While this approach addresses
the consistency of architecture and source code, it does not
offer any solutions for preventing the architectural designs in
the component models from degrading over time and become
less and less understandable. For instance, some architec-
ture design models tend to grow in size over time, as new
features are added to the system, until they become at some
stage hard to understand.
Clements et al. [5] stated that it is essential that an ar-

chitecture is documented well in order to communicate it.
Reduced understandability hampers the possibility to com-
municate the architecture well and thus probably leads to
further architectural erosion and drift. This is why we con-
sider the understandability of an architecture as essential to
the future evolution of a software system.
In this paper we propose to integrate our DSL-based ar-

chitecture evolution approach with empirically evaluated un-
derstandability metrics. We suggest to use understandabil-
ity metrics for the architectural component view as a whole
as well as understandability metrics that focus on single ar-
chitectural components. This way, while using our architec-
ture abstraction DSL to create component model abstrac-
tion, the architect is automatically informed when the un-
derstandability of the architecture in the component mod-
els that are created through the DSL is reduced during the
evolution of the software system and can take measures to
improve the architecture’s understandability. The metrics
we use are empirically evaluated in our previous work with

regard to the understandability of either the whole compo-
nent view or the individual components. A precondition for
the application of the metrics (i.e., for the accurate and suc-
cessful metrics calculations) is an “up-to-date” component
view that reflects the source code of the examined system.
As this is provided by our previously mentioned architecture
abstraction approach, our approach with metrics depends on
the integration of both approaches. The main contributions
of this paper are the conceptual integration of the two ap-
proaches, the integration into our DSL-based tool support,
and the derivation of a set of metrics-based guidelines for
component model design from our previous empirical stud-
ies.

The remainder of this paper is organized as follows: In
Section 2 we give an overview of the Architecture Abstrac-
tion DSL in its original form. We give an overview of the
proposed integrated approach in Section 3. Section 4 de-
scribes the details of the given integrated approach. We
present a case study in which we have studied the applica-
bility of our approach in Section 5. In Section 6 we discuss
relevant related works, and we conclude in Section 7.

2. BACKGROUND: ARCHITECTURE AB-
STRACTION DSL

Our previously defined DSL-based approach supports
the semi-automated architectural abstraction of architec-
tural component views throughout the software life-cycle.
The approach supports the software architect throughout
the evolution of a software system by allowing him/her
to compare the abstracted model with a previously de-
fined architectural model and to maintain that model in
correspondence with the source code over time.

We introduced a DSL that defines architectural abstrac-
tions from class models, which can be automatically ex-
tracted from the source code, into architectural component
views. Once an architectural abstraction specification is de-
fined, it can automatically generate the architectural compo-
nent view. The workflow of the generation process is shown
in Figure 1. First, the extraction of a class model from the
source code of the system is pursued. Further analysis uses
a class model which decouples the approach from a specific
source language. Second, a model transformation is used
to generate a UML component view. This model transfor-
mation uses the architectural abstraction specification de-
fined in the DSL code (for more details see Section 4.2) and
the class model as inputs and generates a UML component
view. The model transformation also generates and stores
traceability information that links the class models and the
architectural component views.

During the software system evolution multiple architec-
tural component views can be generated, one for each ver-
sion of the system. All those component views can be com-
pared to each other and to component views generated man-
ually by the software architects during early software archi-
tecture design stages. This way the approach can help soft-
ware architects to identify where the implementation differs
from the original design or from previous versions.

Beside the already mentioned consistency checking be-
tween different versions of software the approach does auto-
matic consistency checking of the different artifacts of the
same software version. These checks are based on the au-
tomatically generated traceability information that link the

UML Class
Model

UML
Component

Model

UML Component
Model

(existing/previous
version)

Delta

automatic extraction

Compare

Architecture
Abstraction DSL

automatic
transformation

mapping

mapping

 component model
generation

delta
comparison

Traceability
Links

automatic
transformation

design-code
consistency
checks

consistency
checks between
model versions

Source Code

Figure 1: Overview of the architecture evolution ap-
proach proposed by Haitzer and Zdun [11]

DSL, the class model, and the component view of the system
and check, for instance, for source code classes that are not
covered by the architecture abstraction specification or con-
nectors that are defined in the architecture specification but
where no relation exists in the source code classes of these
components and vice versa: if the source code classes of two
components have relations with each other but no connec-
tor is defined in the architecture abstraction. The approach
also allows architects to keep track of which parts of the
source code correspond to which architectural components
by utilizing the traceability links that are created and stored
during the transformation. The traceability links can then
be used for navigating from the architectural model to the
source code and vice versa.
In our previous work [11] we performed a number of case

studies on open source systems of different sizes and appli-
cation types that showed that in most of the cases it was
possible to create architectural abstractions that are sta-
ble during the implementation process and only need to be
changed when architectural changes occur (e.g., leading to
significant restructuring of the architectural design).
Using this approach, architects can easily maintain an ar-

chitecture documentation by providing an “up-to-date” ar-
chitectural component view that reflects the source code.
However, the quality (in terms of understandability) of the
abstracted and then generated component views is not yet
addressed by the approach. For instance, there is no indi-
cator whether the component model is for instance growing
too large too be understandable by humans or other similar
guidelines.

3. INTEGRATED APPROACH OVERVIEW
The approach that we present in this paper represents

an extension of the previously explained approach for sup-
porting semi-automated architectural abstractions of a soft-
ware system from the source code using a DSL that we call
Architecture Abstraction DSL. The proposed extension of
the approach is related to the integration of software met-

rics that can support the understandability of architectural
component views generated using the previously explained
approach. The understandability related software metrics
are empirically evaluated in our previous work [24, 25] and
can further support the maintainability of the continuously
evolved architecture.

Namely, we did a series of studies where we tried to empir-
ically evaluate and prove the usefulness of software metrics
in assessing the understandability of architectural compo-
nent views. The goal was to produce a set of guidelines as
best practices for architectural component view design. The
metrics that we show are collected at the level of individual
components as well as at the level of the whole architecture.
They include three simple size metrics related to the num-
ber of components, the number of connectors and the total
number of elements (summing up the number of compo-
nents and the number of connectors) in the architecture and
four metrics related to individual components the number of
classes in a component, the number of incoming dependen-
cies of a component, the number of outgoing dependencies
of a component, and the number of internal dependencies of
a component.

Regarding the three architecture level size metrics, we
showed that middle values of those metrics significantly in-
crease the architectural understandability compared to high
or low values [24]. The indicated thresholds/guidelines for
using the metrics are roughly predicted and need to be in-
vestigated further (they are defined below in Section 4).
More precisely we showed that the component diagrams (vi-
sual representations of the component views) with very high
numbers of elements usually suffer from mixing of several
concerns which might lead to ambiguity and less precision.
Very low numbers of components, links, and elements are
not sufficient to model all relevant concerns of the architec-
ture [24]. The four metrics at the level of individual compo-
nents are shown to be useful in predicting the effort required
to understand an individual component, measured through
the time that participants spent on studying a component
[25]. They have shown either a statistically significant cor-
relation with the effort required to understand a component
or can be used in the prediction models obtained using the
multivariate regression analysis, to predict the given effort.

The integration of the given metrics in the workflow of
the previously explained approach is shown in Figure 2. In
order to more easily distinguish the part related to the inte-
gration of the given metrics we marked it red in the figure.
Firstly, the metrics calculations are extracted from both the
class model and the component view. The obtained met-
rics values then need to be evaluated with regard to dif-
ferent metrics constraints, i.e., it should be checked if the
metrics values satisfy required metrics constraints. Metrics
constraints represent a set of rules defined on metrics values
that need to be satisfied. In our case they are defined based
on our previous empirical evaluations and also take into ac-
count some additional reasonable considerations. Namely,
for the architectural level metrics the obtained middle val-
ues that increase the architectural understandability can be
realized as constraints (thresholds/guidelines are shown in
Section 4). For the metrics at the level of individual compo-
nents we did not examine any specific values/thresholds that
can be specified as constraints but the information related
to the obtained prediction models and the statistically sig-
nificant correlations can be useful in providing the relative

values that might be used for identifying critical components
which require more effort to be understood (see Section 4 for
more details). All given constraints and considerations can
be further refined with regard to the architects’ and devel-
opers’ specific experience and more specific requirements in
the certain domain. In case that some metrics values do not
satisfy the corresponding constraints the architectural ab-
straction DSL or the source code can be improved in order
to resolve the inconsistencies that occurred.

UML Class
Model

UML
Component

View

UML Component
View

(existing/previous
version)

Delta

automatic extraction

Compare

automatic
transformation

mapping

model versions
consistency

Metrics
Constraints

Metrics
Calculations

2. evaluate

Architecture
Abstraction DSL

3. improve

mapping

1. calculate

1. calculate

Source Code

design-code
consistency
checks

3. improve

Figure 2: Integration of the understandability re-
lated metrics in the DSL-based architecture abstrac-
tion approach

4. INTEGRATED APPROACH DETAILS
In this section, we explain the technical details of our ap-

proach. In Section 4.1 we discuss the metrics we use in our
approach and in Section 4.2 we present the details about
the DSL-based architecture abstraction approach and its in-
tegration with the given metrics.

4.1 Understandability Related Metrics
Regarding the empirical studies for supporting the under-

standability of architectural component views we report the
results from three studies 1. The first two studies examine
to which extent the software architecture could be conveyed
through architectural component views (16 different compo-
nent diagrams were studied) and they are base on the par-
ticipants’ subjective ratings while the third one examines
the relationships between the effort required to understand
an individual component, measured through the time that
participants spent on studying a component, and some com-

1Some more studies were conducted in the meantime and
they are currently under review. The results from those
studies will be incorporated in our approach afterwards be-
cause we would need to explain them in the paper in details
and the space limitations do not allow us to do that. For
the published studies we can simply refer the reader to the
corresponding articles

ponent level metrics that describe component’s size, com-
plexity and coupling.

The statistical evaluation of the results from the first two
studies shows that metrics such as the number of compo-
nents, number of connectors, number of elements, and num-
ber of symbols used in the diagrams can significantly de-
crease architectural understandability when they are above
and below a certain, roughly predicted threshold. Also, our
results indicate that architectural understandability is lin-
early correlated with the perceived precision and general un-
derstandability of the diagrams (please refer to [24] for more
details about the terms precision, general understandability,
and architectural understandability). The conclusions form
these two studies are summarized below:

• Any measures that increase the general understand-
ability and precision of architectural component views
directly help to improve the architectural understand-
ability.

• Measures to increase the domain knowledge are helpful
to increase the understanding of architectural compo-
nent views in general.

• From a certain size on (in terms of number of ele-
ments), architectural component views get hard to un-
derstand in general because of the high cognitive load
and human perception limits.

• Middle values of the number of components, links, el-
ements, and symbols in the diagram significantly in-
crease the architectural understandability compared to
high or low values. The diagrams with very high num-
bers of elements usually suffer from mixing of several
concerns which might lead to ambiguity and less preci-
sion. Very low numbers of components, links, and ele-
ments are not sufficient to model all relevant concerns
of the architecture. These dependencies might also
deserve to be investigated further, especially it would
be interesting to indicate the thresholds of maximum
(minimum) numbers of components, links, elements,
and symbols that should be depicted in one diagram
more precisely. So far, we consider the thresholds we
found as rough indicators.

From these 2 studies we consider three metrics the number
of components, the number of connectors and the total num-
ber of elements (summing up the number of components and
the number of connectors) in the architecture. As it is men-
tioned above we observed that the middle values of those
metrics significantly increase the architectural understand-
ability. Therefore the corresponding metrics’ constraints can
be realized (based on the thresholds that are roughly indi-
cated in our previous study [24]). Table 1 summarizes the
considered architecture level metrics together with the cor-
responding constraints. The number of symbols is not con-
sidered because it is related to the visual representation of
the component views that we do not support at the mo-
ment. Also we do not consider the first two items in the
above mentioned conclusions because we did not examine
the appropriate measures for it. Those items are related to
the measures of the precision, the general understandabil-
ity, and the domain knowledge contained in the component
views. Some aspects of these measures are automatically
taken into account when the architecture abstraction DSL

is specified like for example the names of the components.
Informative and coherent names can increase the precision
and convey the domain semantics of the system. However,
more studies are necessary to define and examine the appro-
priate measures and the corresponding constraints for these
aspects.
Regarding the third study four metrics related to indi-

vidual components the number of classes in a component,
the number of incoming dependencies of a component, the
number of outgoing dependencies of a component, and the
number of internal dependencies of a component are con-
sidered. The results of the analysis show a statistically sig-
nificant correlation between three of the metrics, number
of classes, number of incoming dependencies, and number of
internal dependencies, on one side, and the effort required to
understand a component, on the other side. In a multivari-
ate regression analysis we obtained 3 reasonably well-fitting
models that can be used to estimate the effort required to
understand a component 2.
For the metrics at the level of individual components we

did not examine any specific values/thresholds that can be
specified as constraints. The information related to the ob-
tained correlations and prediction models can be used to
provide more relative values (rather than evaluating a design
by giving absolute values) that might be used for identifying
critical components which require more effort to be under-
stood. Those components can be further simplified and/or
reorganized together with other components in the system to
satisfy the given understandability requirements. For exam-
ple, Bouwers et al. found that the components should be bal-
anced in size in order to facilitate the system’s analyzability
(location of possible failures/bugs in the system) [4]. In our
case the similar reasoning can be applied. Balanced values
for the components’ understandability effort can facilitate
the analyzability of the whole system in terms that all com-
ponents require the same effort to be understood which can
facilitate the location of possible bugs/failures in the system
(see Section 5 for an illustrative example). Furthermore for
the component level metrics the architects/developers can
adopt the specific ranges for them based on their concrete
experiences and requirements.
The component level metrics together with the prediction

models and the identified correlations to the measured un-
derstandability effort are shown in Table 2. The Spearman’s
correlation coefficients are shown. They are widely used for
measuring the degree of relationship between two variables
and take a value between -1 and +1. A positive correlation
is one in which the variables increase (or decrease) together.
A negative correlation is one in which one variable increases
as the other variable decreases. The coefficient for the num-
ber of outgoing dependencies metric is not shown because it
is not statistically significant.

4.2 Architecture Abstraction Approach and
Metrics Integration

As we mentioned above the given understandability met-
rics are integrated with the Architecture Abstraction DSL
that supports semi-automated architectural abstractions of
a software system from a source code. The Architecture Ab-

2Please note that the given prediction models do not in-
clude the percentage of the correct answers variable which
is replaced with 100 % according to the discussion in our
previous work [24].

Metic Description Metric’s constraint
Number of

Components
(NCOM)

Total number of components in the
architecture

5 < NCOM < 15

Number of
Connectors
(NCONN)

Total number of connectors in the
architecture (regardless whether the
connector is one-way or two-ways)

3 < NCONN ≤ 17

Number of
Elements
(NELEM)

Total number of elements in the
architecture (summing up the number of

components and the number of connectors)

11 < NELEM ≤ 25

Table 1: Architecture level metrics

Metic

Description

Spearman’s
correlation
coefficient

Number of Classes
(NC)

Total number of classes inside a component
r=0.74

Number of Incoming
Dependencies (NID)

Total number of dependencies between the classes
outside of a component and the classes inside a

component that are used by those outside classes

r=0.26
Number of Outgoing

Dependencies
(NOD)

Total number of dependencies between the classes
inside a component and the classes outside of a
component that are used by those inside classes

-

Number of Internal
Dependencies

(NIntD)

Total number of dependencies between the classes
within a component

r=0.66

Prediction Models
Model 1:~4.85+1.52*NC-0.53*NID

Model 2:~4.58+1.46*NC-0.52*NID+0.12*NOD
Model 3:~5.32+1.42*NC-0.58*NID

Table 2: Component level metrics and the obtained
prediction models

straction DSL is developed using Xtext2 that allows spec-
ifying architectural components and connectors and their
relations to source code using a number of different rules.
Those rules can be grouped into 4 different categories:

• Rules working on source code artefacts: These
rules allow relating different source code artefacts
packages, classes, and interfaces to an architectural
component. One example for this category is the
Package rule shown in the example in Figure 3 which
selects everything inside a specific package.

• Rules utilizing relationships between source
code artefacts: These rules allow relating an
architectural component to the source code artefacts
that have specific relationships to the given source
code artefact (sub- and super-type relations for
classes and interfaces, interface realizations, and other
dependencies). Figure 3 shows the ChildOf rule as
an example for this category. This rule matches all
classes that extend the referenced class.

• Rules operating on the names of the source
code artefacts: These rules related an architec-
tural components to source code artefacts based on
regular expressions of the names of those artefacts.
An example of the rule from this group is the rule
Class(”.*No.*”) (see Figure 3). This rule matches a
regular expression over all class names.

• Rules composition: More complex rules definitions
are supported through the implementation of the three
set operations union (or), intersect (and), and differ-
ence (and not) which are all used in Figure 3.

The given set of rules is incrementally refined by studying
five open source projects (see [11] for more details). During

 Demo Component
 consists of
 { // brackets for overriding operator precedence
 /* Structure based: include

 * everything inside this package*/
 (org.example) Package
 and not { /* compositon - set difference*/
 /* Name-based: classes with

 * name containing No*/
 (Class) ".*No.*"
 } or { /* composition - union */

 (org.example2.AbstractSuperTypeClass) ChildOf
 }

 } and /* composition - intersection */
 (org.example.IExampleInterface) InstanceOf

Figure 3: Architecture Abstraction DSL example -
Demo component

the incremental refinement of our DSL design, we started
with scenarios from these projects and extended the set of
scenarios step-by-step to cover all changes observed in mul-
tiple versions of those five projects. First, we automatically
generated a UML class model from the source code using
our parser and tried to gain an initial understanding of the
program. In order to ease this task we imported the source
code in an Eclipse IDE. After an initial study of the source
code, we created a first, incomplete architecture abstraction
specification. The time that we needed to create this ini-
tial specification heavily depended on the size and the pre-
viously existing architectural knowledge about the studied
cases. Then we utilized the consistency checks to further im-
prove the abstraction specification by removing the reported
inconsistencies step-by-step. The inconsistency at this point
usually were source code elements that had not been consid-
ered in the abstraction specification. When we were satisfied
with the resulting architecture abstraction specification, we
updated the source model to an existed newer version. After
that we checked the architecture specification and the new
source model for inconsistencies. Any reported inconsisten-
cies were fixed before we continued with the next version of
the program.

0

5

10

15

20

25

30

C1 C2 C3 C4

Understandability Effort
(component view 1)

0

5

10

15

20

25

30

C1 C2 C3 C4 C5 C6

Understandability Effort
(component view 2)

Figure 4: Understandability effort for both compo-
nent views

Our consistency checking algorithm mentioned in Section
2 supports the evolution of the software system in such a
way that it enables consistency checking between different
versions of software and also between different artefacts of
the same software version (for example between the com-

ponent view and the corresponding class view). The inte-
grated empirically evaluated metrics provide an additional
consistency checking possibility. Namely, according to the
discussion above the integrated metrics can provide a valu-
able support in assessing the understandability of architec-
tural component views which plays a key role in managing
and maintaining the overall system. Different versions of
the software can be compared using the given metrics set
that can be used to argue about the understandability level
of both the architectures and the individual components
contained in them. Based on the obtained values critical
points can be recognized, for example the components that
have significantly increased the effort to be understood can
be identified. Also different architecture abstractions can
be compared in order to generate the one with the reason-
able understandability level. The integrated metrics benefit
from the architecture abstraction tool in the way that the
later provides an “up-to-date” architectural component view
that reflects the source code (i.e. all source code classes
are mapped to their respective components) that is nec-
essary for the metrics calculations. This way, the archi-
tects/developers can gradually improve the architecture by
making the changes in the source code or in the architecture
abstraction DSL and judge the understandability of the ar-
chitecture created with the DSL. The metrics calculations
are integrated using the Xtext validation framework which
triggers their execution/recalculation whenever the source
code or the architecture component view is changed. The
corresponding warnings are reported whenever the metrics
values violate the respective set of metrics constraints.

encrypt/
decript

googlePlayBilling

androidBus/
storeInfo

storage
Manager

storeAssets

assetsInfo

StoreAssets (C4)

DatabaseServices (C2)StoreControler (C3)

GooglePlayBilling (C1)

Figure 5: Soomla Android store component view 1

5. CASE STUDY
In this section we present a small case study that illus-

trates how the previously explained approach can be used
to localize possible undesirable effects in the design, in this
case the observed fluctuations in the understandability ef-
fort of architectural components. The studied system is the
Soomla Android store Version 2.0, an open source framework
for supporting virtual economy in mobile games 3. Namely,
we show two architectural component views of the system
that differ in the number of components and the number of

3see: http://project.soom.la/

classes that the components contain. In both cases we cal-
culate the understandability effort required to understand
each component based on the provided prediction models.
In the first case the understandability effort is unevenly dis-
tributed over the components, i.e., some components require
very low while some others require very high effort to be un-
derstood (see Figure 4). After studying the first component
view the new component view is generated that better dis-
tributes the understandability effort over the components.
Thanks to the architecture abstraction tool all source code
classes are mapped to their respective components which is
a precondition for the accurate and successful metrics cal-
culations. Furthermore the second component view is easily
created from an architectural abstraction of the first one by
simply relocating the classes in the DSL code from one com-
ponent to the other. This step, of course, requires human
expertize and manual effort. However, please note that the
migration to the new view can be done incrementally, by per-
forming small changes in the DSL and observing the change
of the metrics with each change in the DSL. Please note also
that in general a large, inherently complex system will have
lower understandability because the identified metrics (i.e.
NCOM etc.) will be higher, than a small, simple system, re-
gardless of the quality of the architecture abstractions used.
In that case the aim of the approach is to adapt the inher-
ently high complexity to the extent that is acceptable using
the explained incremental changes.
Figure 5 shows the first component view obtained by

studying the given software system. The visualization of
both component views is separately created in the form of
a UML component diagram. Figure 6 shows the second
component view created to support better distributed
understandability effort between the components in order
to facilitate their analyzability (see Section 4 for more
details). The understandability efforts are shown in Figure
4.

obfuscator

shared
PreferencesgooglePlayBilling

androidBus/
storeInfo

storage
Manager

storeAssets

price

assetsInfo

StoreAssets (C5) PriceModels (C6)

DatabaseServices (C3)DDStoreControler (C4)

GooglePlayBilling (C1)

Security (C2)

Figure 6: Soomla Android store component view 2

From Figure 4 we see that the Components C1 and C3 of
the first component view require a pretty high effort to be
understood while the Component C2 requires much less ef-
fort. In the second component view the components require
more or less balanced effort to be understood, and it is lower
than the effort required for the Components C1 and C3 in
the first design. This small case illustrates how the given
metrics provide a useful feedback in the explained context.

6. RELATED WORK
In this section we compare our approach to other ap-

proaches that focus on architecture evolution as well as to
other approaches that utilize metrics in a similar way.

Many different software metrics for measuring the sys-
tem’s architecture, components as its constituting parts, and
structures similar to architectural component views, such
as other higher-level software structures (packages, graph-
based structures) have been proposed. Metrics related to
components and the corresponding architectures [13, 23, 22]
measure size, coupling, cohesion, and dependencies of in-
dividual components but also the complexity of the whole
architecture when all the components and their interactions
are taken into account. Different authors have proposed
different package level metrics that measure their size, cou-
pling, stability, and cohesion [17, 10]. Graph-based met-
rics measure different interactions between the nodes in the
graph [3, 15]. Some of the graph-based metrics have been
shown to be useful in measuring large scale software systems
in the sense that those systems share some properties that
are common for complex networks across many fields of sci-
ence [15]. All the mentioned metrics can be applied or can be
more-less easily adapted to be applicable for the component
views. However, none of the metrics is empirical evaluated
regarding understandability of architectural components or
architectural component views so far. In the software archi-
tecture literature we find only a very few studies that provide
empirical evidence regarding the architectural understand-
ability or the measurement of architectural understandabil-
ity (see e.g. [9, 8]). Our empirical studies explained before
try to provide more evidence in that context. Furthermore
the realization of the empirically collected evidence by de-
veloping the corresponding tools and the integration of those
tools with the existing tools has a great value and can im-
prove the quality of the software systems to a great extent.
Our previously explained integrated approach provides one
step in that direction.

A number of approaches focuses on the automatic cre-
ation of source code abstractions using automatic clustering.
Different clustering approaches and clustering measures are
reviewed and compared by Maqbool and Babri [16]. They
define a number of groups of clustering algorithms and com-
pare the performance of the different groups for different
open source software projects. While Maqbool and Babri
conclude which approach works best for each of the applica-
tions, they do not draw any conclusions regarding the overall
effort necessary to correct the automatic clustering. In con-
trast to all these approaches our approach is semi-automatic,
enables the checking of design constraints during the ab-
straction process, and provides traceability between source
code and models and focuses on the evolution of the archi-
tecture rather then the recovery of architecture.

Abreu et al. introduce a reengineering approach using
cluster analysis [1]. It uses six different affinity schemes
and seven clustering methods to produce a series of cluster-
ing proposals to verify which one produces the best results.
While this approach focuses on architecture recovery, in our
approach we focus mainly on architecture evolution and do
provide only semi-automatic support for architecture recov-
ery by trying to make it very comfortable for the architect
to define architecture abstraction specifications .

Egyed [7] describes an approach for model abstraction by
using existing traceability information and abstraction rules.

However, the author identified 120 abstraction rules for the
example of UML class models, which need to be extended
with a probability value because the rules may not always be
valid. Our approach uses architectural abstraction specifica-
tions that are harder to reuse for other models but easier to
define and allow the definition of architectural abstraction
specifications on different levels of abstraction.
Another approach for mapping source code models to

high-level models is introduced by Murphy et al. [20]. They
use software reflexion models which they compute from
a mapping between source model and high-level model.
However while their approach is similar, it requires a
substantial amount of effort, since it requires to define
both: the high-level model and the mapping, while our
approach requires source code and architectural abstraction
specification and the architecture abstraction is generated
automatically.
Mens et al. [18] propose intentional source code views that

allow grouping of source code by concerns. These views are
defined in a logic programming language. Their approach
provides generic source views on a low abstraction level while
we focus on the architectural aspects and provide an easy
way to define our domain specific views.
An approach that focuses on architecture evolution is pro-

posed by Barnes et al. [2]. Their approach is aimed at plan-
ing and reasoning about architecture evolution. They sup-
port the modeling of different evolution paths and allow rea-
soning about these different paths. Cuesta et al. [6] propose
an approach called AKdES that extends the approach by
Barnes et al. by considering evolution as an important aspect
of a systems architecture and thus propose the documenta-
tion of architecture evolution using architectural knowledge.
While these approaches are focused on planing and reason-
ing about an architecture evolution and they do not consider
how the architecture documentation and the source code
can be kept synchronized during evolution, our approach is
aimed at supporting the architect during the evolution pro-
cess by supporting the architecture during the evolution in
order to evolve source code an architecture documentation
in a synchronized fashion.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented an approach that uses em-

pirically evaluated understandability metrics to support the
software architect during architecture documentation and
evolution. It is built on previous work on architectural com-
ponent views that are generated from architecture abstrac-
tion specifications. We automatically calculate a number
of different metrics whenever the architecture abstraction
specification or the source code are updated. If the metrics
exceed defined thresholds the prototype notifies the soft-
ware architect of the potential understandability problem
who should revise the architecture abstraction specification
and the source code to improve the understandability of the
architectural component view. The improved understand-
ability then eases the future evolution of the systems as it
reduces the risks of misunderstandings and thus the risk of
changes that affect the quality of the architecture in a nega-
tive way. Our main contributions lie in the integration of the
two approaches and proposing a set of metrics-based guide-
lines for component model design that are derived from our
previous empirical studies. A limitation of our approach is
that we currently consider only understandability metrics

as a measure for quality. In our future work we plan to in-
tegrate other quality metrics that can be used to prevent
architecture erosion and drift.

Acknowledgement
This work was supported by the Austrian Science Fund
(FWF), Project: P24345-N23.

8. REFERENCES
[1] F. B. e. Abreu, G. Pereira, and P. Sousa. A

coupling-guided cluster analysis approach to
reengineer the modularity of object-oriented systems.
In Proceedings of the Conference on Software
Maintenance and Reengineering, CSMR ’00, pages
13–, Washington, DC, USA, 2000. IEEE Computer
Society.

[2] J. M. Barnes, D. Garlan, and B. R. Schmerl.
Evolution styles: foundations and models for software
architecture evolution. Software and System Modeling,
13(2):649–678, 2014.

[3] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and
M. Faloutsos. Graph-based analysis and prediction for
software evolution. In ICSE’12, pages 419–429, 2012.

[4] E. Bouwers, J. P. Correia, A. Deursen, and J. Visser.
Quantifying the Analyzability of Software
Architectures. In 2011 Ninth Working IEEE/IFIP
Conference on Software Architecture, pages 83–92.
IEEE, June 2011.

[5] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord,
J. Ivers, and R. Little. Documenting Software
Architectures: Views and Beyond. Pearson Education,
2002.

[6] C. E. Cuesta, E. Navarro, D. E. Perry, and C. Roda.
Evolution styles: using architectural knowledge as an
evolution driver. Journal of Software: Evolution and
Process, 25(9):957–980, 2013.

[7] A. Egyed. Consistent adaptation and evolution of class
diagrams during refinement. In Fundamental
Approaches to Software Engineering, 7th International
Conference, FASE 2004, ETAPS 2004 Barcelona,
Spain, volume 2984 of Lecture Notes in Computer
Science, pages 37–53. Springer, 2004.

[8] M. O. Elish. Exploring the relationships between
design metrics and package understandability: A case
study. In ICPC, pages 144–147. IEEE Computer
Society, 2010.

[9] V. Gupta and J. K. Chhabra. Package coupling
measurement in object-oriented software. J. Comput.
Sci. Technol., 24(2):273–283, Mar. 2009.

[10] V. Gupta and J. K. Chhabra. Package level cohesion
measurement in object-oriented software. J. Braz.
Comp. Soc., 18(3):251–266, 2012.

[11] T. Haitzer and U. Zdun. Semi-automated architectural
abstraction specifications for supporting software
evolution. Science of Computer Programming, 90, Part
B(0):135 – 160, 2014. Special Issue on
Component-Based Software Engineering and Software
Architecture.

[12] A. Jansen, J. van der Ven, P. Avgeriou, and D. K.
Hammer. Tool support for architectural decisions. In
Proceedings of the Sixth Working IEEE/IFIP

Conference on Software Architecture, WICSA ’07,
pages 4–, Washington, DC, USA, 2007. IEEE
Computer Society.

[13] A. Kanjilal, S. Sengupta, and S. Bhattacharya. CAG:
A Component Architecture Graph. In TENCON,
IEEE Region 10 International Conference, 2008.

[14] M. M. Lehman. Uncertainty in computer application
and its control through the engineering of software.
Journal of Software Maintenance, 1(1):3–27, Sept.
1989.

[15] Y. Ma, K. He, D. Du, J. Liu, and Y. Yan. A
complexity metrics set for large-scale object-oriented
software systems. In Proceedings of the Sixth IEEE
International Conference on Computer and
Information Technology, CIT ’06, pages 189–,
Washington, DC, USA, 2006. IEEE Computer Society.

[16] O. Maqbool and H. Babri. Hierarchical clustering for
software architecture recovery. IEEE Trans. Softw.
Eng., 33:759–780, 2007.

[17] R. C. Martin. Agile software development: principles,
patterns, and practices. Prentice Hall PTR, 2003.

[18] K. Mens, T. Mens, and M. Wermelinger. Maintaining
software through intentional source-code views. In
Proceedings of the 14th international conference on
Software engineering and knowledge engineering,
SEKE ’02, pages 289–296, New York, NY, USA, 2002.
ACM.

[19] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: bridging the gap between source and
high-level models. SIGSOFT Softw. Eng. Notes,
20:18–28, 1995.

[20] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: bridging the gap between source and
high-level models. In Proceedings of the 3rd ACM
SIGSOFT symposium on Foundations of software
engineering, SIGSOFT ’95, pages 18–28, New York,
NY, USA, 1995. ACM.

[21] D. L. Parnas. Software aging. In Proceedings of the
16th International Conference on Software
Engineering, ICSE ’94, pages 279–287, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

[22] K. Sartipi. A software evaluation model using
component association views. In IWPC, pages
259–268, 2001.

[23] A. Sharma, P. S. Grover, and R. Kumar. Dependency
analysis for component-based software systems.
SIGSOFT Softw. Eng. Notes, 34(4):1–6, July 2009.

[24] S. Stevanetic, M. A. Javed, and U. Zdun. Empirical
evaluation of the understandability of architectural
component diagrams. In Companion Proceedings of
the 11th Working IEEE/IFIP Conference on Software
Architecture (WICSA), WICSA 2014, Sydney,
Australia, 2014. IEEE Computer Society.

[25] S. Stevanetic and U. Zdun. Exploring the relationships
between the understandability of components in
architectural component models and component level
metrics. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software
Engineering (EASE), EASE 2014, London, UK, 2014.
ACM Computer Society.

