
Agile Modeling Method Engineering
Dimitris Karagiannis

Faculty of Computer Science, University of Vienna
Waehringerstr. 29, Vienna, A-1090, Austria

+43-1-4277-78910
dk@dke.univie.ac.at

ABSTRACT

By repurposing agility principles established in software engineer-
ing, this paper provides an overview on the practice of Agile
Modeling Method Engineering (AMME) driven by evolving
requirements and motivated by emerging paradigms and research
initiative – e.g., Enterprise Modeling, Factories of the Future,
Internet of Things, Cyber-physical Systems. The approach has
emerged from experiences with meta-modeling projects developed
within the frame of the Open Model Initiative Laboratory
(OMILab), where flexibility challenges have been raised by (a)
evolving modeling requirements, (b) modeling requirements
propagating from run-time systems requirements, as well as (c)
requirements pertaining to domain-specificity. The framework and
the characteristics of AMME are hereby discussed with respect to
both methodological and architectural aspects and the Open Mod-
el Initiative Laboratory is be presented as an instance setup of the
generalized AMME framework.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling] Model Development – model-
ing methodologies

General Terms
Design, Languages.

Keywords
Agile modeling method engineering, metamodeling, model-aware
information systems, conceptual modeling

1. INTRODUCTION
Diagrammatic modeling methods and languages are commonly
perceived as stable, even standardized, artefacts that establish
some commonly agreed way of describing a "system under study"
with diagrammatic means. This implies that all stakeholders work
on the same level of abstraction and specificity, and their needs
are aligned with the high-level (cross-domain) requirements for
which the modeling method/language was created. On the other

hand, as it is revealed by the aphorism "all models are wrong, but
only some are useful", modeling is fundamentally an abstraction
effort - some properties are omitted, and only those that are con-
sidered "useful" are captured in the underlying conceptualization.
The usefulness distinction - between the properties captured as
"first-class modeling citizens" and those that are omitted - must be
based on the modeling requirements of targeted stakeholders.
For standardized modeling methods/languages, the "targeted
stakeholders" are an abstract mass of potential users dealing with
the same class of (recurring) problems. Consequently, standards
provide artefacts that are highly reusable within that class of prob-
lems, typically regardless of the application domain. They estab-
lish a common level of abstraction, and domain specificity is
sacrificed for the benefit of reusability across domains. The quali-
ty of modeling languages is typically discussed with respect to
some internal, "inwards" quality criteria – e.g., consistency, integ-
rity, performance (often for some implementation and not for the
language itself). Modeling requirements are obscured in the high-
level class of addressed problems, and the standard may be later
confronted with practical experience and feedback [1] that is
difficult to assimilate in a timely manner, as the evolution and
versioning of standards is rather slow. There are also situations
where stakeholders have a more identifiable and involved pres-
ence, their modeling requirements are traceable and evolving, or
there is an inherent abstraction variety in the addressed class of
problems (e.g., a requirement for multi-level domain specificity
[2]) – all these are characteristics that reclaim an Agile Modeling
Method Engineering (AMME) approach. Under such conditions,
the quality criteria for modeling languages shift to "outwards"
considerations – usefulness (relative to traceable requirements),
comprehensibility/end-user acceptance, usability (relative to a
specific implementation).

The goal of this paper is to outline the key characteristics of
AMME as an emerging paradigm for tackling evolving modeling
requirements emerging from a narrow domain and for specific
needs of modeling stakeholders. The remainder of the paper is
structured as follows: Section 2 provides the motivation frame, by
relating the notion of agility to the enterprise modeling context.
Section 3 outlines the characteristics of AMME and draws a ge-
neric framework to guide its deployment. Section 4 presents the
Open Model Initiative Laboratory [3] as an instance setup of
AMME, with feasibility already evaluated in existing or on-going
meta-modeling projects. The paper ends with references to related
works, followed by a SWOT analysis to highlights the benefits
and limitations of the current maturity level for AMME.

2. AGILITY: A REQUIREMENT IN
ENTERPRISE MODELING
Although not limited to this, the relevance of AMME can be best
highlighted and motivated in the context of the synergy between
the Enterprise Modeling paradigm and recent industry-oriented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
PCI 2015, October 01 - 03, 2015, Athens, Greece
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-3551-5/15/10…$15.00
DOI: http://dx.doi.org/10.1145/2801948.2802040

5

https://webmail.dke.univie.ac.at/horde3/imp/message.php?mailbox=INBOX&index=8188

research initiatives and roadmaps - e.g., the global movement of
Internet of Things, USA's initiative on Cyber-Physical Systems
[4], Japan's new Robot Strategy [5], the European Factories of the
Future [6]. Enterprise Modeling has produced a rich variety of
established enterprise architecture frameworks and modeling
methods – e.g., Archimate [7], Zachman [8], EKD [9], capability-
oriented approaches [10]. Variation manifests not only in the
levels of abstraction, but also in the multitude of perspectives they
provide on the enterprise, relative to some envisioned modeling
goals. It can also be the case that an enterprise modeling method
is required for a rather narrow application domain or even for a
single enterprise case, where reusability outside the enterprise
context is sacrificed to the benefits of case-specific semantics and
familiarity of stakeholders with the modeling context. In order to
establish the motivational frame for AMME, this section com-
piles some key enterprise characteristics from the aforementioned
research roadmaps, as well as from project experience accumulat-
ed through the Open Model Initiative Laboratory [3] (an instance
setup of AMME - see Section 4):

Complexity. The "system under study" has an inherent complexi-
ty that comprises multiple views/facets/perspectives to be cap-
tured on modeling level, demanding a decomposition approach to
track modeling requirements in relation to modeling method
building blocks. The alphabet of the modeling language must be
partitioned into subsets addressing different facets of the modelled
enterprise, while preserving consistency. The method engineer is
called to make decomposition decisions which will also map on
the granularity of backlog items to be managed during AMME.

Changing requirements. Enterprise modeling requirements are
fundamentally unstable and evolving due to factors such as: (a)
the method engineer will develop a gradual understanding of the
application area; (b) the level of domain-specificity will not be
necessarily fixed, as the engineer may be confronted with a case
of multi-level modeling (in the sense of [2]) or with a gradual
need to deepen concept specialization; (c) the stakeholder will
require "throwaway prototypes" to get an early idea of what the
modeling method can provide.

"Conceptual model"-awareness at run-time. The behavior of a
run-time information system or devices is parameterized and
influenced by information retrieved from models, making them
"model-aware". Consequently, run-time requirements propagate in
modeling requirements. The method engineer must make sure that
the run-time systems will find sufficient (machine-readable) rich-
ness and granularity in the semantics exposed by the language.

Modeling as knowledge representation. Modeling is not em-
ployed for documentation or for communicating with some exter-
nal bodies (e.g., partners, auditors). Instead, it provides
knowledge representation means for internal purposes (including
the aforementioned model-awareness in run-time systems). This is
an evolution from earlier approaches where modeling was em-
ployed to the aim of code generation or for configuring the behav-
ior of existing systems (e.g., in process-aware information sys-
tems). In enterprise modeling, models are means of representing
the relevant knowledge pertaining to different facets (e.g., pro-
cesses, resources, business context, business model) and the met-
amodel becomes a terminological box (Tbox) resulted from an
iterative knowledge acquisition effort.

In the context hereby outlined, AMME is called to ensure that
timely solutions and response to changes in modeling require-
ments will be provided, just like the Agile Manifesto [11] aimed

to overcome the shortcomings of rigid software development
approaches (e.g., waterfall).

3. THE AMME METHODOLOGY
3.1 Propagation and Evolution of Modeling
Requirements
The Agile Manifesto [11] was a pragmatic reaction to rigid soft-
ware development methodologies and managed to establish man-
agement approaches built on the following pillars: (i) Iterative
development (work cycles allow for revisiting the same work
items); (ii) Incremental development (successive usable versions
are built upon previous versions); (iii) Version control (the output
of each iteration is traceable across multiple versions and in rela-
tion to their requirements); (iv) Team control (small groups of
people are assigned to backlog items with shared accountability).
In the practice of AMME, the agility principles are applied on the
fundamentals of modeling method design, with a backlog granu-
larity refinement that starts from the method building blocks de-
fined by [12], which in turn determine different classes of model-
ing requirements.
Table 1 describes briefly these building blocks and maps them on
typical cases of requirements propagation (when evolution in a
class of requirements triggers indirect changes in another class).
Further on, Fig. 1 illustrates the notion of evolving modeling
requirements at semantics level, exemplified on the common
concept of Activity/Task that can be found in most workflow,
business process or enterprise modeling methods. The evolution is
exemplified along three stages: Stage 1: the concept is generic in
nature, being expressed strictly through its assigned visual sym-
bol. The semantics are established at an informal level (in the
modeling guidelines), being largely left to human interpretation –
such an activity can be used to designate a high level supply chain
phase, a low-level work task or a data processing step in some
algorithm. Stage 2: the concept semantics are enriched by subtyp-
ing, narrowing down and visually distinguishing possible interpre-
tations (manual task, automated task etc.). Stage 3: the concept is
further enriched with a set of definitorial and machine-readable
properties that are prescribed by the method engineering (in the
language semantics). Now we have a business activity, defined as
"something" that takes execution time, has associated cost, re-
sponsibility and resource allocation etc. Outside an AMME strat-
egy, these three levels are provided by three different modeling
languages supporting different levels of domain specificity (the
samples in the figure are actually designed with UML, BPMN and
ADONIS:CE [13], respectively). During an AMME process, these
are three evolutionary stages that must be tracked for the same
concept, in the same modeling method, while responding to
evolving requirements pertaining to the depth of concept speciali-
zation and domain-specificity.
Fig. 2 illustrates a similar argument with respect to the modeling
notation. Standards typically employ symbols aiming for simplici-
ty or based on historical reasons. For example, the rhombus shape
commonly used to depict decisions/gateways can be traced back
to the earliest representations of flow charts drawn with crayon
and template rulers in the field of mechanical engineering (the
origin of flow charts is attributed to [14]). However, template
rulers were not created to express information through visual
shapes, but rather to distinguish between different concepts by
assigning them different shapes. Familiarity is only derived from
tradition and standardization and not from their cognitive value.

6

Evolving notational requirements may lead to the adoption of
"customized notations" (Stage 3) at a level of the targeted enter-
prise or, even further, to notational requirements that propagate
into semantics. The Stage 4 sample in the figure shows the symbol
of an activity as defined the domain-specific project-based
ComVantage modeling method [15]. It is enriched with interac-
tive hotspots (hyperlinks) for navigating to related models of
various types, along some semantic hyperlinks – to a model de-
scribing requirements for mobile app support, a model depicting a
subprocess and an organizational model where the responsible
role/employee can be found. The navigability implementation also

triggers an enrichment of the concept semantics, by ensuring that
the concept property set includes machine-readable references to
modeling elements of specific types, from other models, and this
must be assimilated in the language metamodel – therefore a
usability requirement propagates to a requirement pertaining to
semantics.
The AMME framework to be outlined in the next section is pro-
posed by the work at hand to support modeling method engineer-
ing driven by the hereby discussed evolution and propagation for
modeling requirements.

Table 1. Requirements Propagation Concerns Mapped on Modeling Method Building Blocks

Modeling Method Building Block Modeling Requirements Propagation Cases
The modeling language establishes the
language alphabet (notation, grammar and
machine-readable semantics for each
concept and relation). It also partitions the
alphabet in model types to achieve a
manageable granularity and also to sepa-
rate concerns and to ensure model com-
prehensibility for the modeler.

• Integration between model types may be achieved either at language level (semantic relations acting as
hyperlinks between different models) or at functionality level (algorithms for consistency checks or
consistency preservation).

• Modeling requirements may be imposed on notation, with respect to notation interactivity. This will
propagate towards semantics (e.g., dynamic changes in the notations determined by the presence of
some machine-readable properties).

• Requirements will propagate between the backlog items of the modeling language, for example a single
annotation property may evolve into a concept with additional properties, and a concept may evolve in-
to a new model type describing it in diagrammatic structures.

The mechanisms and algorithms cover
functionality that will process the model
information in order to satisfy various
functional requirements (e.g., evaluation
for decision support, model transfor-
mation, model integrity checks, interoper-
ability with run-time systems).

• Requirements will propagate from model-aware run-time systems (regarding some pre-processing and
serialization of the model information requested at run-time) and will further propagate towards the
modeling language, to ensure that the requested properties are available in the models.

• Modeling requirements may also refer to design-time functionality which must be implemented to
support the modelers in their decisions and evaluations (e.g., process simulation).

• Both types of requirements might further propagate to the modeling language, raising requests for the
existence of additional concepts and semantics (properties, relations).

The modeling procedure defines the
steps that must be taken by modelers
towards some modeling goal (in the
simplest case, it advises on the prece-
dence required to create a set of models of
different types).

• Modeling requirements may be present at this level in the form of non-functional constraints (e.g., "I
don't want to deal with more than x model types"), which typically prove to be subject to very volatile
changes (as the stakeholder becomes accustomed to the method).

• A more relevant case is when there is a requirement to automate some modeling procedure steps
("model of type x should be generated automatically") and this of course propagates to the mechanisms
building block.

Fig. 1. Concept evolution on semantic level

Fig. 2. Modeling evolution: the notation aspect

7

3.2 AMME Framework and Architecture
The work at hand introduces AMME through its definitorial char-
acteristics in response to changing requirements:

• ADAPTABILITY: The ability to modify existing concepts;

• EXTENSIBILITY: The ability to add new concepts;

• INTEGRABILITY: The ability to add bridging concepts in
order to integrate existing ones;

• OPERABILITY: The ability to provide functionality for
operating on models (e.g., simulation, transformation);

• USABILITY: The ability to provide satisfying user interac-
tion and model understandability.

Agility in AMME relies the high level framework depicted in Fig.
3, which is driven by the iterative incremental cycle designated as
the Produce-Use cycle with two high-level phases.

Fig. 3. The AMME Framework
In the top phase, the modeling language is defined by Models of
Concepts - a working term that designates any kind of model
having an ontological scope (i.e, aimed to describe categories of
being and their relations). In the lower phase, once an iteration of
the modeling language is provided to end-users, they are enabled
to instantiate its constructs in order to create and evaluate Models
that Use Concepts - we include here the actual enterprise models
and any kind of model that instantiates the previously established
domain understanding for the modelled case. The cycle is fed with
modeling requirements from the "Application Environment", as
well as the domain knowledge needed for domain conceptualiza-
tion. In the back-end the "Knowledge and Resource Repository"
accumulates reusable resources and lessons learned from different
iterations, as well as from previous AMME projects to increase
the productivity of future projects.

The framework must be supported by an architecture of methodo-
logical, conceptual and technological enablers, as depicted in Fig.
4, with the following modules:

The AMME Project Tracking System providing (a) the tracking
of modeling requirements classified by the building blocks they
refer to; (b) the tracking of backlog items mapped on similar
building blocks, with an emphasis in propagation and integration
tasks that must be re-evaluated as new requirements are accepted.

The Reusable Asset Repositories must ensure productivity and
reusability in subsequent projects by accumulating granular assets
that can be easily adapted and adopted in new modeling methods.

A part of this is the documentation repository will include method
specifications, the modeling procedure in form of end-user guide-
lines and a repository of assets used in iterative evaluations (mod-
el samples, questionnaires to assess model comprehension, previ-
ous evaluation results etc.).

The Prototyping Environment must support rapid prototyping,
necessary for incremental development and throwaway proto-
types. Metamodeling platforms are required here for increased
productivity, possibly extended by some platform-independent
technology for modeling method definition across multiple plat-
forms at the same time. An instance of such technology will be
highlighted in Section 4.

The Deployment Channels must provide ways to provide stake-
holders with access to the incremental modeling prototypes, with
different available options – software as a service, standalone
installation or remote hosted installation. In addition, interopera-
bility mechanism must expose models in machine-readable format
required by model-aware run-time systems. Finally, dissemination
channels must support both design-time and run-time stakeholders
with documentation and reference content derived from the Asset
Repositories.

4. AMME WITHIN OMILAB
The Open Model Initiative Laboratory [3] is a physical and virtual
research environment that instantiates the envisioned AMME
framework and architecture as support for meta-modeling research
projects and communities. An early stage feasibility study for the
Open Models Initiative was published in [16]. Some specifics
pertaining to the OMILab setup are provided in the following:
The OMILab lifecycle defines the internal cycle of a method
iteration, with several phases depicted in Fig. 5: (a) The Creation
phase is a mix of knowledge acquisition and requirements elicita-
tion activities that capture and represent the modeling require-
ments; (b) the Design phase specifies the metamodel, language
grammar, notation and functionality; (c) the Formalize phase aim
to describe the outcome of the previous phase in non-ambiguous
representations with the purpose of sharing results within a scien-
tific community; (d) the Develop phase produces concrete model-
ing prototypes; (e) the Deploy/Validate phase involves the stake-
holders in hands-on experience and the evaluation process for the
current iteration.
The MM-DSL is a platform-independent declarative language
that allows code-based editing of modeling method definitions
and their compilation for the metamodeling platform of choice.
The language grammar is openly available at [17] and additional
details are published in [18]. It relies on a meta-metamodel that is
a common abstraction of the typical meta-metamodels provided
by the popular metamodeling platforms. Currently a proof-of-
concept compiler is available only for the metamodeling platform
provided through OMILab, that is ADOxx [19] – a platform with
multiple deployment options (cloud, service APIs, standalone
installation). Additional compilers are expected to emerge from
community-based efforts.
The OMILab project repository [20] acts as an Asset Repository
and as Deployment Channel. It has accumulated a diversity of
enterprise metamodeling projects in different stages of maturation
and with various degrees of domain-specificity. Examples include
the ComVantage method [15] (for collaborative business process-
es with requirements for mobile apps and Linked Data), CIDOC
(for cultural heritage modeling), EKD, PROMOTE etc.

8

Fig. 4. Support architecture for setting up an AMME approach

Fig. 5. The iterative OMILab lifecycle

5. RELATED WORKS
To the best of our knowledge, this is the initial explicit presenta-
tion of AMME, with some characteristics being previously sug-
gested in the context of fast prototyping in [18]. Related works
that converge in the hereby proposed notion come from the areas
of model quality [21] and notation quality [22], since agility does
not tackle only new modeling requirements, but also feedback for
improvements with respect to existing requirements. Agility chal-
lenges pertaining to modeling methods can also be derived from
the context of domain-specific multi-level modeling [2], as well as
from Language-oriented Programming (see a metamodeling inter-
pretation in [23]). Metamodeling itself has emerged from the need
to enable flexibility across a multi-abstraction layered architecture
(e.g., the MOF framework [24], tools such as [25]) - however, it
has not been complemented yet by a methodological and architec-

tural approach that repurposes the agility principles of software
development. Project-based experiences are called to further
provide methodological, managerial or technological enablers, or
to report on best practices and pitfalls of agility in modeling
method engineering.

6. CONCLUSIVE SWOT ANALYSIS
The necessity of AMME, just like the Agile Manifesto in context
of software development, emerged from analyzing pragmatic
challenges in concrete projects that could not be satisfied with
more rigid, waterfall-style approaches. Therefore OMILab was
introduced here both an instance deployment of AMME, as well
as a research environment and corpus that helped consolidate the
AMME vision by generalizing lessons learned from practical
projects. Consequently, the generic AMME framework and its
OMILab deployment participate to a cycle of mutual maturation.

9

A SWOT analysis is hereby provided to highlight the benefits and
limitations of the current maturation level:

Strengths: AMME is based on a metamodeling strategy aimed to
enabling and benefiting from the evolution of modeling require-
ments coming from different types of stakeholders - from design-
time decision makers (aiming for model analysis) to run-time
system users (relying on machine-readable model semantics).
Weaknesses: Our experience with applying AMME is currently
focused on OMILab projects developed by small research teams.
Just like in the case of agile software engineering, community-
driven practices and pitfall warnings must be shared to deploy
AMME as a general practice. Opportunities: Future work may be
layered on the conceptual foundation established by the work at
hand, in order to enrich AMME as a community-driven frame-
work, to raise its maturity level and to enrich its tool support with
respect to the different modules of the proposed architecture –
management support tools, versioning control and traceability
strategies etc. Threats: Stakeholders may opt to adjust their needs
to the features available in standards, to avoid the overhead of
modeling method customization and the incremental learning
effort associated to it. Awareness on the practice of AMME must
therefore be raised to encourage the formulation of modeling
requirements towards a new generation of enterprise modeling
methods.

Consequently, we formulate the takeaway message: Modeling
requirements should be the essential driver for modeling method
engineering, and an approach based on AMME will enable agile
response to evolving requirements, as well as traceability of
change propagation across modeling method building blocks.

7. REFERENCES
[1]. Burlton, R. 2009. Perspectives on Process Modeling.

BPTrends, http://www.bptrends.com/publicationfiles/07-09-
COL-POV-Perspectives%20on%20Process%20Modeling-
Burlton-cap%20_1_%20RB%20Final.pdf

[2]. Frank, U. Multilevel Modeling. In Business & Information
Systems Engineering: 6(6), Springer, 319-337, DOI=
10.1007/s12599-014-0350-4

[3]. Open Model Initiative Laboratory, http://omilab.org
[4]. USA National Science Foundation, Cyber-physical Systems,

http://www.nsf.gov/news/special_reports/cyber-physical/
[5]. Headquarters for Japan's Economic Revitalization. 2015.

Japan's Robot Strategy – Vision, Strategy, Action Plan,
www.meti.go.jp/english/press/2015/pdf/0123_01b.pdf

[6]. European Factories of the Future Association, Factories of the
Future Roadmap,
http://www.effra.eu/attachments/article/129/Factories%20of%
20the%20Future%202020%20Roadmap.pdf

[7]. The Open Group, ArchiMate® 2.1 Specification,
http://www.opengroup.org/archimate/

[8]. Zachman, J.A. 1987. A framework for information systems
architecture. IBM systems journal 26(3), IBM, 276-292, DOI=
DOI= 10.1147/sj.263.0276

[9]. Loucopoulos, P., Kavakli, V. 1999. Enterprise Knowledge
Management and Conceptual Modelling. In: Goos, G., Hart-
manis, J., van Leeuwen, J., Chen, P., Akoka, J., Kangassalu,
H., Thalheim, B. (eds.): Conceptual Modeling: Current Issues

and Future Directions, LNCS 1565, Springer, 123-143, DOI=
10.1007/3-540-48854-5_11

[10]. Zdravkovic, J., Stirna, J., Kuhr, J. C., Koc., H. 2014. Re-
quirements Engineering for Capability Driven Development.
In: Frank, U., Loucopoulos, P., Pastor, O., Petrounias, I
(eds.): Proceedings of POEM 2014, LNBIP 197, Springer,
193-207, DOI= 10.1007/978-3-662-45501-2_14

[11]. Manifesto for Agile Software Development,
http://agilemanifesto.org/

[12]. Karagiannis, D., Kühn, H. 2002. Metamodeling Platforms, In:
Bauknecht, K., Min Tjoa, A., Quirchmayr, G. (eds.), Proceed-
ings of EC-Web 2002 – Dexa 2002, LNCS 2455, Springer,
451-464, DOI= 10.1007/3-540-45705-4_19

[13]. BOC-Group, ADONIS Community Edition, http://en.adonis-
community.com/

[14]. Gilbreth, F. B., Gilbreth, L. M. 1921. Process Charts. Ameri-
can Society of Mechanical Engineers,
https://engineering.purdue.edu/IE/GilbrethLibrary/gilbrethpro
ject/processcharts.pdf

[15]. Open Model Initiative Laboratory, ComVantage modelling
prototype and resources,
http://www.omilab.org/web/comvantage/home

[16]. Karagiannis, D., Grossmann, W., Hoefferer, P. 2008. Open
Model Initiative – a Feasability Study,
http://cms.dke.univie.ac.at/uploads/media/Open_Models_Feas
ibility_Study_SEPT_2008.pdf

[17]. The MM-DSL language specification,
http://www.omilab.org/c/document_library/get_file?uuid=eb0
40aac-ea0d-4df7-a0a9-80b73f00c5f8&groupId=10122

[18]. Visic, N., Fill, H.-G., Buchmann, R., Karagiannis, D. 2015. A
domain-specific language for modelling method definition:
from requirements to grammar. In: Rolland, C., Anagnos-
topoulos, D., Loucopoulos, P., Gonzalez-Perez, C. (eds.),
Proceedings of RCIS 2015, IEEE, 286-297, DOI=
10.1109/RCIS.2015.7128889

[19]. BOC-Group, ADOxx, http://www.adoxx.org/live/
[20]. Open Model Initiative Laboratory, Project Repository,

http://www.omilab.org/web/guest/projects
[21]. Krogstie, J. 2012. Quality of Business Process Models. In:

Sandkuhl, K., Seigerroth, U., Stirna, J. (eds.), Proceedings of
POEM 2012, LNBIP 134, Springer, 76-90, DOI=
10.1007/978-3-642-34549-4_6

[22]. Moody, L. 2009. The Physics of Notations: Toward a Scien-
tific Basis for Constructing Visual Notations in Software En-
gineering. IEEE Transactions on Software Engineering 35(6),
IEEE, 756-779, DOI= 10.1109/TSE.2009.67

[23]. Clark, T., Sammut, P., Willans, J., Applied metamodelling: a
foundation for language driven development,
http://eprints.mdx.ac.uk/6060/.

[24]. Object Management Group, MetaObject Facility,
http://www.omg.org/mof/

[25]. Kelly, S., Lyytinen, K., Rossi, M. 2013. MetaEdit+ a Fully
Configurable Multi-user and Multi-tool CASE and CAME
Environment, In: Bubenko, J., Krogstie, J., Pastor, O., Pernici,
B., Rolland, C., Solvberg, A (eds.), Seminal Contributions to
Information Systems Engineering, Springer, 109-129, DOI=
10.1007/978-3-642-36926-1_9

10

