
60 NOVEMBER • DECEMBER 2004 Published by the IEEE Computer Society 1089-7801/04/$20.00 © 2004 IEEE IEEE INTERNET COMPUTING

M
id

dl
ew

ar
e

Tr
ac

k
Editors: Doug Lea • d l@cs .oswego .edu

Steve Vinoski • v inosk i@ieee .org

Uwe Zdun
Vienna University of Economics
and Business Administration

Michael Kircher
Siemens AG Corporate Technology

Markus Völter
Ingenieurbüro für
Softwaretechnologie

Remoting Patterns
Design Reuse of Distributed
Object Middleware Solutions

Patterns and pattern languages offer a practical means for distributed system

developers to both gain a deeper understanding of the middleware they use and

to convey their knowledge about it. The proposed Remoting pattern language offers

a systematic way to reuse software models,designs,and implementations to extend,

integrate,customize,or build distributed object middleware solutions. This pattern

language has rich dependencies with other patterns and pattern languages from

related domains, including networking, concurrency, and resource management.

Developers’ experiences and actual
source code often provide the only
concrete design and implementation

knowledge for use in maintaining or
evolving complex distributed systems.
Often, only a few experts thoroughly
understand a given system and the preva-
lent development practices used to build
it. Nonexperts must thus invest signifi-
cant effort to acquire this knowledge,
especially after the established experts
leave an organization.

Although numerous books and arti-
cles describe how to use middleware from
a programmer’s perspective, or how a
specific aspect of a given middleware sys-
tem was designed, few also explain the
rationale behind the design. As outlined
by Schmidt and Buschmann, patterns and
middleware offer popular techniques for
coping with these challenges.1 Patterns

provide reusable design knowledge in the
form of proven solutions to recurring
software problems in a particular context
or domain. Middleware allows developers
to reuse a piece of software that hides
low-level API details, such as those of
operating systems, network protocol
stacks, and databases. Today, distributed
object middleware — Corba, Web services,
Java RMI, .NET Remoting, and so on — is
a basic element in the distributed-systems
development toolbox.

Schmidt and Buschmann argue that
patterns and middleware complement
each other to enhance the systematic
reuse of successful software models,
designs, and implementations.1 This
applies not only for systems built on top
of middleware but also for situations
that require an understanding of the
middleware’s inner workings. Although

middleware systems use different remoting
abstractions, terminologies, implementation lan-
guage concepts, and so forth, they share many
concepts. Understanding these common concepts
also helps developers of distributed systems
switch from one middleware system to another.
In some situations, developers need to extend a
middleware system with additional functionali-
ty. Sometimes it’s necessary to integrate different
middleware systems to enable independently
developed applications to work together. More
rarely, developers need to customize distributed
object middleware, or even build it from scratch,
when no suitable product exists.

In this article, we describe a pattern language
that provides a systematic mechanism for provid-
ing knowledge about the inner workings of dis-
tributed object middleware systems. Existing pat-
terns have explained specific aspects of
middleware implementations2–4 or how to build
higher-level systems on top of middleware,5 but
none have addressed the full range of how to use,
extend, integrate, and even build distributed object
middleware systems. In our book,6 we present a
detailed description of the Remoting pattern lan-
guage, including full pattern descriptions and pro-
jections to middleware implementations such as
.NET Remoting, Web services, and Corba.

Communication Middleware
Developers can build distributed systems directly
on top of network protocols — communicating
over TCP/IP sockets, for example7 — but doing so
forces them to handle all the low-level network
programming details. Such systems are usually
rather cumbersome and error-prone, and they’re
not easy to scale, maintain, or change.

Instead, developers typically use middleware as
an additional software layer to hide underlying
platform heterogeneity and provide transparency
in distributed communications — that is, to make
remote invocations as similar as possible to local
invocations. Of course, full transparency isn’t pos-
sible because remote invocations always introduce
new kinds of errors, latency, and so forth.

Today’s middleware systems use several dif-
ferent remoting styles, including those based on
remote procedure calls (RPCs), messages, shared
repositories, and data streams. In this article, we
focus on middleware that uses object-oriented
variants of the RPC style, but the patterns we pre-
sent are also relevant for systems that implement
other approaches. They are the basis for many

other remoting styles, including mobile-code,
peer-to-peer (P2P), remote-evaluation, grid com-
puting, publish–subscribe, and transaction-
processing systems. Developers often implement
such high-level approaches using the basic
remoting styles, or variants of them, but shield
users from internal details such as RPC mecha-
nisms and naming services used in ad hoc service
location.

Patterns and Pattern Languages
Over the past few years, patterns have become a
mainstream software-development technique. The
most popular patterns are for software design8,2

and software architecture,9 although the commu-
nity has also documented patterns for analysis10

and several non-IT topics.
In this article, we use Jim Coplien’s definition

of patterns (www.hillside.net/patterns/definition.
html), which summarizes the longer version put
forth by Christopher Alexander11:

“Each pattern is a three-part rule, which express-
es a relation between a certain context, a prob-
lem, and a solution … As an element in the
world, each pattern is a relationship between a
certain context, a certain system of forces that
occurs repeatedly in that context, and a certain
software configuration that allows these forces
to resolve themselves.”

Consider the popular strategy design pattern as
an example.8 This pattern’s context includes
design situations in which more than one algo-
rithm can (potentially) be applied for the same
tasks. The problem it addresses is that different
algorithms are appropriate at different times, so
it should be possible to exchange algorithms —
even at runtime — and to add other algorithms
in the future. As a solution to this problem,
developers can apply the strategy pattern,
which defines a family of algorithms with one
common interface, encapsulating each and mak-
ing them interchangeable.

A pattern describes a solution to a particular,
recurring problem. Given that large problems usu-
ally can’t be described using single patterns, the
community has created several ways to combine
patterns to solve more complex problems or sets
of related problems:

• Compound patterns are assembled from small-
er patterns.

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 61

Remoting Patterns

• Pattern families are collections of patterns that
solve the same general problem.

• Pattern collections, or systems, include sev-
eral patterns from a given domain or prob-
lem area.

• Pattern languages are designed to guide users,
in a step-by-step manner, toward a common
overall goal. The patterns in a pattern lan-
guage aren’t necessarily useful in isolation,
but they work together to holistically solve
specific problems.

The patterns we describe in this article form a
pattern language in the remoting domain.
Together, the patterns explain how distributed
object middleware systems work.

Remoting Patterns
The broker9 architectural pattern describes the
general architecture of distributed object middle-
ware systems. However, a clear and detailed guide
to understanding the components of a broker
architecture was missing. The Remoting pattern
language extends the broker architecture to
address the full range of how to use, extend, inte-
grate, and even build distributed object middle-
ware systems. We present the pattern language in
greater detail elsewhere.6

Broker Architecture
and Basic Remoting Patterns
Distributed systems software developers face many
challenges that don’t arise in creating single-
process software. Rather than attempting to master
all these challenges, including unreliable commu-
nication across networks and the need to integrate
heterogeneous components, developers of distrib-
uted systems need to focus on the domain-specif-
ic responsibilities of their distributed applications.
The broker pattern provides a general architec-
tural guideline that explains how to separate a dis-
tributed system’s communication functionality
from its application functionality by isolating all
communication-related concerns. A broker hides
and mediates all communications between the
objects or components in a system. Local client-
side and server-side brokers enable the exchange
of requests and responses between clients and
remote objects.

We view the broker as a compound pattern
that is implemented using several patterns from
the Remoting pattern language. Figure 1 shows the
typical broker architecture in terms of the remot-
ing patterns. A broker consists of a client-side
requestor to construct and forward invocations,
and a server-side invoker that calls the target
remote objects’ operations. A marshaller on each
side of the communications path handles the
transformation of requests and responses from
programming-language-native data types into
byte arrays that can be sent over the wire.

Figure 2 shows the typical pattern dependen-
cies within a broker architecture. In addition to
the core patterns, the broker typically relies on the
following:

62 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

Process A Process B

1. Submit
 request

3. Forward 4. Unmarshal

5. Invoke operation

Requestor

Marshaller

Remote
object

Invoker

Marshaller
M

ac
hi

ne
 b

ou
nd

ar
yClient

2. Marshal
 request

Figure 1. Broker architecture. The client uses a requestor to
construct and send remote invocations. On the server side, an
invoker receives the invocations and dispatches them to the target
remote object.

Describes
interface of

Describes
interface of

Builds
requests

Send
requests

Marshalling
requests

Demarshalling
requests

Requests

Invocation

Client proxy Marshaller

Client-request
handler

Server-request
handler

Interface description

Communicates
with

Raises Raises

Raises Raises

Remote object

InvokerRemoting
error

Requestor

Figure 2. Dependencies in remoting patterns. The basic remoting
patterns (blue boxes) provide a layered architecture for the primary
tasks in a distributed object middleware: handling requests,
dispatching invocations, and defining the application logic. The
remote object (gold box) is not a pattern, but a participant the
patterns interact with.

• A client proxy is a placeholder for the
remote object in the client process. By present-
ing clients an interface that is the same as the
remote object’s, the proxy lets the client inter-
act with the remote object as if it were a local
object. Internally, the client proxy trans-
forms the invocations it receives into
requestor invocations, which the requestor
pattern then constructs and forwards to the tar-
get remote object.

• An interface description is a specification
for a remote object interface. Developers can
use this description to construct a client
proxy for a given remote-object type, for
instance, or to generate stub (also called skele-
ton) for the invoker.

• The client-request handler and server-
request handler send, receive, and
dispatch requests. Specifically, these two pat-
terns forward and receive request and
response messages from the requestor and
the invoker, which reside at the layer above
the handlers.

• Remoting errors alert clients to the error
types introduced by remote (as compared to
local) invocations — technical failures in the
network communication infrastructure or
problems within the server infrastructure, for
example. The requestor and invoker forward
the remoting errors to the client if they can’t
handle them on their own.

The patterns described so far are the foundation of
any broker architecture. Developers can also use
several optional additions to it.

Identification Patterns
To find the correct remote objects within distrib-
uted server applications, clients need ways to
identify, address, and locate them. Developers
usually assign logical object IDs to the objects
to identify them; the invoker can then locate a
given remote object using the object ID that
either the client or client proxy embeds in the
remote invocation. Because object IDs are
valid only in the context of a specific server
application, however, objects in different server
applications might have the same object ID.
For a remote invocation, we must therefore have
some way to deliver the message to the correct
server application. An absolute object ref-
erence solves this problem by extending
object IDs to include location information,

such as host name and port, as well as the
remote object’s ID.

It is often important to avoid hardwiring
remote objects’ locations into a distributed appli-
cation or system. Developers and administrators
should be able to move objects to other hosts, for
example, without compromising a distributed
application’s integrity. The lookup pattern sim-
plifies the management and configuration of dis-
tributed systems by enabling clients to find
remote objects, while avoiding tight coupling
between them. The lookup pattern lets server

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 63

Remoting Patterns

Lookup Object ID Absolute
object reference

Looks up
object in

Registers
objects in

Uses

Uses

Assigns
Constructs

Is part of

Uniquely
identifies

IdentifiesMaps
properties to

Client
Server

application Requestor Invoker

Remote object

Figure 3. Dependencies in identification patterns. These patterns are
used to uniquely identify and locate remote objects.

Server
application

Per-request
instance

Static
instance

Client-dependent
instance

Lazy
acquisition

Instantiates Instantiates Instantiates

Client
Lifecycle
manager

Pooling

Passivation

Leasing

Optimizes Optimizes

OptimizesImplies
Requires

May useMay use

Figure 4. Dependencies in lifecycle-management patterns. There are
three common strategy patterns for lifecycle management (static
instance, per-request instance, and client-dependent
instance) and four patterns for resource management (leasing,
lazy acquisition, pooling, and passivation).

developers register remote objects (by name or
property, for example) at a central service, which
clients can then use for object discovery. Clients
thus need only the lookup service’s absolute
object reference, rather than the potentially
vast number of absolute object references
for objects with which they want to communicate.
Figure 3 illustrates the dependencies found in
identification patterns.

Lifecycle-Management Patterns
Figure 4 shows lifecycle-management patterns and
their relationships. Different remote objects require
different life cycles: some need to exist from serv-
er-application startup to termination, whereas oth-
ers need to be available only for a limited time. In
addition to differences in life cycles, several other
tasks are sometimes coupled with the activation
and deactivation of remote objects — activities that
strongly influence a distributed application’s over-
all resource consumption.

The most common strategies for managing
remote objects’ life cycles in today’s distributed
object middleware follow three basic patterns:

• Static instances typically have identical
lifetimes to their server applications; they rep-
resent fixed functionality in a system.

• Per-request instances are created for each
new request and destroyed afterward; they’re
used for highly concurrent environments in

which each running instance’s resource con-
sumption is an issue.

• Client-dependent instances are explicitly
instantiated by the client; they represent client
state in the server.

Internally, lifecycle-management patterns use
a set of specific resource-management patterns12:

• Leasing lets the patterns automatically deac-
tivate remote objects after a predefined period,
unless the client renews the lease before the
period expires.

• Lazy acquisition lets the server application
activate remote objects on demand.

• Pooling manages remote object instances in
a pool to optimize reuse. This pattern is espe-
cially useful when activation and deactivation
incur significant overhead, as is often the case
for short-lived instances.

To handle situations in which the total number of
remote objects exceeds the server’s resources (espe-
cially the memory), developers sometimes turn to
the passivation pattern.5 The pattern describes
how to remove temporarily unused instances from
memory and store them in a persistent storage,
such as a database, until restoring them upon the
next request.

Extension Patterns
Developers often need to extend functionality — to
support security, transactions, communication-
protocol exchanges, and so on — at various layers
of the distributed object middleware. In such cases,
remote invocations must contain more informa-
tion than just the operation’s name and parame-
ters — transaction support requires a transaction
ID, for example. Invocation contexts extend
remote invocations with an extensible data struc-
ture that is sent as part of the remote invocation
from the client to server side.

To extend the invocation process with behav-
ior, developers can use invocation inter-
ceptors. To include security credentials in a
remote invocation, for example, requires addi-
tional behavior for adding the credentials on the
client side and checking them on the server side
before granting access to a remote object. Typi-
cally applied in a chain triggered by the
requestor or client-request handler or
by the invoker or server-request handler,
invocation interceptors can intercept

64 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

Uses

Uses

Uses

Uses

Uses

Uses
Provides
hooks for

Provides
hooks for

Creates/uses

Transports Transports

Plugged into Plugged into

Communicates with

Invocation
interceptor

Invocation
context

Protocol
plug-in

Client

Invoker

Remote
objectClient

proxy

Server-request
handler

Client-request
handler

Requestor

Figure 5. Dependencies among extension patterns. These patterns
provide support for extensibility at the invocation and request-
handling layer of a distributed object middleware system.

remote invocations to pass information between
clients and servers using the invocation con-
text; they can also transparently add to the
context information.

Many distributed applications require support
for more than one communication protocol — for
encrypted and unencrypted data, for example.
Simple client- and server-request handlers
support only single, fixed communication proto-
cols, but protocol plug-ins extend them with
support for multiple, exchangeable communica-
tion protocols.

Figure 5 illustrates the relationships among
extension patterns.

Extended Infrastructure Patterns
Figure 6 shows the relationships among extended
infrastructure patterns. These patterns provide
support for configuring and accessing a distrib-
uted object middleware’s infrastructure. The
server-side broker architecture includes extended
infrastructure patterns for several specific imple-
mentation aspects:

• The lifecycle manager, typically imple-
mented as part of the invoker, activates and
deactivates remote objects using the lifecycle-
management patterns described earlier.

• Configuration groups allow developers to
configure multiple remote objects that would
be inefficient to configure individually — for
instance, the lifecycle strategies, interceptors,
or communication protocols can be configured
for a group of remote objects.

• For distributed applications that require a sys-
tem to meet specific quality of service (QoS)
constraints, a QoS observer provides a way to
monitor performance for various system
components, such as the invoker, client-
request handler, server-request han-
dler, or even the remote objects.

• Local objects — the distributed middle-
ware’s infrastructure objects (requestor,
lifecycle manager, QoS observers, and
so on) that are inaccessible from remote sites
— ease programming efforts by letting devel-
opers apply the same programming conven-
tions for both remote objects and local
instances.

• Location forwarders forward invocations
between different server applications to imple-
ment load balancing, fault tolerance, and
transparency in remote-object relocation.

All extended infrastructure patterns are optional
in a broker architecture, although larger middle-
ware systems support most of them.

Asynchronous Invocation Patterns
In contrast to synchronous or blocking invoca-
tions, asynchronous invocations allow a client to
resume its work while a remote invocation is run-
ning. The most common variants of client-side
asynchrony are described by the asynchronous
invocation patterns. Figure 7 illustrates the asyn-
chronous invocation patterns and their depen-
dencies. Developers can use four asynchronous
invocation patterns, rather than ordinary syn-
chronous invocations, if invocation asynchrony
is required:

• The fire-and-forget pattern describes best-
effort delivery semantics for asynchronous
operations but doesn’t convey results or
acknowledgments.

• The sync-with-server pattern describes
invocation semantics for sending an acknowl-
edgment back to the client once the operation
arrives on the server side, but the pattern
doesn’t convey results.

• The poll-object pattern describes invocation
semantics that allow clients to query (“poll”)
the distributed object middleware for the
results of asynchronous invocations.

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 65

Remoting Patterns

Request
handler

Absolute
object reference

Invoker

Server application

QoS observer

Lifecycle
manager

Local object

Remote
object

Monitors Monitors Monitors

Optimizes
resource

consumption

Updates
clients

Provides location
transparency for

Groups and
organizes sets of

Manages
life cycle for

Appears
like

Location
forwarder

Configuration
group

Figure 6. Dependencies among extended infrastructure patterns.
These supplement the basic patterns with support for specific
implementation aspects.

• The result-callback pattern also describes
invocation semantics that allow the client to
receive results; in contrast to poll object,
however, it actively notifies the requesting
client of asynchronously arriving results rather
than waiting for the client to poll for them.

All four patterns can be used when synchronous
invocations are insufficient because an invocation
should not block. Developers can use fire-and-
forget or sync-with-server when no result
should be sent back to the client. Poll object is
appropriate when a result is required and the client
has a sequential programming model, whereas
result callbacks require a client with an
event-based programming model.

Conclusion
The Remoting pattern language provides a guide
for using and developing distributed object mid-
dleware applications. We have provided several
projections of how the patterns apply in popular
distributed object middleware systems.6 In the
future, we will further work on related patterns
such as those in the areas of aspect-oriented and
model-driven software development and service-
oriented architectures.

Acknowledgments
This article is adapted from the authors’ recent book, Remoting

Patterns: Foundations of Enterprise, Internet, and Real-Time

Distributed Object Middleware (Wiley & Sons, 2004).

References

1. D.C. Schmidt and F. Buschmann, “Patterns, Frameworks,

and Middleware: Their Synergistic Relationships,” Proc.

IEEE/ACM Int’l Conf. Software Engineering, IEEE CS Press,

2003, pp. 694–704.

2. D.C. Schmidt et al., Pattern-Oriented Software Architecture:

Patterns for Concurrent and Distributed Objects, vol. 2,

Wiley & Sons, 2000.

3. D. Lea, Concurrent Programming in Java: Design Princi-

ples and Patterns, Addison-Wesley, 1996.

4. B. Gröne and P. Tabeling, “A System of Patterns for Con-

current Request Processing Servers,” Proc. 2nd Nordic

Conf. Pattern Languages of Programs (VikingPLoP),

Microsoft Business Solutions, 2003.

5. M. Völter, A. Schmid, and E. Wolff, Server Component Pat-

terns, Wiley & Sons, 2002.

6. M. Völter, M. Kircher, and U. Zdun, Remoting Patterns:

Foundations of Enterprise, Internet, and Real-Time Dis-

tributed Object Middleware, Wiley & Sons, 2004.

7. R. Stevens, Unix Network Programming, Prentice-Hall.

1998.

8. E. Gamma et al., Design Patterns, Addison-Wesley, 1995.

9. F. Buschmann et al., Pattern-Oriented Software Architec-

ture: A System of Patterns, vol. 1, Wiley & Sons, 1996.

10. M. Fowler, Analysis Patterns: Reusable Object Models,

Addison-Wesley, 1996.

11. C. Alexander et al., A Pattern Language: Towns, Buildings,

Construction, Oxford Univ. Press, 1977.

12. M. Kircher and P. Jain, Pattern-Oriented Software Archi-

tecture: Patterns for Resource Management, vol. 3, Wiley

& Sons, 2004.

Uwe Zdun is an assistant professor in the Department of Infor-

mation Systems at the Vienna University of Economics and

Business Administration. His research interests include

software patterns, scripting, object-orientation, software

architecture, and Web engineering. Zdun received a PhD

in informatics from the University of Essen. He is a mem-

ber of the IEEE and the ACM. Contact him at zdun@

acm.org or http://wi.wu-wien.ac.at/~uzdun/.

Michael Kircher is a senior software engineer at Siemens AG

Corporate Technology. He focuses mainly on distributed

object computing, software architectures, and design pat-

terns; he has written several patterns, papers, and books on

those topics. Kircher received a master’s degree (Dipl.-Inform.)

in computer science from the University of Stuttgart. Con-

tact him at michael@kircher-schwanninger.de or www.

kircher-schwanninger.de/michael.

Markus Völter works as an independent consultant for software

technology and engineering. He focuses on software archi-

tecture, middleware, and model-driven software develop-

ment. Völter received a Dipl. Ing. degree from the Univer-

sity of Applied Sciences, Weingarten. He has authored

several magazine articles, patterns, and books, and he reg-

ularly speaks at conferences. He is a member of the ACM.

Contact him at voelter@acm.org or www.voelter.de.

66 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

Poll
object

Fire-and-
forget

Result
callback

Sync-with-
server

Alternatives

Extends with result

Extends with
acknowledgment

Extends
with result

Figure 7. Dependencies among asynchronous
invocation patterns. These patterns provide four
alternatives for when synchronous invocations
are inappropriate because an invocation should
not block.

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 67

Remoting Patterns

Related Work in Pattern Languages

An important aspect of pattern languages
is that they are domain-specific with

language-wide goals. For instance,the goal of
the Remoting pattern language described in
this article is to help developers use and
develop distributed object middleware sys-
tems. As more pattern languages emerge
and mature, developers will be able to use
them to systematically integrate solutions
from related but independent domains by
describing their links to other pattern lan-
guages and patterns,documented elsewhere.

Numerous researchers have explored
patterns in recent years. Figure A summa-
rizes the relationship between the Remot-
ing pattern language described in this article
and other patterns and pattern languages.

Related Patterns
As documented by Buschmann and col-
leagues,1 distributed object middleware fol-
lows two architectural patterns:

• The broker pattern mediates object
invocations among communication
participants.The broker architecture
is the foundation of the remoting
patterns described in this article.

• The layers pattern separates
responsibilities by decomposing
systems into groups of subtasks in
which each group of subtasks operates
at a particular level of abstraction.
Distributed object middleware systems
usually follow a layers architecture.
For instance, remoting patterns
operate at the communication-
protocol, request-handling, invocation,
and application-logic layers.

Schmidt and colleagues describe many
patterns used to implement distributed sys-
tems, especially at the communication-
protocol layer in distributed object mid-
dleware.2 These patterns are used mainly
as the elements of the client– and
server-request handlers and
protocol plug-ins.

Gröne and Tabeling document several
patterns for concurrent request handling in
high-performance servers.3 Lea also

describes some concurrency patterns with
a special focus on Java.4

Kircher and Jain deal with patterns for
resource management and optimization with
any kind of resource, ranging from typical
operating system resources, such as threads
or connections, to remote objects or appli-
cation services.5 Specifically, they document
a pattern language on how to efficiently and
effectively acquire, access, and release
resources at different layers of abstraction.
These patterns are important for managing
a distributed object middleware’s resources,

especially with respect to request handling
and remote-object life cycles.

Maintaining client-dependent state pre-
sents a common problem in distributed
object middleware. The session pattern6

provides a solution by letting the server-side
of the distributed object middleware system
maintain state between individual client
requests, so that new requests can access
previously accumulated data. A session iden-
tifier lets clients and remote objects refer to
specific sessions. While sessions can exist at

Figure A. Patterns and pattern languages related to the Remoting patterns.
The main problems, shown in the form of questions, lead developers to
consider other patterns or pattern languages.

Remoting
patterns

Patterns for
networked

objects

Concurrent
programming
in Java design

principles
and patterns

Patterns for
concurrent

request
processing

servers

Resource-
mangement

patterns

Sessions
patterns

Security
patterns

Fault-
tolerance
patterns

Availability/
scalability
patterns

Patterns for
Aspect-Oriented

Programming

Broker
and layers

Server-
component

patterns

How to implement
distributed components as
extensions of distributed
object middleware?

How to modularize
orthogonal concerns
in remote invocations?

How to efficiently and effectively
handle resources, such as threads
or memory, in a middleware?

How to deal with
security concerns?

How to detect
or recover
from faults in
remote
invocations?

How to
improve a
distributed system's
availabilty and/or
scalability?

How to maintain
client-dependent
state in a
distributed system?

How to structure the
overall architecture of
the distributed middleware? How to implement networking and concurrency?

Enterprise-
integration
patterns

How to realize
a messaging
middleware?

continued on p. 68

68 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

Related Work in Pattern Languages continued

any protocol level, they are mostly indepen-
dent of lower-level communication tasks,
such as those that arise when multiple client
objects share a physical network connection.

Server-side component infrastructures
provide a distributed execution environ-
ment for software components.7The com-
ponent container provides essential ser-
vices to components, which can’t be
executed as stand-alone elements.These
services handle applications’ cross-cutting
technical concerns,which vary according to
application domain but typically aren’t
directly related to the application function-
ality implemented within the components.
In an enterprise environment, these services
handle issues such as transaction manage-
ment, resource-access decisions, fail-over,
replication,and persistence.Developers typ-
ically use distributed object middleware to
facilitate remote access to the components.

Hohpe and Woolf document patterns
on how to implement messaging middle-
ware systems.8 Messaging is inherently
asynchronous, and extends distributed
object middleware in several ways, includ-
ing support for reliable message transport,
message ordering, message expiration, and
different kinds of message channels.Devel-
opers can implement messaging systems by
extending distributed object middleware or
using existing messaging systems inside
protocol plug-ins.

When a software system is deployed
on a single machine, availability and scala-
bility can be problematic. Under increased
load conditions, the system might not be
able to provide the required performance
levels, and the whole system fails if the
machine goes down. To deal with such sit-
uations, Dyson and Longshaw introduce
patterns for building highly available and
scalable distributed software systems,espe-
cially Internet systems.9 These patterns can
be used to ensure the distributed object
middleware system’s availability and scala-
bility, for instance, by introducing data repli-
cation measures and load balancing.

Saridakis presents basic fault-tolerance
techniques, including fault detection, recov-
ery, and masking, as a system of patterns.10

These patterns have two relations to dis-

tributed object middleware.First,many fault-
tolerant systems use replication on different
hardware units,which require remote com-
munication.Second, some safety-critical dis-
tributed systems also require fault tolerance
in remote-object implementation.

Aspect-oriented programming is a tech-
nique for supporting the separation of
concerns. In AOP, developers implement
systems’ various cross-cutting concerns as
separate units (the aspects),which are com-
posed automatically by an aspect-composi-
tion framework. AOP is an important future
trend in object-oriented remoting because
it avoids tangled solutions for cross-cutting
design concerns.11 The term AOP actually
denotes several adaptation techniques,
which can be implemented using several dif-
ferent aspect-composition frameworks and
aspect languages. Zdun describes a pattern
language12 that explains how these aspect
composition frameworks are realized inter-
nally. In other work,he shows how this pat-
tern language applies in several popular
aspect-composition frameworks.13 These
AOP patterns explain only how AOP can be
realized, rather than how to build distrib-
uted AOP applications, but they also work
in implementing aspect solutions for dis-
tributed object middleware.

Combining Remoting
and Related Patterns
Clearly, other patterns and pattern lan-
guages capture most of the closely related
domains described by the Remoting pattern
language. Our language, in turn, acts as a
“glue” between these other languages when
applied to distributed object middleware or
distributed application development.

There are many patterns for extending
the core concepts of distributed object
middleware to include functionality such as
messaging, fault tolerance, scalability, and
session management. We’ve also described
a few best practices for combining the
remoting patterns with security14 — an
important orthogonal concern when
building distributed systems. Generally,
however, domains such as security and
transactions in distributed systems aren’t
well captured by patterns yet; a security

patterns book is forthcoming but not avail-
able yet (for details, see www.securitypat-
terns.org). Pattern languages for systems
built on top of distributed object middle-
ware are also scant or missing in many
domains, including peer-to-peer and grid
computing. We expect patterns to emerge
as these fields become more mature.

References
1. F. Buschmann et al., Pattern-Oriented Software Archi-

tecture: A System of Patterns,vol.1,Wiley & Sons,1996.

2. D.C. Schmidt et al., Pattern-Oriented Software Archi-

tecture: Patterns for Concurrent and Distributed

Objects, vol. 2, Wiley & Sons, 2000.

3. B. Gröne and P. Tabeling, “A System of Patterns

for Concurrent Request Processing Servers,” Proc.

2nd Nordic Conf. Pattern Languages of Programs

(VikingPlop), Microsoft Business Solutions, 2003.

4. D. Lea, Concurrent Programming in Java: Design Prin-

ciples and Patterns, Addison-Wesley, 1996.

5. M. Kircher and P. Jain, Pattern-Oriented Software

Architecture: Patterns for Resource Management, vol.

3, Wiley & Sons, 2004.

6. K.E. Sorensen,“Session Patterns,” Proc. European

Conf. Pattern Languages of Programs (EuroPlop 02),

UKV Konstanz, 2002, pp. 301–322.

7. M.Völter, A. Schmid, and E.Wolff,Server Component

Patterns, Wiley & Sons, 2002.

8. G. Hohpe and B.Woolf, Enterprise Integration Pat-

terns, Addison-Wesley, 2003.

9. P. Dyson and A. Longshaw, Architecting Enterprise

Solutions: Patterns for High-Capability Internet-Based

Systems, Wiley & Sons, 2004.

10. T. Saridakis,“A System of Patterns for Fault Toler-

ance,” Proc. European Conf. Pattern Languages of Pro-

grams (EuroPlop 02), UKV Konstanz, 2002, pp.

535–582.

11. G.Kiczales et al.,“Aspect-Oriented Programming,”

Proc. European Conf. Object-Oriented Programming

(ECOOP 97), LCNS 1241, Springer-Verlag, 1997,

pp. 220–242.

12. U. Zdun,“Patterns of Tracing Software Structures

and Dependencies,” Proc. European Conf. Pattern

Languages of Programs (EuroPlop 03), UKV Kon-

stanz, 2003, pp. 581–616.

13. U. Zdun,“Pattern Language for the Design of Aspect

Languages and Aspect Composition Frameworks,”

IEEE Proc. Software, vol. 151,no.2,2004,pp.67–83.

14. M. Völter, M. Kircher, and U. Zdun, Remoting Pat-

terns: Foundations of Enterprise, Internet, and Real-Time

Distributed Object Middleware, Wiley & Sons, 2004.

