

Patterns for Business Object Model Integration in
Process-Driven and Service-Oriented Architectures

Carsten Hentrich

IBM Business Consulting Services, SerCon GmbH
c/o IBM Deutschland GmbH

Hechtsheimer Str. 2
55131 Mainz, Germany

e-Mail: chentric@de.ibm.com

Uwe Zdun

Distributed Systems Group
Information Systems Institute

Vienna University of Technology
Argentinierstrasse 8/184-1

A-1040 Vienna, Austria
e-Mail: zdun@acm.org

Service-oriented architectures often have the goal to integrate various systems of one or
more organizations in a flexible way to be able to quickly react on business changes.
Integration based only on services, however, falls short in reaching this goal because the
application-specific business object models of multiple external systems (especially legacy
systems) need to be integrated into the service-oriented system. When multiple business
object models must be integrated into one system, serious data integration issues might
arise. Examples of such problems are incompatible data definitions, inconsistent data
across the enterprise, data redundancy, and update anomalies. We present patterns
that address these issues and describe how to integrate the application-specific business
object models of various external systems into a consistent process-driven and service-
oriented architecture.

Introduction

Service-oriented architectures (SOA) are an architectural concept in which all functions, or
services, are defined using a description language and have invokable, platform-independent
interfaces that are called to perform business processes [Channabasavaiah et al. 2003, Barry
2003]. Each service is the endpoint of a connection, which can be used to access the service, and
the interactions are relatively independent from each other (e.g., stateless services are favoured
over stateful services). On top of the various layers implementing the foundations of a SOA, we
find in many SOAs a Service Composition Layer that deals with service orchestration,
coordination, federation, and business processes based on services [Zdun et al. 2006]. In this
paper, we consider architectures in which the Service Composition Layer provides a process
engine (or workflow engine) that invokes the SOA services to realize individual activities in the
process (aka process steps, tasks in the process).

The most important goal for using a SOA is often to integrate heterogeneous systems in a
flexible manner so that organizations can quickly react on changes in the business. One
important aspect in this respect is that usually the SOA is used for integrating a number of
external systems. With this term we refer to systems that are not yet integrated into the SOA.
External systems include systems of the organisation that realizes the SOA or systems of other
organisations. Typically, many of the external systems are “legacy systems”. But there are many
other kinds of external systems, for instance, standard systems like SAP or other third party
systems. One of the key ideas in recent SOA definitions is to save the investment that has been
made in existing IT infrastructure and applications and provide flexible means for integrating
them. This, however, is difficult, as most of these external systems have been independently
developed, or at least there is a certain level of independence in their historical evolution. For this
reason, they often implement heterogeneous data models.

This is not necessarily a problem because this is where stateless services can help. In a SOA,
the most important conceptual pattern of integration is to offer SERVICES [Evans 2004] that
provide the integration of an external system. To assume that services alone are sufficient to
design a larger SOA, however, is not enough. When various business object models need to be
integrated into a SOA, often a purely SERVICE-based integration is infeasible or impossible
because of data integration issues. Examples are incompatible data definitions, inconsistent data
across the enterprise, data redundancy, data incompleteness, data availability issues, data
ownership issues, or update anomalies. All these problems can only be addressed at a broader
scope than a single service. In practice, often massive hand-coding efforts are used to resolve
these issues, which require a lot of time and are often hard to maintain in the long run. Instead of
using such “ad hoc solutions” it is advisable to follow a more systematic approach – both in
terms of the refactoring processes and the architectural solutions.

As a real world example, consider an automobile rental company that has grown in the last
years, has merged with two other companies, and now consists of three independently working
territorial branches. Each branch represents a company being acquired over the years to serve a
territorial market. Transparent business processes shall now be implemented, following a SOA
approach that allows renting cars via the Internet, independent of the territorial assignment. The
data models in the various branches are different, as each branch uses independently grown
systems. Moreover, customer data is redundant in these systems: They use inconsistent
automobile identification mechanisms, there is inconsistent formatting of data, and there are
incorrect or incomplete values in the data fields. If common business processes shall be
implemented for these branches, these data issues must be resolved first.

Certainly, the cost for resolving these issues needs to be balanced with the business case
associated to improving the business processes. However, in this paper we assume that this
business case has been made and concentrate on the solutions of resolving these problems. The
discussion concerning the business case should be made separately and prior to starting an
engagement or project in this direction. For this reason, we will not consider these aspects any
further. On the other hand, the problems and solutions provided in this paper can be used to
lead such a discussion and to reason about cost issues in relation to a business case. In this paper
we primarily present how to deal with these issues and thus make a project successful.

In this paper, we explain proven practices – in patterns form – for dealing with these crucial
problems of systems integration. The patterns interpret the data models of external systems, as
well as the data models defined in the service architecture, from an object-oriented (OO)
perspective, and hence we call these data models business object models. When integrating systems
via a process-driven and service-oriented approach, application-specific business object models
need to be consolidated somehow and integrated via the process flow.

Please note that the process-oriented and service-oriented perspectives advocate a more
behavioural, stateless view on the system than objects. However, they usually perform operations
on data. This data can be represented in many different ways. We assume the use of an object-
oriented model of the access to data in a process-driven SOA to follow the business object
concept. This is a proven practice, especially for larger process-driven SOAs (for details see
[Hentrich et al. 2006]).

Often it is necessary to adapt or change given data models to understand them from an
object-oriented perspective, for instance, if a legacy system offers a procedural interface to its
data model. Because there are many different building blocks used for representing state and/or
access of business data, such as objects or procedures that access data in a database, below we
generally use the term entity to refer to the different kinds of building blocks of external systems
(following the ENTITY pattern from [Evans 2004]).

The patterns contained in this paper, offer solutions that allow you to integrate various
business object models. We present three refactoring patterns that explain basic alternative steps
for consolidating two individual business object models. And we also describe three architectural
patterns that allow you to build a consistent large scale architecture that is able to consolidate
multiple business objects.

In fact, data seems to be a forgotten child in SOA approaches. One could ask, why we
propose an approach considering OO while also being service-oriented. Do these approaches not
contradict each other? We are convinced, the answer is no, as services need to deal with data
structures to describe and define the input and output parameters of the services. These
parameters are usually not simple data types but rather represent complex structures that can be
interpreted as objects. In our opinion, SOA and OO are, for this reason, complementary
approaches. We apply OO concepts to tackle the issues related to the “data” perspective in SOA
that is rather a functional than a data-driven approach. OO offers suitable concepts for
describing data structures, which fits very well with current programming languages and
technology used in conjunction with SOA, such as J2EE or .NET. Object-oriented languages are
still leading edge in these recent technology approaches related to SOA. As a result, we propose
an OO approach for tackling the data related issues in SOAs. The patterns in this paper thus
contribute to solving data issues in SOA.

We present an example at the end of the paper to demonstrate the application of all patterns
and to outline the pattern relationships. Please note that it might be useful for the reader to jump
to the example from time to time while reading the patterns to grasp a concrete example of a
pattern that is currently investigated.

Patterns Overview

In this paper, we first present three refactoring patterns that explain basic alternatives for how to
change a system in the situation that a single business object model of an external system should
be integrated into a process-driven architecture:

• WRAP SERVICE AS ACTIVITY – explains a refactoring solution that introduces one or
more services for an application-specific business object model. The pattern’s solution
is to wrap one or more of these services using a process activity type that can be
flexibly assembled in process models.

• RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL – explains a refactoring solution
that restructures a specific business object model of an integrated external system. The

external system restructuring is done in a stepwise, minimal manner until the external
system meets the new requirements introduced by the process-oriented architecture.
WRAP SERVICE AS ACTIVITY can be used to offer service interfaces to the restructured
system.

• SYNTHESIZE BUSINESS OBJECT MODELS – explains a refactoring solution that
synthesizes a specific business object model of an integrated external system and a
common business object model of the process-oriented architecture.

These three refactoring patterns explain basic alternatives for refactoring a single business
object model into a “harmonized” model of a process-oriented architecture. However, in larger
systems, it is necessary to consider multiple refactorings of business object models and their
interdependencies from the perspective of the whole process-driven SOA. This cannot be
explained in terms of a single refactoring process, but must be addressed at the architectural level.
We present three architectural patterns that are applied in this context:

• INTEGRATED BUSINESS OBJECT MODEL – explains an overall architectural solution
that allows you to implement a harmonized business object model. Each of the three
refactoring patterns can be applied when it is most appropriate. But still a consistent
architecture is produced.

• DATA TRANSFORMATION FLOW – explains an architectural solution based on a
process subflow for data transformation that maps different application-specific
business object models to a common business object model. The goal is to enable
flexible integration of various external systems.

• BUSINESS OBJECT POOL – explains an architectural solution in which a central pool
for the business objects enables processes that have logical interdependencies. The
processes can hence interact with each other without comprising their technical
independence.

BUSINESS OBJECT
POOL

DATA
TRANSFORMATION

FLOW

used to automatically map
between synthesized models

alternative: if application-specific
evolution fails or is infeasible

alternative: when loosely coupled services fail
because of data integration issues

WRAP SERVICE AS
ACTIVITY

RESTRUCTURE
SPECIFIC BUSINESS

OBJECT MODEL

SYNTHESIZE BUSINESS
OBJECT MODELS

INTEGRATED
BUSINESS OBJECT

MODEL

used as basic refactoring
used as basic refactoring

used as basic refactoring

used for depicting
process interdependencies

used to map application-
specific object models

Refactoring pattern Architectural pattern

Figure 1: Patterns overview

 shows an overview of the pattern relationships. There are a number of external patterns that
play a role in the patterns introduced in this paper. We present thumbnails for these patterns in
an appendix at the end of the paper.

Wrap Service as Activity

External systems, i.e., systems that have so far not been part of the process-driven SOA, should
be integrated into a process-driven SOA. In many cases, the external systems are legacy systems.

Existing interfaces of external systems often do not reflect the requirements of a process-
driven architecture. Loose coupling – a main goal of any SOA – for instance is often not
well supported because the external system only offers stateful interfaces. Or, the
required communication protocols of a process-driven system are not supported by the
external system. However, flexible interfaces to external systems are required to flexibly
assemble processes involving external system invocations from within a process design
tool – which is a central goal of a process-driven SOA.

In a SOA, the most important pattern of integration is to offer SERVICES [Evans 2004] that
provide the integration of an external system. A SERVICE is an operation offered as an interface,
without encapsulating state. SERVICE interfaces solve the basic problem of how to represent
loosely coupled interfaces. However, loose coupling is hard to achieve, if the external system
design forces us to hard-code dependencies to stateful interfaces or communication protocol
details in the process models or integration code. For a connection to the process-oriented layer,
we must also meet the requirements of the process-oriented SOA, but most often the external
system does not fulfil them a priori. Again, we do not want to hard-code them in the process
models, which should be kept flexible, changeable, and understandable to the domain expert.

Typically, a central requirement is that the SERVICES can be used to integrate any kind of
system in the same way and allow process designers to flexibly assemble processes from the
SERVICES offered by the external systems. The SERVICES should hide all details of the
communication with the external system from the process designer. Consider, for instance,
integrating a mainframe that only supports batch processing. From the perspective of the process
designer this system should be integrated in the same way as a Web Service that was specifically
written for this task. However, different service developers use different approaches to design
SERVICES and integrate them into process models. This means, the desired information hiding is
hard to achieve, and process designers must cope with these differences.

An inhouse guideline for SERVICES development can solve this problem only partially. For
instance, if services are used that are not developed inhouse (e.g., services offered by an external
standard systems like SAP), guidelines on their design cannot be imposed.

Refactor the external system and the process-driven SOA using the following steps: For
each entity in the external systems that needs to be exposed to the process-driven
architecture, define one or more stateless SERVICES on top of the existing interfaces of the
external system. Define a special SERVICE activity type in the process engine that wraps
invocations to external services. This way, SERVICE invocations are represented as atomic
activities in the process flow. The SERVICE activity type can be used in business
processes to flexibly assemble services, because all details of the communication with the
external system are hidden in the wrapper activity. Instantiate and use the SERVICE
activity type in process models whenever an external system needs to be invoked.

The main task of the SERVICE is to translate a service-based invocation into the interface of
the external system and translate the responses back into a service-based reply. Hence, the

relevant interfaces of external systems are integrated into the SOA using SERVICES, exposing a
view on the external systems that reflects the requirements of the process-driven SOA.

The goal of decoupling processes and individual process activities, realized as SERVICES, is to
introduce a higher level of flexibility into the SOA: Pre-defined services can be flexibly assembled
in a process design tool. The technical processes should reflect and perhaps optimize the
business processes of the organization. Thus the flexible assembly of services in processes
enables developers to cope with required changes to the organizational processes, while still
maintaining a stable overall architecture.

In cases, where a service exists or can be built that equals the required meaning of a process
activity, an activity can be mapped to exactly one service. However, in reality this is not always
possible. For instance, an activity in a process might need to wrap a whole set of application
services because each service only fulfils a part of the overall functionality requested by the more
coarse-grained process activity. The main driving factor for the integration of services and
process activities should always be that the process activity type needs to be understandable in
the context of the process models. A one-to-one integration between service and activity is very
easy to build and maintain. Hence it should be chosen if possible, but only if its meaning fits well
into the context of the process model. There are other driving factors for the integration of
services and process activities, such as reusability of services in different activity types or design
for foreseeable future changes.

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

R
EF

A
C

TO
R

IN
G

Figure 2: Refactoring to services that are wrapped by activities

Very often more than one application needs to be wrapped to fulfil the goal of the activity (as

shown on the right hand side of Figure 2). Consequently, designing and implementing the
integration of the activity with application services is not trivial and introduces a whole new set of
problems. These problems are addressed in more detail by the PROCESS BASED INTEGRATION
ARCHITECTURE pattern [Hentrich et al. 2006]. This pattern provides an architectural concept for
achieving that integration. Especially, the MACROFLOW INTEGRATION SERVICE pattern [Hentrich
et al. 2006] – a typical part of the PROCESS BASED INTEGRATION ARCHITECTURE – is very

important in this respect, as it depicts the functionality requested by a process activity as a one
service, which is composed of more fine grained services. These patterns thus allow developers
to solve issues that arise when the services cannot be directly designed and implemented
according to the requirements of process activities and directly invoked via the process flow.

Figure 2 illustrates the refactoring from a process model and applications that offer only stateful
interfaces to a process model that wraps services of those applications in its activities. There are
two possible options for the mapping:

• Services can be designed and implemented to represent requirements of process
activities directly.

• Application services can only be designed and implemented to fulfil parts of the
process activities.

Actually, this wrapping implies important design decisions, as the process activities will be
designed in dependency with the services. Ideally, the application services can be designed
according to the requirements of a process activity. However, on the other hand, processes might
change and thus the requirements might change. For this reason, it is often better to provide the
services in terms of self-contained functions of an application that are based on the entities of the
application. That is, the services are designed according to the specific business object model
applied by an application. The consequence is that processes and application services are more
loosely coupled and thus more flexible. There is the trade-off, however, that larger integration
effort and greater complexity for implementing the integration is required.

In this respect, the MACRO-MICROFLOW pattern [Hentrich et al. 2006] can be used to
conceptually decouple the fine grained application services that are required within the
integration context from long-running processes. Following MACRO-MICROFLOW, the fine
grained application services are orchestrated in a microflow, i.e., a more fine grained technical
integration process. The PROCESS-BASED INTEGRATION ARCHITECTURE pattern provides
flexible means for implementing both the one-to-one and the one-to-many relationship between
process activities and application services.

Restructure Specific Business Object Model

External systems, i.e., systems that have so far not been part of the process-driven SOA, should
be integrated into a process-driven SOA. In many cases, the external systems are legacy systems.

When integrating systems into a process-driven architecture, the first choice should be to
follow WRAP SERVICE AS ACTIVITY. This, however, might fail because the external system
is a legacy system that is not structured in a suitable way to allow for offering an object-
oriented business object model via SERVICES. Or the business processes might require an
integration of data from two or more application-specific business object models, and
service-based access to the data is not enough to deal with the data integration problems.
Or the external system does not even allow services to access the data.

Some legacy systems only offer unsuitable interfaces that are hard to map to an (object-
oriented) business object model design or to a service-oriented design. Consider, for instance, a
legacy system has a procedural design that can be understood as an object-oriented business
model. Or the legacy system does not offer session abstractions that can be used for aligning
interdependent stateless service invocations, and hence the performance of interdependent
invocations is weak.

If the data types of two external systems are incompatible and cannot (easily) be mapped, it
might be necessary to think about a better solution than performing individual mappings within
wrapper SERVICES (maybe over and over again). In addition to data mapping problems, it might
be possible that an external system does not offer appropriate interfaces to access the relevant
data at all via a pure wrapper SERVICE. Sometimes the data is accessible, but not in a suitable way.
Consider for instance a legacy system that offers only a batch interface. It might be possible that
the performance of this interface is not good enough for an integration task. Or the data model
and the interfaces require repetitive invocations via the wrapper SERVICE which downgrades the
performance of the overall system. In other words, often the external system was designed
without having the requirements of integration in a SOA in mind, and thus cannot fulfil the
requirements of the SOA.

Such data integration issues can arise even when the developers only need to integrate two
interfaces. Consider a simple point-to-point integration between two systems is needed. In this
simple case, the interfaces between the two integrated systems need to be mapped to exchange
data. This is only possible in simple wrapper SERVICES if the mapping of (data) types can be
completely performed in the service implementation.

In a larger SOA with a dedicated service orchestration layer things get even more complicated.
The reason for this is that the different business object models of the involved external systems
need to be consolidated somehow to achieve a flexible orchestration within the process flow.

Refactor the external system and the process-driven SOA using the following steps: First
assess whether a restructuring is possible according to the following criteria. The system
evolution should be as non-intrusive and minimal as possible. It should not break
existing client code. Substantial portions of the system should remain unchanged. If the
assessment is positive, restructure the application-specific business model of an
integrated external system by evolving the system to meet the new requirements
introduced by the process-oriented architecture. Next, offer service interfaces so that the

business process can access the evolved external system following WRAP SERVICE AS

ACTIVITY.

Before applying a restructuring of an application-specific business model it is necessary to
consider that it may not be possible at all or with acceptable effort to restructure the business
object models of legacy applications such that they work consistently together. The requirements
of the business processes need to be considered by a business object model designer so that the
business object model is suitable for representing the domain architecture of the business
processes. Also, it is necessary to consider changing requirements, e.g., in case another legacy
application needs to be integrated in a process flow. It is important to consider whether a
restructuring can be done with minimal changes so that existing assets are preserved and existing
client code is not broken. That is, existing external interfaces should remain compatible.

A restructuring should only be performed, if all these considerations lead to the conclusion
that it is possible to restructure the application-specific business object model of an external
system. If additionally the restructuring is possible with acceptable effort, it should be considered
before considering integration following SYNTHESIZE BUSINESS OBJECT MODELS. This is because
RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL will be quite effective: Most often it is easier
to make local changes to a system’s data in the system itself then to evolve the data in an external
mapping component (which is part of the business process).

Figure 3: Refactoring by restructuring an application-specific business object model

Figure 3 illustrates a refactoring process based on a restructuring of an application-specific
business object model: One monolithic entity is split into a number of entities. Some of them are
exposed as services. These services are then integrated following the WRAP SERVICES AS
ACTIVITIES pattern. Please note that this is just an example of a restructuring. Many other
restructurings are also possible. The goal is to preserve the existing assets as far as possible and
not break existing client code.

Applying RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL is often the only way to be able
to integrate two business object models. In some cases, it is relatively easy and not much work.
However, the restructuring might also be infeasible or inapplicable. The evaluation whether the
pattern is infeasible or inapplicable might be non-trivial. In some cases, to RESTRUCTURE
SPECIFIC BUSINESS OBJECT MODELS might be a big effort and sometimes the effort is
underestimated.

Synthesize Business Object Models

External systems, i.e., systems that have so far not been part of the process-driven SOA, should
be integrated into a process-driven SOA. In many cases, the external systems are legacy systems.

Consider integrating systems into a process-driven architecture using WRAP SERVICE AS

ACTIVITY fails because of data integration issues, and RESTRUCTURE SPECIFIC BUSINESS

OBJECT MODEL proves to be difficult, infeasible, or even impossible, because the external
systems cannot or should not be changed or adapted. Local, independent changes in the
application-specific business object models are often not enough to resolve data
integration issues, such as incompatible data definitions, inconsistent data across the
enterprise, data redundancy, and update anomalies.

Data integration issues, such as incompatible data definitions, inconsistent data across the
enterprise, data redundancy, and update anomalies, can occur when integrating data or interfaces
of two or more systems into a process-driven architecture. These issues can often not be resolved
in a suitable way using only wrapper SERVICES. Usually, in such cases one should try to apply
RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL next. But consider a legacy system where the
source code is not available. Or no experts for the languages or platforms used by a legacy system
are working for the company anymore. Or a significant investment is needed to make changes to
the legacy system, and the extra costs should be avoided. Such situations are highly unwanted,
but nonetheless they occur.

Let us consider the other case; to apply RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL is
possible and feasible. The pattern might, however, be still not applicable, if a “global” perspective
is needed for data integration. Consider for instance two or more application-specific business
object models need to be integrated in a process flow. Sometimes data integration issues cannot
be (effectively) solved by only changing the local applications. For instance, if one data model
depicts an address as a custom data record, and the other one as a string, we need to write
conversion code between the two incompatible data types at the “global” level. That is, we create
a “global” view based on the combination of the information in the different application-specific
business object models.

Refactor the system using the following steps: Design a synthesized business object
model that consolidates the structures of the involved business object models. Map the
relevant parts of the application-specific business object models into the synthesized
business object model, and perform the data integration tasks at the global level. The
synthesized business object model depicts the requirements of the related business
processes, i.e., it provides a process-related, global view on the application-specific
business object models.

The parts of the application-specific business object models that are subject to exposed
services are mapped into the synthesized business object model. The exposed services are usually
integrated into the process flow using wrapper SERVICES that are invoked by activities in the
process flow.

The application-specific business object models can be mapped to the synthesized business
object model by some well-defined mapping rules to automate the mapping, for instance
following the DATA TRANSFORMATION FLOW pattern.

Figure 4 shows a business process design and two applications that can be accessed via service
interfaces (e.g., external wrapper services). Consider that the two applications cannot be changed
and data integration issues arise. The figure illustrates the refactoring process from this situation
to the introduction of a synthesized business object model. The synthesized business object
model provides a consolidated model of the two application-specific models. It especially fulfils
the requirements of the business processes.

Figure 4: Refactoring to a synthesized business object model

The synthesized business object model design has to consider all requirements of the process

domain, in terms of the services that the processes need to expose. The model must be
consistent with all integrated applications and with the service requirements of the processes.

Integrated Business Object Model

External systems, i.e., systems that have so far not been part of the process-driven SOA, should
be integrated into a process-driven SOA. In many cases, the external systems are legacy systems.

The three refactoring patterns WRAP SERVICE AS ACTIVITY, RESTRUCTURE SPECIFIC

BUSINESS OBJECT MODEL, and SYNTHESIZE BUSINESS OBJECT MODELS explain
alternatives and considerations for integrating a single business object model interface
into a process-oriented SOA. If multiple external applications and business object
models need to be considered, often none of the three alternatives alone provides a
suitable solution. Also, the process flow might be offered itself as a service and needs to
provide a harmonized, consistent view on the integrated application-specific business
object models. The different integration solutions must be managed and offered in way
that they can be flexibly assembled from a process design tool.

The process flow needs to operate with a business object model, i.e., the business objects
being associated to the process and being manipulated by the process. Moreover, often the
process is a function itself and represents a service. The input and output parameters of this
service relate to the business object model of the process. The requirements on the business
object model of a process and the business object models of external systems integrated in the
process usually vary. That means all the business object models under consideration are usually
not consistent – and need to be harmonized.

The various business object models implemented by external systems will thus be reflected by
the parameters of the application services that are used to access them. These services simply
reflect the interfaces in terms of the business objects used as input and output.

As a result, one has to deal with the problem of harmonizing the business object models of
the various applications to integrate them via a configurable process in some way. The problem
even gets worse if multiple processes need to be integrated. In this case many requirements of
these processes need to be represented in the corresponding business object models.
Consequently, greater conflicts will be observed between the business object models of the
processes and those of the external systems.

Provide an INTEGRATED BUSINESS OBJECT MODEL for a process-oriented SOA as an
architectural solution. In the design of the INTEGRATED BUSINESS OBJECT MODEL use
the following guideline: For each application-specific business object model first try to
WRAP SERVICES AS ACTIVITIES. If this does not work for an interface of an application-
specific business object model because of data integration issues, assess whether an
integration solution based on RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL or
SYNTHESIZE BUSINESS OBJECT MODELS (or both) would work better, and then follow the
chosen refactoring pattern. Integrate the result of the refactoring using WRAP SERVICES

AS ACTIVITIES into the process model. The INTEGRATED BUSINESS OBJECT MODEL uses
appropriate metadata description mechanisms to keep the model flexible concerning
changing requirements.

The INTEGRATED BUSINESS OBJECT MODEL pattern introduces an architecture which allows
developer to use each of the three refactoring patterns when it is most appropriate. The
“standard” solution of a SOA, to use the SERVICES pattern and to wrap it with an activity in the

process flow, should always be the first choice, because this solution is simple and offers loose
coupling. When WRAP SERVICES AS ACTIVITIES alone is not sufficient, one has to check whether
SYNTHESIZE BUSINESS OBJECT MODELS can be achieved and is of less effort than restructuring.
The mapping between application-specific and synthesized business object models takes
computational time and thus may imply a performance issue. Performance in this respect is often
the driving factor to consider following RESTRUCTURE SPECIFIC BUSINESS OBJECT MODELS.

Flexible aspects of the INTEGRATED BUSINESS OBJECT MODEL should be described by
metadata mechanisms. An abstraction from concrete structures to more abstract structures,
defined by metadata, helps to manage a synthesized business object model centrally. For instance,
flexible data structures within business objects can be defined via XML. What areas are subject to
change is detected by an analysis of application-specific business object models and design issues
detected in the business process requirements.

Figure 5 illustrates how an INTEGRATED BUSINESS OBJECT MODEL is designed. The
INTEGRATED BUSINESS OBJECT MODEL integrates all involved business object models, and the
business processes are defined on top this model. The integrated object model – if designed using
appropriate metadata mechanisms – is open for integrating additional external business object
models.

Figure 5: Integrated business object model

Unanticipated changes to the INTEGRATED BUSINESS OBJECT MODEL might occur during the
evolution and lead to some restructuring. In fact, taking the right level of design abstraction with
metadata that anticipates future changes and, at the same time, provides enough concrete
structures is still rather an art than a science.

The DATA TRANSFORMATION FLOW pattern provides an architecture design approach for
designing and implementing the necessary mapping from application-specific business object
models to INTEGRATED BUSINESS OBJECT MODELS.

When the model is implemented, the actual business objects will be stored in a CENTRAL
BUSINESS OBJECT POOL.

The CANONICAL DATA MODEL [Hohpe et al. 2003] represents a similar approach to designing
a data model that is independent from specific applications. The INTEGRATED BUSINESS OBJECT
MODELS can be viewed as a specialisation of it within a process-driven SOA context. SERVICES
are used to access the external system from a SOA.

Data Transformation Flow

Systems need to be integrated via a business-process driven and service-oriented approach, and
the systems have heterogeneous business object models.

Consider a transformation between the business object models of two systems integrated
into a SOA is needed. Major goals of a SOA are loose coupling and flexibility. These
properties should not be compromised by hard-coding data integration details. In a
process-oriented SOA, it is additionally necessary to map the data integration steps
conceptually to the process flow to be able to easily configure data integration changes
from process design tools.

In SOAs, the systems have usually been independently developed and have changed over
time. As a result it is usually not trivial to depict the business objects provided as input and
output parameters of one system onto the business object model used by the target system.
Consequently, some kind of mapping and transformation will be necessary. The structures and
the semantics of the business object models must map somehow.

In this context mapping means that business objects and the attributes of them need to be
projected onto business objects and corresponding attributes of the target model. This mapping
must be maintainable, and the mapping architecture must be extensible. It should be possible to
react on typical change requirements, such as an increased workload, a business object model
change, or that a new application needs to be integrated with minimum effort.

This means especially that no programming effort should be necessary to change (minor)
details of the data integration. Somehow we need to depict and configure data integration
between business object models in the process so that it is possible to use process design tools
for the mapping process and for rapidly changing the mapping.

Implement the data transformation as a process subflow (a microflow) that uses mapping
components that are based on configurable transformation rules to project one business
object model on another. Technology that supports rule-based data transformation is
used to change the transformation rules at runtime. Perform the mapping steps as
activities of a process subflow to make the data transformations configurable from the
process design tool.

 The mapping logic to project one business object model onto another is encapsulated in a
component that performs the transformation. The mapping logic is implemented by configurable
mapping rules associated to a component. There may be several of these components in the
DATA TRANSFORMATION FLOW.

In a process-driven and service-oriented architecture, the DATA TRANSFORMATION FLOW is
actually depicted by a MICROFLOW ENGINE [Hentrich et al. 2006], and the mapping components
are represented as (reusable) process flows in the engine. The process flows perform the
transformation of the business object models. The individual activities in the process flow
represent transformation steps. As a result, the structural model of a DATA TRANSFORMATION
FLOW can be defined as shown in Figure 6. The actual conceptual mapping is done by specialized
microflows that are invoked as sub-microflows to realize the transformation.

Figure 6: Conceptual mapping as special sub-microflows

Figure 7 illustrates one possible realization in a flow model: A MICROFLOW EXECUTION
SERVICE [Hentrich et. al 2006] exposes an integration microflow as a service that can be invoked
by process activities. All data transformation is done in data transformation sub-flows. The
MICROFLOW EXECUTION SERVICE thus realizes the composition of the mapping functionality
according to the requirements of the integration process.

Integration microflow

Data transformation sub-microflow Data transformation sub-microflow

Figure 7: Conceptual mapping flows as sub-microflows

This DATA TRANSFORMATION FLOW pattern realizes the transformations from application-
specific to synthesized models, when SYNTHESIZE BUSINESS OBJECT MODELS is applied.

When realizing the transformation in a mapping flow, message transformation patterns will be
applied, e.g., MESSAGE TRANSLATOR, CONTENT ENRICHER, and CANONICAL DATA MODEL
[Hohpe et al. 2003]. A conceptual mapping microflow represents a mapping component in the
spirit of MESSAGING MAPPER [Hohpe et. al 2003]. The DATA TRANSFORMATION FLOW pattern
can be realized as part of an ENTERPRISE SERVICE BUS [Zdun et al. 2006]. The MACRO-
MICROFLOW pattern [Hentrich et al. 2006] can be used for structuring processes: In the context
of this pattern the mapping flows refer to the microflow level.

The DATA TRANSFORMATION FLOW pattern leads to an architecture in which the mapping
flows are encapsulated in maintainable units that can be flexibly composed.

Appropriate technology is required to implement the mapping flows. For instance a message
broker with transformation functionality can be used to achieve this, or another integration
middleware. The mapping may cause performance issues, if the logic gets complicated and/or
storage functions are required to keep the transformed objects in databases. Thus, this pattern
may only be suitable in larger SOA contexts, where this kind of flexibility is actually required.

Business Object Pool

Business processes are executed on a process engine.

Business processes are very often interdependent in their flow logic. That is, a running
process may have effects on other processes being executed in parallel. Technically each
process has its own data space that carries the control data for executing a business
process and is thus independent of other processes. On the one hand, we need to
implement the logical interdependencies between processes, but on the other hand, we
need to retain the technical independence – which means interdependences should be
avoided.

Business processes in execution have their own data space, i.e., the data spaces of business
processes running in parallel are disjoint. Actually, this is necessary to provide a business process
instance with full control over the execution of the instance – from a technical point of view.
Logically, however, business processes are interdependent. That means processes are often
depending on the results of other processes – or even on events being generated by other
processes. For instance, consider a business process handles an order and during this process, the
customer decides to cancel the order. This is an event being generated outside the control of the
actual order fulfilment process, but the order fulfilment should react accordingly to this event,
i.e., by stopping the fulfilment or rolling back certain things that have already been done.

The other way round, one might consider a point in the order fulfilment process which is a
point of no return. That means at some point in the fulfilment process, the order cannot be
cancelled anymore. Consequently, the order fulfilment process generates the respective status of
the order. If the customer wants to cancel the order, the order cancellation process needs to
consider this point of no return, for instance, by informing the customer that the order cannot be
cancelled anymore.

It is necessary and useful that the data spaces of each process instance are disjoint – to keep
the processes instances as separate and autonomous entities. But this makes it hard to depict the
interdependencies of the processes. In any case the behaviour of the process must be
deterministic. The process logic has to consider all possible events that may occur and depict
those events by some decision logic and the corresponding paths of execution.

Keep the business objects in a central pool which can be accessed in parallel by all
processes of the process domain. Attribute changes to objects in the pool can then be
used as triggers to corresponding behaviour in interrelated business processes. The
processes can access the central pool during their execution and react on those attribute
values.

Treating the business objects as central resources and allowing access to those centralized
business objects enables, in principle, parallel processes to read and write the data of the business
objects. One process might write certain attributes of a business object, e.g., a change in the
status of the object. Another parallel process might then read the status information and react to
the attribute values correspondingly. Often, the pool of business objects is realized as a central
REPOSITORY [Evans 2004].

Process instances can use their disjoint data spaces to store information that is only relevant
for the process instance but which is of no interest for other process instances, such as data to
implement the decision points in control flow logic. This data is generally of no relevance to
other processes but only the instance itself. Information that has central relevance will be stored
in a central business object kept in the BUSINESS OBJECT POOL.

Process instance 1 Process instance 2

Process instance 3 Process instance 4

Business Object Pool

Obj
Obj

Obj

Obj
Obj

Obj

Figure 8: Central business object pool

Concurrency issues may occur in case several process instances have write access on the same
business object, for instance. Traditional locking mechanisms can be used to solve some of these
issues. Accessing the business objects takes some additional computational time, and, in case
large amounts of data need to be read, caching mechanisms might be suitable.

The access to business objects in the BUSINESS OBJECT POOL from the data space of a
process instance can be realized via BUSINESS OBJECT REFERENCES [Hentrich 2004] that point to
objects in a central REPOSITORY [Evans 2004]. The REPOSITORY is often necessary for revision
and reporting purposes to store the business objects manipulated in business processes for
historical reasons. To allow for controlled modifications of central business objects, the
PRIVATE-PUBLIC BUSINESS OBJECT pattern [Köllmann et al. 2006] can be used. This pattern
offers a solution to the problem of hiding modifications to business objects as long as the
process activities that manipulate the objects are not yet finished. The business object pool may
be a representation of an INTEGRATED BUSINESS OBJECT MODEL.

By accessing the BUSINESS OBJECT POOL and observing attribute values of those objects, a
process instance may react in its control logic on an attribute value. The attribute value might
have been set by another process running in parallel. Hence the pattern allows the process logic
and its data spaces to be defined independently from other process, but still logical
interdependencies can be depicted.

However, the process model must exactly define on what events it is able to react, and the
business objects must be accessed via process activities. Sometimes representing process
interdependencies only by using central business objects is not enough. Then usually new services
or processes must be defined to realize the (more complex) interdependent behaviour.

Example and Known Uses

The patterns have been applied in various integration and SOA projects within the project scope
of IBM. For instance, in a SOA project for a telecommunications customer in Germany, these
patterns have been applied to build a larger SOA architecture based on an ENTERPRISE SERVICE
BUS [Zdun et al. 2006]. The architecture has been based on IBM WebSphere technology.
WebSphere Business Integration Message Broker has been used as the MICROFLOW ENGINE
[Hentrich et al. 2006] to depict the conceptual mapping flows and the service bus.

The project has focused on restructuring the business model for order management and
depicting redesigned business processes on the SOA platform. We have followed the
SYNTHESIZE BUSINESS OBJECT MODELS pattern to form a synthesized object model to process
various types of orders. For historical reasons many different systems have been involved in the
ordering and fulfilment of products, as new products have been developed over time and quick
tool support has been implemented. There has been redundant data in these various systems.

An integrated and business process oriented approach needs to take the overall process
perspective of ordering products and integrating the various systems involved in the business
processes into account. Hence, the data models of these systems to be integrated have been
mapped to business object models and a synthesized business object model for the overall
business processes has been developed.

In order to achieve this, the redundancies of data in the systems have been identified by
looking for the same conceptual entities in each system. For instance, the customer, or
information on related contracts to the customers could be found in many of these systems.
However, the data associated to these conceptual entities have not been the same in all the
systems. There was some overlap, and this overlap needed to be identified to define a
representation in the INTEGRATED BUSINESS OBJECT MODEL. The second step was thus to
identify the overlaps and to depict the commonalities in the INTEGRATED BUSINESS OBJECT
MODEL. The common representation had to be chosen in a way that allows to integrating the
systems by DATA TRANSFORMATION FLOWS. Following the SYNTHESIZE BUSINESS OBJECT
MODELS pattern it was thus possible to extract the redundancies and to develop a synthesized
object model for the business processes systematically. The synthesized business object model
thus did not contain redundant data but consolidates the views of the systems involved in the
business processes.

This INTEGRATED BUSINESS OBJECT MODEL has been implemented in a separate DB/2
datastore, used by the executed business process that also represented a BUSINESS OBJECT POOL.
That means, the DB/2 database served as the technology for realizing the BUSINESS OBJECT
POOL. The various business processes running in parallel were thus able to access the business
objects concurrently, and the objects were realizing all requirements of the overall business
processes.

One critical factor of flexibility regarding the object model was the products being ordered by
customers. To provide reduced time to market, the processes needed to be designed in a way that
products being ordered and processed are easy to change. For this reason, the notion of product
has been designed in the INTEGRATED BUSINESS OBJECT MODEL via metadata description
mechanisms in XML. The mandatory and optional attributes of a product could be flexibly
specified using an XML-based language.

The DATA TRANSFORMATION FLOWS have been implemented using message transformation
mechanisms of the WebSphere Business Integration Message Broker. This broker offers
functionality for defining reusable message transformation flows that served as the DATA

TRANSFORMATION FLOWS to map object models. The messages have been transported via
WebSphere MQ.

The WRAP SERVICE AS ACTIVITY pattern has been applied as well. In some cases it was even
possible to directly integrate the application service in the process flow, as both mapped one-on-
one. One example is the integration of a legacy customer application. This application basically is
a database containing a customer table and some related tables. In case of a larger business
customer there is a whole hierarchy of sub-customers, for instance, representing different
geographical locations. The customer table as an entity has been wrapped by services offering
read/write access to the customer repository. Additionally, more simple services have been
implemented, such as checking whether a customer already exists in the customer repository.
This is a simple service that just returned a Boolean value. However, no persistent data needed to
be stored in a business object in this case, as the process logic depicts the corresponding path of
execution for the Boolean values true or false.

As WebSphere MQ Workflow and the integrated application had MQ messaging interfaces
only some simple transformation was necessary in terms of DATA TRANSFORMATION FLOWS.
The DATA TRANSFORMATION FLOWS basically performed the mapping of different data
structures and types between the customer application and the services.

A concrete example for these data transformations can be found in the context of a service
that allows retrieving customer data. The customer repository had information split across many
tables, such as the basic customer data like name and address in one table, contract data of the
customers in another table, and the customers account data in separate table, as a customer may
have several accounts. The service represents the retrieval of all this data in a consolidated way as
this was the requirement of the corresponding business process activity. For this reason,
transformation flows implement the consolidation of the basic customer data, the contract data,
and the account data to make them available by a single service. The consolidated data have been
put in an XML message representing the output of the service.

Figure 9 provides an overview of the INTEGRATED BUSINESS OBJECT MODEL. The model
represents the order domain and the product domain and the relations between products and
orders. Moreover, the model shows that no specialized classes have been designed for dedicated
products. The special products have been configured in XML – the example below shows the
definition of the product DSL/ISDN.

<ProductType name="BundleDSLOnline" id="ProductBundleDSLOnline" sellable="true">
 <Documentation>

 <ShortDescription>This is the product bundle ISDN / DSL and Online </ShortDescription>
 <DetailedDescription>Detailed description...</DetailedDescription>

 </Documentation>
 <ProductRef name="ISDN/DSL" ref="ProductIsdnDSL" />
 <ProductRef name="Online" ref="ProductOnline" />
 <AttributeRef name="Customer class" type="CustomerClass" />
 <AttributeRef name="Installation price" type="Number" />
 <AttributeRef name="Tariff" type="Tariff" />

</ProductType>

<ProductType name="ISDN/DSL" id="ProductIsdnDSL" sellable="false" marketingName="-">
 <Documentation>
 <ShortDescription>This is the type definition of the product ISDN / DSL</ShortDescription>
 <DetailedDescription>Detailed description...</DetailedDescription>
 </Documentation>
 <AttributeRef name="Tariff" type="Tariff" />
 <AttributeRef name="Upstream bandwidth" type="Bandwidth" />
 <AttributeRef name="Downstream bandwith" type="Bandwidth" />
 <AttributeRef name="Damping" type="Damping" />

 <RuleRef name=" UpDownBandwidthConstraint " ref="UpDownBandwidthConstraint" />
</ProductType>

<ProductType name="Online" id="ProductOnline" sellable="false" marketingName="Online">
 <Documentation>
 <ShortDescription>This ist the type definition of the product Online</ShortDescription>
 <DetailedDescription>Detailed description...</DetailedDescription>
 </Documentation>
 <AttributeRef name="Tariff" type="Tariff" />
 <AttributeRef name="ImDSLBundle" type="Boolean" />
 <RuleRef name="OnlineTariffBandwidthConstraint " ref="OnlineTariffBandwidthConstraint" />
</ProductType>

Order Management Product Management

Figure 9: Example of an Integrated Business Object Model

The XML product definitions have been stored in terms of a product catalogue. An order
only references the products by their product code, as we can see in Figure 9 – the Product class
contains the product code as an attribute. The product code is basically an ID of a product to
identify it in the product catalogue. The product catalogue and the products may thus be easily
changed without modifying the INTEGRATED BUSINESS OBJECT MODEL where the business
objects themselves have been stored in a BUSINESS OBJECT POOL represented by a DB/2
database.

The corresponding user interfaces for data entry and for processing the products could thus
be designed generically, as the metadata structure could be interpreted and the user interfaces
were constructed generically. Implementing a new or improved product was thus basically an act
of configuration. Though, some amendments and enhancements in the business processes also
needed to be designed and implemented in this case. The SOA approach provided an effective
means to do that. However, the effort was minimised as the design has considered the notion of
product to be variable construct and changes have been limited to a minimum. The INTEGRATED
BUSINESS OBJECT MODEL thus had to depict the domain of orders considering the requirements
of the redesigned business processes and the integrated applications.

Furthermore, recent technologies directly support these patterns. For instance, IBM
WebSphere InterChange Server and WebSphere Process Server conceptually support the concept
of synthesized object models. Application specific object models addressed by application
adapters can be mapped via tool support to the synthesized object model. Consequently, the
patterns have shown much relevance as they are more and more supported by development
tools. However, the patterns are not restricted to WebSphere technology. They are also
applicable with other platforms that support process-driven and service-oriented approaches,
such as Staffware. The problems addressed by the patterns actually do not depend on any
particular platform.

There are other known uses of the patterns in the banking industry. In finance we usually deal
with old legacy systems, implemented in Cobol, running on large mainframe computers. These
systems represent a huge investment that needs to be protected, not at least because of their
reliability and stability. The SOA approach is very interesting for the financial industry, because
most of the processes are rather strongly formalised and SOA promises an approach for
integration and flexibility.

Moreover, there are other known uses in the automotive industry, especially in supply chain
management, where we will find the problems addressed in this paper. In supply chain
management we usually deal with business processes that run across different departments,
involving various stakeholders, and even across companies (suppliers). In such supply chain
contexts, heterogeneity of the system landscape involved in the business processes is rather the
norm than the exception.

The patterns in this paper address common problems arising in SOA projects that are built
considering existing and historically grown legacy systems, or – more generally speaking –
systems being developed independently. Often these legacy systems represent island solutions for
requirements that needed to be implemented quickly and in an evolutionary context. The
problems also occur in situations where no broader IT strategy is defined and where systems
grow independently. When taking a business process driven and service-oriented perspective,
some of the data integration issues, discussed in this paper, arise, such as data redundancies. This
is due to the broader and integrated view taken by the SOA approach. SOA often forces
developers to solve these – sometimes long known – issues in a systematic way. The problems
addressed by the patterns are often inherent and most probably predictable in projects that
extend system boundaries and take an enterprise-wide view.

For this reason, SOA rather offers a systematic approach for tackling data integration issues
that are often very well known and existing for years. SOA, as an architectural concept, is not the
solution to these well known integration problems, but it provides a means to approach them
systematically and effectively. It is rather the systematic detection and the solutions aligned with
business goals represented by the business process oriented approach that makes these patterns
valuable.

Conclusion

In this paper, we have presented patterns in the realm of data integration in process-oriented
SOAs. The first three patterns offer alternatives for single refactoring design decisions about the
integration of specific business object models: WRAP SERVICE AS ACTIVITY, RESTRUCTURE
SPECIFIC BUSINESS OBJECT MODEL, and SYNTHESIZE BUSINESS OBJECT MODELS. Besides the
description of these patterns in the process-oriented SOA domain, this paper describes
architectural patterns to use these patterns in a larger context. An architecture which supports the
use of each of the refactoring patterns, when it is most appropriate, is introduced by the
INTEGRATED BUSINESS OBJECT MODEL pattern. Additionally we have described a process-
oriented solution for data mapping and transformation, the DATA TRANSFORMATION FLOW
pattern. Finally, the BUSINESS OBJECT POOL pattern supports the harmonization of business
object models, as the pattern introduces a central pool for business objects which can be accessed
in parallel by independent processes.

Acknowledgements

We like to thank Wolfgang Keller, our PLoP 2006 shepherd, for his very valuable comments on
this paper.

References

[Barry 2003] D. K. Barry. Web Services and Service-oriented Architectures, Morgan
Kaufmann Publishers, 2003

[Channabasavaiah et al. 2003] K. Channabasavaiah, K. Holley, and E.M. Tuggle. Migrating to
Service-oriented architecture – part 1, http://www-
106.ibm.com/developerworks/webservices/library/ws-migratesoa/,
IBM developerWorks, 2003

[Evans 2004] E. Evans. Domain-Driven Design – Tackling Complexity in the Heart
of Software”, Addison-Wesley, 2004.

[Hentrich et al. 2006] C. Hentrich, U. Zdun. Patterns for Process-Oriented Integration in
Service-Oriented Architectures, Proceedings of EuroPLoP 2006,
Universitätsverlag Konstanz, 2006.

[Hentrich 2004] C. Hentrich. Six Patterns for Process-Driven Architectures,
Proceedings of EuroPLoP 2004, Universitätsverlag Konstanz, 2004

[Hohpe et al. 2003] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-
Wesley, 2003.

[Köllmann et al. 2006] T. Köllmann, C. Hentrich. Synchronization Patterns for Process-
Driven and Service-Oriented Architectures. Proceedings of EuroPLoP
2006, Universitätsverlag Konstanz, 2006.

[Zdun et al. 2006] U. Zdun, C. Hentrich, and W. van der Aalst. A survey of patterns for
service-oriented architectures. International Journal of Internet
Protocol Technology, 1(3):132-143, 2006.

Appendix: Overview of Referenced Related Patterns

There are several important related patterns referenced in this paper, which are described in other
papers, as indicated by the corresponding references in the text. Table 1 gives an overview of
thumbnails of these patterns in order to provide a brief introduction to them for the reader. For
detailed descriptions of these patterns please refer to the referenced articles.

Pattern Problem Solution

BUSINESS OBJECT
REFERENCE

[Hentrich 2004]

How can management of business objects
be achieved in a business process, as far as
concurrent access and changes to these
business objects is concerned?

Only store references to business objects in
the process control data structure and keep
the actual business objects in an external
container.

CANONICAL DATA
MODEL

[Hohpe et al. 2003]

How to minimize dependencies when
integrating applications that use different
data formats?

Design a CANONICAL DATA MODEL that is
independent from any specific application.
Require each application to produce and
consume messages in this common format.

CONTENT ENRICHER

[Hohpe et al. 2003]

How do we communicate with another
system if the message originator does not
have all the required data items available?

Use a specialised transformer, a CONTENT
ENRICHER, to access an external data
source in order to augment a message with
missing information.

ENTERPRISE SERVICE
BUS

[Zdun et al. 2006]

How is it possible in a large business
architecture to integrate various
applications and backends in a
comprehensive, flexible and consistent
way?

Unify the access to applications and
backends using services and service
adapters, and use message-oriented, event-
driven communication between these
services to enable flexible integration.

ENVELOPE WRAPPER

[Hohpe et al. 2003]

How can existing systems participate in a
messaging exchange that places specific
requirements, such as message header fields
or encryption, on that message format?

Use an Envelope Wrapper to wrap
application data inside an envelope that is
compliant with the messaging
infrastructure. Unwrap the message when it
arrives t the

MACROFLOW
INTEGRATION SERVICE

[Hentrich et al. 2006]

How can the functionality and
implementation of process activities at the
macroflow level be decoupled from the
process logic that orchestrates them, in
order to achieve flexibility, as far as the
design and implementation of these
automatic functions are concerned?

The automatic functions required by
macroflow activities from external systems
are designed and exposed as dedicated
MACROFLOW INTEGRATION SERVICE with
well-defined service interfaces.

MACRO-MICROFLOW

[Hentrich et al. 2006]

How is it possible to conceptually structure
process models in a way that makes clear
which parts will be depicted on a process
engine as long running business process
flows and which parts of the process will
be depicted inside of higher-level business
activities as rather short running technical

Structure a process model into macroflow
and microflow.

Pattern Problem Solution
flows?

MESSAGE TRANSLATOR

[Hohpe et al. 2003]

How can systems using different data
formats communicate with each other
using messaging?

Use a special filter, a MESSAGE
TRANSLATOR, between other filter or
applications to translate one data format
into another.

MESSAGING MAPPER

[Hohpe et al. 2003]

How do you move data between domain
objects and the messaging infrastructure
while keeping the two independent of each
other?

Create a separate MESSAGING MAPPER that
contains the mapping logic between the
infrastructure and the domain objects.

MICROFLOW ENGINE

[Hentrich et al. 2006]

How is it possible to flexibly configure IT
systems integration processes in a dynamic
environment, where IT process changes are
regular practice, in order to reduce
implementation time and effort?

Delegate the microflow aspects of the
business process definition and execution
to a dedicated MICROFLOW ENGINE that
allows to configuring microflows by
flexibly orchestrating execution of
microflow activities.

MICROFLOW
EXECUTION SERVICE

[Hentrich et al. 2006]

How to expose a microflow as a coherent
function with defined in- and output
parameters without having to consider the
technology specifics of the MICROFLOW
ENGINE being used, in order to decouple
the engine’s technology specifics from the
actual functionality that is has to offer to
execute concrete microflows?

Expose a microflow as a MICROFLOW
EXECUTION SERVICE that abstracts the
technology specific API of the
MICROFLOW ENGINE to a standardised
well-defined service interface and
encapsulates the functionality of the
microflow.

PRIVATE-PUBLIC
BUSINESS OBJECT

[Köllmann et al. 2006]

How can business object modifications be
hidden from other users as long as the
process activity during which the changes
are made is not finished?

Introduce private-public business objects,
which expose two separate images, a
private and a public image of the contained
data.

PROCESS-BASED
INTEGRATION
ARCHITECTURE

[Hentrich et al. 2006]

What architecture design concepts for
process-driven backend systems integration
are necessary, in order for the architecture
to be scalable, flexible, and maintainable?

Provide a multi-layered PROCESS-BASED
INTEGRATION ARCHITECTURE to connect
macroflow business processes and the
backend systems that need to be used in
those macroflows.

REPOSITORY

[Evans 2004]

Exposure of technical infrastructure and
database access mechanisms complicates
the client.

Delegate all object storage and access to a
REPOSITORY.

SERVICE

[Evans 2004]
Some domain concepts are hard to model
as objects because they have no state.

Define one or more related operations as a
standalone interface declared as a SERVICE
and make the SERVICE stateless.

Table 1: Thumbnails of referenced patterns

