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Abstract. With the increasing storage capacity of personal computing
devices, the problems of information overload and information fragmen-
tation become apparent on users’ desktops. For the Web, semantic tech-
nologies aim at solving this problem by adding a machine-interpretable
information layer on top of existing resources. It has been shown that the
application of these technologies to desktop environments is helpful for
end users. Certain characteristics of the Semantic Web architecture that
are commonly accepted in the Web context, however, are not desirable
for desktops; e.g., incomplete information, broken links, or disruption
of content and annotations. To overcome these limitations we propose
in this paper the sile model, an intermediate data model that combines
characteristics of the Semantic Web and file systems. This model is in-
tended to be a conceptual foundation of the Semantic Desktop, and to
serve as underlying infrastructure on which applications and further ser-
vices, can be built. We present one such service, namely a virtual file
system based on siles, which allows users to semantically annotate files
and directories but at the same time keeps full compatibility to tradi-
tional hierarchical file systems; hence, users can continue to use file-based
applications. We discuss strategies how Semantic Web vocabularies can
be applied for meaningful annotation of files. Further, we present a pro-
totypical implementation of our model and analyze the performance of
typical access operations, both on the file system level as well as on the
metadata level.

1 Introduction

Large amounts of information are stored on personal desktops. We use our per-
sonal computing devices—both mobile and stationary—to communicate, to write
documents, to organize multimedia content, to search for and retrieve informa-
tion, and much more. With the increasing computing and storage power of such
devices, we face the problem of information overload : the amount of data we gen-
erate and consume is permanently increasing, and because of the availability of
cheap storage space, each and every bit of information is stored. Another problem
is even more prevalent on the desktop than on the Web: information fragmen-
tation. Data of different kinds are stored in heterogeneous silos, and—contrary
? This paper is an extended version of [31].



to the Web, where hyperlinks can be defined between documents and across site
boundaries—there exist only limited means to define and retrieve relationships
between different desktop resources. In the best case such relationships can be
represented using additional infrastructure (e.g., relational databases or specific
applications), but these are usually not tightly integrated with file systems.

The Semantic Web aims to deal with the problems mentioned before by
adding a layer on top of the existing Web infrastructure, wherein descriptions
about web resources are expressed using the Resource Description Framework
(RDF) using commonly accepted vocabularies or ontologies. This allows ma-
chines to interpret the published data and thus helps end users to find infor-
mation more efficiently. A large number of data sets1 and vocabularies2 have
already been published and form a solid data corpus that can be indexed by
(semantic) search engines and serves as foundation for applications.

Recent research in the field of the Semantic Desktop [6, 17, 20] has shown that
a number of features provided by Semantic Web technologies are also suitable for
the problem of information management on the desktop; especially, the provision
of unified identifiers, the ability to represent data in an application-independent
generic format, the flexibility to describe resources using formalized vocabular-
ies, and the possibility to reason over these descriptions. It has also been shown
[28, 13] that the inclusion of semantic technologies on the desktop can signifi-
cantly improve the user’s perceived quality of personal information management,
especially when they are applied during a longer time period.

However there exist some significant conceptual differences between the Web
and the desktop. First, in contrast to the World Wide Web, the desktop already
has a well-established organization metaphor for data: file systems, which have
been in use for decades. In consequence, the vast majority of personal informa-
tion are stored in files, which are organized using hierarchical, labelled collections
(folders or directories) or, to a far more limited extent, using metadata attached
to or encoded within files. Therefore it is crucial for the Semantic Desktop to
smoothly integrate with file systems in a way that allows for the annotation of
files without breaking the behavior of existing desktop applications. A second
major difference is the handling of broken links. While appearing and disappear-
ing web resources are—to a certain extent—accepted on the Web, users rightfully
expect their data on the desktop to remain consistent over time.

Since the RDF data model exposes a number of shortcomings that may
cause problems for an efficient implementation of the Semantic Desktop (cf.
Section 3), we propose the sile model, a data model that acts as an intermediate
and integrative layer between file systems and Semantic Web technologies. This
model allows users and applications to annotate and interrelate file-like desktop
resources. It is designed as an infrastructure on which applications and services
can be built. One example of such a service, a virtual file system, is presented in
this paper. Through this virtual file representation, the sile model can be used

1
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets

2
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
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as a hierarchical file system and thus maintains full backwards-compatibility to
existing systems and applications.

The sile model has been designed to be interoperable with vocabularies from
the Semantic Web in order to establish a unified, homogeneous data space that
encompasses the desktop and the Web. It enables tools and applications to op-
erate on data both locally and globally, and data can be seamlessly exchanged
between these two worlds. Hence we propose to use Web vocabularies for data
representation wherever possible, and we support this requirement by using
URIs—which may refer to Semantic Web resources—as identifiers for all an-
notations in our data model.

After an analysis on related work in the field of semantic file systems and
Semantic Desktop technologies (Section 2), this paper discusses the issues that
arise when file systems and semantic technologies are integrated (Section 3) and
presents the sile model (Section 4) as a data abstraction layer for the desktop.
We discuss how the sile model can be used in applications, and propose a set of
already existing Semantic Web vocabularies for the annotation of desktop data
(Section 5). Finally, we present our prototypical implementation (Section 6),
which we have evaluated under the assumption of realistic amounts of data
(Section 7).

2 Related Work

For a long time, file systems have been an interesting application field for meta-
data. The drawbacks and deficiencies of hierarchical file systems have been iden-
tified and described in various works [7, 32, 35, 38], which has lead to research
and industry effort that aimed at integrating hierarchical file systems with meta-
data and semantic annotations. In this respect, we can observe two development
lines: on the one hand, hierarchical file systems that can be found as part of
common operating systems have been extended with support for file annota-
tions and descriptions. On the other hand, a new class of file systems have been
developed, which reduce the prominence of directory hierarchies in favor of a
more metadata-centric approach. These systems often do not rely on a physically
existing hierarchy, but instead virtually emulate it based on file annotations.

Extensions to Hierarchical File Systems. Originally, hierarchical file
systems did not provide mechanisms to attach user- or application-defined meta-
data to files. Directory and file names were the only existing organization metaphor,
and at most a limited pre-defined set of metadata attributes (such as date of
creation and last update) was maintained. However, it has been recognized that
a strict tree-based structure is not always appropriate for file management, and
hence several mechanisms were introduced that allow files to appear in more
than one directory, including hard links or symbolic links. While links solve a
number of file categorization problems, they do not allow to further describe file
characteristics in a structured manner, or to bilaterally relate files.

Modern file systems like NTFS, HFS, or ext3 provide—in addition to di-
rectory hierarchies and links—support for different kinds of metadata. We can
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FAT X n/a

NTFS X X X X n/a X

HFS X X X X n/a X

ext3 / ext4 X X X n/a X

WinFS X X X X X X X X

SFS X X X X

AttrFS X X X X X X

Presto X X X X X

LISFS X X X X

TagFS X X X X X X X

libferris X X X X X

LiFS X X X X X X X X

SileFS X X X X X X X X X X

Fig. 1: Comparison of metadata support and access mechanisms in hierarchical
file systems and metadata-centric file systems

roughly distinguish between systems that provide file forks, which allow for stor-
ing additional content in separate data areas alongside the file content, and file
attributes, which provide the means to attach structured name/value pairs to
files. Figure 1 gives an overview of modern file systems and the annotation fea-
tures they support3. While file forks and file attributes provide sufficient means
to attach meaningful metadata to files, they are still not expressive enough to
express relationships between files in a stable and consistent manner, or to assign
predefined types (classes, categories) to files. Works in this area are rooted in

3 Note that the actual naming of file system features differs; for instance, file forks
are called alternate data streams in NTFS, while file attributes are called extended
attributes in ext3/ext4.
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research on object-oriented data bases (e.g., [9]) and would have been integrated
into WinFS [16] whose development however halted in 2006.

Metadata-centric (Virtual) File Systems. Despite the support for file
metadata provided by modern hierarchical file systems, hierarchical directory
structures are still accentuated as the primary mechanism for file organization.
A number of alternative approaches were proposed that raise the role of file
metadata as the main file access method. Figure 1 gives an overview on their
most important features.

The Semantic File System [15] presented by Gifford uses structured name/value
pairs, which are extracted from analyzing file contents, to establish a virtual di-
rectory hierarchy. The elements of a directory path represent a conjunction of
search criteria. Gifford’s system is, however, read-only since attribute values are
derived only from extracting file features; support for write operations was in-
troduced later in AttrFS [38]. Presto [12] follows a similar path by providing a
virtual hierarchical view on annotated files. LISFS [25] extends the attribute-
based virtual file system approach by interpreting paths as Boolean formulas
over the file space. TagFS [5], which is built on a generic framework for seman-
tic file systems, uses tags (keywords) instead of structured name/value pairs to
simulate a directory hierarchy. libferris [21] focuses on the integration of dif-
ferent resources (like XML documents, plain files, or running applications) and
represents them as a single unified virtual hierarchical file system; additional
user-defined annotations are stored in a designated RDF store that is embedded
in the platform. Finally, LiFS [1] represents relationships between files as virtual
directories alongside the actual files, an approach also followed by LODFS [30]
where remote Linked Open Data sources (i.e., plain RDF graphs) are represented
as virtual file systems.

The main problem with approaches that represent file metadata in the form
of virtual directories is that they break some core characteristics of hierarchical
file systems; however many file-based applications and services are implemented
under the assumption of these characteristics. For instance, in a hierarchical
file system an application can safely assume that a file is stored at exactly one
location, and that different paths refer to different files (with the exception of
symbolic or hard links): access in a hierarchical file system is based on location,
not on description. If this assumption does not hold (as it is in the case of
metadata-centric virtual file systems), software that crawls a file system (e.g.,
search engines) may run into problems because they are not able to determine
whether two files are actually the same.

Moreover, virtual directory hierarchies do not provide stable references to
external systems. In hierarchical file systems, the primary mechanism to refer
to a file is its full path. It is clear for users and applications that file references
become invalid if a file is moved or renamed. However, if the full path of a file
contains metadata attributes (which, for instance, may be derived from the file
contents or may reflect the user’s opinion, which may change over time) these
references become invalid when the file’s metadata change; essentially this means
that a modification of a file’s content may cause its references to break.

5



Another problem with metadata-based virtual directory hierarchies is that in
many cases the semantics of write operations is undefined. Consider, for instance,
a virtual directory /(proj1,proj2,proj3) that contains files that are tagged
with proj1, proj2, or proj3, or a combination thereof [38]. While such virtual
directories are helpful for search and retrieval, it is unclear how a file that is
written into such a directory should be annotated. This restriction significantly
reduces the benefit, convenience, and practical applicability of purely annotation-
based virtual file systems.

Finally, it is unclear what the actual target audience and practical use cases
of metadata-centric virtual file systems are. For applications that are based on
hierarchical file systems, metadata-centric virtual directories are opaque since
they do not understand the annotations’ semantics, and therefore bring no addi-
tional benefit. For metadata-aware applications, the employment of a dedicated
annotation model and an associated structured query language seems to be more
practical from the authors’ perspective. For end users, most approaches assume
the usage of a command line to enter paths that represent search queries (usu-
ally via the cd and ls/dir commands). We doubt however that the typical end
user will be sufficiently familiar with command line interfaces in order to effi-
ciently work with this method: it requires one to memorize not only the required
commands, but also the exact names of tags, attributes, and other annotations.
Graphical, icon-based interfaces can be used in combination with virtual file
systems although these distinguish only between directories and files and are
not aware of semantic file annotations. The formulation of more complex queries
(as presented before) through graphical interfaces is often not possible at all;
consequently the efficiency of navigation and browsing is reduced.

Semantic Desktop. The idea of the Semantic Desktop goes one major step
further than semantic file systems do. The idea of this approach is not only to
enrich file systems with expressive annotations, but also to integrate the entire
information sphere of a user into a semantic network [10, 27], which has the
potential to significantly increase the quality of information work [13]. This is
accomplished either by providing services that maintain a layer of semantic de-
scriptions that refer to actual resources like files, e-mails, and web pages, while
users continue to work with their well-known applications (e.g., Nepomuk [17],
Semex [8], or iMeMex [6]), or by providing an integrated work environment that
disbands the traditional application-centric paradigm of desktop computers in
favor of a data- and annotation-centric work style (e.g., Haystack [20], DeepaMe-
hta [26], or X-COSIM [14]). As such, the Semantic Desktop can be considered as
an orthogonal architecture that may embrace all kinds of storage mechanisms,
including traditional as well as semantic file systems.

One significant outcome of Semantic Desktop research is the integration of se-
mantic technologies into the K Desktop Environment4 (KDE). An RDF database
is now part of its standard distribution and enables the system-wide storage and
retrieval of semantic annotations for files and other information items. References
between the physical storage systems and the annotation store are maintained by

4 Semantic Desktop with KDE: http://nepomuk.kde.org
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using kernel notification services. Annotated files can be accessed transparently
through virtual folders, which are supported by the system-provided dialogs for
opening and saving files. Although Nepomuk-KDE is not a semantic file system
in the narrower sense, its increasing adoption by applications and users shows
that there exists a significant need for more expressive file annotations.

Approaches in the field of the Semantic Desktop go far beyond the func-
tionality and envisioned use cases of a metadata-enriched file system. However,
semantically enriched file systems are highly complementary to semantic desktop
approaches since they provide an integrated storage infrastructure for files and
annotations without the need for additional synchronization mechanisms.

3 Integrating File Systems and RDF Descriptions

File Systems as a Data Organization Metaphor. The majority of personal
information is stored within file systems, where we can observe three usage pat-
terns. We denote the first one as user-driven file structures: a large number of
applications do not use internal directory structures or file name conventions,
but allow users to organize files in directories named and nested according to
their subjective needs. Examples for this group of applications include word
processors, spreadsheet tools, or graphics suites. A second group establishes
application-driven file structures, where directory hierarchies and files are man-
aged entirely by applications, but still expose a certain meaning to end users.
Examples of such applications are e-mail clients, which store email messages
as files in a directory hierarchy and allow the user to manipulate these hier-
archies through a dedicated interface, or media players, where the user has no
influence on the handling of directories; here, the application uses file metadata
(e.g., artist name or song title) as directory names. Typically, these applications
do not operate on single files but on file collections, and interpret the directory
hierarchies and file names in a semi-schematic manner. This pattern is also used
for application-internal files that do not store user data; however the application
requires certain files to be found in certain locations in order to work correctly.
A third group of applications do not expose the semantics of file structures
to the user, but rather operate on continuous data corpora; examples for this
group include calendar applications that store appointments in one large file, or
database-driven applications. We denote the data structures of such applications
as hidden file structures, because in the end even these data are stored in file
systems, although not semantically organized by the file system’s means. Fig-
ure 2 summarizes characteristics of these three groups of structures w.r.t. their
application- and user-related semantics.

For all three classes of applications it is desirable to make information ac-
cessible in a semantically meaningful, application-independent way. This has
two main benefits: first, it makes it possible to interrelate objects from different
sources, which otherwise form disjunct structures in one’s personal information
space [7]; and second, it extends the possibilities provided by file systems with
respect to search and retrieval [28]. All three classes of applications, as described
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Characteristics # User- Application- Hidden
driven driven

Application-defined semantics X X

Application-interpretable semantics X X

User-defined semantics X

User-interpretable semantics X X

Readable by applications X X X

Modifiable by applications X X

Browsable by users X X

Browsable by users X

Fig. 2: Characteristics of user-driven, application-driven, and hidden file struc-
tures w.r.t. file and directory semantics

before, could benefit from such an integration: user-driven file structures could
be extended by more powerful and non-hierarchical annotation mechanisms that
are orthogonal to the physical identification of files, like tags and typed relation-
ships. Application-driven file structures could be disbanded in favor of explicit
semantic annotations that ideally adhere to open vocabularies and therefore are
interpretable by external entities. Finally, the internals of hidden file structures
could be revealed and hence be integrated with other information sources.

The Gap to RDF. The RDF data model can be used to identify informa-
tion units (resources) and to describe these units and the relationships between
them using subject-predicate-object triples. Its successful usage in the context
of Linked Open Data [3] indicates that it is sufficiently expressive for a large
number of applications, ranging from statistical data via geo information to
descriptions of multimedia content. Certain RDF characteristics, however, are
problematic in the context of the desktop. First, RDF does not consider the ac-
tual content of information items. The relationship between a resource identifier
(a URI) and the resource itself has been explicitly left out of the scope of the
RDF specification, which states, “[...] no assumptions are made here about the
nature of resources; ‘resource’ is treated here as synonymous with ‘entity’, i.e. as
a generic term for anything in the universe of discourse” (cf. [18], Section 1.2).
In the open Web environment, broken links and unavailable resources are likely
to occur; solutions to maintain data quality are still an open research issue [4].
However, on the desktop, applications must be enabled to rely on a consistent
view on content objects and their annotations at any time, hence this integrity
must always be ensured.

Another potentially problematic aspect of RDF is the Open World Assump-
tion. Since RDF is designed for the Web, incomplete or unknown information
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is accepted by design. Again, for the closed environment of the desktop, incom-
plete information is not desirable; here, the Open World Assumption hinders
the efficient realization of certain features, e.g., negated queries. Consequently,
recent approaches to Semantic Desktop information modeling (e.g., [36]) have
restricted the interpretation of RDF data to a closed world semantics.

As a third problematic issue, the application of certain RDF language ele-
ments (in particular collections, blank nodes, and reification) is being discour-
aged both in the context of the Web (cf. [3], Section 2.2) and the desktop (cf.
[37], Section 2.3.2). These features significantly increase the complexity of RDF
processing, as well as representing RDF in user interfaces [22, 34], but expose a
very light semantics [22]. Hence it is doubtful whether these elements are use-
ful in the context of the desktop, where end users have only limited knowledge
about the characteristics of the underlying data structures, and the available
computing power is limited in comparison to large-scale database servers.

Recent Semantic Desktop projects (e.g., [6, 17, 20]) add an RDF layer on top
of existing desktop infrastructures and refer to the actual content representation
using local URIs. These URIs are often minted based on the characteristics of
the underlying system. A URI that refers to a file on the user’s hard drive,
for instance, could be file:///data/semdav/semdav_description.doc. Such
URIs, however, are not suitable as permanent identifiers for files [33]: first, they
are unstable since they become invalid when files are renamed, moved to different
directories, or deleted. Consequently, synchronization mechanisms are needed
that propagate modifications to the semantic layer; however often it is difficult
to track such modifications accurately. In the worst case, when such propagation
is not possible, references to files become broken. Furthermore, path-based URIs
are not globally valid, as they can be resolved only relative to the local system.
This aspect is problematic when files are exchanged across machines, since the
URIs may be no longer valid, or different files with equal URIs may occur,
causing a name clash.

In the following, we present an alternative modeling approach that aims to
solve the problems described before: we consider an item’s content and its anno-
tations as integral components, which are always processed together. Instead of
adding a semantic layer on top of existing file structures and relying on unstable
identifiers based thereon, we inject semantic annotations and globally valid, per-
manent identifiers into the core of the data representation structures. On top of
this model a virtual, file system-like representation of the data stored therein is
presented, which can be seamlessly accessed by existing tools and applications.

4 The Sile Model

Siles: Adding Semantics to Files. Siles (Semantic files) can be regarded
as combinations of files and semantic annotations. A sile is always identified by
a globally unique URI and consists of a (binary) string of arbitrary content, as
well as an arbitrary number of annotations. In the context of siles, URIs are not
used as URLs: while in the Semantic Web it is recommended that the URI of a
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resource is at the same time a URL that can be dereferenced in order to retrieve
the resource’s representation (cf. Figure 3a), this is not necessarily the case for
siles. In our model, URIs are solely used for identification purposes, and the sile
identifier, the content, and the associated annotations are integral parts of the
sile, as depicted in Figure 3b.

ex:tag ex:size

rdf:type

ex:refers_to
ex:based_on

ex:reuses

"2008-05-07" "Reviewers' 
Comments"

ex:EmailMessage

rdf:Collection

ex:Document

ex:Paper

"submitted"

"read"

"final" "146398"

rdf:type

rdfs:label
dc:date

rdf:type
ex:tag

ex:tag

rdf:type

Collection

read

Document

final

ex:size = „146398“
U  R  I       R  e  f  e  r  e  n  c  e  s

dc:title = „Reviewers' Comments“

dc:date = „2008-07-05“

Mail Message

ex:refers_to

Paper

submitted

ex:based_on

ex:reuses

(a) (b)

Fig. 3: (a) RDF model: URIs refer to actual content; (b) Sile model: integrated
view on content and annotations.

The sile model distinguishes between four types of annotations, which are able
to cover a large share of annotation needs in the desktop domain: tags, which
are plain strings; categories, which refer to entities with machine-processable
semantic interpretation (e.g., classes from an controlled vocabulary); attributes
in the form of typed name/value pairs; and slinks (semantic links), i.e., directed
typed relationships between siles. The names of categories, attributes, and slinks
are URIs, which allow for an unambiguous interpretation of their semantics;
however the formalism used for this purpose is out of the scope of the sile model.
A category annotation, for instance, may refer to an OWL ontology class as well
as to a table within a relational database schema5. Figure 3(b) depicts a number
of siles and their associated annotations, whereas different shapes and colors are
used to indicate different annotation types.

Formal Model. Let Σ denote the set of all siles in the university of discourse.
Let LIT denote the set of all string literals which are finite sequences of characters
from an literal alphabet α, and B the set of all content literals which are finite
sequences of characters from an content alphabet β. Further, let URI denote the

5 In Section 5 we outline a number of vocabularies that can be applied in desktop
contexts.
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set of all Uniform Resource Identifiers (URIs). Let T denote the set of all tags,
T ⊆ LIT, Let C denote the set of all categories, C ⊆ URI, and let A denote the
set of all attributes, A = URI×LIT×URI. and let L denote the set of all slinks,
L = URI×URI. Let ANN denote the set of annotations, ANN = T∪A∪C∪L.

Using this vocabulary we can define a sile s ∈ Σ as a six-tuple s = (us, bs, Ts,
Cs, As, Ls). us ∈ URI denotes the URI that uniquely identifies sile s, bs ∈ B ∪ ⊥
denotes the sile’s binary content, Ts ⊆ T is the set of the sile’s associated tags,
Cs ⊆ C is the set of the sile’s associated categories, As ⊆ A the set of the sile’s
associated attributes, and Ls ⊆ L is the set of the sile’s associated slinks.

Within the sile model, we do not impose constraints on the structure or
the nature of a sile’s binary content. The model neither defines rules that state
how the content is to be interpreted, nor how annotations can be deduced by
analyzing sile content.

Based on their annotations, siles can be accessed using operators from an
abstract query algebra [29]. This algebra provides annotation existence predi-
cates, which indicate whether a given sile carries a specified annotation (e.g.,
existsTagΓ (s, t), which returns whether sile s is annotated with tag t), as well as
sile selection operators, which return sets of siles that fulfill certain criteria (e.g.,
RelatedSilesΓ (s), which returns all siles that are related (linked) to sile s). All
sile algebra operators are evaluated against a specified context Γ , e.g., a specific
file system.

s1 = (<urn:uuid:57207370-6880-11dd-ad8b-0800200c9a66>,

"9j4AAQSkZJRgABAQEAYABgAAAoHBwgHBgoICAgLCgoLEYIx8l . . . ",

{"final", "data", "semdav"}, {silefs:File},
{(sile:creation-date, "2008-07-11T16:21:14", xsd:dateTime),

(sile:update-date, "2008-07-11T17:32:02", xsd:dateTime),

(sile:content-type, "application/msword", xsd:string),

(sile:content-length, "146398", xsd:long),

(silefs:path, "/data/semdav/semdav description.doc", xsd:string)},
{(dcterms:subject, <http://www.semdav.org>),

(silefs:parent, <urn:uuid:60ad6a73-1b60-4553-9436-d09d395fc29c>)} )

Fig. 4: A file represented using the sile model

The sile model resembles characteristics from other data models, in partic-
ular from file systems and from the Semantic Web technology stack. Similar to
files, it provides the concept of self-contained information units that carry con-
tent of unlimited length and undefined inner structure, but at the same time it
avoids the problems of unstable references and the blending of identification and
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annotation by providing stable, globally unique identifiers for these information
units. The Sile model borrows from RDF the means to describe these informa-
tion units using URI-based vocabularies, but it makes the semantics of these
annotations more explicit by providing higher-level annotation concepts (tags,
categories, attributes, and slinks) instead of plain triples. Likewise it avoids as-
pects of RDF that are less frequently used, like blank nodes or reification, in
favor of a simplified and more streamlined model.

Representing Directory Hierarchies. A basic file system can be represented
without loss of information by an unordered tree having two types of nodes:
directories and files. Directory nodes may have children, whereas file nodes are
always leaf nodes. We map each node in the directory tree to a sile and represent
its type by a category annotation (silefs:File or silefs:Directory ∈ Cs,
respectively). We reference an object’s parent directory using a slink that refers
to the parent object’s URI (e.g., (silefs:parent, Uparent) ∈ Ls).

By concatenating the labels of the nodes along a path, a unique identifier
for each element (directory or file) of the file system can be constructed. How-
ever, when a path expression consists of many elements, traversal across a large
fraction of the graph is required in order to locate the described file. To enable
direct access to a file given its path, we additionally store the file’s absolute path
as a sile attribute (silefs:path, "/data/semdav/semdav description.doc",
xsd:string) ∈ As). This leads to processing overhead when the file tree is mod-
ified, but significantly increases the performance of read operations. Figure 4
depicts a sile in its abstract notation6. Here, the explicitly saved file path is
also reflected by automatically generated tags, which are updated transparently
when a file is created or moved.

Operations that involve a directory and its children (e.g., a directory list-
ing) can be resolved by querying for silefs:parent relationships between siles.
When a file or directory is renamed or moved7, the steps to be taken depend on
whether the file remains within its parent directory or not. In the former case, it
is sufficient to update the sile’s silefs:path attribute, while in the latter case
the silefs:parent slink must additionally be updated to refer to the sile’s new
parent directory. However, the identity of this sile can be efficiently retrieved by
querying for the directory sile’s silefs:path attribute.

The representation of files using a graph-based model also enables us to rep-
resent hard or symbolic links by storing additional silefs:path attributes and
silefs:parent relationships. The semantics of the deletion of a link can be
simulated by checking whether a sile has more than one silefs:path attribute
before deletion, and by only deleting the entire sile if it has only one such at-
tribute. In the case of multiple silefs:path attributes, only the attribute and
the silefs:parent slink are deleted.

We like to stress the fact that, contrary to approaches that derive virtual di-
rectories from semantic file metadata (usually, tags or attributes), our approach
6 For the sake of readability we use CURIE notation [2] to abbreviate URIs.
7 Moving and renaming of files are implemented identically in many operating systems.

12



uses designated annotations with well-defined names and semantics in order to
explicitly represent a directory structure. Additional annotations can be derived
from this information (e.g., the tags depicted in Figure 4). By doing so the dan-
ger of accidentally breaking file path references by changing file annotations is
avoided. While our system in principle allows for metadata-based virtual direc-
tories, it would again lead to the undesired effects that common semantic file
systems suffer from, as described in Section 2.

5 Annotating Files Using the Sile Model

Accessing Semantic Files. Using the mechanisms described in the previous
section, we can now implement a common hierarchical file system that can be
directly used by existing file-based applications. To read, write, and search for
semantic annotations of files that are represented as siles, we have developed an
Application Programming Interface (API) that is based on the formal specifica-
tion of the sile data model as well as its associated query algebra (cf. Section 4).
This API defines a type hierarchy for siles and annotations as well as corre-
sponding access methods. To give the reader an idea, Figure 5 shows an excerpt
of the class hierarchy for annotations, and Figure 6 shows a code example, which
reproduces the annotations depicted in Figure 3b: a category and a tag are at-
tached to a file. Later, the application can easily retrieve the object by searching
for these annotations by using a conjunctive filter, as shown in Figure 7.

compareTo(Annotation)

URI uri
URI repositoryId

<<type>>
Annotation

compareTo(Slink)

URI slinkName
URI destination

<<type>>
Slink

compareTo(Attribute)

URI attributeName
String value
URI datatype

<<type>>
Attribute

compareTo(Tag)
String label

<<type>>
Tag

compareTo(Category)
URI categoryName

<<type>>
Category

Fig. 5: Sile API: annotation types

The goal of this API is to allow desktop application developers to easily in-
tegrate semantic annotations into their code. Assuming that files are stored on
a sile-based virtual file system, one can retrieve the sile that represents a cer-
tain file by a single API call, and access or manipulate this sile’s annotations.
Additionally, the API allows an application to retrieve siles that match certain
criteria and to determine the corresponding file paths. A word processing appli-
cation, for instance, could be extended so that it stores metadata about created
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documents (e.g., author and title) as sile attributes, or a search operation could
be used to retrieve files that are associated with a certain project.

// write data for one file

File docFile = new File("/data/semdav/semdav_description.doc");

docFile.write(...);

Sile docSile = SileFS.getSileForFile(docFile);

docSile.addAnnotation(SileFS.getCategory("nfo:PaginatedTextDocument"));

docSile.addAnnotation(SileFS.getTag("final"));

// write data for second file

File paperFile = new File("/data/papers/ijswis/paper.tex");

paperFile.write(...);

Sile paperSile = SileFS.getSileForFile(paperFile);

paperSile.addAnnotation(SileFS.getSlink("ex:based-on", docSile));

Fig. 6: Sile API: write operations

// search all files that are tagged with "final" and linked to paperSile

Filter f1 = new TagFilter("final");

Filter f2 = new SileSlinkFilter(paperSile);

File[] results = SileFS.searchSiles(new AndFilter(f1, f2)).asFiles();

Fig. 7: Sile API: search operations

We believe that our API, which tightly integrates files and semantic anno-
tations, has the potential to significantly increase the proliferation of semantic
technologies on the desktop. As described in Section 3, the majority of desk-
top applications operate directly on the file system. By transferring existing
file hierarchies to a virtual, sile-based file system and by integrating semantic
annotations into applications, the desktop can be extended using semantic tech-
nology while avoiding the need for fundamental architecture changes for single
applications or entire operating systems.

Deriving Semantic Annotations for Files. Since siles are exposed as a
virtual file system that emulates the behavior of a common hierarchical file sys-
tem, they can be accessed by legacy applications and tools (e.g., file browsers)
without changing any code. Other virtual file system views based on sile an-
notations (e.g., tags) can be additionally instantiated and therefore exposed to
applications, under consideration of the problems imposed by this approach (cf.
Section 2). Structured annotations can be extracted automatically from any file
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by applying content- or interaction-based feature extraction (e.g., [23]). Only
applications that explicitly access file annotations and therefore follow their se-
mantics, which may be defined e.g., using a formal schema, must be adapted to
use the sile API.

We have shown in the previous section that the API for creating and retriev-
ing sile annotations is easy to learn and straightforward to use. The question still
remains why a developer of an application should make use of this API to store
meaningful metadata associated to files. From the authors’ perspective, the need
for file metadata is obvious: the usage of desktop search engines, which usually
provide mechanisms to index and retrieve structured file annotations, is very
common. In the majority of cases these search engines rely on extraction plug-
ins, which must be customized to file formats in order to extract semantically
meaningful information for indexing.

Hence we can observe an encoding/decoding pattern: potentially relevant
file metadata are written and encoded into file contents, and must later be de-
coded by metadata extractors for retrieval purposes. The sile model, its virtual
file system representation, and its API close this gap by providing the infras-
tructure for storing, maintaining, and retrieving annotations in a format- and
platform-independent manner. It abstracts over concrete metadata representa-
tion mechanisms that can be found in modern file systems (cf. Section 2), and
it integrates with Semantic Web technologies. Thus, it can be considered as a
step towards improved metadata interoperability in the domains of personal and
social information management.

For all usage patterns outlined in Section 3 a semantically-enriched file system
can bring significant benefit. User-driven file structures can be enriched (or even
entirely replaced) by tagging structures, which avoid several problems of strictly
hierarchical organization structures. Richer user interfaces to browse and search
files can be realized using a metadata-centric approach, e.g., faceted browsing or
tag clouds, while the traditional, well-known tree-based navigation metaphor can
still be emulated. The same applies to application-driven and hidden file struc-
tures, which are usually anyway accompanied with application-specific metadata
structures. By making hidden metadata explicit, but at the same time disasso-
ciating them from physical storage attributes, a flexible metadata-centric infor-
mation space can be established. Since the different types of information can be
separated orthogonally (e.g., by using sile category annotations) this space may
encompass the entire information sphere of a user, which still can be efficiently
managed due to its rich associated metadata.

Vocabularies for Desktop Data. Since the sile model, like RDF, uses URIs
to identify annotations, it is obvious to reuse existing vocabularies and ontologies
from the Semantic Web for interoperability purposes. Although, due to the open
design of the sile model, an application can freely define terms, the usage of
shared and commonly accepted vocabularies is strongly recommended. Shared
vocabularies enable other applications—either on the same machine, or when
siles are exchanged across systems—to interpret annotations in a semantically
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correct way. To establish that kind of interoperability, we propose the following
strategy for sile annotation vocabularies:

1. Whenever possible, use terms taken from widely used vocabularies that are
published on the Web in a structured, machine-readable format, i.e., RDFS
or OWL.

2. If there is no such term that reflects the required semantics, reuse a seman-
tically broader term by establishing e.g., an rdfs:subPropertyOf relation-
ship, refine its semantics for the target application context within a new
namespace, and publish it on the Web. This well-known procedure originat-
ing from the metadata area [19] allows one to create context-bound applica-
tion profiles with clear and more specific semantic definitions.

3. If (1) and (2) are not feasible, create a suitable vocabulary and publish it on
the Web in order to make it accessible also for other users and applications.

There already exist a number of widely used vocabularies, many of which are
applicable for desktop data. Semantic search engines, such as Sindice [24] and
Swoogle [11], or index sites for the Semantic Web8 are good starting points to
search for existing vocabularies. Figure 8 shows a representative set of Semantic
Web vocabularies that are relevant for the desktop, grouped by their application
domain. For each vocabulary we also indicate their base language as well as the
number of concepts and properties they define.

Our analysis indicates that the Semantic Web already provides a large num-
ber of vocabularies, which cover a large share of the data we find on typical desk-
tops. Many of the vocabularies included in this analysis are compact in terms
of the number of classes and properties, and hence are relatively easy to under-
stand and to implement. Moreover, a number of these vocabularies have been
defined by re-using terms from other vocabularies. For instance, the Description
of a Project (DOAP) vocabulary is based on Friend-of-a-Friend (FOAF) and
therefore each application that understands FOAF is also enabled to interpret
DOAP-based data to a certain extent.

The majority of the vocabularies presented in Figure 8 are actually widely
used, especially in the context of Linked Data [4]. Many data providers, both
from scientific and commercial domains, make use of these vocabularies to ex-
pose data about millions of resources. Similarly, the NEPOMUK ontologies are
already used by a number of desktop applications that are built on top of the
Nepomuk-KDE framework (cf. Section 2). Based on their concrete usage we can
assume that they are suitable for their respective application domains.

6 Implementation

We have realized a sile-based file system on top of our SemDAV semantic reposi-
tory9, which implements the sile model and uses a combination of an RDF store
8 e.g., http://pingthesemanticweb.com/stats/namespaces.php
9 http://www.semdav.org
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Vocabulary Name Base Concepts Props.

General, Documents

Dublin Core (DC)a RDFS 22 55

NEPOMUK Annotation Ontology
(NAO)b

RDFS 4 31

NEPOMUK File Ontology (NFO)c RDFS 47 60

Contacts, Communication

Friend of a Friend (FOAF)d OWL 12 54

Semantically Interlinked Online
Communities (SIOC)e

OWL 11 53

NEPOMUK Contact Ontology (NCO)f RDFS 30 55

NEPOMUK Message Ontology
(NMO)g

RDFS 7 23

VCard Ontologyh OWL 5 54

Calendar and Events, Project Management

Description of a Project (DOAP)i RDFS 7 30

RDF Calendar Schemaj OWL 14 48

NEPOMUK Calendar Ontology
(CAL)k

RDFS 51 107

Location

WGS84 Geo Positioningl RDFS 2 4

GeoNames Ontologym OWL 7 18

Multimedia

Music Ontologyn OWL 53 131

a
http://purl.org/dc/terms/

b
http://www.semanticdesktop.org/ontologies/2007/08/15/nao#

c
http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#

d
http://xmlns.com/foaf/0.1/

e
http://rdfs.org/sioc/ns#

f
http://www.semanticdesktop.org/ontologies/2007/03/22/nco#

g
http://www.semanticdesktop.org/ontologies/2007/03/22/nmo#

h
http://www.w3.org/2006/vcard/ns#

i
http://usefulinc.com/ns/doap#

j
http://www.w3.org/2002/12/cal/ical#

k
http://www.semanticdesktop.org/ontologies/2007/04/02/ncal#

l
http://www.w3.org/2003/01/geo/wgs84_pos#

m
http://www.geonames.org/ontology#

n
http://purl.org/ontology/mo/

Fig. 8: Relevant Semantic Web vocabularies for the desktop
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(Jena, SDB, PostgreSQL) and plain files to persist siles and their annotations.
It exposes the stored siles via a variety of protocols and interfaces (including
XML-RPC, RMI, WebDAV, HTTP, and SPARQL).

Fig. 9: Virtual File System Architecture

In addition to this repository implementation, we have developed a compo-
nent that handles file system calls that are forwarded from the local machine’s
kernel and translates them to corresponding queries and operations on the sile
model, according to the file system representation described in Section 4. To
integrate the system with the local file system we have used the FUSE frame-
work10 and its Java binding FUSE-J11. FUSE defines a set of interfaces and data
structures that describe files, their metadata structures, and operations thereon.
Based on these frameworks we simulate a local file system that can be accessed
by applications and users as if it was a common file system; at the same time
the files can also be annotated and queried through the sile API. Since all files
in this virtual file system are persisted as siles in our repository and hence can
be accessed only through the sile API or through the virtual file system, data
consistency and completeness is ensured at all times. The architecture of this
implementation is depicted in Figure 9.

Since file paths are represented as explicit sile annotations, it is straight-
forward to implement extensions or plug-ins for existing file-based applications:
whenever an application operates on a file that is stored on a sile-backed file
system, the corresponding sile can be easily retrieved, and vice versa.

10 http://fuse.sourceforge.net
11 http://fuse-j.sourceforge.net
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7 Performance Evaluation

To evaluate the performance of our approach, we have analyzed the execution
times of typical file system operations. To estimate a realistic amount of data, we
crawled the home directories of our department’s members, which includes sci-
entific staff (7 persons) as well as technical and administrative staff (3 persons).
We used only home directories in favor of scanning entire hard disks because
personal data will be the target domain for a semantic file system, and there is
little need to semantically annotate system- and application-internal file struc-
tures. We discarded files that were on a black list of files and directories that
usually are present in users’ home directories but are not directly accessed by
end users; e.g., .svn, desktop.ini, and *.tmp. The resulting average size of the
home directory was 38,000 files stored within 5,150 directories. We consider these
numbers as upper limits, since we assume that the home directories of computer
scientists will typically contain more files (e.g., source code trees) than those of
average end users.

Dataset # 1 2 3

Hierarchy depth 2 3 4

Average no. of sub-directories per directory 5 6 7

Average no. of files per directory 12 15 15

Total number of siles (directories and files) 403 4,144 44,816

Total number of RDF triples 3,626 37,295 403,343

Total number of RDF triples incl. ontologies 4,361 38,030 404,078

Fig. 10: Datasets for performance evaluation

To estimate the influence of the size of home directories on our system’s
performance, we artificially created three test data sets, which are described in
Figure 10. To represent basic data about files and directories (cf. Section 3) nine
triples per object were created. Note that this does not include any additional
descriptive triples (i.e., semantic annotations); these were not considered in our
performance evaluation. Our implementation also requires loading a set of core
ontologies, which add another ≈700 triples to the database.

Virtual File System-Based Access. We have analyzed the runtime per-
formance of typical file system access patterns: navigation between directories,
listing of directory contents, deletion, moving, and renaming of files. We have
carried out the experiments on a high-end consumer notebook (MacBook Pro,
Core 2 Duo, with 2 GB RAM) running Mac OS X 10.5 and JVM 1.5. We have
used the command shell (/bin/bash) to perform our measurements and used
only standard commands (cd, ls, rm, and mv). Because of our implementation
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architecture, each operation is processed by a number of components that are
not under our direct control (e.g., the FUSE kernel module; see also Figure 9).
Hence we do not have influence on how shell commands are translated to file
system driver calls; for instance, issuing a directory listing command (ls) causes
the execution of four distinct FUSE calls being passed to our implementation.
Nevertheless, our goal was to measure the execution time as experienced by the
end user, hence we tracked the total processing time of commands, including
overhead caused by the operating system and the FUSE kernel module.

The operations we have evaluated involve read-only access (directory naviga-
tion and directory listing) and read+write operations (deletion, moving, renam-
ing). For the latter, the complexity of read and write operations differs: for a sile
deletion, (1 ) the triples within the store that describe the object to be deleted
have to be identified (read), and (2 ) these triples have to be removed from the
store (write). Move and rename operations require in principle the same access
operations, whereas a move across directories requires an additional read and
write operation, namely the update of the relationship between the file and its
parent directory. We did not evaluate the performance of operations that affect
multiple siles (e.g., moving an entire file system subtree) since we are aware of
the fact that the current modeling approach does not support such operations in
a satisfying way. We plan to work on a more efficient support for such operations
in the future. Further, we did not evaluate the performance of actual read and
write operations on the file content: the modifications to metadata caused by
these actions are comparable to those of a move operation (i.e., an update of
the content-length and update-time properties), and the actual file content
is provided by the underlying (physical) file system and hence is out of the scope
of our performance measurements.

Dataset # 1 2 3

Total number of siles 403 4,144 44,816

cd 0.029 0.048 0.107

rm 0.063 0.142 0.879

ls 0.258 0.464 1.547

mv within directory 0.254 0.488 2.488

mv across directories 0.296 0.688 3.238

Fig. 11: Virtual file system access operations: average execution times in seconds

For our experiments, we executed every operation 10 times in random order,
and repeated the entire experiment five times. The results of our experiments are
depicted in Figure 11. For the first two datasets (≈400 and ≈4,000 siles) we can
observe very low execution times, which allow for uninterrupted interactive work
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with virtual file systems. For a dataset consisting of ≈40,000 siles, the response
times for simple operations (change directory, remove file) are still in a reasonable
range, and even the operations that involve multiple, complex queries (directory
listing, moving) can be performed in a time that is comparable to web browsing
and acceptable for interactive use. These results indicate that even a prototypical
implementation of a virtual file system, based on our data model and built
using an off-the-shelf RDF triple store without further optimization, provides
acceptable performance for everyday usage on a typical consumer machine. A
semantic file system based on a more efficient triple store that is better integrated
into the operating system could achieve even better performance, since this would
allow us to circumvent the rather inefficient architecture that we have chosen for
the sake of implementation simplicity.

Metadata-Based Access. In addition to methods that are executed through
the virtual file system interface, we also analyzed the execution runtime of typi-
cal queries that retrieve siles based on arbitrary combination of metadata. These
queries cannot be directly executed through the virtual file system; instead, the
sile API (cf. Section 5) and a corresponding hierarchy of filters was used for these
test runs. We extended the datasets from the previous section with sile anno-
tations, whereas each sile was annotated with 20 annotations (tags, attributes,
categories, and slinks) in average. These additional metadata amplified our test
data sets up to 1.2 million triples for 40,000 siles. The requests were issued via
our prototype’s Java interface (cf. Section 6); each group of queries was repeated
10 times in random order.

Dataset # 1 2 3

Total number of triples 11,049 123,967 1,238,534

Search siles with a specific tag 0.271 1.084 2.008

Search siles with one out of three tags 0.734 1.182 2.304

Search siles related to a given sile 0.014 0.029 0.039

Retrieve all annotations for one sile 0.037 0.050 0.071

Create one sile 0.131 0.134 0.175

Add one tag to a sile 0.122 0.134 0.153

Delete one sile 0.044 0.051 0.071

Fig. 12: Metadata-based access operations: average execution times in seconds

The evaluated operations include search requests of varying complexity, rang-
ing from searches for siles that are tagged with a single tag, to OR-combined
search criteria. Additionally we tested calls that retrieved all annotations for a
given sile, and operations that create and delete siles, respectively. The results
(cf. Figure 12) accentuate the performance overhead caused by the relatively
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complex architecture of our virtual file system, as described before. Operations
that are executed directly against the sile repository are executed significantly
faster than operations that are issued through the virtual file system. This
strengthens the need for a more efficient implementation of a virtual file sys-
tem driver that is directly coupled to the sile repository, and thus avoids the
indirection caused by our current prototypical architecture.

8 Conclusions

We discussed a number of issues regarding the integration of semantic technolo-
gies with file systems, which is a crucial requirement for a successful deployment
of Semantic Desktop solutions. First, we showed that the RDF data model ex-
poses a number of characteristics that may cause problems when used in the
context of information management on the desktop. To overcome these limita-
tions, we proposed the sile model, which combines characteristics from both the
Semantic Web and file systems. Siles are digital objects that have a globally valid,
immutable identity and can be annotated by tags, categories, and attributes; fur-
thermore, they can be semantically related to each other. This model provides
an integrated view on desktop resources and associated semantic annotations
and is intended to serve as an intermediate layer between applications and the
actual storage infrastructure. In conjunction with this model we presented an
Application Programming Interface that allows developers to manipulate and
retrieve siles and their annotations.

We also discussed our strategy for representing files and directories using siles
and sile annotations. This allows us to simulate the behavior and characteristics
of traditional, hierarchical file systems, which are used by a magnitude of appli-
cations. By providing a virtual file system view on a sile repository, users have
the continuing ability to use the applications they are familiar with. In contrast
to other semantic file systems, which expose semantic annotations as virtual di-
rectories, we employ designated attributes for this purpose. Therefore, we can
simulate the behavior of file systems more accurately than other approaches
since (virtual) file paths are not depending on semantic annotations, which may
change over time and thus make path-based file references invalid.

The sile model is designed to be compatible with Semantic Web technolo-
gies. Therefore also analyzed—as a further contribution—a representative set of
vocabularies that can be used to annotate siles without further modification.
These vocabularies cover a large fraction of the semantic definitions needed for
desktop data. We proposed strategies how such vocabularies can be used in the
desktop context in order to foster data interoperability on a global scale.

Finally, we presented our RDF-based implementation of the sile model and
a virtual file system that is backed by our system. We analyzed the performance
of typical file system operations under the consideration of realistic amounts of
data that can be found on typical users’ desktops, and demonstrated that the
performance of such a virtual file system is acceptable for interactive usage. We
also showed that the performance of metadata-based access to sile repositories is
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acceptable for typical desktop usage, even under the restrictions of a prototypical
implementation.
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