
Invocation Assembly Lines
Patterns of Invocation and Message Processing in Object Remoting Middleware

Stefan Sobernig1 and Uwe Zdun2

1Institute for Information Systems and New Media
Vienna University of Economics and Business (WU Vienna), Austria

stefan.sobernig@wu.ac.at
2Distributed Systems Group, Information Systems Institute

Vienna University of Technology, Austria
zdun@infosys.tuwien.ac.at

Object remoting middleware greatly facilitates creating distributed, object-oriented systems. How-
ever, developers face many situations in which a middleware’s invocation and message processing
architecture fails to fully support all their requirements. This problem is caused, for instance, by
limitations in realising certain invocation styles (e.g., one-way and two-way conversations) on top
of a shared processing infrastructure, in adding extensions to invocation handling (i.e., add-on ser-
vices such as security and inspection), and in bypassing selected steps in the invocation handling
to balance resource consumption and invocation performance. Often, these limitations are caused
by design and implementation decisions taken early when crafting the middleware framework.
To better explain the needed decision making, and help developers to apply adaptations or guide
the selection of alternatives, we present a pattern language that captures the essentials of invoca-
tion and message processing in object remoting middleware. We also outline instantiations of the
patterns and their relationships in existing middleware frameworks.

Evans’ improved mill [22, Plate VIII] advanced the automation of pre-industrial further processing and refinement of wheat
into flour. It is commonly regarded as an early predecessor of Fordist and more recent assembly line or production flow

systems [44].

Copyright retain by author(s). Permission granted to Hillside Europe for inclusion in the CEUR archive of conference
proceedings and for Hillside Europe website

F3 – 1



1 Introduction

Developers who design and implement object remoting middleware are confronted with the task of
supporting many different kinds of remote invocations. On the one hand, this variety is caused by
the architectural setting in which the middleware is deployed and used. On the other hand, realising
different kinds of remote invocations affects many spots of your middleware framework’s design and
implementation. These two issues are the root of two challenging design problems for the messaging
processing infrastructure of a middleware.

The first design problem is the issue of role distribution (see e.g. [67, 63, 52, 3]): Applications built
on top of your middleware framework must often play different roles, for example, they are expected
to act both as a client issuing and as a server performing remote invocations. As these applications
integrate the facilities offered by your middleware framework, your framework must facilitate the
adoption by client- as well as server-side applications.

The second design problem is that there are a number of crosscutting concerns to be considered in
your middleware framework design (see e.g. [34, 54, 70]): First, many application scenarios for your
middleware require different remote invocation styles, component interaction styles, inter-component
dependencies, levels of communication coupling, and so on. Second, many add-on tasks might be
required, such as security or inspection add-ons. Finally, certain application scenarios are better ad-
dressed if your framework provides the flexibility to selectively omit certain steps in handling remote
invocations. For example, optimisations may be applicable if signatures in interfaces of remote objects
change frequently. This usually requires bypassing certain steps in the default control and data flow of
your middleware framework. Each of these aspects, i.e., add-on services, component interaction and
invocation styles, and bypassing, requires the interplay of different parts of the framework. Therefore,
when developing your framework, you must anticipate a certain flexibility across essential building
blocks of your framework.

This paper documents established design practises for realising versatile message processing in-
frastructures for remote invocations in object remoting middleware. The identified design practises set
out to tackle the tensions caused by the crosscutting concerns of invocation handling and the issue
of role distribution. We mined the design practises from existing object remoting middleware frame-
works such as OpenORB [58], Mono .NET Remoting (Mono/R; see [40]), Mono Olive (Mono/O,
[41]), Apache Axis2/Java (Axis2; see [5, 46, 21]), and Apache CXF (CXF; see [6]). We present our
findings in terms of a pattern language and comment on the identified uses of the documented patterns.

This paper and the pattern language described herein are meant for those developers who must
deepen their understanding of how object middleware frameworks can be designed in a manner to
support varieties of remote invocations. The paper introduces the necessary terminology to foster your
conceptual understanding of the inner workings of the middleware’s invocation and message process-
ing architecture. The background of this work are established remoting patterns – in the architectural
context of the BROKER pattern [14, 32, 63, 55, 12]. The resulting pattern language provides links to
existing remoting pattern collections [63, 12] and helps navigate in this body of established and docu-
mented design practises. An additional audience is the group of middleware users, who find structured
guidance to evaluate existing object remoting middleware regarding its fit with requirements on sup-
porting diverse invocation styles and on the middleware’s extensibility. Finally, our pattern language
targets developers who must further develop or adapt an existing middleware framework for complying
with certain remote invocation types.

The paper is structured as follows. In the next section, we provide an overview of elementary ter-
minology on object remoting and give some background on the BROKER pattern (see Section 2). Then,
we introduce the reader to the pattern language as a whole and provide some hints on navigating be-
tween its patterns (see Section 3). Before giving the pattern descriptions themselves, we discuss the
challenges of adaptable invocation and message processing (see Section 4). We provide a motivating

F3 – 2



example in Section 4.2. In Section 5, the individual patterns of our pattern language are presented in
detail. After having resolved the motivating example in Section 6, we describe known uses of the indi-
vidual patterns in existing middleware frameworks (see Section 7). Finally, we conclude by discussing
our pattern language and how it integrates with existing remoting patterns (see Section 8).

2 Some Background: Broker-Based Object Middleware

Assume you are using a middleware framework which follows the BROKER pattern [14, 32, 63, 55, 12],
as it is the case for most modern object-oriented RPC middlewares, such as CORBA, .NET Remoting
[40, 50], Windows Communication Foundation [41], and Web Services [9, 39, 16, 17] frameworks
such as Axis2 [5] or CXF [6]. Figure 1 shows a set of basic remoting patterns from [63] and their inter-
actions, forming a bare BROKER-based middleware framework. For a thumbnail overview of relevant
object remoting patterns (and, for later reference) see Appendix A.

The exemplary BROKER is shown in the configuration for performing a remote invocation between
a client component and a remote object: The client component performs an invocation on the remote
object. Crossing the network boundary is handled by the middleware. That is, the REQUESTOR re-
ceives the invocation and constructs a request from the essential invocation data, i.e., the reference to
remote object, the operation name, and the parameters. This results in a canonical object representa-
tion of the request. Then, the REQUESTOR uses a MARSHALLER to stream the objectified invocation
data into a MESSAGE [29]. The MESSAGE is handed over to the CLIENT REQUEST HANDLER, along
with the reference to the targeted remote object, for resolving the corresponding network endpoint,
establishing a connection, and delivering this request MESSAGE. The MESSAGE arrives at the SERVER

REQUEST HANDLER at the server side. Subsequently, the MESSAGE is forwarded to the INVOKER that
initiates the disassembling of the MESSAGE. Disassembly involves demarshaling of the MESSAGE by
a MARSHALLER. Demarshaling means to extract object references, contextual invocation data, and the
core invocation data based on a canonical in-memory representation. Finally, the INVOKER resolves
the remote object and dispatches the actual invocation. The invocation result is processed and returned
in reverse order.

Figure 1: Relevant remoting patterns and their interactions

The structure of these remoting patterns and their interactions involve the processing and exchang-
ing of invocation data items. This includes core invocation and result data (e.g., object references, op-
eration names, parameters, object-type meta-data, MESSAGES [29, 12], and REMOTING ERRORS [63]),
contextual invocation data (e.g., kinds of INVOCATION CONTEXTS [63]), and auxiliary invocation data

F3 – 3



items which is not directly involved in a remote invocation (e.g., an INTERFACE DESCRIPTION [63]).
In Figure 1, the invocation data items are represented by horizontal connectors that relate the instances
of the remoting patterns operating on invocation data items at the same LAYER. For instance, the RE-
QUESTOR constructs requests targeted at the INVOKER, and it processes reply objects generated by
the INVOKER. The invocation data items involved are described in a number of remoting patterns. An
overview of these patterns is provided by pattern thumbnails in Appendix A. More in-depth pattern
descriptions and known uses are given in Appendix B.

3 Pattern Language Overview

This paper presents patterns focused on adaptable message processing infrastructures as they can
be found in current object remoting frameworks, such as OpenORB [58], Mono .NET Remoting
(Mono/R; see [40]), Mono Olive (Mono/O, [41]), Apache Axis2/Java (Axis2; see [5, 46, 21]), and
Apache CXF (CXF; see [6]). The invocation and message processing infrastructures represent an inte-
gral extension mechanism of these middleware frameworks for realising support for add-on services,
multiple invocation styles, and the selective bypassing of message processing steps.

The pattern language integrates the six patterns documented in this paper (see also Figure 2) with
remoting patterns organised in two existing pattern languages: On the one hand, it extends the Re-
moting Patterns language documented in [63]. On the other hand, the patterns presented here link to
the Pattern Language for Distributed Computing [12]. Whilst there is a certain overlap between these
two pattern languages, in particular regarding the foundational BROKER pattern, each of these pattern
languages contributes distinct patterns for better understanding of invocation and message processing.
The Remoting Patterns contain extension and extended infrastructure patterns (e.g., INVOCATION IN-
TERCEPTORS and CONFIGURATION GROUPS) which emphasise an adaptation view of a middleware
framework. As a complement, the Pattern Language for Distributed Computing provides details on
invocation data items processed, that is, kinds of MESSAGES. In this sense, this language stresses a
data flow view of middleware frameworks. We aim at combining the adaptation and data flow views
into a coherent description. Relevant patterns taken from these two pattern languages (and beyond) are
presented as pattern thumbnails in Appendix A.

As a developer of a middleware framework, you usually foresee at least one of the following kinds of
adaptability. In complex requirements settings, your framework must support all of them. The three
kinds of adaptability correspond to the first three patterns in our pattern language:

• PARTIAL PROCESSING PATHS (see Section 5, pp. 15) are required to support different variants of
one-way invocations. They allow you to lay out a complex processing scheme for invocation data
and, in certain invocation scenarios, only to enact selected ranges of this scheme. This is needed
for FIRE AND FORGET invocations, such as WSDL/1.1 one-way operations [16] or WSDL/2.0
in-only operations [17].

• RECONFIGURABLE PROCESSING PATHS (see Section 5, pp. 18) allow you to introduce addi-
tional processing operations, on demand and at arbitrary times in invocation processing. Thus,
you can define a minimum processing scheme expected to be common to all or most invocation
scenarios and permit extension developers to add processing operations as needed. Important
examples of extended processing requirements are security-related, add-on invocation services,
such as those described by the Web Services Security Core Specification (WSS/Core 1.0/1.1;
[42]).

• PROCESSING SHORTCUTS (see Section 5, pp. 20) put you into the position to describe several
possible walks through a processing scheme. While you lay out a basic scheme common to all or
most invocations processed, you can still allow for deviating processing flows, for instance, by
skipping a number of processing steps if required. This helps you to realise more complex forms

F3 – 4



of exception handling, client- and server-side caching, redirecting invocations upon collocated
remote objects, and so on.

Facing these requirements on adapting the message processing infrastructure, i.e., supporting previ-
ously unanticipated invocation styles, attaching add-on processing behaviour on demand, or bypassing
of scheduled processing operations, you proceed by applying the INVOCATION ASSEMBLY LINE pat-
tern. The INVOCATION ASSEMBLY LINE pattern describes your processing infrastructure in terms of
processing stations and processing tasks. Processing stations denote elementary steps in the lifecy-
cles of your REQUESTOR and INVOKER, or, similarly, the invocation data items processed. Invocation
data items are characterised by certain processing states, e.g., message constructed, message
marshaled, message delivered, and so on. Processing tasks describe processing operations
performed on invocation data items in certain lifecycle states, e.g., a marshaling operation once
entering the state message constructed.

Once you decided to adopt the INVOCATION ASSEMBLY LINE pattern, you face two further design
problems:

• Is the number of processing stations fixed or adjustable?

• Do processing stations accept multiple task assignments or can each processing station only
perform a single processing task?

The former design problem relates to designing and managing the processing station layout and the
latter relates to the station-task assignment. In resolving these two issues differently, you have two
choices for realising the INVOCATION ASSEMBLY LINE pattern:

• SINGLE-TASK PROCESSING STATIONS (see Section 5, pp. 22) describes the processing infras-
tructure by a number of processing stations and each of them is performing only a single process-
ing task. In its extreme, you abandon the distinction of processing task and processing stations.
The ultimate advantage of this variant is that there is no need for a dedicated, central manage-
ment facility that allows you to map tasks to processing stations. You can adopt a decentralised
organisation of invocation processing tasks.

• MULTI-TASK PROCESSING STATIONS (see Section 5, pp. 24), in contrast, allows you to assign
multiple processing tasks to single processing stations. This involves applying absolute or rela-
tive ordering strategies for tasks attached to a single station. This variant puts you into the posi-
tion of describing a common layout of processing stations, which is commonly fixed at design or
configuration time, with distinct invocation scenarios resulting in different task configurations.
The variable assignment often requires a central management of station-task mappings which
entails changes at several spots (e.g., a manager and the station entities) to adjust the processing
infrastructure to a new invocation scenario.

The patterns outlined above form a web of relations (see Figure 2). The INVOCATION ASSEMBLY LINE

pattern is the main pattern of this language. It focuses on conceptualising and specifying invocation and
MESSAGE processing. However, both the problem and solution of that pattern appear in a considerable
number of variations so that we decided to treat these variations as distinct patterns. To begin with,
we identified three problem variants: PARTIAL PROCESSING PATHS, RECONFIGURABLE PROCESS-
ING PATHS, and PROCESSING SHORTCUTS. These three patterns vary from the main INVOCATION

ASSEMBLY LINE pattern by problem, i.e., the INVOCATION ASSEMBLY LINE pattern is equally used
to resolve three related, but sufficiently distinct problems. You may also think of use relationships
between the three patterns and the INVOCATION ASSEMBLY LINE pattern. Similarly, there are two so-
lution variants: MULTI-TASK PROCESSING STATIONS and SINGLE-TASK PROCESSING STATIONS. A

F3 – 5



Partial Processing

Paths

Extensible 

Processing Paths

Processing

Shortcuts

Invocation Assembly

Line

Multi-Task Processing

Stations

Single-Task Processing

Stations

use as a part of their solution

represent solution variants

Figure 2: The patterns and their relationships

solution variant describes an alternative solution to the same problem. These variants share the prob-
lem stated in the main INVOCATION ASSEMBLY LINE pattern. Problem and solution variants form the
two fragments [43] of our pattern language.

4 Challenges of Adaptable Invocation and Message Processing

The pattern language documented in this paper addresses situations in which a LAYERS-based view
of a BROKER-based middleware framework (see also Figure 1; [14, 8]) turns out to be insufficient to
effectively design and implement a middleware framework with particular extension capabilities. In
such a view, the BROKER is segregated into layers of functional responsibilities under a rigid direc-
tionality. Components at higher-level layers, e.g., the client component, are constrained to use only
functionality offered by components residing at their direct descendant layers, e.g., the REQUESTOR.
As for crosscuts, applying modifications to components residing at all LAYERS or conditionally cir-
cumventing components in intermediate LAYERS is not considered. For instance, the client component
is not expected to construct a request object on its own and hand it over to the MARSHALLER and
CLIENT REQUEST HANDLER.

The LAYERS structure illustrated in Figure 1 also shows the client component and the remote ob-
ject, as part of the server application, as conceptually separated. There is no notion of these two com-
ponents exchanging their roles, so that the client turns into the server side (and vice versa). Also, since
your framework is to be integrated by both client and server applications, it must integrate support
for either side on a common ground. Otherwise, you risk introducing an unfavourable distinction be-
tween a client- and the server-concrete framework (see e.g. [52]), thus developing two sub-frameworks
design- and implementation-wise. Such a distinction overlooks potentials for reducing design and im-
plementation complexity by identifying shared characteristics in organising the processing of invoca-
tions and MESSAGES between, e.g., the INVOKER and the REQUESTOR components.

4.1 Realising Adaptability in Middleware Framework Design

Existing middleware frameworks provide variants of the INVOCATION INTERCEPTOR [63, 52, 53] pat-
tern to extend this LAYERS structure by means of indirection: The INVOCATION INTERCEPTOR pattern
[63] supports the definition of single processing operations that operate on invocation data items which
are then transmitted using INVOCATION CONTEXTS [63] from the client to the server (and vice versa).
INVOCATION INTERCEPTORS are registered with hooks placed within the processing infrastructure,
for instance upon entering and upon exiting the MARSHALLER. Once reached, the hooks intercept the
invocation data items processed (e.g., the request and reply objects) and have the processing operations
defined by the INVOCATION INTERCEPTORS performed on them. The INVOCATION INTERCEPTORS

F3 – 6



can be user-configured using CONFIGURATION GROUPS [63] that allow developers to define a number
of related interceptors in a reusable group.

These patterns describe a common extension architecture, but they do not explain the internal
mechanisms of the middleware to realise the composition of the processing tasks. In addition, not all
processing tasks in middleware frameworks are INVOCATION INTERCEPTORS, and not all invocation
data items are transmitted using INVOCATION CONTEXTS. For instance, some middleware frameworks
define only the user-defined extensions as interceptors and use other mechanisms to define the basic
processing tasks. It would be desirable both for the middleware designer and the middleware user to
use one and the same internal mechanism to define and configure all processing tasks in a middleware.

Figure 3: Requirement dimensions: role distribution and crosscutting processing concerns

There are two particular design problems related to finding such a canonical mechanism, originally
discussed for the INVOCATION INTERCEPTOR pattern (see in particular [52]):

• Hook selection: At which LAYERS should hooks be placed? Also, at which spots should the
invocation data items be indirected, e.g., on exiting, on entering, or somewhere within a given
LAYER? The time of fixing this layout, e.g., the design, the configuration, or even runtime, is
equally important. Providing for a wide and predetermined coverage through hooks risks caus-
ing substantial resource overhead and architectural complexity. Adopting a too limited number
might prevent you or framework integrators from realising future extensions without modifying
the basic INVOCATION INTERCEPTOR infrastructure.

• Access protocol: The access protocol regulates which elements of the invocation data items are
exposed to and are made mutable by INVOCATION INTERCEPTORS. In addition, it regulates
to which extent INVOCATION INTERCEPTORS influence the overall control flow. For instance,
INVOCATION INTERCEPTORS might be allowed or disallowed to issue or process REMOTING

ERRORS. The permissiveness of the access protocol balances the extensibility of the framework
and the need for reliability when handling invocations on behalf of the middleware users. For
instance, a too permissive access protocol might allow extension developers to manipulate core
invocation data (e.g., the number of parameters), causing behaviour unexpected by the client
application developer.

The pattern language presented in this paper helps you to understand and to address these two design
problems. We focus on four classes of concerns which complicate the decision finding process due

F3 – 7



to crosscutting the LAYERS structure of your middleware framework (see the vertical axis shown in
Figure 3). They relate to components at several or all LAYERS: orthogonal add-on services, support
for component interaction and their underlying invocation patterns, and kinds of LAYERS bypassing,
and role distribution. The crosscutting structure of these concerns make it difficult to implement add-
on services, different invocation styles, and kinds of bypassing in a fixed, foreseen way. Also, your
framework design must be integratable by applications which take the client and server roles in turn.
Following from this, the realisation of add-on services, invocation styles, and LAYERS bypassing must
take into account framework support for both the client and server sides. We discuss this escalation in
design complexity as the issue of role distribution (see the horizontal axis of Figure 3). A more detailed
discussion of these four areas of challenge is provided in Appendix C.

4.2 A Motivating Example

Let us consider the situation shown in Figure 4 as an example. You need to secure remote invocations
by means of encryption. There are many alternatives available to tackle such a requirement, most
notably, transport-level encryption (for instance, TLS [20] or SSL [24]) and MESSAGE-level encryption
(e.g., S/MIME; see [51]). However, both lack guarantees for secure end-to-end deliveries between a
client and server application regarding transport intermediaries and MESSAGE authenticity. In addition,
invocation data passes lower LAYERS of the BROKER unencrypted (see also Figure 1). Also, you are
expected to add an invocation-level facility which permits client and server application developers
to make use of selective encryption and decryption of MESSAGES sent and received. By selective,
we mean that only parts of the MESSAGES are to be sealed, in particular the core invocation data.
Data transmitted as the INVOCATION CONTEXT, which is also relevant for negotiating an en- and
decryption scheme and routing MESSAGES, is to be left untouched. The requirements of end-to-end
security and selectivity ruling out basic transport-level and MESSAGE-level options. Consequently, you
must address this issue as an integral part of your invocation and MESSAGE processing infrastructure.

The UML activity diagram in Figure 4 presents a control and data flow view of the client side of
processing invocations and MESSAGES (see also Figure 1). While the essential processing steps (e.g.,
Construct request, Stream request) are modelled as activities, activity partitions are used
to identify the responsible remoting pattern for each of these steps (e.g., REQUESTOR, MARSHALLER).
In addition, we represent data flow artefacts by means of input and output pins to activity nodes. For
instance, Invocation data is the required input, and a Request object is the expected output
of the Construct request activity owned by the REQUESTOR. Note that this activity diagram
visualises the two-pass processing involved for the client side. That is, once the processing steps are
performed on the request, and once on the reply (shown using the swimlane notation for activity
partitions).

Given this control and data flow view of your given framework, you must decide how to realise
the selective encryption facility, the Security provider (see Figure 4). This is essentially deter-
mined by the input required by such a facility, namely a streamed MESSAGE. The object representation
of either request and reply are not suitable for applying encryption or decryption. This is mainly be-
cause their state is usually subject to further mutation and because they can’t be properly constructed
from the encrypted data enclosed by the MESSAGE. Therefore, you must provide means to operate
on either the Request or Reply message, i.e., the output of the MARSHALLER for the outgoing
request and the output of the CLIENT REQUEST HANDLER for the incoming reply. Which options are
available to you?

1. Security-aware MARSHALLER: You might want to consider refining your MARSHALLER instan-
tiation to perform the selective encryption. While this appears as a viable option at first sight,
it would soon turn out impracticable because of code cluttering and constrained extensibility.
Code cluttering would result from introducing conditional branching in the MARSHALLER to al-

F3 – 8



How to foresee a further, possibly conditional processing step?

Requestor Client Request Handler

R
e
p
ly

Marshaller

R
e
q
u
e
s
t

Client

 

Invoke remote operation

Invocation data

 

Process invocation result

Invocation result data

Construct request

Invocation data Request object

Extract invocation result

Invocation result data

Reply object

Stream request

Request object

Request message

Deliver request message

Request message

Verify reply message

Transport envelope

Reply message

Objectify reply

Reply message

Reply object

ad: Basic, client-side invocation processing

activity partitions

R
e
q
u
e
s
t

Security Provider

Encrypt request body

 Request message

Request message

Decrypt reply body

input pin

Reply message

activity node

Reply message

R
e
p
ly

output pin

Transport 

envelope

Figure 4: Example of an add-on service: Security provider for selective message encryption

low for selectively enabling or disabling encryption by clients. Extensibility and maintainability
would be constrained if you supported a set of MARSHALLERS for different MESSAGE formats.
In that case, future adjustments would have to be tracked by each of them.

2. Security-aware REQUEST HANDLERS: Alternatively, you could turn selective encryption into a
responsibility of the CLIENT REQUEST HANDLER which has access to the required MESSAGE

representations. Here, the critique put forth against the first, MARSHALLER-only refinement
strategy applies as well. However, the situation turns out even worse: Given CLIENT REQUEST

HANDLER variants for different transport protocols, you would also couple the transport to the
message handling concern. This is due to the fact that the Security Provider requires
intimate knowledge of the MESSAGE format (e.g., a SOAP/XML dialect) in order to select the
parts meant to be encrypted or decrypted. Transport handling and transport protocol adoption
(e.g., TCP [47], HTTP [23], or SMTP [48]) would be limited in their reusability. They would
lose their independence from the MESSAGE format applied.

3. Security provider through INVOCATION INTERCEPTORS: Provided that your framework
provides an INVOCATION INTERCEPTOR infrastructure (or, you plan to equip it with one), you
can solve this extension problem by turning the Security provider into a set of INVOCA-
TION INTERCEPTORS. You need at least two interceptors; one for providing the encryption and
the other the decryption service. However, it is important that your INVOCATION INTERCEPTOR

infrastructure is compatible with the specific requirements of a selective en- and decryption ser-
vice (as shown in Figure 4). First, we require hooks placed at the end of the processing activities
performed by the MARSHALLER or, alternatively, before the CLIENT REQUEST HANDLER. If
either was missing, the Security provider would not be realisable by means of INVOCA-
TION INTERCEPTORS because the MESSAGE representations needed could not be intercepted.

F3 – 9



Second, the access protocol to the invocation data (i.e., the Request and Reply messages)
must be permissive enough. For instance, if the access to and the mutation of the request and
reply bodies was denied and only context data (e.g., for setting the encryption scheme and its de-
tails) was exposed to the INVOCATION INTERCEPTORS, realising the Security provider
would not be feasible.

Given the three strategies outlined above, their inadequacies and possible constraints, what mecha-
nisms remain open to you if you want to incorporate the Security provider into the processing
control and data flow, as shown in Figure 4? When looking at a general-purpose extension infrastruc-
ture such as INVOCATION INTERCEPTORS, how can its design anticipate a wider range of extension
requirements? How can it be made adjustable to fit those emerging in the continued lifecycle of your
framework?

Not enough, this problem turns even more complicated. What if this addition must be configurable
for different scopes, e.g., per-client or per-endpoint? How can you ensure that the addition of this en-
cryption add-on preserves the modular organisation of REQUESTOR and CLIENT REQUEST HANDLER?
Also, realising a Security provider both for client and server applications reinforces the prob-
lem. All this points to the issue whether the LAYERS structure still serves for the task of designing
such an add-on service and the necessary framework facilities. This example reflects our motivation to
mine existing middleware frameworks for the solutions adopted in response to more general classes of
requirements on adaptable invocation and message processing.

F3 – 10



5 Pattern Descriptions

Invocation Assembly Line

As an application developer, you use an existing BROKER-based middleware framework and you want
to extend the message processing operations offered by this middleware framework. Or, as a framework
developer, you design an extensible BROKER-based middleware framework. Extensibility is required to
support application developers in adapting infrastructure for message processing to their application-
specific requirements. This involves adding, removing, or replacing custom processing steps on various
invocation data items. Certain kinds of invocation data items are found in almost all BROKER-based
middleware frameworks, e.g., different types of messages, interface descriptions, etc. In addition, these
invocation data items are subject to common processing operations, such as adopting a uniform object
representation or their transformation into structured character or byte streams.

How do you extend a BROKER-based middleware framework with extra processing operations
and application-specific refinements over invocation data items?

Functional extensions take either the form of application-specific ones or framework refinements as
such, the latter being applicable to multiple, possibly related applications built on top of the middle-
ware framework. To create such extensions, application and framework developers require access to
the processing infrastructure for invocation data encapsulated by the INVOKER and the REQUESTOR.
The processing infrastructure should be configurable and adaptable through a canonical programming
model, at design time by the extension developer and at runtime by means of reflection, respectively.
However, providing such a canonical programming model for configuring and adapting the processing
infrastructure bears the risk of lacking the needed flexibility if the variety of invocation data items
(e.g., MESSAGE kinds), the invocation patterns, the processing operations, and their interdependencies
are not known when designing the middleware core. A threat to finding a balanced solution comes
through the considerable variety of processing operations to be supported. This variety results both
from different kinds of invocations to process and the processing range to cover.

To begin with, processing does not only refer to handling core invocation data. On the contrary,
a BROKER must handle auxiliary kinds of invocations. These often require a very different process-
ing scheme. Examples include the generation and delivery of INTERFACE DESCRIPTIONS (such as in
Mono .NET Remoting) as well as certain auxiliary event MESSAGES. The latter commonly represent
notifications orthogonal to the underlying remote invocation. In Web Services Reliable Messaging
(WS/RM; [19]), for instance, message sequencing is implemented by particular notification messages
which are exchanged completely transparent to the actual invocation messages. Also REMOTING ER-
RORS form a distinct group of invocation data to process.

When being processed, invocation data items pass different processing stages. When designing a
programming model providing access to the processing infrastructure, it is difficult to decide which
processing stage at which level of granularity should be incorporated into this programming model, in
terms of extension points. Candidates are the REQUESTOR and INVOKER which describe their range
of processing in terms of demarshaled and marshaled core invocation data and results, their delivery
and reception, and so on. In addition, the CLIENT PROXY and groups of remote objects could be in-
corporated into the design of such an extensible processing infrastructure. The latter is exemplified by
contexts in Mono/R which are controlled execution environments for remote objects.

The design task for a versatile processing infrastructure in your middleware framework is further
complicated by the processing roles (simply role hereafter) to be supported. In different component in-
teraction and invocation styles, the middleware framework needs to take different roles (e.g., the client
or server role in a REQUEST-REPLY invocation). A processing role is described by a set of process-
ing operations and a sequencing of these operations which are specific to this role. The number and

F3 – 11



characteristics of processing roles escalate with each component interaction style, invocation pattern,
and their variants specific to a remoting technology family supported. This motivates to identify sim-
ilarities and points of variations between processing roles in terms of processing operations and their
dependency relations.

You also risk introducing unwanted design complexity through invocation style emulation: This
problem describes the situation when the design of your BROKER incarnation is centred around a
predominant invocation pattern, e.g., REQUEST-REPLY. From the perspective of evolvability, adding
support for e.g. FIRE AND FORGET means to build an additional MESSAGE processing scheme on top
of a processing infrastructure aligned to the predominant pattern. This strategy of emulation has been
reported to bear the risk of introducing complexity. This extra complexity is due to static and dynamic
crosscutting. On the one hand, there is the risk of increased code interlacing (see e.g. [34, 54]). On the
other hand, the additional need for conditional branching (see, e.g., [70]) complicates the control flow
inherent to such a processing infrastructure.

Therefore:
Organise the invocation and MESSAGE processing of your middleware in terms of INVOCATION
ASSEMBLY LINES. INVOCATION ASSEMBLY LINES are configurable and extensible chains of
message processing tasks used both on the client (e.g., owned by the REQUESTOR) and the server
side (e.g., owned by the SERVER REQUEST HANDLER). These processing chains are put in place
for both request and reply MESSAGES. They are partitioned into processing stations which form
the message processing flow. Each processing station contains one or more processing tasks in a
specific order. The processing tasks are to be performed on certain invocation data items (e.g.,
MESSAGES or INVOCATION CONTEXTS) to be handled by the station. An INVOCATION ASSEM-
BLY LINE exposes a programming model to adjust the number of processing stations and offers
different strategies to assign processing tasks to the available processing stations. INVOCATION
ASSEMBLY LINES should be constructable at design and at activation time (e.g., through deploy-
ment descriptors), as well as changeable through the programming model at runtime.

processing station (ps)
ps

pt
processing 

task (pt)

invocation data item:

indirected invocation

invocation data item:

message object

invocation data item:

streamed message

<< >>component

ps ps ps

ps ps ps

Line owner: e.g., Requestor

station-task

assignment

Invocation assembly line: 

e.g., client-side, inbound

Invocation assembly line: 

e.g., client-side, outbound

pt1 pt2 pt3

pt4pt5pt6

Figure 5: Conceptual sketch of INVOCATION ASSEMBLY LINES in a REQUEST-REPLY scenario

The INVOCATION ASSEMBLY LINE pattern describes the BROKER or a selection of its component
patterns as a reconfigurable, flow-oriented processing infrastructure (see Figure 5). There are the fol-
lowing participants:

• Processing station (ps): An INVOCATION ASSEMBLY LINE consists of processing stations.
They perform specific assembly, disassembly, and transformation operations on invocation data
items. For each incoming or outgoing message (request or reply), invocation data items are
transported along the INVOCATION ASSEMBLY LINE by passing them from station to station.
Different stations can potentially process different kinds of invocation data items, The recon-
figuration of an INVOCATION ASSEMBLY LINE means adding or removing processing stations

F3 – 12



from a given configuration. In addition, a processing station can participate in several indepen-
dent INVOCATION ASSEMBLY LINES. This permits us to create processing layouts beyond mere
serial processing.

• Processing task (pt): Different kinds of invocation data items are subject to a set of related
processing tasks. The tasks necessary to process these invocation data items vary considerably
in different component interaction styles, dependency couplings, invocation styles, add-on in-
frastructure services, and remoting technology families. The kind of assembly, disassembly, or
transformation operation described by a task is depending on the kind of invocation data item,
such as core, contextual, or auxiliary invocation data. A particular processing task may be rel-
evant for several MESSAGE kinds, possibly leading to reusing task descriptions and their im-
plementations. Looking at the REQUEST-REPLY example in Figure 5, for instance, we find the
processing tasks of marshaling and demarshaling the objectified MESSAGES.

Processing tasks are interrelated by an explicit ordering. The example in Figure 5 shows, for
instance, that a canonical MESSAGE object representation must be constructed by the INVOKER

or REQUESTOR before being marshaled into the actual MESSAGE by the MARSHALLER. The
ordering structure of processing tasks are represented as a graph. This graph is formed by the
pt-labelled vertices representing processing tasks, while edges denote their directed dependency
relations. These precedence structures often reveal a symmetry of tasks within a given processing
roles or between two processing roles. Looking at Figure 5, the marshaling (pt2) operation
performed in the outbound direction mates with a demarshaling (pt5) operation on incoming
invocation messages.

• Invocation data item: An invocation data item represents a workpiece to be processed by the
processing stations grouped into an INVOCATION ASSEMBLY LINE. Relevant invocation data
items are the introspection data of the indirected invocation and the result. They are then ex-
tracted from or transformed into MESSAGES. Further examples are INVOCATION CONTEXTS and
context-related MESSAGES. Furthermore, auxiliary invocation data kinds such as INTERFACE

DESCRIPTIONS are important to consider. The REQUEST-REPLY invocation example in Figure 5
shows MESSAGES representing invocation requests and invocation replies in various processing
states, i.e., runtime information about an invocation, an invocation object, and a streamed invo-
cation message. In addition, REMOTING ERRORS must be processed, if they occur. They must
be signalled between the remoting endpoints.

• Line owner: INVOCATION ASSEMBLY LINES can be applied to structure the processing ac-
tivities described by certain component patterns of the BROKER. For example, INVOCATION

ASSEMBLY LINES are used by the REQUESTOR and SERVER REQUEST HANDLER as a part of
their solution. We refer to the using framework components as line owners in the collaboration
described by the INVOCATION ASSEMBLY LINE pattern. Also, we find INVOCATION ASSEM-
BLY LINES applied to INVOKER implementations to keep the invocation dispatch mechanisms
reconfigurable and extensible.

• Binding scope and times: Binding, in this context, refers to the scopes and the times for activat-
ing and deactivating a particular INVOCATION ASSEMBLY LINE configuration. An INVOCATION

ASSEMBLY LINE configuration describes a number of processing stations and the processing
tasks assigned to them according to their precedence requirements.

Valid and relevant scopes for binding a processing configuration are single remote objects. If
shared by many remote objects, the REQUESTOR and the INVOKER are appropriate scopes. A
more general and reuse-driven approach is to bind a processing configuration to a CONFIGU-
RATION GROUP. A CONFIGURATION GROUP [63] describes the configuration of the MESSAGE

processing and the lifecycle management infrastructures shared by a set of remote objects. In
addition, a CONFIGURATION GROUP can act as controlled execution environments for remote
objects. Examples include contexts in Mono .NET Remoting (Mono/R; see [40]).

F3 – 13



Besides the scope of enactment, various points in the lifecycle of a BROKER instance are can-
didates for defining the binding times to specify, activate, and deactivate a processing configu-
ration. In the middleware frameworks reviewed, the deployment time of either remote objects
or CONFIGURATION GROUPS has been chosen as the binding time. The issue of binding times
also leads us to ask for an appropriate specification and deployment technique. Options include
registration through the programming model at runtime (PASSIVE and ACTIVE REGISTRATION

[37]) or by means of deployment descriptors [63] at activation time. The late negotiation and
acquisition of such a configuration, i.e., at invocation time, can be a further requirement. For
instance, invocation pattern variants (such as SOAP/1.2 or WSDL/2.0 Message Exchange Pat-
terns, MEPs; [17, 25]) can be lazily negotiated between a client and a remote object. Either, the
INTERFACE DESCRIPTION stipulating the invocation pattern is introspected just in time (e.g., in
forms of dynamic invocation) or the invocation pattern is communicated through the INVOCA-
TION CONTEXT. In either case, the INVOCATION ASSEMBLY LINE needs to be assembled and
activated at runtime.

INVOCATION ASSEMBLY LINES organise the control and data flow for their line owners, such as the
SERVER REQUEST HANDLER or REQUESTOR. There are two dimensions of control and data flow to
consider: the placement and the centralisation of the control and data flow layout.

The placement of control and data flow information can either be extrinsic or intrinsic to the pro-
cessing stations. An extrinsic placement refers to capturing the overall processing-related control flow
information in dedicated runtime entities different to processing stations. In particular, relevant con-
trol and data flow information can be stored and managed by invocation data items. The INVOCATION

CONTEXT is sometimes used for this purpose. An intrinsic placement challenges the above view by
locating control and data flow information in the processing stations directly.

With regard to centralisation, the control and data flow layouts can be organised in a centralised
or dispersed manner. A centralised INVOCATION ASSEMBLY LINE lays out the control and data
flow in single, state-carrying entities different from the actual processing stations. For instance, the
AxisEngine object-class as an essential component of this combined INVOKER and REQUESTOR

variant in Axis2 stipulates the overall control and data flow centrally, in its send and receive
operations. Conversely, a dispersed specification of the control and data flow allows for distributing
responsibilities among several processing stations. In Mono/R, for instance, sinks realise this idea of
dispersed control and data flow management for INVOCATION ASSEMBLY LINES. Each sink is only
aware of its neighbour sinks, leaving the ultimate succession of sinks managed in a decentralised man-
ner.

Combining these placement and centralisation strategies shows different effects on the targeted
adaptability of processing behaviour, the locality of modifications and the perceived complexity of the
processing infrastructure. This is particularly important when considering the need to provide intro-
spective facilities upon the control and data flow to realise runtime and invocation time adaptability of
INVOCATION ASSEMBLY LINES. Also, you may consider assigning one or multiple processing tasks
to a given processing station. Different strategies of station-task assignments, placement, and central-
isation as well as an assessment of their consequences are covered by the SINGLE- (pp. 22) and the
MULTI-TASK PROCESSING STATIONS (pp. 24) patterns.

F3 – 14



Partial Processing Paths

Assume that you have decided to build or adapt a certain BROKER incarnation. The kinds of remote
invocation (e.g., REQUEST-REPLY and FIRE AND FORGET RPCs) and the remoting styles (e.g., func-
tional subsets of ICE [27] and WS [9, 39, 16, 17]) which this BROKER realisation is meant to support
are given. Assume further that your BROKER-based framework is intended to serve as a surrogate for
both client- and server-side applications. In order to be sure that the processing of MESSAGES is suit-
able for serving the given set of invocation patterns for the range of remoting styles and roles (i.e.,
client and server) supported, you must decide how to lay out the MESSAGE processing infrastructure.
Invocation patterns (e.g., REQUEST-REPLY, FIRE AND FORGET) do not reveal insights on the differ-
ent processing needs of MESSAGES within an invocation pattern realisation. Processing operations
and sequencing rules between single operations (e.g., marshaling, MESSAGE construction, etc.) could
be reused for realising different invocation patterns. Others might be conflicting in the context of a
particular invocation pattern.

Your invocation and MESSAGE processing infrastructure must allow to perform selected ranges
of designed paths of processing operations alone. How can a processing infrastructure be de-
signed out of a set of composable path sections which can be combined into a bound variety of
processing paths?

Consider an example: A processing scheme originally designed to realise REQUEST-REPLY invocation
variants might be required to put only the request-specific range into effect to enact kinds of FIRE AND

FORGET invocations (see also Figure 6). If, in a FIRE AND FORGET scenario, reply-specific processing
steps would be scheduled, the responsible entities would, at least, have to operate on the control flow in
a manner to be effectively skipped. The risk of excessive conditional branching would be the result, to
give a single concrete example. Besides, maintainability is potentially reduced because these decision
points which implement the processing line in a requested invocation pattern are squattered over sev-
eral implementation entities. More generally speaking, this compositional flexibility is demanded by
different types of one-way invocation, such as forms of synchronisation decoupled and non-blocking
invocations (e.g., FIRE AND FORGET) as well as timely decoupled one-way acts in MESSAGING and
PUBLISH-SUBSCRIBE [12].

Also, you might want to consider support for batch processing of invocations [59]. To realise
batching support, you must define a processing scheme which permits the repetitive execution of sin-
gle processing operations early in the lifecycle of remote invocations. Either the CLIENT PROXY or the
REQUESTOR must be capable of accumulating invocation dispatches. Accumulation involves the incre-
mental assembly and later disassembly of batch MESSAGES. Only upon signalling the end of the batch
invocation (e.g., through an explicit flush operation), the REQUESTOR proceeds in further-processing
the accumulated MESSAGE, i.e., its marshaling and delivery. In an inverse manner, the INVOKER has to
disassemble the batch MESSAGE, perform the individual invocation dispatches, compile a reply MES-
SAGE, and, finally, have it streamed and returned. Hence, batching causes single processing steps to
be repeatedly performed in a row (e.g., MESSAGE construction) while others are only scheduled once
(e.g., marshaling).

In addition, you are often faced with the requirement of handling and even recovering from RE-
MOTING ERRORS [63] as well as exceptional conditions when processing MESSAGES. This very re-
quirement can be raised from different angles:

1. To begin with, REMOTING ERRORS can be raised at different locations (e.g., the client, server
application or the transport logic). In particular, they can be issued from within the MESSAGE

processing infrastructure, for instance, upon sensing exceptions when turning a MESSAGE object
into a structured byte stream representation (e.g., an IIOP [45] message). Depending on the
concrete type of REMOTING ERROR, they must be propagated back to the remote endpoint, i.e.,
the client application or its underlying BROKER, where the encapsulated REMOTING ERROR is

F3 – 15



injected into the control flow. This involves processing REMOTING ERRORS as MESSAGES to be
delivered to the remote endpoint. The processing steps for these REMOTING ERRORS and their
sequencing are essentially similar to those of core invocation data (i.e., the request and reply
data).

2. Forms of reliable messaging (e.g., the error recovery model in ICE [27] or WS/RM [19]) pre-
suppose that the MESSAGE processing infrastructure can automatically replay sequences of pro-
cessing steps to realise quality constraints on MESSAGE delivery, e.g., at-most-once delivery
guarantees. Replaying refers to performing varying ranges of processing steps depending on the
point of exception or failure, possibly in a repeated manner.

outgoing invocation assembly line

replay

compound, incoming 

invocation assembly line

client-side 

composition

server-side 

composition

A

A B

C

D

E

Figure 6: Composable processing of invocations

Therefore:
Organise your MESSAGE processing infrastructure in terms of PARTIAL PROCESSING PATHS.
Each PARTIAL PROCESSING PATH is realised by a dedicated INVOCATION ASSEMBLY LINE rep-
resenting a set of functionally linked processing operations which recurs in different targeted
invocation pattern realisations. As INVOCATION ASSEMBLY LINES are joinable, combine their
instantiations for expressing different processing roles (client or server side) and invocation pat-
tern implementations.

PARTIAL PROCESSING PATHS promote the idea of structuring the processing infrastructure in smaller
parts which can be reused by composing the actual processing paths as compounds from such building
blocks. Each part groups processing tasks (e.g., marshaling, decryption, etc.) which are found recur-
ring jointly in different invocation scenarios. By joint recurrence, we mean that they are applied in a
sequence which is found stable for a number of invocation scenarios. Each part is represented by a
dedicated INVOCATION ASSEMBLY LINE. An INVOCATION ASSEMBLY LINE can take the form of a
compound (e.g., line E in Figure 6), assembled from other INVOCATION ASSEMBLY LINES (e.g., lines
A and B in Figure 6). While the number of possible scenarios is certainly vast, you will find certain,
characteristic decomposition strategies across current middleware examples:

• Per processing direction: Provide INVOCATION ASSEMBLY LINES which represent processing
directions, i.e., outward- and inward-directed invocations and MESSAGES. In Figure 6, there
are the outgoing line C and the incoming line E. Such a decomposition strategy makes it con-
venient to express the client and server roles in the light of a given invocation patterns. As
for REQUEST-REPLY invocations, the composition set (C,E) represents the client-side, the set
(E,C) the respective server side of processing. If FIRE AND FORGET is requested, the processing
infrastructure is limited to the line C at the client and the line E at the server side.

F3 – 16



• Per kind of invocation data: Certain processing tasks appear shared between different types of
invocation data items, while others are type-specific. Sets of shared processing tasks are then
composed into compound INVOCATION ASSEMBLY LINES to handle a specific type of invoca-
tion data item. Important examples are REMOTING ERRORS, INTERFACE DESCRIPTIONS, and
certain auxiliary MESSAGE kinds underlying advanced invocation patterns (e.g, notifications in
WS/RM [19]).

• Per lifecycle strategy: Certain sections of the processing path are performed repeatedly. This is
particularly important for strategies of failure recovery and invocation batching. The repetitive
character of a set of processing steps qualifies these to form INVOCATION ASSEMBLY LINES

which then are grouped into compound lines. In Figure 6, the component line A provides an ex-
ample in the context of incoming invocations requests. This maps to a server-side infrastructure
which is capable of recovering from errors encountered in early processing steps (e.g., transport
and demarshaling).

Use PROCESSING SHORTCUTS (p. 20) to provide the links between the resulting INVOCATION ASSEM-
BLY LINES. For example, INVOCATION ASSEMBLY LINES operating one core invocation data should
include PROCESSING SHORTCUTS to those responsible for possible REMOTING ERRORS. Make sure
that the decomposition into PARTIAL PROCESSING PATHS is not hindered by a lack of genericity of
the components realising the actual processing tasks. Consider a MARSHALLER which is bound to the
canonical object representation of core invocation data (i.e., request and reply objects) and which is
only capable of processing these. As a result, you cannot create a PARTIAL PROCESSING PATH to be
reused for various data kinds (e.g., INTERFACE DESCRIPTIONS).

F3 – 17



Reconfigurable Processing Paths

When you plan to provide framework extensions to a middleware, it is important to verify that you can
actually weave the extension behaviour into the framework and that the framework provides the nec-
essary extension points to realise the add-on behaviour. Similarly, if your role is that of the framework
developer, you will certainly find yourself in the situation that prospective extension developers ex-
press requirements on extension points to be exposed by the processing infrastructure. It is particularly
hard to foresee the number and kind of extension points becoming necessary at the time of creating
the processing infrastructure. Each step in a processing path can be turned into an extension point by
refining it into a hook for INVOCATION INTERCEPTORS [63, 52]. However, not each processing step
should be fixed as a hook. This patterns helps avoid predetermining a web of hooks at design time.
Such a predetermination bears the risks of excessive resource consumption and an increased design
complexity which reduces the communicability of the hooks and their interdependencies to extension
developers.

Providing support for extensions and add-on services plays a central role for the adoption and
the further-development of a middleware framework. Unless you can add or remove extension
points to the processing infrastructure for invocations and MESSAGES in a principled manner, the
middleware will not fit unanticipated deployment scenarios while preserving its maintainability.

A middleware framework, as a variant of an object-oriented application framework, is not meant to
be a ready-made piece of software. Rather it is to be completed through integration by client and
server applications. Integration also means to attach framework extensions, shared by a group of client
or server applications. Designed processing paths must remain adaptable to cover a modified set of
processing operations and changing dependency relations between them. This is particularly important
regarding your framework’s extension infrastructure which might be built around an INVOCATION

INTERCEPTOR [63, 52] variant. From this perspective, processing operations are potential points of
interception. In order to extend (or reduce) the INVOCATION INTERCEPTOR’s reach, processing steps
must be addable (or removable). Important examples are found in securing remote invocations because
security-related, orthogonal extensions such as implementations of the Web Services Security Core
Specification (WSS/Core; [42]) commonly operate on MESSAGES before and after core processing
steps, such as demarshaling and marshaling.

Figure 7: Extending processing paths

Therefore:
Preserve RECONFIGURABLE PROCESSING PATHS by realising each processing path as an INVO-
CATION ASSEMBLY LINE. Allow to insert into or remove processing stations from these INVOCA-
TION ASSEMBLY LINES. Alternatively, if the layout of processing stations is fixed, make sure that

F3 – 18



processing stations can either be effectively discharged from all processing tasks (i.e., a de facto
removal) or that they can be attached more than one processing task (i.e., a de facto insertion).

At design time of your framework, make sure that you apply the PARTIAL PROCESSING PATH pattern
to obtain an initial set of relatively robust INVOCATION ASSEMBLY LINES. They can then be exposed
for refinement into RECONFIGURABLE PROCESSING PATHS. The sketch provided in Figure 7 shows
a compound of two INVOCATION ASSEMBLY LINES to realise a client-side processing configuration
for a REQUEST-REPLY invocation variant. In its initial configuration, there are four processing steps
(i.e., A,B,C,D) and, thus, candidate extension points. By adding a processing station to each line,
you obtain the further processing step E. Note that this exemplary insertion preserves the processing
symmetry [63, 52], by considering two symmetric processing stations. This is, however, not strictly
necessary. It would be equally possible to amend only one of the two INVOCATION ASSEMBLY LINES

in Figure 7. For instance, if only logging of outgoing invocation data items was required, this would
suffice as an extension point.

Arrange the protocol to reconfigure the processing paths in a way that adaptations to the pro-
cessing path can be performed by the extension developers themselves. This avoids conflicts between
reconfiguration requirements of different extensions. This requires respective hooks being activated
and deactivated at configuration and runtime. Details for these issues of binding scope and binding
time are treated by the INVOCATION ASSEMBLY LINE pattern (pp. 11).

The need for RECONFIGURABLE PROCESSING PATHS is exemplified by the scheduled design ele-
ment of dynamic phases in Axis2 [5]. So far, Axis2 extension developers cannot revise and introduce
their own set of phases, i.e., processing steps, through their CONFIGURATION GROUPS contributed.
This, however, turned out critical because the global phase configuration must be adjusted or vari-
ous variations thereof need to be shipped in order to support individual extensions. This breaks the
fundamental idea of orthogonal extensibility and introduces an unwanted coupling between the core
framework and its extensions. The planned design revision will allow for per-extension phases to over-
come this limitation [30].

F3 – 19



Processing Shortcuts

Within processing paths – as yielded by applying the PARTIAL PROCESSING PATH (pp. 15) – there
are situations which either demand an interruption of the processing sequence or rather skipping sub-
sequent processing steps. To complicate things, these situations are sometimes only identifiable at
runtime. Skipping does not necessarily require these processing steps to be circumvented. However,
the input and output requirements for the follow-up processing steps might not be met and, thus,
special care would be required, e.g., by providing mock entities. While the interruption case refers
to the occurrence of REMOTING ERRORS, the skipping requirement relates to forms of bypassing in
the LAYERS structure of your processing infrastructure. This pattern describes the details of splitting
predetermined processing chains and of laying out alternative processing walks.

Processing paths describe sequences of processing operations applied to invocation data items.
These processing chains are the most natural way to think of your processing infrastructure.
However, certain optimisations towards resource consumption, invocation performance, and de-
coupling between remote ends are impossible to achieve with such processing chains in place.

A designed processing layout breaks down into a single dominant processing path for invocation data.
However, there are scenarios which require multiple possible processing paths by mutating the se-
quencing of a given set of processing steps. Relevant examples are:

• MESSAGE caching and differential marshaling (see e.g. [4, 1]): These optimisations aim at reduc-
ing the time spent in the MARSHALLER, either by caching MESSAGES (or their object represen-
tations) entirely or partially. As for partial caching, only the meta-data specific to the MESSAGE

structure is put into a cache storage. This allows for applying caching though the invocation data
constantly change.

• Handling exceptional values, in particular REMOTING ERRORS [63]: Upon the signalling a fail-
ure condition, e.g., through the exception propagation mechanism of the hosting runtime envi-
ronment, the processing is expected to be forward-skipped (e.g., to cleanup resources already
allocated such as connections etc.) or control is handed over to a processing path specific to
REMOTING ERRORS (e.g., to marshal and deliver them to the remote end).

• Invoking upon collocated remote objects (see e.g. [61]): The remote object targeted lives at the
same remote end as the issuing client, though not necessarily in the same process habitat. In
these situations, the majority of core processing steps (e.g., objectifying requests, marshaling,
transport) can be considered pure overhead and are to be avoided.

Figure 8: Permitting multiple, conditional processing walks

Therefore:
Provide PROCESSING SHORTCUTS for INVOCATION ASSEMBLY LINES which can redirect the
control and data flow from one processing station to another one. This target processing station
can be located in the same INVOCATION ASSEMBLY LINE, e.g., further down the line so that in-
termittent processing steps are skipped. Also, the target processing station can be part of another
INVOCATION ASSEMBLY LINE. So, you can redirect the control and data flow between the two

F3 – 20



lines and you can have the receiving line continue (or even complete) the invocation and message
processing.

The requirement of bypassing is realised by redirecting the control and data flow between two INVO-
CATION ASSEMBLY LINES. Details on how PROCESSING SHORTCUTS can be laid out and how these
line-crossing processing stations can be constructed are dependent on the realisation variant of the
INVOCATION ASSEMBLY LINE pattern used (see also Figure 8): If the layout of processing stations
is global and fixed during runtime (i.e., the MULTI-TASK PROCESSING STATION pattern applies; pp.
24), PROCESSING SHORTCUTS can bridge between different processing steps. Consider the example in
Figure 8: The outgoing activity of processing step C could redirect to the incoming activity of process-
ing B. This is because processing stations can be made aware of each other. Conversely, if the station
layout is not predetermined (i.e., the SINGLE-TASK PROCESSING STATION pattern applies; pp. 22), a
cross-line station can only be created within a single processing step. Hence, the outgoing activity can
only point to the incoming activity in step C (see Figure 8).

Use this pattern jointly with PARTIAL PROCESSING PATHS (pp. 15) to provide the necessary con-
nectors between INVOCATION ASSEMBLY LINES specific to a processing direction and to a type of
invocation data. The PROCESSING SHORTCUT pattern implies that, when applied along with RECON-
FIGURABLE PROCESSING PATHS (pp. 18), inserted processing steps are to be symmetric.

F3 – 21



Single-Task Processing Stations

You chose to adopt the INVOCATION ASSEMBLY LINE (pp. 11) pattern. It remains to select a strategy
for laying out the processing stations and the assignment of processing task to these stations. This
strategy is largely about where to place the control for the station layout and the task assignments; and
whether the control and data flows are centrally managed. Your main objective is to ease the future ad-
dition of framework extensions (e.g., an encryption add-on) which come in form of CONFIGURATION

GROUPS. Your middleware framework is required to facilitate the extensibility towards orthogonal
add-on services (e.g., for securing the BROKER). Framework extensions risk entailing hidden interde-
pendencies, when being deployed together, which can cause single extensions to fail unexpectedly.

How can you realise an extensible processing infrastructure which minimises the risk of intro-
ducing hidden interdependencies between framework extensions?

To avoid unwanted interdependencies between extensions, it is recommended to decouple the add-on
behaviour introduced by two extensions. To achieve this, you must balance two forces: the placement
and the centralisation of the control and data flow in your processing infrastructure. Decoupling is best
achieved through a decentralised specification of the control and data flow layout, i.e. each extension
remains unaware of other, currently active ones. Recording and storing control flow information should
also be kept within an extension’s realm (i.e., by an intrinsic placement of information).

Following from this, an extension is inserted without full knowledge of the global configuration.
Extension developers will not have to be concerned with the global state of the processing infrastruc-
ture, the resulting processing behaviour can only be stated (and verified) upon runtime. In other words,
you must design your processing infrastructure according to a strict LAYERS structure.

Figure 9: Single-task assignments, variable, and decentralised station layout

Therefore:
Arrange the INVOCATION ASSEMBLY LINES with a variable number of processing stations
which chain themselves in a decentralised manner, i.e., through forward references owned locally
by each processing station. Attach a single processing task to each station. RECONFIGURABLE
PROCESSING PATHS are realised by varying the number and positioning of the processing sta-
tions alone.

In some detail: You can learn the essentials of this INVOCATION ASSEMBLY LINE variant from Figure
9 which shows two INVOCATION ASSEMBLY LINES. While they are made of a number of processing
stations, each being assigned a single processing task, their exact number and quality is not known
to any central entity which is extrinsic to the INVOCATION ASSEMBLY LINES themselves. Most im-
portantly, the line owners do not manage, nor are they aware of the station layout to be enacted when
processing an invocation. Rather, each processing station (ps) points to a successor station (ps + 1),
if available. In turn, inserting processing stations on demand requires identifying the right location in
terms of its direct antecedent station as the registrar. Therefore, the control and data flow is the result
of a decentralised composition process.

F3 – 22



This has important consequences, especially for realising PROCESSING SHORTCUTS (pp. 20) and
RECONFIGURABLE PROCESSING PATHS (pp. 18). Shortcuts can basically be achieved by resolving
the targeted processing step by following the forward references along the station chain. However,
the target station must be known to the extension developer and, thus, the source processing station.
Also reconfigurations of the station chain happen under conditions of decentralised flow control. It is
possible to allow processing station may insert or remove subsequent ones by tracking the forward
references. Note, however, that the absolute positioning of a processing stations is not guaranteed in
the presence of multiple, active framework extensions which manipulate this station layout.

This SINGLE-TASK PROCESSING STATION strategy, incarnating a LAYER variant for the processing
infrastructure, is found for Mono .NET Remoting (Mono/R, see [40, 50]) and Mono Olive (Mono/O;
see [41]). Details are given in Section 7 on known uses.

F3 – 23



Multi-Task Processing Stations

You are in a situation in which invocation pattern variants (e.g., an in-only MEP [17, 25]) are nego-
tiated through INTERFACE DESCRIPTIONS or, even more lazily, through the INVOCATION CONTEXT.
Once registered, this invocation pattern is mapped to a configuration to be applied to the processing
infrastructure. Such a configuration involves a specific set of INVOCATION ASSEMBLY LINES. Also,
you are required to track the state of the underlying MESSAGE exchanges precisely, e.g., in order to
verify completion and failure conditions.

The middleware framework must be able to devise arrangements of INVOCATION ASSEMBLY
LINES which can be monitored for specified events (i.e., completions, failures, and notifications)
and for processing states. At the same time it must not lose its capability of forming PARTIAL
PROCESSING PATHS. How can a processing infrastructure, which appears predetermined in
terms of processing steps and operations covered, preserve the adaptability still required?

Similar to the SINGLE-TASK PROCESSING STATIONS (pp. 22), you must review the design dimensions
of organising the control and data flow in the light of the above requirements: the centralisation and the
placement. A centralised organisation of the processing infrastructure fits the monitoring requirement
better than a decentralised one. Therefore, the INVOCATION ASSEMBLY LINES should be managed
and tracked by a central controller entity.

Where to place the flow information (e.g., processing state flags), which is used to monitor and
regulate the control and data flow, is more difficult to answer. An intrinsic placement would store this
kind of control information with the core elements of the processing infrastructure, i.e. processing sta-
tions. In that sense, they would turn stateful. Statefulness, however, limits the reusability of processing
paths in the sense of PARTIAL PROCESSING PATHS (pp. 11). An extrinsic placement would have this
information bits managed with the invocation data items, e.g., the INVOCATION CONTEXT. This, how-
ever, makes it more challenging to provide for the introspection of the processing state from the angle
of the controller entity.

Figure 10: Multi-task assignments, fixed, and centralised station layout

Therefore:
Devise a fixed layout of processing stations which is then shared by different INVOCATION AS-
SEMBLY LINES. As for fixing, arrange for a manager entity which stores the processing layout
as well as the task assignment. Provide for a protocol to access and query the station layout.
Make processing stations capable of managing and performing multiple processing tasks. This
permits you to enforce dependency constraints between processing tasks without stations being
arrangeable.

The solution involves a fixed number of multi-task processing stations: Figure 10 shows two INVO-

F3 – 24



CATION ASSEMBLY LINES, each containing three explicitly labelled processing stations (i.e., ps1,ps2,
etc.). The processing stations are managed by and their participation in realising the two INVOCATION

ASSEMBLY LINES is registered with the line owners, either the REQUESTOR or the SERVER REQUEST

HANDLER. Thus, the current processing state (in the light of a ruling invocation pattern) can be intro-
spected at any time from the line owners as manager and monitoring entities. The line owner are also
responsible to serve with a task registration and introspection interface to client applications. To give
the processing infrastructure the needed flexibility, you must allow for fine grained techniques for as-
signing multiple processing tasks to this set of processing stations. The assignment mechanism needs
to be versatile enough to express the precedence constraints as a particular ordering upon assigning
tasks. This strategy is often found realised by or deeply integrated with INVOCATION INTERCEPTORS.

Known uses of this INVOCATION ASSEMBLY LINE variant are Apache Axis2/Java (Axis2; see
[5, 46, 21]) and Apache CXF (CXF; see [6]). These two frameworks lay out a predetermined, though
reconfigurable, arrangement of processing stations referred to as phases in both cases. These layouts
can only be accessed through and are effectively managed by central manager entities. While these lay-
outs comprise default sets of processing stations, the manager delivers predefined subsets thereof for
forming special-purpose INVOCATION ASSEMBLY LINES on demand, e.g., for handling REMOTING

ERRORS. In these two variants, the processing stations serve for interception points. So, processing
tasks are realised through CXF’s and Axis2’s INVOCATION INTERCEPTORS. The registration protocol
for INVOCATION INTERCEPTORS permits the developer to assign processing tasks in a fine-grained
manner, including positioning relative to other INVOCATION INTERCEPTORS and absolute position-
ing rules. The latter is important to provide guarantees that core processing tasks are executed at the
appropriate positions. Details follow in the subsequent section.

F3 – 25



6 Motivating Example Resolved

Let us return to the motivating example considered in Section 4.2 and let us briefly walk through
applying the small pattern language presented here to structure this design decision space. As frame-
work developers, the example confronts us with the requirement of providing support for optionally
securing end-to-end message delivery. This requirement was evaluated against three possible strate-
gies: the refinement of the MARSHALLER or the REQUEST HANDLER components alone, as well as an
INVOCATION INTERCEPTOR variant. Each of these approaches reflects requirements and forces cap-
tured by the RECONFIGURABLE PROCESSING PATHS pattern (see Section 5, pp. 18). An application
which requires delivery encryption should be able to add both encrypting and decrypting operations
at processing stages which provide read and write access to the streamed outgoing and the streamed
incoming messages. In addition, such an application might act both as client- and server application
so that this end-to-end encryption service must be realised for the client- and server roles taken by our
middleware framework. Also, this framework extension should only be activated when being used by
this application. That is, this application-specific extension should not interfere with other remoting
applications integrating our middleware framework. Finally, the extension should be applicable under
the entire range of possible service configurations, e.g., different marshaling and transport strategies.

<< >>component

Caller

Process A

<< >>component

Process B

Remote

Object

R
o
le

/ 
P
ro

c
e
s
s
/ 

M
a
c
h
in

e
 b

o
u
n
d
a
ry

<< >>component << >>component

Line owner: Server Request Handler

ps ps ps

ps ps ps ps ps ps

pspsps

Line owner: Requestor

processing station (ps)
ps

pt processing 

task (pt)

invocation data item:

indirected invocation

invocation data item:

message object
invocation data item:

streamed message

station-task

assignment

station-task

assignment

Invocation assembly line 4: 

client-side, inbound

Invocation assembly line 1: 

client-side, outbound

Invocation assembly line 3: 

server-side, outbound

Invocation assembly line 2: 

server-side, inbound

pt1

m
essage

construction

m
arshaling

delivering

pt3 pt4

pt2

encrypting

m
essage

extraction
dem

arshaling

receiving

pt5 pt7 pt8

pt6

decrypting

m
essage

construction

m
arshaling

delivering

pt1pt3pt4

pt2

encrypting

m
essage

extraction

dem
arshaling

receiving

pt5pt7pt8

pt6

decrypting

Figure 11: Using INVOCATION ASSEMBLY LINES in a REQUEST-REPLY scenario with message-level
encryption

Adopting a RECONFIGURABLE PROCESSING PATHS variant implies applying the INVOCATION AS-
SEMBLY LINE pattern (see Section 5, pp. 18). Hence, we conceptualise and design the message pro-
cessing infrastructure in terms of processing stations and processing tasks. Figure 11 provides an ex-
emplary instantiation of the INVOCATION ASSEMBLY LINE pattern. We devise outbound and inbound
INVOCATION ASSEMBLY LINES for both the client- and server-side processing infrastructure of our
framework. Each INVOCATION ASSEMBLY LINE consists of three processing stations, reflecting the
elementary life-cycle stages of the invocation requests and replies processed, such as objectified,
marshaled, and delivered (or, received). As for the basic processing tasks in a secured
REQUEST-REPLY invocation, as shown in Figure 11, both the client-side, outbound and the server-side,
outbound INVOCATION ASSEMBLY LINES perform a set of four processing tasks: message construc-
tion (pt1), marshaling (pt2), encrypting (pt3), and delivering (pt4). Similarly, the client-
side, inbound and the server-side, inbound INVOCATION ASSEMBLY LINES are characterised by the
succession of receiving (pt5), decrypting (pt6), demarshaling (pt7), and extracting

F3 – 26



(pt8) invocation data from incoming MESSAGES. This sharing of processing tasks between the client
and server side, though in different configurations, reflects a certain processing role symmetry This
symmetry mates with the ideas of freestanding MARSHALLER and PROTOCOL PLUG-IN [63, 53] com-
ponents which can be reused to realise either framework role.

In a next step, we plan to support secure delivery under invocation patterns other than REQUEST-
REPLY. Also, secure delivery requires a centralised monitoring of the ongoing processing operations.
Hence, we apply a strategy of MULTI-TASK PROCESSING STATIONS (see Section 5, pp. 24). The
second processing stations in each of the four INVOCATION ASSEMBLY LINES is responsible for
performing two tasks. The sequencing within the two resulting pairs of tasks (i.e., marshaling/
encrypting and decrypting/ demarshaling) realises our motivating example of a Security
provider (see also Figure 4). Again, the symmetry between the client- and server-side roles is pre-
served. When applying a MULTI-TASK PROCESSING STATIONS strategy, the processing station layout
is not only fixed, but also centrally controlled. That is, the REQUESTOR and SERVER REQUEST HAN-
DLER components as owners of the INVOCATION ASSEMBLY LINES store the station layout, provide a
management interface to maintain the station configuration as well as the processing task assignments
of the stations, and organise the dispatch upon the processing stations. This strategy is commonly im-
plemented by an INVOCATION INTERCEPTOR variant (see, e.g., [53]). By adopting the MULTI-TASK

PROCESSING STATIONS pattern, we obtained a design which facilitates realising PARTIAL PROCESS-
ING PATHS (see Section 5, pp. 18).

7 Known Uses

INVOCATION ASSEMBLY LINES are found in a selection of existing middleware frameworks: OpenORB
[58], Mono .NET Remoting (Mono/R; see [40]), Mono Olive (Mono/O, [41]), Apache Axis2/Java
(Axis2; see [5, 46, 21]), and Apache CXF (CXF; see [6]). In the following, we reflect on instantiations
of member entities (i.e., processing stations, processing tasks, line owners, etc.) and their interactions
characteristic for the INVOCATION ASSEMBLY LINE pattern.

7.1 OpenORB

The Java-based CORBA implementation OpenORB realises an INVOCATION ASSEMBLY LINE based
on a TEMPLATE CLASS [49, 53] collaboration between client and server managers, on the hand, and
the CORBA-specific COMMAND MESSAGE objects (i.e., ClientRequest and ServerRequest;
see [29, 13]), on the other hand.

OpenORB realises the SINGLE-TASK PROCESSING STATION variant of the INVOCATION ASSEM-
BLY LINE pattern, characterised by (a) a weak distinction between processing stations and tasks and
(b) a rigidly fixed number of processing stations or tasks. Processing stations are realised as operation
records of the COMMAND MESSAGE object-classes. Each COMMAND MESSAGE stipulates a signature
interface with a set of deferred operations, that is, HOOK METHODS to be completed by protocol-
specific implementations (e.g., RMI [57], IIOP [45], etc.). These operation implementation take the
role of processing tasks. Notably, processing tasks pertaining to protocol-specific MARSHALLERS

can be assigned this way. The processing flow is laid out by the client and server managers in terms of
an abstracted call sequence of HOOK METHODS.

The flexibility of task assignments, however, is limited to the possible method combinations along
a hierarchy of object-types compliant to the COMMAND MESSAGE interfaces. The task precedence is
bound to the call sequence of deferred operations implemented in the line owners and is, therefore,
fixed during runtime. The invocation data items actually processed are equally encapsulated by the
COMMAND MESSAGE objects. The central ORB object-classes act as line owners. The major limita-

F3 – 27



tions of this implementation variant of SINGLE-TASK PROCESSING STATIONS are also discussed in
[53].

7.2 Mono .NET Remoting

In Mono/R as a F/LOSS implementation of Microsoft .NET Remoting, the INVOCATION ASSEMBLY

LINE variant takes a dominant position in the overall design. Processing tasks are realised by sinks
[63, 50]. They incorporate properties of both INVOCATION ASSEMBLY LINES and INVOCATION IN-
TERCEPTORS which appear heavily interwoven.

As for INVOCATION ASSEMBLY LINE, the concepts of processing station and processing tasks
fuse to a large extent. They are embodied as so-called message, formatter, and channel sinks. They
are supported by sink providers or sink contributors. They provide an interface which is used by the
line owner elements, i.e., contexts and channels, to establish chains of sinks. Each sink provider can
only provide for registering a single sink. Message sinks aim at processing objectified representations
of MESSAGES while channel sinks operate on streamed forms of MESSAGES. Therefore, the invoca-
tion data items targeted are clearly MESSAGES. Message and channel sinks are linked in chains to
represent what we identified as instantiations of INVOCATION ASSEMBLY LINE variants. Sinks are or-
ganised as forward-linked lists and, hence, represent an intrinsic and dispersed design of SINGLE-TASK

PROCESSING STATIONS.

Line ownership and binding scopes are interdependent. On the one hand, these are variants of
CONFIGURATION GROUPS referred to as contexts. On the other hand, they cover the scope of PRO-
TOCOL PLUG-INS known as channels. Contexts [50] represent controlled execution domains for re-
mote objects and, therefore, participate in realising CONFIGURATION GROUPS. Contexts allow for at-
taching context-specific activation, lifecycle management, and extension behaviour to remote objects.
These are all realised in terms of message sinks. At the provider side, message sinks act as ultimate
invocation dispatchers (i.e., the StackBuilderSink) and lifecycle managers (i.e., the Lease-
Sink; see [63]). Channels provide the actual core BROKER functionality to the context-bound RE-
MOTE OBJECTS. Provided that target remote objects are collocated, a special-purpose channel (i.e.,
the CrossContextChannel) offers a shortcut invocation path between local contexts. If machine
boundaries need to be passed, channels represent CONFIGURATION GROUPS which install and set up
PROTOCOL PLUG-INS for the CLIENT and SERVER REQUEST HANDLERS. For the realm of channels,
the processing tasks represent core behaviour described for the BROKER and its essential component
patterns: We, roughly, find correspondences of pre-, post-, and marshaling phases for either invocation
direction. They are realised over the transition from message over formatter to channel sinks [63, 50].

7.3 Mono Olive

Two INVOCATION ASSEMBLY LINE solution variants are found in Mono/O, a F/LOSS implementation
of the Microsoft Windows Communication Foundation (WCF), formerly known as Indigo. While the
first, centred around the design elements of channels, is most visible and relevant for the overall de-
sign, the second is a small-scale, yet illustrative example hidden in the internals of Mono/O’s INVOKER

instantiation.

This first INVOCATION ASSEMBLY LINE occurrence is encountered in the collaboration of channels
and channel managers. This collaboration realises the SINGLE-TASK PROCESSING STATION vari-
ant of the pattern. Channels represent processing stations that are configured to perform a single-
only task on the invocation data items processed, i.e., MESSAGE operations. Stock channels that
come with Mono/O are limited to performing the role of MARSHALLERS (i.e., MessageEncoders)
and CLIENT or SERVER REQUEST HANDLERS. Certain channels, such as the REQUESTOR-specific
ClientRuntimeChannel, are core and non-optional elements of a Mono/O setup. Channels form

F3 – 28



INVOCATION ASSEMBLY LINES in terms of a channel stack or rather a forward-linked list of channels.
Internally, they are referred to as layered channels in such a configuration.

The idea of describing processing configurations underlying certain invocation patterns, which is
central to the INVOCATION ASSEMBLY LINE pattern, is clearly visible in Mono/O’s channels. There are
different kinds of channels which express three different invocation patterns in terms of their interfaces;
REQUEST-REPLY, FIRE AND FORGET, and a PEER-TO-PEER variant. Depending on the enclosing in-
vocation pattern, channels describe two INVOCATION ASSEMBLY LINES in terms of operation records,
one for blocking and one for non-blocking scenarios. At runtime, only one INVOCATION ASSEMBLY

LINE configuration manifests effectively.

The role of line owners is taken by the channel managers which also realise different kinds CLIENT

PROXIES. The invocation data items processed are the object representations of MESSAGES. The
binding scope is described by so-called bindings, Mono/O’s taste of CONFIGURATION GROUPS. They
provide custom channel managers and channels to realise certain remoting and transport protocols.
They are enacted either through a programming model or by deployment descriptors.

Internally, the INVOKER incarnation of Mono/O which is referred to as RequestProcessor re-
alises a second variant of the INVOCATION ASSEMBLY LINE pattern. Its processing infrastructure is
organised as a chain of ProcessorHandlers that can be compressed or extended to describe the
responsibilities of the INVOKER as a configurable set of processing tasks. Currently, this set describes
the tasks of dispatching the invocation upon the servant addressed and triggering the provider-side
INVOCATION INTERCEPTORS. This second occurrence of the INVOCATION ASSEMBLY LINE is an
example of a MULTI-TASK PROCESSING STATION implementation.

7.4 Apache Axis2

Another implementation variant of the MULTI-TASK PROCESSING STATIONS pattern is found in Axis2.
It is built around a strong conceptual discrimination between processing stations and processing tasks.
Processing stations are referred to as phases that are laid out in the global deployment descriptor;
therefore, phases are defined for the scope of the entire Axis2 BROKER. More recently, the addition
of phases through extension modules, referred to as dynamic phases, has been considered. Processing
tasks are represented by Axis2’s INVOCATION INTERCEPTORS, i.e., handlers, which are organised as
modules. Modules and per-module (i.e., dynamic) phases foster the idea of the INVOCATION ASSEM-
BLY LINE pattern. Processing stations are organised into different kinds of INVOCATION ASSEMBLY

LINES which are also specified at deployment time as so-called flows. The number of flows is prede-
termined and restricted. Axis2 distinguishes between flows for inward and outward bound invocation
data (i.e., in- and out-flow), and in- and outward bound REMOTING ERRORS (i.e., in- and out-fault
flow). Each flow manifests as an ordered set of phases. This represents an example of an extrinsically
and centrally organised control flow.

The data item processed is the INVOCATION CONTEXT which comes as a composite element
in Axis2, including the per-interaction, per-operation, per-service contexts. The INVOCATION AS-
SEMBLY LINES are attached to the combined REQUESTOR and INVOKER entity in Axis2, i.e., the
AxisEngine, as the line owner. In Axis2, we consider the INVOCATION ASSEMBLY LINE to be
found in the inter-workings of flows, phases, modules, and, finally, handlers; once per-module phases
are fully supported, the reach of this INVOCATION ASSEMBLY LINE variant will be substantially ex-
tended.

F3 – 29



7.5 Apache CXF

A further MULTI-TASK PROCESSING STATIONS instantiation comes with Apache CXF. Processing
stations, again first concepts in terms of phases, are solely deployed through PASSIVE REGISTRATION

[37] upon initialisation time. Custom phase definitions would have to be provided by injecting dedi-
cated phase managers. Processing tasks are modelled and implemented as PhaseInterceptors
which can be assigned to (a) multiple processing stations and (b) each phase can be assigned multiple
tasks. When assigning a task set to a processing station, the configuration strategy permits to specify
relative ordering for tasks handled by the same processing station.

CXF organises its phases into two major INVOCATION ASSEMBLY LINES reflecting inbound and
outbound directions, respectively. Each line owner, i.e., the REQUESTOR and INVOKER, has a pair
of inbound and outbound lines. This leaves aside lines for handling REMOTING ERRORS. REMOT-
ING ERRORS are processed by two dedicated INVOCATION ASSEMBLY LINES which branch from the
main INVOCATION ASSEMBLY LINES. Due to the dependency on phase managers, this INVOCATION

ASSEMBLY LINE variant is extrinsically mastered and centrally organised. While the INVOCATION

ASSEMBLY LINES are bound to their owners, their task assignments can be scoped in a fine grained
manner. As for the binding scope, PhaseInterceptors are registered for either the global, per-
binding, per-service, per-client, or per-endpoint scope. The invocation data items processed are MES-
SAGES only.

8 Discussion

The pattern language for INVOCATION ASSEMBLY LINES assists in (a) identifying processing com-
monalities for different BROKER roles and in (b) revealing the structural equivalence of central col-
laborators such as the REQUESTOR and the INVOKER. Processing tasks specific to each role are fully
qualified by the representational form of invocation data (i.e., kinds and strategies of marshaling and
demarshaling, canonical forms of objectified representation, etc.), their processing directions (inward,
outward) and the MESSAGE kinds to process. Therefore, the pattern language suggests a data flow
view [8] of the middleware. It aims at describing a middleware design as a series of transformations
on invocation-related data. From this angle, we aim at identifying design elements that are responsi-
ble for the transformations, the elements actually transformed, and the quality of the transformations
applied. The conceptual decomposition into atomic concepts such as processing stations organised in
processing lines, tasks, invocation data items, and binding scopes permits to express complementary
roles (e.g., consumer/provider, publisher/subscriber/notifier, etc.) based on a shared vocabulary.

When designing and developing a middleware framework, you are often required to support more than
one remoting technology based on a shared invocation and MESSAGE processing infrastructure. Web
Services (WS; [9, 39, 16, 17]), the Common Object Request Broker Architecture (CORBA; [45]),
Java Remote Method Invocation (Java RMI; [57]), Java Messaging Service (JMS; [56]), as well as
proprietary and ad hoc styles introduce important idiosyncrasies and specify control and data flow
requirements which are potentially conflicting when built on top of such a shared infrastructure. Re-
sulting design forces are addressed by the SERVICE ABSTRACTION LAYER [62, 64, 68] pattern. Such
an intermediate infrastructure distinguishes between the BROKER core infrastructure and possibly mul-
tiple frontend channels which mediate invocations in certain remoting styles and technology families.
This shields either side, the BROKER core and the frontend channels, from details orthogonal to their
concerns. Each frontend channel is realised by a CONFIGURATION GROUP [63]. CONFIGURATION

GROUPS make use of the facilities offered by the INVOCATION ASSEMBLY LINE pattern to adjust the
processing infrastructure for their needs and assign their processing tasks, represented by a proprietary
set of MARSHALLERS, PROTOCOL PLUG-INS, and INVOCATION INTERCEPTORS, accordingly.

In exemplary detail: You might plan to comply with the CORBA [45] or JAX-WS [15] speci-

F3 – 30



fications, beyond the core invocation and MESSAGE handling (e.g., MESSAGE formats). In this, you
are expected to implement CORBA-specific and JAX-WS-specific INVOCATION INTERCEPTOR se-
mantics, i.e., CORBA’s portable interceptors and JAX-WS’s handlers. This poses important design
problems: Do you foresee two widely independent INVOCATION INTERCEPTOR designs co-existing
in your framework? Or, do you plan to provide a common INVOCATION INTERCEPTOR instantiation
which is suitable for realising portable interceptors and handlers on top? This design problem is ag-
gravated because CORBA’s and JAX-WS’s INVOCATION INTERCEPTOR instantiations are situated in
predefined failure recovery schemes. These recovery models (informally labelled “flow stack model”
in the family of CORBA specifications [45, Section 1.6.4.3] or “handler execution model” in JAX-WS
[15, Section 9.3.2]) define that special-purpose points of interception are to be enforced (in a particular
ordering) once an exceptional condition is sensed. This allows developers to foresee limited recovery
or, at least, cleanup tasks. INVOCATION ASSEMBLY LINES help understand and realise such deviating
control and data flow designs.

A tentative survey of existing middleware frameworks gives credence to this problem statement
related to SERVICE ABSTRACTION LAYERS. For example, both Mono/R [40] and Apache CXF [6]
provide CORBA frontend channels (i.e., Mono/R’s IIOP channel and CXF’s CORBA binding). As
for specification-compliant INVOCATION INTERCEPTORS, CXF does not only provide its framework-
specific INVOCATION INTERCEPTOR variant (i.e., phase interceptors), but also JAX-WS handlers.

We want to recapitulate the relationship between INVOCATION ASSEMBLY LINE and INVOCATION

INTERCEPTOR, commonly found heavily interwoven in known uses of these two patterns. We may
attempt to discriminate between their matters by looking at established kinds of pattern relationships;
we limit ourselves to the usage relationship as identified by [43].

• INVOCATION ASSEMBLY LINE uses INVOCATION INTERCEPTOR: We aim at providing a SER-
VICE ABSTRACTION LAYER and devise CONFIGURATION GROUPS based thereupon. A variant
of INVOCATION ASSEMBLY LINE uses INVOCATION INTERCEPTORS to enforce the decoupling
of processing stations and processing tasks. In a straightforward reading, INVOCATION ASSEM-
BLY LINES assign a single task to each processing station. However, more complex task prece-
dence structures and the need for organising processing tasks in an atomic and modular manner
require processing stations to take responsibilities for several interdependent tasks. This task
assignment strategy can be realised by devising each processing station as a point of intercep-
tion, and, therefore, dispatcher for INVOCATION INTERCEPTORS. Tasks, in turn, are realised
as concrete INVOCATION INTERCEPTORS to be registered with a particular processing station.
It should be possible to express relative orderings of the task-representing INVOCATION IN-
TERCEPTORS to be able to enforce more complex task precedence constraints. Axis2 and CXF
provide occurrences of this relationship.

• INVOCATION INTERCEPTOR uses INVOCATION ASSEMBLY LINE: A realisation of the INVOCA-
TION INTERCEPTOR patterns calls for a versatile or extensible set of points of interception. As
prominently stated in [52, p. 137], designing an adequate model domain of interception points
which anticipates the manifold requirements of integrating applications and framework exten-
sions is non-trivial. There is both the risk of devising too limited or too bloated a number of
interception points. The INVOCATION ASSEMBLY LINE pattern can help balance these forces
by allowing to vary the number of interception points (i.e., processing stations) as needed. This
can be used to organise the registration and dispatch of INVOCATION INTERCEPTORS in a more
flexible manner.

Known uses of both the INVOCATION ASSEMBLY LINE and INVOCATION INTERCEPTOR pat-
terns exemplify this use relationship, e.g., dynamic message sinks in Mono/R [40] and message
inspectors in Mono/O [41]. The pattern story on Axis2 in [63, pp. 238] provides an outlook on
shifting the responsibility for laying out the model of interception points into the INVOCATION

INTERCEPTORS themselves by means of an AspectHandler.

F3 – 31



You may think of these two patterns as being at either end of a continuous spectrum. In its strictest
variations, the INVOCATION INTERCEPTOR pattern has been documented as a hooking technique that
preserves orthogonality to the surrounding invocation infrastructure of the BROKER [63, p. 130]. Add-
on functionality provided by INVOCATION INTERCEPTOR is allowed constrained access to the overall
BROKER state only. This characterisation applies to CORBA’s portable interceptors and certain uses
of INVOCATION INTERCEPTOR in Mono/R, i.e., dynamic message sinks. The more this orthogonality
and sanity requirements are loosened, the more appropriate is the INVOCATION INTERCEPTOR as a
solution part of the INVOCATION ASSEMBLY LINE pattern.

The inter-workings between the INVOCATION ASSEMBLY LINE and INVOCATION CONTEXT patterns
must be considered thoroughly. Both as an argument-passing strategy and as a participant in the INVO-
CATION INTERCEPTOR [31, 65], the INVOCATION CONTEXT already serves the purpose of capturing
processing information. By representing an invocation’s compositional layout in the INVOCATION

CONTEXT, e.g., by storing MESSAGES in different processing states, the necessary processing tasks
may be inferred from the compositional state of the INVOCATION CONTEXT. The INVOCATION CON-
TEXT’s composition as a state compound allows for varying processing behaviour.

Alternatively, the INVOCATION CONTEXT can be used to realise a FLAGS FOR STATES [26] strat-
egy. If the processing model throughout the BROKER or parts thereof, i.e., the INVOCATION INTER-
CEPTOR infrastructure, is organised around state flags, the INVOCATION CONTEXT offers itself as a
delivery vehicle. The state flags are accessed at important decision points and used to realise condi-
tional branching. The use of the INVOCATION CONTEXT with state flags is an example of a central
and extrinsic organisation of processing behaviour. Considering the INVOCATION CONTEXT as a state
compound represents a dispersed and extrinsic approach.

Applying the INVOCATION ASSEMBLY LINE pattern comes with certain advantages and drawbacks.
Major advantages result from an increased level of separating between concerns of developing a
framework as an intentionally incomplete, cross-domain infrastructure and concerns pertaining to
domain-specific framework extensions. Drawbacks can be explained by the increased design com-
plexity, caused by adding a further piece of abstracted-general design to your framework. Besides, we
may encounter negative effects on runtime qualities due to more extensive resource usage.

By specifying custom configurations for processing stations, tasks, task assignments, and layouts
for the so-realised INVOCATION ASSEMBLY LINES, developers of framework extensions can achieve
necessary behavioural variations through a piece of abstracted-general design and a dedicated pro-
gramming model. This facilitates adding support for component interaction styles and invocation pat-
terns not anticipated initially. The division of development labour, in particular between framework
and extension developers, can be deepened.

The ability to adjust the processing infrastructure and the decoupling of processing stations from
tasks permits to reuse existing processing facilities for developing new CONFIGURATION GROUPS.
Reuse candidates are MARSHALLERS and INVOCATION INTERCEPTORS bundled with existing ones.
More generally, INVOCATION ASSEMBLY LINES allow to capture symmetry and asymmetry found
crosscutting the BROKER pattern compound decomposed into responsibility-based LAYERS [8]. Com-
ponents residing at each layer exhibit similar or comparable requirements on the processing infrastruc-
ture. INVOCATION ASSEMBLY LINES can be used to express these commonalities and refine variations
as a composition and reconfiguration problem. Framework reuse is therefore fostered by an improved
composability.

There are important tensions caused by potential gains and losses in modular comprehensibility.
On the one hand, actual responsibilities for processing invocation data are more clearly separated from
organising them in a particular flow of processing tasks. This permits to reason about MARSHALLER,
PROTOCOL PLUG-INS, etc. in a modular manner. In addition, otherwise squattered decision points
which shape the control and data flow in the processing infrastructure can be concentrated at certain

F3 – 32



places of control. At the same time, the modular self-sufficiency of CONFIGURATION GROUPS is po-
tentially reduced. The INVOCATION ASSEMBLY LINE pattern promotes the idea of expressing a variety
of processing task dependencies based on a common infrastructure of processing stations and explicit
behavioural models. The expressible variety risks burdening the development of framework extensions
with the extra need for scrutinising the subtle details of specifying INVOCATION ASSEMBLY LINES.

Acknowledgments

We would like to thank our EuroPLoP 2009 shepherd Didi Schütz for his constructive and insightful
feedback on this paper. Thanks are also due to the participants of the writer’s workshop F for providing
substantial feedback: Anjali Das, Veli-Pekka Eloranta, Arto Juhola, Farah Lakhani, Marko Leppänen,
Ville Reijonen, Martin Wagner, and Tim Wellhausen.

References

[1] N. Abu-Ghazaleh, M. J. Lewis, and M. Govindaraju. Differential Serialization for Optimized SOAP
Performance. In Proceedings of the 13th International Symposium on High Performance Distributed
Computing (HPDC), pages 55–64, Honululu, Hawaii, June 2004.

[2] L. Aldred, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. On the Notion of Coupling
in Communication Middleware. In Meersman et al. [38], pages 1015–1033.

[3] N. Allen. Asymmetry Between Listeners and Factories. Discussion Blog [In-
ternet], [unknow location] : Nicholas Allen, 2006 Oct - [cited 2009 June 3],
Available from: http://blogs.msdn.com/drnick/archive/2006/10/25/
asymmetry-between-listeners-and-factories.aspx, 2006.

[4] D. Andresen, D. Sexton, K. Devaram, and V. P. Ranganath. LYE: A High-Performance Caching
SOAP Implementation,. In Proceedings of the 2004 International Conference on Parallel Process-
ing (ICPP’04), pages 143–150, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[5] Apache Foundation. Apache Axis2/Java - Next Generation Web Services. http://ws.apache.
org/axis2/, last accessed: October 13, 2008.

[6] Apache Foundation. Apache CXF: An Open Source Service Framework. http://cxf.apache.
org/, last accessed: October 13, 2008.

[7] P. Avgeriou. Run-time Reconfiguration of Service-Centric Systems. In Proceedings of 11th European
Conference on Pattern Languages of Programs (EuroPlop 2006), Irsee, Germany, 2005.

[8] P. Avgeriou and U. Zdun. Architectural Patterns Revisited – A Pattern Language. In Proceedings of
10th European Conference on Pattern Languages of Programs (EuroPlop 2005), pages 1 – 39, Irsee,
Germany, July 2005.

[9] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thattle, and
D. Winer. Simpe Object Access Protocol (SOAP) 1.1. W3C Note, W3C, 2000.

[10] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup Language
(XML) 1.0 (Fifth Edition). W3C Recommendation, World Wide Web Consortium (W3C), 2008.

[11] P. A. Buhler, C. Starr, W. H. Schroder, and J. Vidal. Preparing for Service-Oriented Computing: A
Composite Design Pattern for Stubless Web Service Invocation. In Proceedings of the 4th International
Conference on Web Engineering (ICWE 2004), Munich, Germany, volume 3140 of Lecture Notes in
Computer Science, pages 603–604. Springer Berlin / Heidelberg, July 2004.

[12] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Architecture — A Pattern
Language for Distributed Computing, volume 4 of Wiley Series in Software Design Patterns. John
Wiley & Sons Ltd., New York, 2007.

[13] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Architecture – On Pat-
terns and Pattern Languages. Wiley Series on Software Design Patterns. John Wiley & Sons Ltd.,
Chichester, England, April 2007.

[14] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, editors. Pattern-Oriented Software
Architecture – A System of Patterns. John Wiley & Sons Ltd., Chichester, England, 2000.

[15] R. Chinnici, M. Hadley, and R. Mordani. The Java API for XML Web Services (JAX-WS) 2.0. Java
Specification Request 224, Sun Microsystems Inc., 2005.

[16] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
(WSDL) 1.1. W3C Note, W3C, 2001.

F3 – 33



[17] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
(WSDL) 2.0. W3C Recommendation, W3C, 2007.

[18] J. O. Coplien and D. C. Schmidt, editors. Pattern Languages of Program Design. Addison-Wesley,
Reading, MA, USA, 1st edition, 1995.

[19] D. Davis, A. Karmarkar, G. Pilz, S. Winkler, and Ü. Yalçinalp. Web Services Reliable Messaging
(WS-ReliableMessaging) 1.2. OASIS Standard Specification, OASIS Web Services Reliable Exchange
(WS-RX) TC, 2008.

[20] T. Dierks and C. Allen. The TLS Protocol Version 1.0. Request for Comments (RFC) 2246, The
Internet Society – Network Working Group, 1999.

[21] J. Ekanayake and D. Gannon. Common Architecture for Functional Extensions on Top of Apache Axis
2. Draft report Y790, Department of Computer Science, School of Informatics, Indiana University,
2006.

[22] O. Evans. The Young Mill-Wright and Millers Guide: Illustrated by Twenty-Eight Descriptive Plates
and a Description of an Improved Merchant Flour Mill with Engravings by C. and O. Eveans, Engi-
neers. Carey, Lea and Blanchard, Philadelphia, 1834.

[23] R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. Request for Comments (RFC) 2616, The Internet Society – Network
Working Group, June 1999.

[24] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Protocol Version 3.0. Internet draft, Netscape
Communications, November 1996.

[25] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar, and Y. Lafon.
Simpe Object Access Protocol (SOAP) 1.2: Adjuncts. W3C Recommendation, W3C, April 2007.

[26] K. Henney. Methods for States. In P. Hruby and K. E. Sørensen, editors, Proceedings of the First
Nordic Conference of Pattern Languages of Programs (VikingPLoP 2002), Copenhagen, Denmark,
September 2003.

[27] M. Henning. A New Approach to Object-Oriented Middleware. IEEE Internet Computing, May-
June:66–75, 2004.

[28] M. Henning and M. Spruiell. Distributed Programming with Ice. Manual 3.3.1, ZeroC, Inc., 2009.
[29] G. Hohpe. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions.

Addison-Wesley, 2nd edition, 2004.
[30] D. Jayasinghe. Dynamic Phase support. Mailing List Document, last accessed August 18, 2008, May

2007.
[31] A. Kelly. Encapsulated Execution Context. In Proceedings of EuroPLoP 2003, Workshop D, 2003.
[32] M. Kircher, M. Völter, K. Jank, C. Schwanninger, and M. Stal. Broker Revisited. In Proceedings of

EuroPLoP 2004, Irsee, Germany, 2004.
[33] P. Leitner, F. Reisenberg, and S. Dustdar. DAIOS – Efficient Dynamic Web Service Invocation. Techni-

cal Report TUV-1841-2007-01, Distributed Systems Group, Information Systems Institute, Technical
University of Vienna, 2007.

[34] C. I. V. Lopes. D: A Language Framework For Distributed Programming. Phd thesis, College of
Computer Science, Northeastern University, November 1997.

[35] O. L. Madsen. Towards Integration of State Machines and Object-Oriented Languages. In TOOLS
Europe [60], pages 261–274.

[36] D. Manolescu, M. Völter, and J. Noble, editors. Pattern Languages of Program Design 5. Addison-
Wesley Professional, 2005.

[37] K. Marquardt. Patterns for Plug-ins. In Manolescu et al. [36].
[38] R. Meersman, Z. Tari, M.-S. Hacid, J. Mylopoulos, B. Pernici, Ö. Babaoglu, H.-A. Jacobsen, J. P.

Loyall, M. Kifer, and S. Spaccapietra, editors. Proceedings of the On the Move to Meaningful In-
ternet Systems Conferences (Part I): CoopIS, DOA, and ODBASE, OTM Confederated International
Conferences, CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus, October 31 - November 4, 2005,
volume 3760 of Lecture Notes in Computer Science. Springer, 2005.

[39] N. Mitra and Y. Lafon. Simpe Object Access Protocol (SOAP) 1.2. W3C Recommendation, W3C,
2007.

[40] Mono Project. Mono .NET Remoting. http://www.mono-project.com/, last accessed:
February 12, 2009.

[41] Mono Project. Mono Olive. http://www.mono-project.com/Olive, last accessed: February
12, 2009.

[42] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker. Web Services Security Core Specification 1.1
(WS-Security 2004). OASIS Standard Specification, Organization for the Advancement of Structured
Information Standards (OASIS), 2006.

F3 – 34



[43] J. Noble. Classifying Relationships between Object-Oriented Design Patterns. In Proceedings of the
Australian Software Engineering Conference 1998 (ASWEC’98), pages 98–109, Adelaide, Australia,
November 1998.

[44] S. Y. Nof, W. E. Wilhelm, and H.-J. Warnecke. Industrial Assembly. Chapman & Hall, 1st edition,
January 1997.

[45] OMG. Common Object Request Broker Architecture (CORBA). Core Specification 3.0.3, Object
Management Group, Inc., 2004.

[46] S. Perera, C. Herath, J. Ekanayake, E. Chinthaka, A. Ranabahu, D. Jayasinghe, S. Weerawarana, and
G. Daniels. Axis2, Middleware for Next Generation Web Services. In Proceedings of the IEEE
International Conference on Web Services (ICWS’06), pages 833–840, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[47] J. Postel. Transmission Control Protocol. Request for Comments (RFC) 793, Information Sciences
Institute, University of Soutern California; Defense Advanced Research Projects Agency (DARPA),
1981.

[48] J. Postel. Simple Mail Transfer Protocol. Request for Comments (RFC) 821, Information Sciences
Institute, University of Soutern California, 1982.

[49] W. Pree. Framework Patterns. SIGS Books & Multimedia, 1996.
[50] I. Rammer and M. Szpuszta. Advanced .NET Remoting. APress Computer Bookshops, 2nd edition,

September 2004.
[51] B. Ramsdell. The TLS Protocol Version 1.0. Request for Comments (RFC) 2633, IETF – Network

Working Group, 2004.
[52] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Architecture,

chapter Interceptor, pages 109–141. John Wiley & Sons Ltd.Wiley, Chichester, England, 2000.
[53] J. Siddle. An interactive pattern story about remote object invocation. In Proceedings of the 16th

Conference on Pattern Languages of Programs (PLOP’09), Chicago, Illinois, USA, 2009.
[54] S. Soares, P. Borba, and E. Laureano. Distribution and persistence as aspects. Software – Practice and

Experience, 36:711–759, March 2006.
[55] M. Stal. Using Architectural Patterns and Blueprints for Service-Oriented Architecture. IEEE Soft-

ware, 23(2):54–61, March-April 2006.
[56] Sun Microsystems Inc. Java Messaging Service 1.1. Java Community Specification (last accessed:

February 13, 2009), Sun Microsystems Inc., 2008.
[57] Sun Microsystems Inc. Java Remote Method Invocation. White Paper (last accessed: April 14, 2008),

Sun Microsystems Inc., 2008.
[58] The Community OpenORB Project. OpenORB 1.4.0. http://openorb.sourceforge.net/,

last accessed: November 9, 2008.
[59] E. Tilevich, W. R. Cook, and Y. Jiao. Explicit Batching for Distributed Objects. Working paper,

Department of Computer Sciences, UT Austin, 2009.
[60] TOOLS Europe, editor. 29th International Conference on Technology of Object-Oriented Languages

and Systems (TOOLS Europe 1999), 7-10 June 1999, Nancy, France. IEEE Computer Society, 1999.
[61] M. T. Valente and R. Palhares. Collocation optimizations in an aspect-oriented middleware system.

Journal of Systems and Software, 80(10):1659–1666, 2007.
[62] O. Vogel. Service Abstraction Layer. In Proceedings of EuroPLoP 2001, Irsee, Germany, 2001.
[63] M. Völter, M. Kircher, and U. Zdun. Remoting Patterns: Foundations of Enterprise, Internet and Re-

altime Distributed Object Middleware. Software Design Patterns. John Wiley & Sons Ltd., Chichester,
England, 2005.

[64] U. Zdun. Reengineering to the Web: Towards a Reference Architecture. In Proceedings of Sixth Euro-
pean Conference on Software Maintenance and Reengineering (CSMR’02), pages 164–176, Budapest,
Hungary, March 2002.

[65] U. Zdun. Patterns of Argument Passing. In Proceedings of the 4th Nordic Conference of Pattern
Language of Programs (VikingPLoP2005), pages 1 – 25, Otaniemi, Finland, 2005.

[66] U. Zdun. Engineering Loosely Coupled Software Architectures — A Pattern-Based Approach. Habil-
itation thesis, Vienna University of Economics and Business Administration, Vienna, Austria, January
2006.

[67] U. Zdun. Pattern-Based Design of a Service-Oriented Middleware for Remote Object Federations.
ACM Transactions on Internet Technology, 8(3):1–38, 2008.

[68] U. Zdun, C. Hentrich, and W. M. P. V. der Aalst. A Survey of Patterns for Service-Oriented Architec-
tures. International Journal of Internet Protocol Technology, 1(2):132–143, 2006.

[69] U. Zdun, M. Völter, and M. Kircher. Pattern-Based Design of an Asynchronous Invocation Framework
for Web Services. International Journal of Web Service Research, 1(3):42–62, 2004.

[70] C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in Middleware Systems. SIGPLAN
Notices, 39(10):188–205, 2004.

F3 – 35



A Pattern Thumbnails

Pattern Problem Solution

SERVICE ABSTRACTION LAYER (see [62,
64, 68])

Your middleware system must allow for
providing and consuming remote objects
through multiple channels, i.e., remot-
ing technologies and transport protocols.
This channel support should be indepen-
dent from the core invocation handling on
remote objects. New channel should be
addable on demand.

The SERVICE ABSTRACTION LAYER
adds an extra layer which receives and
mediates requests originating from dif-
ferent channels. Each channel contains a
channel adapter which translates back and
forth requests between the backend and
frontend channel formats. This permits
you to separate between a core BROKER
and frontend channel extensions on top of
it.

REQUESTOR (see [63, 66, 13, 32]) How can the assembly of invocation data
and disassembly of invocation results
(e.g., compiling the data needed, mar-
shaling to and demarshaling from mes-
sage representations) be organised in a
centralised manner? Can we avoid re-
implementing this functionality repeat-
edly when targeting an arbitrary number
of REMOTE OBJECTS?

REQUESTORS broker invocation data and
results between a calling and called RE-
MOTE OBJECT. They construct canoni-
cal, objectified representations of invoca-
tion data, i.e., MESSAGES. They orches-
trate the subsequent processing steps and,
thereby, shield its ancestor LAYERS from
remoting details.

INVOKER (see [63, 66, 32]) There are recurring and possibly redun-
dant processing tasks to achieve when a
MESSAGE arrives at an transport endpoint.
This includes demarshaling and disassem-
bling the invocation data, extracting con-
textual dispatch data etc. These tasks are
general for an arbitrary number of tar-
geted REMOTE OBJECTS. Can we avoid
redundancy and resulting complexity in
MESSAGE processing, invocation setup,
and invocation dispatch?

The INVOKER accepts incoming MES-
SAGES and proceeds by disassembling
them. Based on the extracted object ref-
erences, transmitted by the remote RE-
QUESTOR, the INVOKER may assemble
the actual invocation accordingly and dis-
patch it to the correct REMOTE OBJECT.
The invocation result is obtained and re-
turned to the remote REQUESTOR in re-
verse processing order.

MARSHALLER (see [63, 66, 32]); relates
to the MESSAGE pattern and its variants
(see e.g. [12, 29])

Invocation and contextual data must be
transported in the shape of MESSAGES,
i.e., as structured character and, ulti-
mately, as structured byte streams. Re-
moting technologies differ in their choice
for constructing MESSAGES. How can the
transformation back and forth between in-
memory representations and MESSAGES
be organised?

A MARSHALLER is in charge of trans-
forming invocation data, invocation re-
sults, and contextual data in either repre-
sentation. MARSHALLERS reside at both
ends of a remote invocation and they must
be customisable to support different mar-
shaling strategies and optimisations.

CLIENT and SERVER REQUEST HAN-
DLER (see [63, 66])

Managing the transport of MESSAGES in-
volves redundant and recurring tasks to be
achieved by the REQUESTOR/ INVOKER
or REMOTE OBJECTS. Transport-level
tasks include connection and resource
management, as well as the accommo-
dation of application-level and transport-
level modes of synchronisation. In addi-
tion, transport errors need to be propa-
gated or constraints enforced (e.g., time-
outs). How can we dissociate this respon-
sibility from the REQUESTOR/ INVOKER
or the REMOTE OBJECT?

The CLIENT and SERVER REQUEST HAN-
DLER are shared by all REQUESTORS
and INVOKERS of a BROKER incarnation,
respectively. They enclose all transport-
level details, the processing of REMOT-
ING ERRORS, and the transport-specific
resource management (e.g., concurrency
requirements etc.). They are either di-
rectly instructed by the REQUESTOR and
INVOKER or yield the control upon recep-
tion of transport-level events.

continued on next page

F3 – 36



continued from previous page
Pattern Problem Solution
REQUEST-REPLY [29] Two applications communicate through

an exchange of MESSAGES. Each MES-
SAGE realises a one-way conversation.
What if the sending application requires a
reply from the receiver of the initial MES-
SAGE?

To realise a two-way conversation, ex-
change pairs of request and reply MES-
SAGES. Depending on the intended cou-
pling between the sender and receiver,
send the reply MESSAGE either via the re-
quest’s back channel or, alternatively, via
its own communication channel.

FIRE AND FORGET [63] A client application wants to notify a re-
mote object of an event. Neither a result
is expected, nor does the delivery have to
be guaranteed. A one-way exchange of a
single MESSAGE is sufficient.

A FIRE AN FORGET operations is per-
formed by the REQUESTOR without ac-
knowledging the processing or delivery
status to the client. The thread of control
is yielded to the client immediately.

MESSAGE [29, 12] How can we provide (semi-) structured
exchange formats for streamed invocation
data between remoting ends?

Organise invocation (and contextual) data
in terms of MESSAGES which annotate
the streamed invocation data with certain
meta-data, e.g., identifying the streamed
data kind, its origin and destination, size.
For processing purpose, provide for a uni-
form reification in object structures.

REMOTING ERROR [63] Invocation handling by a BROKER con-
tains many sources of failure. Particular
types of error conditions are found within
the BROKER, such as network and ma-
chine failures, unavailability or miscon-
figuration of remote objects.

Capture and propagate such error condi-
tions as REMOTING ERRORS between the
remoting middleware involved. Allow for
discriminating between REMOTING ER-
RORS emanating from different sources
such as MESSAGE handling and transmis-
sion.

INTERFACE DESCRIPTION [63] Developers of client and server applica-
tions, and their toolkit of proxy and stub
code generators, must access the inter-
faces of remote objects.

Prepare and offer INTERFACE DESCRIP-
TIONS which describe the interface of
remote objects, e.g. in terms of an in-
terface description language. INTERFACE
DESCRIPTIONS negotiate operation signa-
tures and REMOTING ERROR types be-
tween the remote ends.

CONFIGURATION GROUP [63] Remote objects often share configuration
properties regarding e.g. marshaling tech-
niques and transport protocols. What is an
appropriate scope for defining and activat-
ing such properties?

Provide CONFIGURATION GROUPS which
organise INVOCATION INTERCEPTORS
and MARSHALLERS shared by a coherent
group of remote objects. Activating such
a CONFIGURATION GROUP means enact-
ing the contained marshaling and exten-
sion operations.

INVOCATION INTERCEPTOR [63] Developers of client and server applica-
tions often must provide support and add-
on functionality on top of remote invoca-
tions (e.g., securing remote invocations).
These add-ons should be realised trans-
parently without affecting remote invo-
cations directly. Also, these add-ons can
be shared between clients and remote ob-
jects.

Provide hooks placed along the invoca-
tion path. Have INVOCATION INTERCEP-
TORS operate on the invocation data di-
rectly or have them exchange informa-
tion via an INVOCATION CONTEXT to re-
alise the add-on services. INVOCATION
INTERCEPTORS are managed by middle-
ware users to create extensions.

INVOCATION CONTEXT [63] How to organise and manage contextual
or auxiliary data related to underlying re-
mote invocations without modifying the
latter and breaking orthogonality?

Contextual invocation data is embodied
by a dedicated object structure, the INVO-
CATION CONTEXT. This object structure
provides a uniform interface for manipu-
lating and extracting this context data. In
addition, it serves as a CONTEXT OBJECT
[65] for arguments passing between e.g.
INVOCATION INTERCEPTORS [63].

Table 1: Thumbnail sketches of relevant remoting patterns (see e.g. [63, 32, 66])

F3 – 37



B Invocation Data Items

The following four kinds of invocation data items can be found in BROKER-based middleware frame-
works:

• A MESSAGE [29, 12] provides means to exchange core, contextual, and auxiliary invocation
data between remoting ends, i.e., across machine and process boundaries. MESSAGES allow
us to stream in-memory information (e.g., requests and replies) into structured byte and char-
acter sequences. By structured, we mean that MESSAGES contain annotating meta-data which
describes the streamed data and facilitates its interpretation and restoration into in-memory rep-
resentations. This meta-data identifies different types of streamed data (e.g., the operation name,
parameters, etc.), its size, its origin, and its destination. Examples include a wide range of binary
(e.g., CORBA’s IIOP binary encoding [45] or ICE’s binary encoding [28]) or structured markup
MESSAGE formats (e.g., XML [10] encodings such as the different SOAP/XML variants [9, 39]).

• An INTERFACE DESCRIPTION [63] represents the interface of the remote object accessed by
the client component. These INTERFACE DESCRIPTIONS are important for client developers.
On the one hand, they permit developers to inspect interface capabilities and generate requests
manually. On the other hand, INTERFACE DESCRIPTIONS assist in generating client-side code
representations of remote interfaces, either ahead of time (i.e., by a code generator) or just in
time (i.e., by means of reflection). INTERFACE DESCRIPTIONS are often realised through an
interface description language. Commonly known examples are the Web Service Description
Language (WSDL 1.1/ 2.0; [16, 17]) and the CORBA Interface Description Language (IDL;
[45]).

• INVOCATION CONTEXTS [63] are used in situations that demand the exchange of contextual
invocation data which describes certain conditions, constraints, and processing rules imposed
upon the underlying remote invocation (for instance, negotiating message exchange patterns as
described by WSDL 2.0 [17]). At the same time, it is tedious and invasive to attach this informa-
tion to the core invocation data explicitly. This would effectively clutter the signature interfaces
of remote operations. Therefore, dedicated object structures are used to pass contextual invo-
cation data through and between the client and server endpoints. For transport, INVOCATION

CONTEXTS are streamed into dedicated parts of invocation MESSAGES. Consider SOAP headers
[9, 39] or CORBA service contexts [45] as prominent examples. Note that INVOCATION CON-
TEXTS are also important for realising an extension infrastructure for add-on services in your
middleware framework. This will be discussed in the next section.

• REMOTING ERRORS [63] are particular exceptional values reported by the REQUESTOR, IN-
VOKER, and the REQUEST HANDLERS upon sensing errors in processing invocations and MES-
SAGES, as well as in connection and transport management. REMOTING ERRORS are also com-
municated between client and server endpoints and, thus, appear in the form of particularly
structured MESSAGES. They are also commonly mapped to concrete object types in order to
be injected into the local exception handling. For example, SOAP faults [9, 39] are used in the
context of Web Services to signal REMOTING ERRORS in invocations.

C Adaptability Requirements

C.1 Orthogonal Add-on Services

By orthogonal add-on services, we mean extensions which wrap around remote invocations without
affecting the structure and format of the core invocation data and its processing. In addition, they may
apply to several variants of remote invocations at the same time. Examples include security-related

F3 – 38



add-ons (e.g., authentication and authorisation mechanisms), transaction control, logging facilities,
persistent storage, and reliable messaging solutions. The example of the Security provider and
selective encryption (see also Figure 4) falls into the category of orthogonal add-on services. Further
examples and elaborations on add-on services are provided in [52] and, in particular, [63].

C.2 Invocation Styles

When creating a BROKER-based middleware, you will find yourself confronted with the requirement
to support multiple invocation styles, e.g., kinds of two-way and one-way invocations. This is often
demanded by families of remoting technologies. For instance, Web Services (WS) describe different
message exchange patterns (MEPs; [39]) between client and server components, such as out-in, in-
only, and so on. Invocation styles represent an inherently crosscutting concern, i.e., they affect several
LAYERS at once. For instance, different invocation styles require different REQUESTOR and INVOKER

interfaces and, therefore, introduce a coupling between the BROKER core and the integrating client and
server components. Transport-level requirements often differ substantially and cause special treatment
by the CLIENT and SERVER REQUEST HANDLERS.

Invocation styles fall into a set of common invocation patterns [69, 63]. For the scope of this paper,
we emphasise the following two invocation patterns:

• The REQUEST-REPLY pattern [29] describes a two-way conversation between a client and a
server component. It involves two MESSAGES being exchanged. This pattern is found in com-
ponent interactions adopting remote procedure calls (RPCs), for instance, but is not limited to
these.

• The FIRE AND FORGET invocation pattern [69, 63] captures kinds of one-way conversation
between a client and server component. This pattern comforts scenarios in which no invocation
result is expected and the reliable delivery is not guaranteed on behalf of the client application.
There is only a single MESSAGE exchange between the two remote ends. FIRE AND FORGET

operations are commonly found in event-based and publish-subscribe component interactions.

Invocation patterns are characterised by different kinds of invocation artefacts, e.g., MESSAGES repre-
senting invocations or notifications [29, 12], and their patterns of exchange (e.g., one-way, two-way).
The multitude of design requirements and design options is further aggravated because invocation pat-
terns, being located at the application level, map to communication abstractions (e.g., send/receive) at
the transport protocol level. Invocation patterns are further qualified by different coupling dependen-
cies in terms of location, time, and process synchronisation [2]. We find, for instance, both REQUEST-
REPLY invocations that realise a process synchronisation (i.e., blocking REQUEST-REPLY) and those
which don’t (i.e., non-blocking REQUEST-REPLY). Finally, providing support for different invocation
patterns at both the client- and server-side of your framework adds further complexity to your design.

C.3 Bypassing of Layers

Bypassing describes the capability of selectively omitting processing steps (e.g., the processing of
MESSAGES by the MARSHALLER) in the LAYERS structure of your middleware framework. This serves
the purpose of realising optimisations and gaining a certain flexibility. Looking at the selective encryp-
tion example (see also Figure 4), once the Security provider has been successfully added to the
processing flow of your middleware framework, you still want to preserve the flexibility of disabling
the encryption on selected remote invocations or certain endpoints. More generally speaking, areas of
bypassing include:

F3 – 39



• Stub- or proxyless invocation handling [11, 33]: Using negotiated INTERFACE DESCRIPTIONS to
perform remote invocations often means to couple client and server components to rigid signa-
ture interfaces. Upon interface changes, client and server components must track these changes
(e.g., by regenerating stub or proxy code). This adds maintenance overhead and means a form
of coupling to be avoided in certain component interaction styles such as event-based interac-
tions. Therefore, client- and server-side interface proxies are bypassed so that REQUESTOR and
INVOKER are directly addressed to handle and to dispatch invocations.

• Message caching [4], partial (differential) marshaling [1]: These examples try to avoid the repet-
itive streaming into and the redundant objectifying from MESSAGES. This is achieved by factor-
ing out MESSAGE parts (e.g., XML markup) which remain unchanged between invocations. In
other words, these strategies mean to bypass the MARSHALLER, at least partially.

• Batched invocations [59]: Remote invocations are often performed in an atomic manner and map
directly to invocations upon single operations of remote objects. These are often small-scale op-
erations so that the tasks performed by the client components are split into a series of successive
remote invocations on the same remote object. Given that remote invocations are comparably ex-
pensive to process, negative impact on the overall client-perceived performance can be expected.
Grouping invocations into batches and processing them in such lots is a viable option, provided
that batched invocation results can be assigned to the individual invocation sources. Besides,
you have to treat intermediate invocation results specifically. Batching, therefore, groups pro-
cessing steps into blocks of request and, then, blocks of reply handling, rather than processing
pairs of requests and replies as shown in Figure 4. From the perspective of a member invocation
in a given batch, different processing steps (e.g., marshaling and/or transport operations) are
effectively omitted. They are only performed on the containing batch once.

• Collocation [61]: In case the targeted remote object resides within the same machine or even
process boundaries, important steps of processing the remote invocation can be spared. In par-
ticular, certain services offered by the MARSHALLER and REQUEST HANDLERS are superfluous.

C.4 Role Distribution

We have explained how invocation and MESSAGE handling faces extension requirements which cross-
cut the LAYERS structure of the BROKER. The LAYERS structure, while highlighting most general
aspects of the BROKER, introduces a strong notion of CLIENT-SERVER [8] relations, not only between
the higher and the lower-level LAYERS, but also between a client application and a remote object.
We say that the distribution of the client and server roles over applications and components is asym-
metric. As a result, there are disjoint sets of client- and server-only components. Asymmetry means
that (possibly multiple) client-only components are meant to initiate requests for remote invocations
from server-only components, or, more precisely, from their remote objects exposed. This asymmetry
between client-only and server-only components manifests in the unequal distribution of lookup in-
formation, i.e., server applications are only aware of clients for the scope of an incoming invocation.
Also, different resource management strategies apply to client-only and server-only applications, the
latter putting emphasis on handling multiple and possibly concurrent invocation requests. While the
CLIENT-SERVER conceptualisation is simple yet powerful for capturing remote invocation details in
distributed object systems, it is the exact opposite of what is found in certain middleware framework
designs and of what is required in advanced deployment scenarios. The following examples provide
evidence for different appearances of role symmetry. In these examples, an application takes and its
underlying middleware framework supports the role of both server and client within single component
interactions.

• Layer symmetry in invocation and MESSAGE processing: The functional decomposition of the
BROKER into LAYERS itself reflects “that there is a certain symmetry between client and server

F3 – 40



in the layered architecture. This is because the processing patterns at each layer depend on their
remote counterpart” [63, p. 128]. This layer symmetry [52, p. 136] is yielded by a dependence
between remote components within a given LAYER. This dependence is due to most processing
steps being performed on invocation data at either the client or server side requiring a counter
operation at the respective remote end. Applied to the exemplary BROKER shown in Figure 3,
this becomes most visible for the MARSHALLER. Each marshaling operation demands a corre-
sponding demarshaling operation, and vice versa. The MARSHALLER components can, thus, be
potentially shared in the client- and server-specific infrastructures. This equally applies to pro-
cessing steps for add-on services. In our motivating example of the Security provider
(see Section 4.2), en- and decrypting operations also form pairs across the remote ends. You can
translate this symmetry into a design of entities and processing behaviour shared by client- and
server-specific invocation handling.

• Asynchronous REQUEST-REPLY invocations through RESULT CALLBACKS: You will find situ-
ations in which the interacting client and server applications do not need to be coupled through
process synchronisation, yet a reply is expected by the client application. That is, the process-
ing infrastructure of the middleware yields the thread of control to the client application after
having processed the invocation request. Conversely, at the server side, the server application
yields the thread of control to the processing infrastructure after having received the invoca-
tion dispatch. Now, one strategy available to communicate a result back to the originating client
and, thus, completing the REQUEST-REPLY exchange, are RESULT CALLBACKS [63, 8]. Follow-
ing this pattern, the server side actively notifies and delivers the invocation result to the client
end. At the client side, this is made possible by a RESULT CALLBACK object. This represents a
special-purpose remote object exposing a callback interface. Upon reception of a callback invo-
cation, the callback object processes the result in accordance with the client application logic.
As the callback object is not only part of the client application, but also acts as a remote ob-
ject, a particular role symmetry can be stated. Consequently, your middleware framework needs
to provide server-specific facilities to client applications under the conditions of asynchronous
REQUEST-REPLY invocations.

• Service-oriented, adaptive system distribution: The requirements of adaptable configurations in
distributed, service-centric systems [7] are another argument which helps explain the importance
of symmetric role distributions for middleware designs. By changing configurations, we mean
that, on the one hand, service consumers and providers become available or turn unavailable
dynamically (at runtime) and that, on the other hand, the composition of service providers must
remain adaptable at any time to deliver guaranteed quality attributes. An important example are
distributed systems based on workflow engines which integrate with third-party and legacy sys-
tems through service adapters and interfaces (see e.g. [67]). In these cases, certain requirements
are imposed on your middleware framework. First, if it runs the workflow engine on top, it must
support both the client- and server-side of handling remote invocations. In other words, the work-
flow engine also offers a service interface to receive task results in a process-decoupled manner.
In turn, second, the service-providing applications must be in the position to both receive in-
vocation requests (as servers) and deliver corresponding results in an asynchronous manner (as
clients). Third, the decentralised addition, removal, and upgrade of service-providing compo-
nents requires not only facilitating the creation of service adapters and interfaces, but also the
propagation of interface changes (e.g., dynamic invocation). This is, for instance, where LAYERS

bypassing in your middleware comes into play.

Leela [67] realises such a service-oriented middleware framework. It is built around the idea of
peer components which participate both in client and service applications. That is, each peer acts
both as a remote object and an invocation client. Thus, the peer is in the position to connect to RE-
QUESTORS for handling their invocation requests as well as to serve invocation dispatches from
INVOKERS. Beyond this symmetry in invocation roles, peers are organised in terms of federa-

F3 – 41



tions which provide lookup services to all peers under equal terms, so loosening the asymmetry
in distributing lookup information (e.g., object references).

There are many ways to make use of these forms of role symmetry in your framework design. One
example we experienced is the integration of major components of REQUESTOR and INVOKER in-
carnations into single framework entities. In Axis2 [5], the AxisEngine object-class captures es-
sentials of the INVOKER and the REQUESTOR behaviour in its send and receive operations. The
AxisEngine is used by the SERVER REQUEST HANDLERS, i.e., the transport listeners in Axis2, to
dispatch incoming invocations and, conversely, by ServiceClients as a part of Axis2’s client-side
proxies to process outgoing invocation requests. Another example is found in the Windows Communi-
cation Foundation (WCF; see e.g. [41]). Beyond INVOKER and REQUESTOR (i.e., the channel factory
and the channel listener, respectively), also the REQUEST HANDLER instantiation (i.e., the channels)
is shared between the server- and client-specific infrastructures (see e.g. [3]). This uniform design is
achieved by the WCF channel factory and the channel listener deriving from a shared channel manager
entity.

Note, however, that under certain conditions it may be advisable to break this symmetry in frame-
work design intentionally. To name an example, certain lifecycling requirements and, thus, resource
management strategies may vary between the server- and client-specific elements of the processing
infrastructure. To provide scalability at the server side, imagine that you realise a pooling of INVOK-
ERS for scaling out the handling of concurrent invocations. This pooling, however, is not necessarily
needed at the client side (see e.g. [3]). Therefore, expect a coexistence of symmetric and asymmetric
design elements between the client- and server-side infrastructure of your middleware framework.

F3 – 42


