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Abstract. Ad exchanges are an emerging platform for trading adver-
tisement slots on the web with billions of dollars revenue per year. Every
time a user visits a web page, the publisher of that web page can ask an
ad exchange to auction off the ad slots on this page to determine which
advertisements are shown at which price. Due to the high volume of
traffic, ad networks typically act as mediators for individual advertisers
at ad exchanges. If multiple advertisers in an ad network are interested
in the ad slots of the same auction, the ad network might use a “local”
auction to resell the obtained ad slots among its advertisers.

In this work we want to deepen the theoretical understanding of these
new markets by analyzing them from the viewpoint of combinatorial auc-
tions. Prior work studied mostly single-item auctions, while we allow the
advertisers to express richer preferences over multiple items. We develop
a game-theoretic model for the entanglement of the central auction at the
ad exchange with the local auctions at the ad networks. We consider the
incentives of all three involved parties and suggest a three-party compet-
itive equilibrium, an extension of the Walrasian equilibrium that ensures
envy-freeness for all participants. We show the existence of a three-party
competitive equilibrium and a polynomial-time algorithm to find one for
gross-substitute bidder valuations.

Keywords: ad-exchange, combinatorial auctions, gross substitute, Wal-
rasian equilibrium, three-party equilibrium, auctions with mediators

? This work was funded by the Vienna Science and Technology Fund (WWTF) through
project ICT10-002. Additionally the research leading to these results has received
funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 340506. A full
version of the paper is available at https://eprints.cs.univie.ac.at/4456/.

?? Work done while at the University of Vienna.



2

1 Introduction

As advertising on the web becomes more mature, ad exchanges (AdX) play a
growing role as a platform for selling advertisement slots from publishers to
advertisers. Following the Yahoo! acquisition of Right Media in 2007, all major
web companies, such as Google, Facebook, and Amazon, have created or acquired
their own ad exchanges. Other major ad exchanges are provided by the Rubicon
Project, OpenX, and AppNexus. In 2012 the total revenue at ad exchanges
was estimated to be around two billion dollars [6]. Every time a user visits a
web page, the publisher of that web page can ask an ad exchange to auction
off the ad slots on this page. Thus, the goods traded at an ad exchange are
ad impressions. This process is also known as real-time bidding (RTB). A web
page might contain multiple ad slots, which are currently modeled to be sold
separately in individual auctions. Individual advertisers typically do not directly
participate in these auctions but entrust some ad network to bid on their behalf.
When a publisher sends an ad impression to an exchange, the exchange usually
contacts several ad networks and runs a (variant of a) second-price auction [17]
between them, potentially with a reserve price under which the impression is
not sold. An ad network (e.g. Google’s Display Network [9]) might then run
a second, “local” auction to determine the allocation of the ad slot among its
advertisers. We study this interaction of a central auction at the exchange and
local auctions at the ad networks.3

We develop a game-theoretic model that considers the incentives of the fol-
lowing three parties: (1) the ad exchange, (2) the ad networks, and (3) the ad-
vertisers. As the ad exchange usually charges a fixed percentage of the revenue
and hands the rest to the publishers, the ad exchange and the publishers have
the same objective and can be modeled as one entity. We then study equilibrium
concepts of this new model of a three-party exchange. Our model is described as
an ad exchange, but it may also model other scenarios with mediators that act
between bidders and sellers, as noted already by Feldman et al. [7]. The main
differences between our model and earlier models (discussed in detail at the end
of this section) are the following: (a) We consider the incentives of all three
parties simultaneously. (b) While most approaches in prior work use Bayesian
assumptions, we apply worst-case analysis. (c) We allow auctions with multiple
heterogeneous items, namely combinatorial auctions, in contrast to the single-
item auctions studied so far. Multiple items arise naturally when selling ad slots
on a per-impression basis, since there are usually multiple advertisement slots
on a web page.

To motivate the incentives of ad networks and exchanges, we compare next
their short and long-term revenue considerations, following Mansour et al. [17]
and Muthukrishnan [19]. Ad exchanges and ad networks generate revenue as
follows: (1) An ad exchange usually receives some percentage of the price paid
by the winner(s) of the central auction. (2) An ad network can charge a higher

3 In this work an auction is an algorithm to determine prices of items and their allo-
cation to bidders.
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price to its advertisers than it paid to the exchange or it can be paid via direct
contracts with its advertisers. Thus both the ad exchange and the ad networks
(might) profit from higher prices in their auctions. However, they also have a
motivation not to charge too high prices as (a) the advertisers could stick to al-
ternative advertising channels such as long-term contracts with publishers, and
(b) there is a significant competition between the various ad exchanges and ad
networks, as advertisers can easily switch to a competitor. Thus, lower prices
(might) increase advertiser participation and, hence, the long-term revenue of
ad exchanges and ad networks. We only consider a single auction (of multiple
items) and leave it as an open question to study changes over time. We still take
the long-term considerations outlined above into account by assuming that the
ad exchange aligns its strategic behavior with its long-term revenue considera-
tions and only desires for each central auction to sell all items.4 In our model
the incentive of an ad network to participate in the exchange comes from the
opportunity to purchase some items at a low price and then resell them at a
higher price. However, due to long-term considerations, our model additionally
requires the ad networks to “satisfy their advertisers” by faithfully represent-
ing the advertisers’ preferences towards the exchange, while still allowing the
ad networks to extract revenue from the competition between the advertisers
in their network.5 An example for this kind of restriction for an ad network is
Google’s Display Network [9] that guarantees its advertisers that each ad impres-
sion is sold via a second-price auction, independent of whether an ad exchange
is involved in the transaction or not [17].

To model a stable outcome in a three-party exchange, we use the equilib-
rium concept of envy-freeness for all three types of participants. A participant is
envy-free if he receives his most preferred set of items under the current prices.
Envy-freeness for all participants is a natural notion to express stability in a
market, as it implies that no coalition of participants would strictly profit from
deviating from the current allocation and prices (assuming truthfully reported
preferences). Thus an envy-free equilibrium supports stability in the market
prices, which in turn facilitates, for example, revenue prediction for prospective
participants and hence might increase participation and long-term revenue. For
only two parties, i.e., sellers and buyers, where the sellers have no intrinsic value
for the items they sell, envy-freeness for all participants is equal to a competitive
or Walrasian equilibrium [25], a well established notion in economics to char-
acterize an equilibrium in a market where demand equals supply. We provide a
generalization of this equilibrium concept to three parties.

Our Contribution. We introduce the following model for ad exchanges. A central
seller wants to sell k items. There are m mediators Mi, each with her own ni
4 Our model and results can be adapted to include reserve prices under which the ad

exchange is not willing to sell an item.
5 We implicitly assume that the central auction prices are accessible to the advertisers

such that they can verify whether an ad network represented their preferences cor-
rectly. Informally, we suggest that if one ad network “satisfies its advertisers” then,
over time, all ad networks have to follow this behavior to keep their advertisers.
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bidders. Each bidder has a valuation function over the items. In the ad exchange
setting, the central seller is the ad exchange, the items are the ad slots shown to
a visitor of a web page, the mediators are the ad networks, and the bidders are
the advertisers. A bidder does not have any direct “connection” to the central
seller. Instead, all communication is done through the mediators. A mechanism
for allocating the items to the bidders is composed of a central auction with
mediators acting as bidders, and then local auctions, one per mediator, in which
every mediator allocates the set of items she bought in the central auction; that
is, an auction where the bidders of that mediator are the only participating
bidders and the items that the mediator received in the central auction are the
sole items. The prices of the items obtained in the central auction provide a
lower bound for the prices in the local auctions, i.e., they act as reserve prices
in the local auctions. We assume that the central seller and the bidders have
quasi-linear utilities, i.e., utility functions that are linear in the price, and that
their incentive is to maximize their utility. For the central seller this means that
his utility from selling a set of slots is just the sum of prices of the items in the
set. The utility of a bidder on receiving a set of items S is his value for S minus
the sum of the prices of the items in S.

The incentive of a mediator, however, is not so straightforward and needs
to be defined carefully. In our model, to “satisfy” her bidders, each mediator
guarantees her bidders that the outcome of the local auction will be minimal
envy free, that is, for the final local price vector, the item set that is allocated
to any bidder is one of his most desirable sets over all possible item sets (even
sets that contain items that were not allocated to his mediator, i.e., each bidder
is not only locally, but globally envy-free) and there is no (item-wise) smaller
price vector that fulfills this requirement. We assume that each mediator wants
to maximize her revenue6 and define the revenue of a mediator for a set of items
S as the difference between her earnings when selling S with this restriction and
the price she has to pay for S at the central auction.

For this model we define a new equilibrium concept, namely the three-party
competitive equilibrium. At this equilibrium all three types of participants are
envy-free. Envy-free solutions for the bidders always exist, as one can set the
prices of all items high enough so that no bidder will demand any item. Addi-
tionally, we require that there is no envy for the central seller, meaning that all
items are sold. If there were no mediators, then a two-party envy-free solution
would be exactly a Walrasian equilibrium, which for certain scenarios can be
guaranteed [15]. However, with mediators it is not a-priori clear that a three-
party competitive equilibrium exists as, additionally, the mediators have to be
envy-free. We show that for our definition of a mediator’s revenue (a) the above
requirements are fulfilled and (b) a three-party competitive equilibrium exists
whenever a Walrasian equilibrium for the central auction exists or whenever a
two-party equilibrium exists for the bidders and the central seller without me-
diators. Interestingly, we show that for gross-substitute bidder valuations the
incentives of this kind of mediator can be represented with an or-valuation

6 For the purpose of this paper, the terms revenue and utility are interchangeable.
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over the valuations of her bidders. This then leads to the following result: For
gross-substitute bidder valuations a three-party competitive equilibrium can be
computed in polynomial time. In particular, we will show how to compute the
three-party competitive equilibrium with minimum prices.

Related Work. The theoretical research on ad exchanges was initialized by a sur-
vey of Muthukrishnan [19] that lists several interesting research directions. Our
approach specifically addresses his 9th problem, namely to enable the advertis-
ers to express more complex preferences that arise when multiple advertisement
slots are auctioned off at once as well as to design suitable auctions for the
exchange and the ad networks to determine allocation and prices given these
preferences.

The most closely related work with respect to the model of the ad exchange is
Feldman et al. [7]. It is similar to our work in two aspects: (1) The mediator bids
on behalf of her bidders in a central auction and the demand of the mediator
as well as the tentative allocation and prices for reselling to her bidders are
determined via a local auction. (2) The revenue of the mediator is the price
she can obtain from reselling minus the price she paid in the central auction.
The main differences are: (a) Only one item is auctioned at a time and thus
the mediator can determine her valuation with a single local auction. (b) Their
work does not consider the incentives of the bidders, only of the mediators and
the central seller. (c) A Bayesian setting is used where the mediators and the
exchange know the probability distributions of the bidders’ valuations. Based
on this information, the mediators and the exchange choose reserve prices for
their second-price auctions to maximize their revenue. The work characterizes
the equilibrium strategies for the selection of the reserve prices.

Mansour et al. [17] (mainly) describe the auction at the DoubleClick ex-
change. Similar to our work advertisers use ad networks as mediators for the
central auction. They observe that if mediators that participate in a single-item,
second-price central auction are only allowed to submit a single bid, then it is
not possible for the central auction to correctly implement a second-price auc-
tion over all bidders as the bidders with the highest and the second highest value
might use the same mediator. Thus they introduce the Optional Second Price
auction, where every mediator is allowed to optionally submit the second high-
est bid with the highest bid. In such an auction each mediator can guarantee to
her bidders that if one of them is allocated the item, then he pays the (global)
second-price for it. For the single-item setting, the bidders in their auction and
in our auction pay the same price. If the mediator of the winning bidder did not
specify an optional second price, then her revenue will equal the revenue of our
mediator. If she did, her revenue will be zero and the central seller will receive
the gain between the prices in the local and the central auction.

Stavrogiannis et al. [23] consider a game between bidders and mediators,
where the bidders can select mediators (based on Bayesian assumptions of each
other’s valuations) and the mediators can set the reserve prices in the second-
price local auction. The work presents mixed Nash equilibrium strategies for
the bidders to select their mediator. In [24] the same authors compare different
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singel-item local auctions with respect to the achieved social welfare and the
revenue of the mediators and the exchange.

Balseiro et al. (2013) introduced a setting that does not include mediators [1].
Instead, they see the ad exchange as a game between publishers, who select pa-
rameters such as reserve prices for second-price auctions, and advertisers, whose
budget constraints link different auctions over time. They introduced a new equi-
librium concept for this game and used this to analyze the impact of auction
design questions such as the selection of a reserve price. Balseiro et al. (2014)
studied a publisher’s trade-off between using an ad exchange versus fulfilling
long-term contracts with advertisers [2].

Equilibria in trading networks (such as ad exchanges) are also addressed in
the “matching with contracts” literature. Hatfield and Milgrom [14] presented
a new model where instead of bidders and items there are agents and trades
between pairs of agents. The potential trades are modeled as edges in a graph
where the agents are represented by the nodes. Agent valuations are then defined
over the potential trades and assumed to be monotone substitute. They proved
the existence of an (envy-free) equilibrium when the agent-trades graph is bipar-
tite. Later this was improved to directed acyclic graphs by Ostrovsky [21] and
to arbitrary graphs by Hatfield et al. [13]. They did not show (polynomial-time)
algorithms to reach equilibria. Our model can be reduced to this model, hence
a three-party equilibrium exists when all bidders are monotone gross substitute.
The result of this reduction (not stated here) is not polynomial in the number
of bidders and items.

Outline. After the preliminaries in Sect. 2, we formally define our model for
ad exchanges in Sect. 3. In particular we define the three-party competitive
equilibrium and the mediator model of our choice. We give two simple existence
proofs for the three-party equilibrium; one under the condition that a two-party
equilibrium between the bidders and the central seller exists, and one for the
case that a two-party equilibrium between the central seller and the mediators
exists. In Sect. 4 we focus on gross-substitute bidders and show that in this case
our mediator definition is equivalent to a valuation-based or-player definition
and how this implies a polynomial-time algorithm to compute a three-party
competitive equilibrium. Finally we discuss our results in Sect. 5. All omitted
proofs are given in the appendix.

2 Preliminaries

Let Ω denote a set of k items. A price vector is an assignment of a non-negative
price to every element of Ω. For a price vector p = (p1, ..., pk) and a set S ⊆ Ω
we use p(S) =

∑
j∈S pj . For any two price vectors p, r an inequality such as

p ≥ r as well as the operations min(p, r) and max(p, r) are meant item-wise.
We denote with 〈Ωb〉 = 〈Ωb〉b∈B an allocation of the items in Ω such that

for all bidders b ∈ B the set of items allocated to b is given by Ωb and we have
Ωb ⊆ Ω and Ωb ∩Ωb′ = ∅ for b′ 6= b, b′ ∈ B. Note that some items might not be
allocated to any bidder.
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A valuation function vb of a bidder b is a function from 2Ω to R, where 2Ω

denotes the set of all subsets of Ω. We assume throughout the paper vb(∅) = 0.
Unless specified otherwise, for this work we assume monotone valuations, that
is, for S ⊆ T we have vb(S) ≤ vb(T ). This assumption is made for ease of
presentation. We use {vb} to denote a collection of valuation functions. The
utility of a bidder b from a set S ⊆ Ω at prices p ≥ 0 is defined as ub,p(S) =
vb(S) − p(S). Such utility functions are often called quasi-linear, i.e., linear in
the price. The demand Db(p) of a bidder b for prices p ≥ 0 is the set of subsets
of items S ⊆ Ω that maximize the bidder’s utility at prices p. We call a set in
the demand a demand representative. Throughout the paper we omit subscripts
if they are clear from the context.

Definition 1 (Envy free). An allocation 〈Ωb〉 of items Ω to bidders B is envy
free (on Ω) for some prices p if for all bidders b ∈ B, Ωb ∈ Db(p). We say that
prices p are envy free (on Ω) if there exists an envy-free allocation (on Ω) for
these prices.

There exist envy-free prices for any valuation functions of the bidders, e.g., set
all prices to maxb,S vb(S). For these prices the allocation which does not allocate
any item is envy free. Thus also minimal envy-free prices always exist, but are
in general not unique.

Definition 2 (Walrasian equilibrium (WE)). A Walrasian equilibrium (on
Ω) is an envy-free allocation 〈Ωb〉 (on Ω) with prices p such that all prices are
non-negative and the price of unallocated items is zero. We call the allocation
〈Ωb〉 a Walrasian allocation (on Ω) and the prices p Walrasian prices (on Ω).

We assume that the central seller has a value of zero for every subset of the
items; thus (with quasi-linear utility functions) selling all items makes the seller
envy free. In this case a Walrasian equilibrium can be seen as an envy-free two-
party equilibrium, i.e., envy free for the buyers and the seller. Note that for a
Walrasian price vector there might exist multiple envy-free allocations.

2.1 Valuation Classes

A unit demand valuation assigns a value to every item and defines the value of
a set as the maximum value of an item in it. An additive valuation also assigns
a value to every item but defines the value of a set as the sum of the values
of the items in the set. Non-negative unit demand and non-negative additive
valuations both have the gross-substitute property (defined below) and are by
definition monotone.

Definition 3 (Gross substitute (gs)). A valuation function is gross substi-
tute if for every two price vectors p(2) ≥ p(1) ≥ 0 and every set D(1) ∈ D(p(1)),

there exists a set D(2) ∈ D(p(2)) with j ∈ D(2) for every j ∈ D(1) with p
(1)
j = p

(2)
j .
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For gross-substitute valuations of the bidders a Walrasian equilibrium is guar-
anteed to exist in a two-sided market [15] and can be computed in polynomial
time [20, 22]. Further, gross substitute is the maximal valuation class containing
the unit demand class for which the former holds [10]. Several equivalent defini-
tions are known for this class [10, 22]. We will further use that for gross-substitute
valuations the Walrasian prices form a complete lattice [10].

We define next an or-valuation. Lehmann et al. [16] showed that the or of
gross-substitute valuations is gross substitute.

Definition 4 (or-player). The or of two valuations v and w is defined as
(v or w)(S) = maxR,T⊆S,R∩T=∅(v(R) + w(T )). Given a set of valuations {vb}
for bidders b ∈ B we say that the or-player is a player with valuation vor(S) =
max〈Sb〉

∑
b∈B vb(Sb) .

3 Model and Equilibrium

There are k items to be allocated to m mediators. Each mediatorMi represents
a set Bi of bidders, where |Bi| = ni. Each bidder is connected to a unique
mediator. Each bidder has a valuation function over the set of items and a
quasi-linear utility function. A central auction is an auction run on all items
with mediators as bidders. After an allocation 〈Ωi〉 and prices r at the central
auction are set, another m local auctions are conducted, one by each mediator.
In the local auction for mediator Mi the items Ωi that were allocated to her in
the central auction are the sole items and the bidders Bi are the sole bidders. A
solution is an assignment of central-auction and local-auction prices to items and
an allocation of items to bidders and hence, by uniqueness, also to mediators.
We define next a three-party equilibrium based on envy-freeness.

Definition 5 (Equilibrium). A three-party competitive equilibrium is an al-
location of items to bidders and a set of m+1 price vectors r, p1, p2, . . . , pm such
that the following requirements hold. For 1 ≤ i ≤ m

1. every mediator7 Mi is allocated a set Ωi in her demand at price r,
2. every item j with non-zero price r is allocated to a mediator,
3. the price pi coincides with r for all items not in Ωi,
4. and every bidder b ∈ Bi is allocated a subset of Ωi that is in his demand at

price pi.

In other words, the allocation to the bidders in Bi with prices pi must be envy-free
for the bidders, the allocation to the mediators with prices r must be envy free for
the mediators and for the central seller, i.e., must be a Walrasian equilibrium;
and the prices pi must be equal to the prices r for all items not assigned to
mediator Mi.

Note that the allocation of the items to the mediators and prices r are the
outcome of a central auction run by the central seller, while the allocation to the

7 Regardless of any demand definition
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bidders in Bi and prices pi correspond to the outcome of a local auction run by
mediator Mi. These auctions are connected by the demands of the mediators
and Requirement 3.

We next present our mediator model. The definition of an Envy-Free Me-
diator, or ef-mediator for short, reflects the following idea: To determine her
revenue for a set of items S at central auction prices r, the mediator simulates
the local auction she would run if she would obtain the set S at prices r. Given
the outcome of this “virtual auction”, she can compute her potential revenue
for S and r as the difference between the virtual auction prices of the items
sold in the virtual auction and the central auction prices for the items in S.
However, as motivated in the introduction, the mediator is required to represent
the preferences of her bidders and therefore not every set S is “allowed” for the
mediator, that is, for some sets the revenue of the mediator is set to −1. The sets
that maximize the revenue are then in the demand of the mediator at central
auction prices r. To make the revenue of a mediator well-defined and to follow
our motivation that a mediator should satisfy her bidders, the virtual auctions
specifically compute minimal envy-free price vectors.

Definition 6 (Envy-Free Mediator). An ef-mediator Mi determines her
demand for a price vector r ≥ 0 as follows. For each subset of items S ⊆ Ω she
runs a virtual auction with items S, her bidders Bi, and reserve prices r. We
assume that the virtual auction computes minimal envy-free prices pS ≥ r and
a corresponding envy-free allocation 〈Sb〉. We extend the prices pS to all items
in Ω by setting pSj = rj for j ∈ Ω \ S, and define the revenue Ri,r(S) of the
mediator for a set S as follows. If the allocation 〈Sb〉 is envy free for the bidders
Bi and prices pS on Ω, then Ri,r(S) =

∑
b∈Bi p

S(Sb) − r(S); otherwise, we set

Ri,r(S) = −1.8 The demand Di(r) of Mi is the set of all sets S that maximize
the revenue of the mediator for the reserve prices r. The local auction of Mi for
a set Ωi allocated to her in the central auction at prices r is equal to her virtual
auction for Ωi and r.

Note that for a set S with Ri,r(S) =
∑
b∈Bi p

S(Sb) − r(S) the revenue of
an ef-mediator Mi is maximal if the envy-free allocation on S is such that∑
b∈Bi p

S(Sb) is as high as possible. Thus if there are multiple envy-free al-

locations on S for the prices pS , the mediator chooses one that maximizes∑
b∈Bi p

S(Sb).

Following the above definition, we say that a price vector is locally envy free
if it is envy free for the bidders Bi on the subset Ωi ⊆ Ω assigned to mediator
Mi and globally envy free if it is envy free for the bidders Bi on Ω. Note that if
pS is envy free on Ω, then it is minimal envy free ≥ r on Ω for the bidders Bi.

An interesting property of ef-mediators is that every Walrasian equilibrium
in the central auction can be combined with the outcome of the local auctions
of ef-mediators to form a three-party competitive equilibrium.

8 For the results of this paper this could be any negative value including −∞.
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Theorem 1. Assume all mediators are ef-mediators. Then a Walrasian equi-
librium in the central auction with allocation 〈Ωi〉 together with the allocation
and prices computed in the local auctions of the mediators Mi on their sets Ωi
(not necessarily Walrasian) form a three-party competitive equilibrium.

Further, with ef-mediators a three-party competitive equilibrium exists when-
ever a Walrasian eq. exists for the bidders and items without the mediators.

Theorem 2. Assume all mediators are ef-mediators and a Walrasian equilib-
rium exists for the set of bidders and items (without mediators). Then there
exists a three-party competitive equilibrium.

The proof of Theorem 2 only shows the existence of trivial three-party equi-
libria that basically ignores the presence of mediators. However, three-party equi-
libria and ef-mediators allow for richer outcomes that permit the mediators to
gain revenue from the competition between their bidders while still representing
the preferences of their bidders towards the central seller. In the next section we
show how to find such an equilibrium provided that the valuations of all bidders
are gross substitute. Recall that gross-substitute valuations are the most general
valuations that include unit demand valuations for which a Walrasian equilib-
rium exists [10]; and that efficient algorithms for finding a Walrasian equilibrium
are only known for this valuation class.

4 An Efficient Algorithm for Gross-substitute Bidders

In this section we will show how to find, in polynomial time, a three-party
competitive equilibrium if the valuations of all bidders are gross substitute. The
prices the bidders have to pay at equilibrium, and thus the utilities they achieve,
will be the same as in a Walrasian equilibrium (between bidders and items) with
minimum prices (Appendix E). The price the bidders pay is split between the
mediators and the exchange. We show how to compute an equilibrium where
this split is best for the mediators and worst for the exchange. In turn the
computational load can be split between the mediators and the exchange as
well. The algorithm will be based on existing algorithms to compute Walrasian
equilibria for gross-substitute bidders.

The classical (two-party) allocation problem is the following: We are given
k items and n valuation functions and we should find an equilibrium allocation
(with or without equilibrium prices) if one exists. Recall that in general a val-
uation function has a description of size exponential in k. Therefore, the input
valuation functions can only be accessed via an oracle, defined below. An effi-
cient algorithm runs in time polynomial in n and k (where the oracle access is
assumed to take constant time).

Given an algorithm that computes a Walrasian allocation for gross-substitute
bidders, by a result of Gul and Stacchetti [10] minimum Walrasian prices can be
computed by solving the allocation problem k+ 1 times. A Walrasian allocation
can be combined with any Walrasian prices to form a Walrasian equilibrium [10].
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Thus we can assume for gross-substitute valuations that a polynomial-time al-
gorithm for the allocation problem also returns a vector of minimum prices that
support the allocation.

Two main oracle definitions that were considered in the literature are the
valuation oracle, where a query is a set of items S and the oracle replies with
the exact value of S; and the demand oracle, where a query is a price vector
p and the oracle replies with a demand representative D [5]. Note that in the
literature the answer of a demand oracle is sometimes defined to be all sets in
the demand, however this cannot be assumed to be of polynomial size even for
gross-substitute valuations.

It is known that a demand oracle is strictly stronger than a valuation oracle,
i.e., a valuation query can be simulated by a polynomial number of demand
queries but not vice versa. For gross-substitute valuations, however, these two
query models are polynomial-time equivalent, see Paes Leme [22]. The two-party
allocation problem is efficiently solvable for gross-substitute valuations [20, 22].
For other valuations, efficient algorithms are not known even in the demand
query model.

We define the three-party allocation problem in the same manner. We are
given k items, n valuation functions over the items and m mediators, each asso-
ciated with a set of unique bidders. We are looking for a three-party equilibrium
allocation (and equilibrium prices) if one exists. We will assume that the input
valuations are given through a valuation oracle. An efficient algorithm runs in
time polynomial in n and k (hence also in m ≤ n).

The algorithm will be based on the following central result: For gross substi-
tute valuations of the bidders an ef-mediator and an or-player over the valua-
tions of the same bidders are equivalent with respect to their demand and their
allocation of items to bidders. Thus in this case ef-mediators can be considered
as if they have a gross-substitute valuation. Note that for general valuations this
equivalence does not hold.

Theorem 3. If the valuation functions of a set of bidders Bi are gross substitute,
then the demand of an ef-mediator for Bi is equal to the demand of an or-
player for Bi. Moreover, the allocation in a virtual auction of the ef-mediator
for reserve prices r and a set of items S in the demand is an optimal allocation
for the or-player for S and r and vice versa.

To this end, we will first show for the virtual (and local) auctions that a
modified Walrasian equilibrium, the reserve-we(r), exists for gross-substitute
valuations with reserve prices. For this we will use yet another reduction to a
(standard) Walrasian equilibrium without reserve prices but with an additional
additive player9.

Definition 7 (Walrasian equilibrium with reserve prices r (reserve-
we(r)) [12]). A Walrasian equilibrium with reserve prices r ≥ 0 (on Ω) is

9 Such a player was introduced by Paes Leme [22] to find the demand of an or-player
(with a slightly different definition of or).
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an envy-free allocation 〈Ωb〉 (on Ω) with prices p such that p ≥ r, and the price
of every unallocated item is equal to its reserve price, i.e., pj = rj for j 6∈ ∪bΩb.
We say that 〈Ωb〉 is a reserve-we(r) allocation (on Ω) and p are reserve-
we(r) prices (on Ω).

4.1 Properties of Walrasian Equilibria with Reserve Prices

In this section we generalize several results about Walrasian equilibria to Wal-
rasian equilibria with reserve prices. Similar extensions were shown for unit de-
mand valuations in [12].

We first define a suitable linear program. The reserve-lp(r) is a linear
program obtained from a reformulation of the dual of the LP-relaxation of the
welfare maximization integer program after adding reserve prices r ≥ 0. More
details on this reformulation are given in Appendix C.

For an integral solution to the reserve-lp(r) we can interpret this reformu-
lation as a solution to a welfare-lp with an additional additive player whose
value for an item is equal to that item’s reserve price. We will use this interpre-
tation to extend known results for Walrasian equilibria to Walrasian equilibria
with reserve prices. The results are summarized in Theorem 4 below. We use the
following definition.

Definition 8 (additional additive player). Let {vb} be a set of valuation
functions over Ω for bidders b ∈ B, and let r ≥ 0 be reserve prices for the items
in Ω. Let {v′b′} be the set of valuation functions when an additive bidder a is
added, i.e., for the bidders b′ ∈ B′ = B ∪ {a} with v′b′(S) = vb′(S) for b′ 6= a
and v′a(S) =

∑
j∈S rj for all sets S ⊆ Ω. For an allocation 〈Ωb〉b∈B we define

〈Ω′b′〉b′∈B′ with Ω′b′ = Ωb′ for b′ 6= a and Ω′a = Ω \ ∪bΩb.

Theorem 4. (a) The allocation 〈Ωb〉 and the prices p are a reserve-we(r)
for r ≥ 0 and bidders B if and only if the allocation 〈Ω′b′〉 and prices p′ are a
we for the bidders B′, where we have pj = p′j for j ∈ ∪b∈BΩb and pj′ = rj′ for
j′ ∈ Ω \∪b∈BΩb (a1 ). The allocation 〈Ωb〉 is a reserve-we(r) allocation if and
only if 〈Ωb〉 is an integral solution to the reserve-lp(r) (a2 ).

(b) If the valuations {v} are gross substitute, then (b1 ) there exists a reserve-
we(r) for {v} and (b2 ) the reserve-we(r) price vectors form a complete lat-
tice.

Theorem 4 will be used in the next section to characterize the outcome of the
virtual auctions of an ef-mediator. It also provides a polynomial-time algorithm
to compute a reserve-we(r) when the bidders in B have gross-substitute valu-
ations, given a polynomial-time algorithm for a we for gross-substitute bidders.

4.2 The Equivalence of the EF-mediator and the OR-player for
Gross-substitute Valuations—Proof Outline

In this section we outline the proof of Theorem 3, that is, the equivalence for
gross-substitute bidders between the demand of an ef-mediator Mi and the
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demand of an or-player and, for the sets in the demand, the equivalence of the
allocations of items to bidders of an or-player and an ef-mediator in the sense
that the allocation implied by the or-player could be used by the ef-mediator
and vice versa. The complete proof is given in Appendix D.

The proof proceeds as follows. We first characterize the demand of an ef-
mediator for bidders with gross-substitute valuations. As a first step we show
that for such bidders an ef-mediator actually computes a reserve-we(r) with
minimum prices in each of her virtual auctions. The minimality of the prices
implies that whenever the virtual auction prices for an item set S are globally
envy-free, they are also minimum reserve-we(r) prices for the set of all items
Ω and the bidders in Bi. Thus, given reserve prices r, all virtual auctions of
an ef-mediator result in the same price vector p as long as they are run on
a set S with non-negative revenue. With the help of some technical lemmata
we then completely characterize the demand of an ef-mediator and show that
the mediator does not have to run multiple virtual auctions to determine her
demand; it suffices to run one virtual auction on Ω where the set of allocated
items is a set in the demand of the ef-mediator. Thus for gross-substitute bidders
the mediator can efficiently answer demand queries and compute the outcome
of her local auction.

Finally we compare the utility function of the or-player to the optimal value
of the reserve-lp(r) to observe that they have to be equal (up to an additive
constant) for item sets that are in the demand of the or-player. Combined with
the above characterization of the demand of the mediator, we can then relate
both demands at central auction prices r to optimal solutions of the reserve-
lp(r) for r and Ω and hence show the equality of the demands for these two
mediator definitions for gross-substitute valuations of the bidders. Recall that an
or-player over gross-substitute valuations has a gross-substitute valuation [16].
Thus in this case we can regard the ef-mediator as having a gross-substitute
valuation. This implies that a Walrasian equilibrium for the central auction
exists and, with the efficient demand oracle defined above, can be computed
efficiently when all bidders have gross-substitute valuations and all mediators
are ef-mediators.

4.3 Computing an Equilibrium

The basic three-party auction is simple: First run the central auction at the ex-
change, then the local auctions at the mediators. In this section we summarize the
details and analyze the time needed to compute a three-party competitive equi-
librium. We assume that all bidders have gross-substitute valuations and that
their valuations can be accessed via a demand oracle. We assume, for simplic-
ity, that there are m ef-mediators, each with n/m distinct bidders. We will use
known polynomial-time auctions for the two-party allocation problem, see [22]
for a recent survey. Theorem 4 shows how such an auction can be modified to
yield a reserve-we(r) instead of a Walrasian equilibrium.

Let A be a polynomial-time algorithm that can access n gross-substitute
valuations over k items Ω via a demand oracle and outputs a Walrasian price



14

vector p ∈ Rk and a Walrasian allocation 〈Ωi〉i∈[n]. Let the runtime of A be

T (n, k) = O(nαkβ) for constants α, β.
Although we can assume oracle access to the bidders’ valuations, we cannot

assume it for the mediators’ (gross-substitute) valuations, as they are not part of
the input. However, as outlined in the previous section, a mediator can determine
a set in her demand by running a single virtual auction to compute a reserve-
we(r), i.e., there is an efficient demand oracle for the mediators. Hence, solving
the allocation problem for the central auction can be done in time T (m, k) ·
T (n/m, k) = O(nαk2β). Further, the local auctions for all mediators take time
O(m · T (n/m, k)) and thus the total time to compute a three-party competitive
equilibrium is O(nαk2β).

Note that the computation at the exchange takes only T (m, k) time and
that the mediators are assumed to be separated, that is, the computation at the
mediators can be done in parallel.

In the context of ad exchanges it is natural to assume that the number of
items is very small and independent of the number of bidders. We discuss the
computation of an equilibrium in this case in Appendix F.

5 Short Discussion

We proposed a new model for auctions at ad exchanges. Our model is more
general than previous models in the sense that it takes the incentives of all
three types of participants into account and that it allows to express preferences
over multiple items. Interestingly, at least when gross-substitute valuations are
considered, this generality does not come at the cost of tractability, as shown by
our polynomial-time algorithm. Note that this is the most general result we could
expect in light of the classical (two-sided) literature on combinatorial auctions.10
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A Further Discussion and Future Directions

We considered the special case of a small number of items for which we showed
that existing polynomial-time algorithms for two-party equilibria can be sped-up
by adding mediators.

In our model, with gross-substitute bidders, the revenue of the mediators only
comes from decreasing the central seller’s profit (stated formally in Appendix E).
This explains the willingness of the bidders to use mediators. The central seller
experiences a decrease in its workload with the introduction of mediators, which
may partially describe its own inclination for participating in the market.

Since our model tries to capture a single “user-impression-of-a-web-page” sold
at an ad exchange, a natural follow up work will try to model what happens over
time. This direction should take into account the change in the environment, as
the bidders and their valuations as well as the mediators and their connections
to bidders can be different for each user impression.

B Proofs of Theorems on “Model and Equilibrium”,
Section 3

Proof (Proof of Theorem 1). A Walrasian equilibrium in the central auction is a
price vector r ≥ 0 and an allocation 〈Ωi〉 of items to mediators such that every
item with strictly positive price is allocated to a mediator and every mediator
is allocated a set in her demand Di(r). By the definition of Di(r), the virtual
auction for every set S ∈ Di(r) computes an allocation of the items in S to
her bidders and envy-free prices pi ≥ r (on Ω) such that every bidder in Bi is
allocated a set in his demand at prices pi and pij = rj for all items j /∈ S. Thus
all requirements of a three-party competitive equilibrium are satisfied.

Proof (Proof of Theorem 2). A Walrasian equilibrium is a price vector r ≥ 0
and an allocation 〈Ωb〉 of items to bidders such that every bidder is envy-free
and all items with non-zero price are allocated to a bidder. This equilibrium
induces a trivial three-party competitive equilibrium where all price vectors are
identical to r and the allocation to mediators is uniquely determined by the
allocation 〈Ωb〉 to bidders. To see this note that the allocation 〈Ωb〉 with prices
r is globally envy-free for all bidders and thus for a mediator Mi the minimal
locally envy-free prices ≥ r are equal to r for the set of items allocated to Bi.
The revenue of all mediators under this equilibrium is zero and for each mediator
the set allocated to her is in her demand. 11

11 The above proof also holds for any other mediator definition that prohibits mediators
to gain other revenue than from the competition between her bidders in the local
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C Proof of Theorem 4

reserve-lp(r) : maximize
∑

b∈B, S⊆Ω

xb,Svb(S) +
∑
j∈Ω

1−
∑

b∈B, S|j∈S

xb,S

 rj

subject to
∑

b∈B, S|j∈S

xb,S ≤ 1 ∀j ∈ Ω

∑
S⊆Ω

xb,S ≤ 1 ∀b ∈ B

xb,S ≥ 0 ∀b ∈ B, S ⊆ Ω

We now show how the reserve-lp(r) is obtained. It is well known that
for any collection {v} of valuations a Walrasian equilibrium (we) exists if and
only if the linear programming relaxation of the welfare maximization problem
(welfare-lp), given below, has an integral solution. The integral solution com-
bined with optimal dual prices yields a Walrasian equilibrium and vice versa
(see e.g. [4] for monotone valuations and [18] for more general valuations).

maximize
∑

b∈B, S⊆Ω

xb,Svb(S) (welfare-lp)

subject to
∑

b∈B, S|j∈S

xb,S ≤ 1 ∀j ∈ Ω (1)

∑
S⊆Ω

xb,S ≤ 1 ∀b ∈ B (2)

xb,S ≥ 0 ∀b ∈ B, S ⊆ Ω (3)

The dual is as follows.

minimize
∑
b∈B

ub +
∑
j∈Ω

pj (4)

subject to ub +
∑
j∈S

pj ≥ vb(S) ∀b ∈ B, S ⊆ Ω (5)

ub ≥ 0, pj ≥ 0 ∀b ∈ B, j ∈ Ω (6)

We will think of the dual variables pjs as prices of items and of ubs as maximum
utilities for the bidders. Note that the dual objective is a function of the ps as
the us are determined by them. Now consider the effect of reserve prices, i.e., for

auction. This is because there is no competition in the local auction when the allo-
cation and prices in the central auction are determined by a Walrasian equilibrium
between bidders and items.
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all j ∈ Ω a lower bound rj ≥ 0 for the dual variables pj .

minimize
∑
b∈B

ub +
∑
j∈Ω

pj (7)

subject to ub +
∑
j∈S

pj ≥ vb(S) ∀b ∈ B, S ⊆ Ω (8)

ub ≥ 0, pj ≥ rj ∀b ∈ B, j ∈ Ω (9)

We can reformulate this linear program by a variable transformation with qj =
pj − rj for all j ∈ Ω. The term

∑
j∈Ω rj is part of the input and thus can be

omitted from the objective value.

minimize
∑
b∈B

ub +
∑
j∈Ω

qj +
∑
j∈Ω

rj (10)

subject to ub +
∑
j∈S

qj ≥ vb(S)−
∑
j∈S

rj ∀b ∈ B, S ⊆ Ω (11)

ub ≥ 0, qj ≥ 0 ∀b ∈ B, j ∈ Ω (12)

With this reformulation we obtain the following primal, which we call reserve-
lp(r). Again

∑
j∈Ω rj can be omitted from the objective value without changing

the set of solutions.

maximize
∑

b∈B, S⊆Ω

xb,S

vb(S)−
∑
j∈S

rj

+
∑
j∈Ω

rj (reserve-lp(r))

subject to
∑

b∈B, S|j∈S

xb,S ≤ 1 ∀j ∈ Ω (13)

∑
S⊆Ω

xb,S ≤ 1 ∀b ∈ B (14)

xb,S ≥ 0 ∀b ∈ B, S ⊆ Ω (15)

The objective value of the reserve-lp(r) can be rewritten as

∑
b∈B, S⊆Ω

xb,Svb(S) +
∑
j∈Ω

1−
∑

b∈B, S|j∈S

xb,S

 rj . (16)

In the following proof we use the additional additive player, Definition 8.

Proof (Proof of Theorem 4). (a1)⇒: Let 〈Ωb〉 and prices p be a reserve-we(r)
for bidders B. Then 〈Ωb〉 is an envy-free allocation at prices p ≥ r, and all
unallocated items j have price pj = rj . Let Ω0 denote the set of unallocated
items. A we for the bidders B′ is given by prices p and allocation 〈Ω′b′〉 with
Ω′b′ = Ωb′ for b′ 6= a and Ω′a = Ω0. All items are allocated in 〈Ω′b′〉. The allocation
for the bidders b′ 6= a clearly is envy-free as neither allocation nor prices were
changed. Bidder a is envy-free because p ≥ r and pj = rj for j ∈ Ω′a.
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⇐: Let 〈Ω′b′〉 and prices p′ be a we for the bidders B′. Then 〈Ω′b′〉 is an envy-
free allocation and all unallocated items have a price of zero. For bidder a to be
envy-free it must hold that all items j not allocated to a have a price pj ≥ rj and
all items j′ allocated to a have pj′ ≤ rj′ . We construct a reserve-lp(r) for the
bidders B as follows. For all items allocated to bidders in B in 〈Ω′b′〉 allocation
and prices remain the same. For all other items j their price is set to rj and they
are left unallocated. The allocation for the bidders B remains envy-free because
the prices of the now unallocated items were only increased.

(a2): First note that for bidders B′ in a we, and therefore in an integral
solution to the welfare-lp, we can assume w.l.o.g. that all items are allocated
because we have r ≥ 0 and therefore all otherwise unallocated items can be
allocated to the additive player a. The objective value of the welfare-lp for
an integral solution 〈Ω′b′〉 for bidders B′ can be written as

∑
b∈B vb(Ωb) + r(Ω′a),

which is, w.l.o.g., equal to
∑
b∈B vb(Ωb)+r(Ω \∪b∈BΩb). The latter is equivalent

to Equation (16) for the allocation 〈Ωb〉. Thus there is (w.l.o.g.) a one-to-one
correspondence between integral solutions to the welfare-lp for bidders B′
and integral solutions to the reserve-lp(r) for bidders B. Hence, 〈Ω′b′〉 is an
optimal solution to the welfare-lp for B′ if and only if 〈Ωb〉 is an optimal
solution to the reserve-lp(r) for B. Note that the corresponding constraints
are satisfied as both 〈Ω′b′〉 and 〈Ωb〉 are allocations, respectively. To complete
the proof, consider the following chain of “iff” statements.

(〈Ωb〉, p) is a reserve-we(r) for B ⇐⇒ (〈Ω′b〉, p′) is a we for B′ ,
(〈Ω′b〉, p′) is a we for B′ ⇐⇒ (〈Ω′b〉) solves welfare-lp for B′ ,

(〈Ω′b〉) solves welfare-lp for B′ ⇐⇒ (〈Ωb〉) solves reserve-lp(r) for B ,
and thus

(〈Ωb〉, p) is a reserve-we(r) for B ⇐⇒ (〈Ωb〉) solves reserve-lp(r) for B .

(b1): The valuations {v} of the bidders in B are gross substitute if and only if
the valuations {v′} of the bidders in B′ are gross substitute, as the only difference
between B and B′ is the additive bidder a whose value for an item j is equal to
its reserve price rj ≥ 0. Recall that every (non-negative) additive valuation is
gross substitute. The claim then directly follows from (a1) and the existence of
a we for {v′}.

(b2): To show that the reserve-we(r) price vectors form a complete lattice,
we have to show that for any two reserve-we(r) price vectors p1 and p2 the
price vectors min(p1, p2) and max(p1, p2), where the min and the max is meant
element-wise, are reserve-we(r) price vectors as well. We will use (a1) and
that for gross-substitute valuations we price vectors form a complete lattice.
The latter implies that for two we price vectors q′1 and q′2, we have that q′min =
min(q′1, q

′
2) and q′max = max(q′1, q

′
2) are we price vectors as well. Recall the

relation of p′ and p in (a1), i.e., p = max(p′, r). By (a1) we have that qmin and
qmax are reserve-we(r) price vectors. Let q′1 = p′1 and let q′2 = p′2. The claim
follows from min(p1, p2) = qmin and max(p1, p2) = qmax.
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D Proof of Theorem 3

We phrase all the statements in this section for gross-substitute valuations of
the bidders, although they all hold as long as all minimal envy-free prices that
respect the reserve prices are equal to the minimum reserve-we(r) prices.

If the valuations of the bidders in Bi are all gross substitute, by Theorem 4 (b)
a reserve-we(r) with minimum prices exists for all reserve prices r ≥ 0. We
will use this several times in this section.

We start the proof of Theorem 3 with showing that the mediator computes
in every virtual auction a reserve-we(r) with minimum prices. The proof of
this lemma is given in the next subsection.

Lemma 1. If the valuations of an ef-mediator’s bidders are gross substitute,
then the ef-mediator computes minimum reserve-we(r) prices in her virtual
auctions, i.e., items not allocated in a virtual auction have a price equal to their
reserve price.

This lemma implies that whenever for a set of items S a virtual auction com-
putes globally envy-free prices pS , these prices have to be equal to the minimum
reserve-we(r) prices on Ω.

Corollary 1. If the valuation functions of all bidders b ∈ Bi are gross substitute,
then for reserve prices r ≥ 0 and all sets S ⊆ Ω such that Ri,r(S) 6= −1 the
virtual auction prices pS are equal to pΩ for all items in Ω.

It follows that an item j with pΩj > rj must be in all sets with Ri,r(S) 6= −1
and thus in all demand representatives of the mediator. This implies that two sets
S and S′ with Ri,r(S) 6= −1 and Ri,r(S

′) 6= −1 can only differ in items j with
pΩj = rj . Thus if for both S and S′ all items are allocated in the virtual auction,

then Ri,r(S) = pS(S)− r(S) = pS
′
(S′)− r(S′) = Ri,r(S

′). Furthermore if for a
set S′′ with Ri,r(S

′′) 6= −1 an item j ∈ S′′ with rj > 0 is not allocated in the
virtual auction, then Ri,r(S

′′) < Ri,r(S). Hence, if for a set S with Ri,r(S) 6= −1
all items are allocated in the virtual auction, then Ri,r(S) = maxS′ Ri,r(S

′) and
thus S is in the demand of the mediator. Note that by Definition 6, if there are
multiple reserve-we(r) allocations on S for the prices pS , the mediator chooses
the one that maximizes

∑
b∈Bi p

S(Sb), i.e., if the mediator can allocate all items
in S, he will.

Corollary 2. Assume that the valuation functions of all bidders b ∈ Bi are gross
substitute. Let r ≥ 0 be some reserve prices. If for some set S with Ri,r(S) 6= −1
all items with strictly positive reserve price can be allocated in the virtual auction
of the mediator, then S is in Di(r).

To completely characterize demand and allocation of the ef-mediator, we
first show a useful technical result. We compare the minimum reserve-we(r)
prices for a set T ⊆ Ω with the minimum reserve-we(r) prices for a subset S ⊆
T . For this we will use the following well-known result for Walrasian equilibria
by Gul and Stacchetti [10] that by Theorem 4 (a1) also holds with reserve prices.
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Lemma 2 ([10]). Any Walrasian price vector combined with any Walrasian
allocation yields a Walrasian equilibrium.

Corollary 3 (of Lemma 2 and Theorem 4). For r ≥ 0 a reserve-we(r)
price vector combined with any reserve-we(r) allocation yields a reserve-
we(r).

The following lemma shows that for suitable sets S and T , the minimum
prices in a reserve-we(r) on S are equal for items in S to the corresponding
prices in T . Part (a) of the lemma was shown for monotone gross-substitute
valuations without reserve prices in [10].

Lemma 3. Assume the valuation functions of all bidders b ∈ Bi are gross sub-
stitute. Let T ⊆ Ω be a set of items and let S be a subset of T . For fixed reserve
prices r ≥ 0, let (〈Tb〉, pT ) be a reserve-we(r) with minimum prices on T and
let (〈Sb〉, pS) be a reserve-we(r) with minimum prices on S. Then (a) pTj ≤ pSj
for all j ∈ S and (b) if ∪bTb ⊆ S, then pTj = pSj for all j ∈ S and (〈Tb〉, pS) is
a reserve-we(r) with minimum prices on S.

Proof. (a) Let V be the maximal valuation of any bidder, i.e., maxb,T ′⊆Ω vb(T
′).

Let p′j = pSj for j ∈ S and let p′j = max(V, rj) for j ∈ T \ S. Then (〈Sb〉, p′) is

envy-free for all bidders on T and p′ ≥ r. By Lemma 7 the prices pT are the
minimum envy-free prices ≥ r on T . Thus pTj ≤ p′j for all j ∈ T and hence

pTj ≤ pSj for all j ∈ S.

(b) If the set S contains all items in ∪bTb, then the prices pT restricted to the
set S with the allocation 〈Tb〉 are a reserve-we(r) on S. Thus by the minimality
of the prices pS , we have pTj ≥ pSj for all j ∈ S. Combined with (a) this shows

pTj = pSj for all j ∈ S.

The allocation 〈Tb〉 with prices pT restricted to S are a reserve-we(r) on
S and the prices pT restricted to the set S are equal to the minimum reserve-
we(r) prices pS on S. Hence by Corollary 3 (〈Tb〉, pS) is a reserve-we(r) with
minimum prices on S.

To characterize the demand of the mediator we further need that the maxi-
mum revenue the mediator can obtain is non-negative for all reserve prices r ≥ 0.
To compare the demand Di(r) of an ef-mediator to the demand of an or- me-
diator, we further use that for every set in Di(r) all items with positive reserve
price are allocated in the local auction.

Lemma 4. Assume the valuation functions of all bidders b ∈ Bi are gross sub-
stitute and let r ≥ 0 be any reserve price vector. (a) There exists a (potentially
empty) set S ⊆ Ω such that the revenue Ri,r(S) of an ef-mediator Mi is non-
negative. (b) For a set T ∈ Di(r) with virtual auction allocation 〈Tb〉 all items
j ∈ T with rj > 0 are allocated.

Proof. (a) Let (〈Ωb〉, p) be the outcome of the virtual auction of an ef-mediator
for Ω. Take S = ∪bΩb. By Lemma 1 and Lemma 3 (b) (〈Ωb〉, p) is not only
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envy-free on Ω but further is a reserve-we(r) with minimum prices for the
virtual auction of an ef-mediator for the set S. Thus the mediator can allocate
all items in S in her virtual auction for S. Thus by p ≥ r the revenue Ri,r(S) =∑
b p(Ωb)− r(S) = p(S)− r(S) of the mediator for the set S is non-negative.
(b) By (a) we have Ri,r(T ) ≥ 0 and thus Ri,r(T ) =

∑
b p

T (Tb) − r(T ).
Consider the set T ′ = ∪bTb. Assume by contradiction some items with rj > 0
are not allocated in 〈Tb〉. By Lemma 1 pTj = rj for all items j ∈ Ω \ T ′. For the

virtual auction prices pT
′

for T ′ we have by definition pT
′

j = rj for j ∈ Ω \ T ′.
By Lemma 3 (b) pT

′

j = pTj for all j ∈ T ′ and thus pT
′

j = pTj for all j ∈ Ω.

Thus (〈Tb〉, pT
′
) is envy-free on the whole set of items Ω, i.e., Ri,r(T

′) 6= −1.
The mediator can allocate all items in T ′; hence, Ri,r(T

′) = p(T ′) − r(T ′) >
Ri,r(T ) = p(T ′)− r(T ), a contradiction to T ∈ Di(r).

This proof gives us immediately an efficient way to determine a set S with
Ri,r(S) ≥ 0: Run the virtual auction on Ω with reserve prices r and return the
set S of allocated items. Combined with Corollary 1, this procedure actually
yields not only a set with non-negative revenue but even a set in the demand of
the mediator.

Before we continue, we observe a relation between the utility of the or-
player for reserve prices r and the or over modified valuation functions12 {ṽ}
with ṽb(S) = vb(S) − r(S) for all S ⊆ Ω. Note that ṽor(S) + r(S) equals the
optimal value of the reserve-lp(r) on S as long as an optimal integral solution
exists. This relation gives a characterization of the demand of the or-player with
reserve prices.

Observation 5 The utility of the or-player at prices r is given by

uor,r(S) = max
〈Sb〉

(∑
b∈Bi

vb(Sb)

)
−r(S) = max

〈Sb〉

(∑
b∈Bi

vb(Sb)− r(Sb)

)
−r(S\∪bSb)

The or of the valuation functions ṽb(S) = vb(S)− r(S) is given by

ṽor(S) = max
〈Sb〉

∑
b∈Bi

ṽb(Sb) = max
〈Sb〉

(∑
b∈Bi

vb(Sb)− r(Sb)

)
By definition we have ṽor(S) ≥ uor,r(S) (1 ).
Let the allocation 〈S∗b 〉 be arg max〈Sb〉

∑
b∈Bi ṽb(Sb) for the set S and let S∗ =

∪bS∗b ⊆ S. Then ṽor(S) = ṽor(S∗) = uor,r(S
∗) (2a). Thus ṽor(S) > uor,r(S) iff

uor,r(S
∗) > uor,r(S) iff S /∈ Dor(r) (2b).

The following two lemmata finally show that the demand of an ef-mediator
is equal to the demand of an or-player for any central auctions prices r ≥ 0
and gross-substitute valuations of the bidders. The proofs combine the results
obtained so far to relate both demands to an optimal solution of the reserve-
lp(r) for reserve prices r and the items in Ω.

12 The valuations {ṽ} might be non-monotone even if the valuations {v} are monotone.
This is not relevant here.
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Lemma 5. If the valuation functions of all bidders b ∈ Bi are gross substitute,
then for any reserve prices r ≥ 0 every set in the demand of an ef-mediator is
in the demand of the or-player. Additionally, for every set S in the demand the
or-player could use the ef-mediator’s allocation of the items in S to the bidders
in Bi to maximize her utility.

Proof. Let S be a set in the demand Di(r) of an ef-mediator Mi for some re-
serve prices r ≥ 0. By Lemma 4 (a) there exists a set S′ with Ri,r(S

′) ≥ 0,
thus for S in the demand we have Ri,r(S) ≥ Ri,r(S

′) ≥ 0. Let (〈Sb〉, p) be the
outcome of the virtual auction of Mi for the set S. By Lemma 1 (〈Sb〉, p) is
a reserve-we(r) with minimum prices on the item set S. Since Ri,r(S) ≥ 0,
the allocation 〈Sb〉 is envy-free on Ω. As the prices p are reserve-we(r) prices
for S and are extended with pj = rj for j ∈ Ω \ S, the allocation 〈Sb〉 and
prices p are also a reserve-we(r) for the item set Ω. Hence by Theorem 4 (a2)
the allocation 〈Sb〉 is an integral solution to the reserve-lp(r) and thus max-
imizes the objective value of the reserve-lp(r) for both the item sets S and
Ω. Since the value of the reserve-lp(r) only depends on the allocated sets, the
two objective values are the same. Note that by the definition of ṽor in Observa-
tion 5 the objective value of the reserve-lp(r) is given by ṽor(Ω) + r(Ω) with
ṽor(Ω) = maxS′∈Ω ṽor(S′). Thus we have ṽor(S) = ṽor(Ω) = maxS′∈Ω ṽor(S′).
By Lemma 4 (b) we can assume that all items j ∈ S with rj > 0 are allocated
in 〈Sb〉, which implies that

∑
b∈Bi r(Sb) = r(S) and thus ṽor(S) = uor,r(S).

Since we have ṽor(S′) ≥ uor,r(S
′) for all S′ ⊆ Ω by Observation 5 (1), this im-

plies uor,r(S) ≥ maxS′∈Ω uor,r(S
′). Since S ⊆ Ω, it also holds that uor,r(S) ≤

maxS′∈Ω uor,r(S
′), implying that uor,r(S) = maxS′∈Ω uor,r(S

′). Thus, S is in
the demand Dor(r) of the or-player for reserve prices r and the or-player could
use the allocation 〈Sb〉 to maximize her utility.

Lemma 6. If the valuation functions of all bidders b ∈ Bi are gross substitute,
then for any reserve prices r ≥ 0 every set in the demand of the or-player is in
the demand of an ef-mediator. Additionally, for every set S in the demand the
ef-mediator could use the or-player’s allocation of the items in S to the bidders
in Bi to maximize his revenue.

Proof. Let S be a set in the demand Dor(r) of the or-player for some reserve
prices r ≥ 0. Let 〈Sb〉 be the allocation of the or-player for the set S. By
Observation 5 (2b) we have uor,r(S) = ṽor(S). Recall that ṽor(S) + r(S) is
equal to the objective value of the reserve-lp(r) for the set S. Furthermore
ṽor(S) = ṽor(Ω) because otherwise by Observation 5 (2a) there would be some
allocation 〈Ωb〉 with S′ = ∪bΩb s.t. ṽor(Ω) = ṽor(S′) = uor,r(S

′) and thus
the utility of the or-player for the set S′ would be higher than for the set
S, contradicting S ∈ Dor(r). Hence the allocation 〈Sb〉 of the or-player is an
integral solution to the reserve-lp(r) on S as well as on Ω. Let p be the
minimum reserve-we(r) prices p such that (〈Sb〉, p) is a reserve-we(r) on
Ω. By Lemma 3 (b) we know that (〈Sb〉, p), with the prices p restricted to S,
is also a reserve-we(r) with minimum prices on S. By Lemma 1 the virtual
auction of an ef-mediatorMi for the set S computes the same unique minimum
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prices p. Further ṽor(S) = uor,r(S) implies that all items with strictly positive
reserve price are allocated in 〈Sb〉. Thus Mi could allocate all items in S with
strictly positive reserve price by using the allocation 〈Sb〉. The allocation 〈Sb〉 is
envy-free at prices p on S. Thus the revenue of the mediator for the set S is not
set to −1. Hence by Corollary 2 the set S is in the demand of the ef-mediator.

D.1 Proof of Lemma 1

Lemma 1 is a corollary to the following, more general, lemma.

Lemma 7. Consider all envy-free outcomes with prices p ≥ r for a set of val-
uations {v} and reserve prices r ≥ 0. If the valuations {v} are gross substitute,
then the minimum reserve-we(r) prices are minimum envy-free prices p with
p ≥ r among all envy-free outcomes with p ≥ r.

Proof. By Theorem 4 (b2) all reserve-we(r) price vectors form a lattice. Let
p∗ be the minimum price in this lattice. Recall that every reserve-we(r) price
vector is also an envy-free price vector. Assume by contradiction there exists
an envy-free price p such that p∗ 6≤ p. Let J = {j | pj < p∗j}, let δ =

minj∈J {p∗j − pj} be the min-gap and p∗−δJ = p∗ − δJ where δJ is the vec-
tor with value δ to each item in J and 0 otherwise. Note that by assumption
J 6= ∅, δ > 0 and by minimality of p∗ no reserve-we(r) allocation exists for
p∗−δJ .

Let wb(q) denote the maximum utility of a bidder b for a price vector q, i.e.,
wb(q) = ub,q(D) for some D ∈ Db(q). Following Gul and Stacchetti [11] and
Ben-Zwi et al. [3], we define a requirement function and use Ben-Zwi et al. [3]’s
extension of (one direction of) Hall’s Theorem.

Definition 9 (requirement function). Define for a set S, a bidder b, and
prices q the requirement function fb,q(S) = minD∈Db(q){|D ∩ S|}.

Observation 6 (compare Lemma 2.10 in [3]) For a set S, a bidder b, and
prices q, we have fb,q(S) ≥ (wb(q)− wb(q + δS))/δ.

Proof. Let D′ = arg minD∈Db(q){|D ∩ S|}. Then wb(q + δS) ≥ ub,q+δS (D′) =
ub,q(D

′)− δfb,q(S) = wb(q)− δfb,q(S), that is, δfb,q(S) ≥ wb(q)− wb(q + δS).

Observation 7 (Observation 3.2 in [3]) If for a price vector q there exists
S such that

∑
b fb,q(S) > |S|, then q is not envy free. In this case we call S

over-demanded at prices q.

Proof. In any envy-free allocation of S, bidder b must receive a set from his
demand, thus b must receive at least fb,q(S) many items of S. As each item of S
is allocated to at most one bidder, it follows that at least

∑
b fb,q(S) > |S| many

items of S are allocated in any envy-free allocation. Contradiction.
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Note that the utilities wb(q) and prices q are a feasible solution to the dual
of the reserve-lp(r) for any prices with q ≥ r. Further note that any opti-
mal solution to the dual of the reserve-lp(r) implies that there exists a cor-
responding reserve-we(r). By optimality of p∗ and the assumption that no
reserve-we(r) allocation exists for the prices p∗−δJ , the objective value of the
dual for p∗−δJ is strictly greater than the objective of the dual for p∗, i.e.,∑
b wb(p

∗−δJ) + p∗−δJ(Ω) >
∑
b wb(p

∗) + p∗(Ω). Now by definition of p∗−δJ we
know that p∗−δJ(Ω)+δ|J | = p∗(Ω), hence together we have that

∑
b wb(p

∗−δJ)−∑
b wb(p

∗) > δ|J |. With
∑
b fb,p∗−δJ (J) ≥

(∑
b wb(p

∗−δJ)−
∑
b wb(p

∗)
)
/δ by

Observation 6 we have that
∑
b fb,p∗−δJ (J) > |J | and thus the set J is over-

demanded in p∗−δJ by Observation 7.
Next we use the following theorem by Gul and Stacchetti [11] to show that

this implies
∑
b fb,p(J) > |J |, i.e., a contradiction to the assumption that the

prices p are envy-free. By another result of Gul and Stacchetti [10], monotone
valuations that are gross substitute also satisfy the single improvement property.

Theorem 8 (Theorem 2 in [11]). Let q(1), q(2) be two price vectors such that
q(1) ≤ q(2) and S a set with ∀j ∈ S, q(1)(j) = q(2)(j). Then for a bidder b that
fulfills the single improvement property the following apply

1. fb,q(1)(S) ≤ fb,q(2)(S)
2. fb,q(1)(Ω \ S) ≥ fb,q(2)(Ω \ S)

Recall that by the definition of J and p∗−δJ , we have pj ≤ p∗−δJj for j ∈ J and

pj ≥ p∗−δJj for j 6∈ J . Now if we take q(1) = p∗−δJ and take q
(2)
j = p∗−δJj if j ∈ J

and q
(2)
j = pj if j /∈ J , then q(1) ≤ q(2) and thus by the first part of the theorem

we get that fb,q(2)(J) ≥ fb,p∗−δJ (J) > |J |, i.e., the set J is over-demanded

at prices q(2). On the other hand, if we take q(3) = p and the same q(2), then

q(3) ≤ q(2) and q
(3)
j = q

(2)
j for j 6∈ J , and hence by the second part of the theorem

with S = Ω \ J and thus Ω \S = J we have that fb,p(J) ≥ fb,q(2)(J) > |J |. This
shows that the set J is over-demanded in p as well and thus there cannot be an
envy-free allocation for prices p by Observation 7.

E Relation to Minimum Walrasian Prices

Lemma 8. Let allocation 〈Ωβ〉 and prices q be a Walrasian equilibrium with
minimum prices for gross-substitute bidders B and items Ω. Let each bidder be
connected to exactly one of m ef-mediators and let Bi denote the set of bidders
connected to mediator Mi. Let r, p1, p2, . . . , pm be the price vectors of a three-
party equilibrium for the mediators and bidders and let 〈Ωi〉 be the equilibrium
allocation of items to mediators and 〈Ωb〉 the equilibrium allocation of items to
bidders. Let r and 〈Ωi〉 be a Walrasian equilibrium with minimum prices for the
mediators and let pj = maxi(p

i
j) for all items j. Then p = q.

Proof. As 〈Ωb〉 and p form a Walrasian equilibrium for bidders B and items Ω,
we have p ≥ q. Recall p ≥ r. Further 〈Ωβ〉, 〈Ω′i = ∪β∈BiΩβ〉, and r′ = p1′ = · · · =
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pm′ = q form a three-party equilibrium (compare Theorem 2) and 〈Ω′i〉 and q
provide a Walrasian equilibrium for the mediators. Thus by the minimality of r
we have q ≥ r. Assume by contradiction that there exists an item j with pj > qj .
By Lemma 1 and Corollary 1 each price vector pi is the minimum envy-free price
vector ≥ r for the bidders Bi. Thus at prices q 6≥ p there is no allocation that is
envy-free for all bidders B, a contradiction.

F Small Number of Items

In the context of ad exchange it is natural to assume that the number of items is
very small and independent of the number of bidders. The results on this section
will hold as long as the number of items k = o(log n).

When the number of items is that small, bidders’ valuations can be repre-
sented as complete lists. More than that, given a bidder valuation oracle, it takes
only 2k queries to compile such a list. In order to find the valuation lists of all
the mediators as well, we have to solve the allocation problem of each mediator
2k times, i.e., compute the or of the bidder valuations for all subsets. Given
the valuations of the mediators, the central auction is equivalent to solving the
two-party allocation problem for the mediators. Let T ′(n, k) be the runtime of
algorithm A when valuations are accessed via a valuation oracle. Then the over-
all running time to determine a three-party competitive equilibrium with this
approach is T̂ (n,m, k) = m · 2k · T ′(n/m, k) + T ′(m, k).

We show next how this approach can be extended to an almost linear time
algorithm for such a small number of items by artificially introducing mediators
of mediators (and recurse). Assume for simplicity T ′(n, k) = O(nα · f(k)) where
f(·) is at most exponential in k and α = 1 + γ for some γ > 0.13 By choosing
m = n1/2 we obtain a running time of

T̂ (n, n1/2, k) = n1/2 · 2k · nα/2 · f(k) + nα/2 · f(k) ,

=
(

2kn1+γ/2 + n1/2+γ/2
)
· f(k) ,

≤ c · nα/2+1/2 · 22k ,

for some constant c ≥ 0. Let us add one level of recursion:

T̂ (n, n1/2, k) = 2k · n1/2 · T̂ (n1/2, n1/4, k)

+ T̂ (n1/2, n1/4, k) ,

≤ c · 23k · n1/2 · (n1/2)α/2+1/2

+ c · 22k · (n1/2)α/2+1/2 ,

≤ c · 23k · (n1/2+1/4+γ/4+1/4

+ n1/4+γ/4+1/4) ,

≤ c · 23k · n(α/2+1/2)/2+1/2 .

13 Current methods have α = 6 and thus γ = 5.
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For t levels of mediators we obtain T̂ (n, n1/2, k) ≤ c · 2(t+1)k · nαt/2+1/2 where
α0 = α and αt = αt−1

2 + 1
2 = γ

2t + 1. Since for constant δ = 1/(t + 1) we have
that k = o(log n) implies k = o(log nδ) and α is constant, we can choose t to
achieve a runtime of O(n1+ε+o(1)) for any fixed ε > 0.

An almost linear time algorithm to solve the two-party allocation problem
when k = o( logn

log logn ) can be obtained by reducing the problem to unit-demand

valuations in the following way. Assume there are n bidders and k = o( logn
log logn )

items Ω. The following method computes in almost linear time an allocation
between bidders and items that maximizes social welfare (i.e.,

∑
b vb(Ωb)), which

is equal to a Walrasian allocation if it exists. Consider all possible partitions of
the k items from which there are O(kk) = O(2k log k) many. For a partition P
let the sets in the partition be the new items and let the value of the bidders for
a new item be their value for the set. Define a unit-demand valuation function
for each bidder based on these values. Then solve the allocation problem for the
new items and the unit-demand valuations. The resulting allocation maximizes
social welfare for the given partition. Over all possible partitions the one with
maximum social welfare yields the desired solution. For unit-demand valuations
the allocation problem is equivalent to the maximum weight bipartite matching
problem that can be solved with the Hungarian method in time O(nk2) [8]. Thus
the total time is O(nkk+2).


