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Abstract

Service-oriented architectures (SOA) are increasinglgdum the context of business processes. However, the
modeling approaches for process-driven SOAs do not yetisutly integrate the various kinds of models relevant
for a process-driven SOA — ranging from process models tavacd architectural models to software design models.
We propose to integrate process-driven SOA models via alrdosien software development approach that is based
on proven practices documented as software patterns. Vdelinte pattern primitives as an intermediate abstraction
to formally model the participants in the solutions thattpats convey. To enable model-driven development, we
develop domain-specific modeling languages for each kirmgtarfess-driven SOA model — based on formal meta-
models that are extended with the pattern primitives. Théua process-driven SOA models are integrated in a
model-driven tool chain via the meta-models. Our tool chailidates the process-driven SOA models with regard

to the constraints given by the meta-models and primitives.

1 Introduction

Many service-oriented architectures (SOA) provide a Serdomposition Layer that introduces a process engine
(or workflow engine) as the top-level layer [35]. Servicealime individual activities in the process (aka process
steps, tasks in the process). This kind of architecturelisccprocess-driven SQA'he main goal of process-driven
SOAs is to increase the productivity, efficiency, and fldiipiof an organization. This is achieved by aligning the
high-level business processes with the technical IT sesvidThat is, the business goals get closer integrated with
the IT architecture. Organizational flexibility can be aslgad because explicit business process models are easier to
change and evolve than for instance business processesé¢hard-coded in the program code. In the long run the
goal is to enable business process improvement through IT.
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One of the most important characteristics of SOAs suggestrdgeneity of technologies and integration across
vendor-specific technologies [29]. This, however, yieldsraportant challenge for modeling process-driven SOAs:
Many modeling domains need to be considered and the diffmeds of models need to be integrated. For instance,
among many other modeling domains, we need to consider aoemparchitectures, message flows, transactions, se-
curity, workflows/business processes, programming lagganippets), business object designs, and organizhtiona
models. In addition, application domains introduce donmagdels, such as a banking or insurance domain models.
Furthermore, implicit or explicit models for integratingisting legacy systems are needed: They often introduce an
additional modeling domain because they are built on difieconcepts than the rest of the SOA.

In other words, a central challenge for modeling procesgedr SOAs is that we generally need to integrate
different kinds of models and abstractions. This problechilenging because so far there is no formal and precise
modeling approach for integrating all these kinds of madels

In addition to the missing integration of process-drivenAS@nodels for different modeling domains, even within
one and the same domain integration is needed. For instantiee domain of workflow or business process lan-
guages many different languages and tools exist, with hidhferent characteristics. If, for example, a company
works on projects for different customers or two departreampanies need to integrate their IT (e.g., because of a
fusion), it is not unlikely that different workflow or busisg process modeling languages and tools are used. Similar
situations can occur in all the other modeling domains as wel

Finally, the executable languages used to implement thestadd.g., process execution languages like BPEL or
programming languages) are also diverse. In similar sgoat as the ones where modeling language integration is
needed, also an integration of the executable languageth-within and across modeling domains — is needed.

In this paper, we propose a concept for a model-driven toaircthat addresses these challenges through model-
driven software development (MDSD) [26, 12]. Our conceptased on the formal specification of the models in
domain-specific languages (DSL) which are formally defimeterms of meta-models. The code in the executable
languages is generated from the models expressed in the. D8asis, the integration issues raised above are solved
at the meta-model level.

Our tool chain and MDSD concepts break the integration sslosvn to the problem of finding adequate meta-
models for representing all concerns to be modeled in thewsimodeling languages used in the modeling domains.
In this paper, we propose to develop the meta-models acaptdi proven practices that can be found in existing
process-driven SOAs. Our assumption is that using provantioes as a foundation for meta-modeling leads to
a close match between the modeling abstractions and theéngximodeling languages (and thus the real world
requirements in the field).

In our approach, the software patterns concept is used toideghe proven practices. Software patterns capture
reusable design knowledge and expertize that providesprsulutions to recurring software design problems that
arise in particular contexts and domains [23]. A softwargoa, however, is typically described in an informal form

and cannot easily be described formally, e.g., by using arpeaterizable, template-style description. Hence, as such



patterns are not usable in formal meta-models. We remedyptioblem by introducing an intermediate abstraction,
called pattern primitives. A pattern primitive is a fundamed, formalizable modeling element in representing a
pattern.

Our general approach to apply pattern primitives for preedriven SOAs is to use one kind of formal modeling
language for all kinds of flow models that are used in a prodeisen SOA — and extend it with additional modeling
concepts where necessary to connect to other kinds of mobedésconnection between the various kinds of models
and the validation of the models (with regard to model irabgity and consistency in and across the modeling
domains) is the main task of our model-driven tool chain epts. To demonstrate our approach, we will use a
formalizable subset of UML2 and OCL to develop one formal elod) language to depict the various refinements
of processes in process-driven SOA models, even thoughpguoach in general is not depending on the use of the
UML.

In this paper, we first provide the background on MDSD andgpagtpattern primitives in Section 2 to lay out the
foundations of our approach. Next, in Section 3 we explaimdbncepts and architecture of our model-driven tool
chain to give an overview of our approach. In Section 4 wearphow we use meta-models to integrate process-
driven SOA models across modeling domains. Then in Sectiom ®xplain the pattern primitives approach for
process-driven integration of services using flow abstrastas the primary modeling domain used in our approach
for modeling process-driven SOAs. In Section 6 we demotestraw architectural abstractions — as one example of
another modeling domain — can be integrated with the flowratisbn models. We explain all primitive models with
running examples from a pattern language for process-utiviegration of services, which we have implemented in
our MDSD tool chain to validate our approach. Finally, wecdiss related work, evaluate our approach in comparison

to related work, and conclude.

2 Background

Before presenting our concepts for model-driven and patbesed integration of process-driven SOA models, we
want to briefly explain the model-driven software developinend software patterns concepts that we use as the

foundations for our approach.
2.1 Model-driven Software Development

Our approach to model-driven software development (MDSB) [L2] for process-driven SOAs is based on the
notion of domain-specific languages (DSL) for modeling theous types of models. Domain-specific languages
are “small” languages that are tailored to be particulagressive in a certain problem domain. The DSL describes
knowledge via a graphical or textual syntax (referred tch@sSLs concrete syntax [12]), which is tied to domain-
specific modeling elements through a formal language metdem(referred to as the DSLs abstract syntax [12]).

That is, the DSL elements are defined in terms of a meta-mba@g¢ldan be instantiated in concrete application



models. The application models are defined in the DSL's @iacsyntax, which represents the abstract syntax
defined in the meta-model.

In our approach, we use or introduce meta-models that aregepting a modeling domain. The meta-models
presented in this paper are based on the UML2 meta-modekgdadsions of it): For example we use UML2 activity
diagrams to model flow abstractions and UML2 class/compodiaigrams to model the object-oriented design and
architecture models. But any other meta-model can be usadimilar way. Examples for concrete syntaxes are a

graphical UML model or an XML file specifying a process model.
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Figure 1. Relations of Artifacts in MDSD

Meta-models are defined in terms of a meta-meta-model. In Ubtinstance, this is MOF. Most MDSD tools
support their own meta-meta-model, which basically regmésa mapping from meta-model definitions to the imple-
mentation of the MDSD tool chain. Below, in the examples fimum prototype, we use a simple meta-meta-model to
define both the UML2 meta-model and pattern primitives esitars. It is not particularly important for our approach,
which meta-meta-model is used, there just must be some wexptess the relationships between a meta-model and
the implementation code. The meta-meta-model is not @gibldevelopers who build application models, but only
to those who build meta-models.

Each MDSD tool introduces some way to specify transfornmatiol here are different kinds of transformations,
such as model-to-model transformations or model-to-caatlesformations. There are also different ways to specify
transformation, such as transformation rules, imperdtaesformations, or template-based transformationsnin a
case, the ultimate goal of all transformations in MDSD tdel$o generate code in executable languages, such as
programming languages or process execution languages MD&D tools are used to generate all those parts of
the executable code which are schematic and recurring, @mcetcan be automated. Of course, some code must be
hand-written either because it is individual code for aasysbr the semantics of the code are not fully covered by the
DSLs (yet). The individual code and the generated code udeaher and interact through well defined interfaces.

Figure 1 summarizes the relations of artifacts in MDSD. Bhisrt introduction to the terms used in MDSD should
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suffice for this paper. We will provide examples for the vasaconcepts in the text below, as we use them. Please

refer to [26, 12] for a thorough introduction to the MDSD apach.
2.2 Software Patterns and Pattern Primitives

Software patterns and pattern languages have gained wédptanice in the field of software development, because
they provide systematic reuse strategies for design kridyel¢23]. Each pattern is a three-part rule, which expresses
a relation between a certain context, a problem, and a eal{®]. A pattern language is a collection of patterns that
solve the prevalent problems in a particular domain andesanand, as a language of patterns, it specifically focuses
on the pattern relationships in this domain and context.

Patterns informally describe many possible variants of sofeware solution that a human developer or designer
can recognize as one and the same solution. A pattern enpooésn practices for particular, recurring design
decisions. A pattern language can thus be seen as a langudgsign decisions that one can follow in a number of
possible sequences. Hence, patterns encode recurrimgakesiisions, give them a name that can be used throughout
a development team, allow development team members tottraaesign considerations in the design decisions by
following the sequences in the pattern language, etc.

Even though these properties of the pattern approach angyhigluable in the software design process, they also
make pattern instances hard to trace in the models and inepliations. To overcome this problem, we introduced
an approach to document formalizable primitive abstractithat can be found in the patterns [34]. Documenting
pattern primitives means to find precisely describable riogeelements that are primitive in the sense that they
represent basic units of abstraction in the domain of thiepat Our original pattern primitives concept presented
in [34] is only targeted at modeling architectural patterfiat is, in the architectural realm, basic architectural
abstractions like components, connectors, ports, andacts are used. An interesting challenge in describing the
pattern primitives for the patterns of process-driven S®@Ahit this area is characterized by the fact that we need
to understand various design and architecture conceptgelagas various design and implementation languages, in
order to be able to model a process-driven SOA design fullgoAother aspects like organizational roles must be
considered. This is an important difference to the area néga architectural patterns.

In this paper, we model pattern primitives using UML 2.0 esiens because the UML has become the “lingua
franca” of software design and is vastly supported by toble specify an extension of a UML 2.0 metaclass for
each elicited primitive, using the standard UML extensioechanisms: stereotypes, tag definitions, and constraints.
We use the Object Constraint Language (OCL) to formalizectirestraints and provide precise semantics to the

primitives.
3 Model-driven Tool Chain: Concepts and Architecture

In our concept, similar artifacts must be produced for eaclleling domain. As many modeling domains need

to be considered to adequately model a process-driven S@Awilivfirst describe the general activities which must
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be performed for each individual modeling domain — beforecalefrdriven development of process-driven SOAS in
this modeling domain is possible. Next, we will give an ovew of our integration concepts for integrating models

across modeling domains.
3.1 Model-driven Design Process

A model-driven design process, according to our approdutyld loosely follow the activities described below.

Please note that our approach does not require any partmualer of these activities.

1. Elicitation of input languages/model$n each modeling domain, there might be multiple input laggs or
models which are needed for the process-driven SOA. Faariest, if different UML tools are used, different
XMI exports of these tools must be considered for UML modeésiother example is the area of business
process and workflow modeling languages, where a plethoraots exists which use different standard and
non-standard process and workflow modeling languages. Evesame standard language might be inter-
preted differently by different tool vendors. Similar stions exist in other modeling domains. It is hence
important to elicit the relevant input languages/modets] maybe identify a sub-set of them to be reflected in
the DSLs. Please note that sometimes no external tool stheuded for modeling, but an inhouse develop-
ment or an external tool can be extended with export formien it is possible to model directly in the DSL

(i.e., the DSL concrete syntax is the only input format far thodeling domain).

2. Elicitation of output languages (aka execution languageSpmetimes only one target execution language
should be used as an output for a particular modeling domBut.in other cases, the same models should
be used for generating code in different execution langslag®r instance, if a company develops code for
different process engines (e.g., in different projectdferknt business process languages might be used as
execution languages by these engines or different diatéaise language. A similar situation can also occur,

if different programming languages or platforms are to bepsuted.

3. Development or definition of an MDSD tool chaiffhere is a common workflow for model-driven code
generation following our approach: the input languagesiei®need to be read and transformed into DSLs
which are defined using meta-models. Then the DSL code slyatildalidated according to the meta-models
and constraints defined on them. Finally, code in the targitut languages should get generated. In between
many other steps are possible, such as model transforreafitve generation tool chain must support a way to
define meta-models. It must also provide a constraint laggt@adefine structural constraints at the meta-level
(i.e., on meta-models). The tool chain needs to be extensiith input and output languages/models, e.g.,
via plugins. It must provide a means to flexibly assemble #reegation workflow and the plugins. There are
many existing code generators that provide these feataresfen source example is openArchitectureWare
[22]), but of course it is also possible to custom-build paftthe generation tool chain to realize the concepts.

In our prototype we use the language Frag [33, 32] for the diginof DSLs and meta-models, because it is
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especially designed for this task. The language is also fasdle implementation of the constraint language

and the model validator.

. Definition of meta-models (abstract syntax of modeling Db}y each DSL we need to define a meta-model
which describes the abstract syntax of the DSL. That is, teammodel defines the entities (domain concepts)
that are represented by the language, their relationshimbconstraints on them. In this paper, we use exten-
sions of the UML2 meta-model because it pre-defines manyecdiiments that we require in the model types.
We extend it with pattern primitives via UML profiles. OCL ised to define constraints. However, any other

kind of meta-models can be used as well.

. Definition of a concrete syntax for the DSLhe concrete syntax defines how the DSL meta-model is mapped
to language elements and a grammar. The concrete syntajiticank& textual or graphical. In this paper, we
use the Frag textual syntax as one common syntax becaussyttogparse and to map onto Frag meta-models.
Though it is quite useful to use one common syntactic basalf@oncrete syntaxes of the DSLs in order to
reduce the learning effort for developers, this is no praigite of our approach. Any suitable concrete syntax

can be chosen.

. Development of transformation plugins for each input laamgg! If the input languages differ from the DSL,
a mapping between input language and DSL must be defined.aAdagin for the generator to transform the

input language into the concrete syntax must be defined.

. Development of transformation plugins for each output leage (aka execution languagefExecution lan-
guage code is generated from the models written in the DShs.e&ch combination of DSL and execution
language, a plugin for the generator should be developetiasthe generator can automatically generate code

in the execution language that conforms to the model.

As an example, let us consider our MDSD tool chain for proasgen integration of services. Please note that

many other configurations are possible. For instance, atipeit and output models or DSL syntaxes can be used in

the same way.

Our tool chain is depicted in Figure 2. We mainly use UML2 medbat are extended with UML2 profiles for

modeling the pattern primitives as inputs. These UML2 medah either be developed with UML tools (with XMI

export) or directly in the textual DSL syntax. If a UML tool issed, the XMI export is transformed into the textual

DSL syntax.

We use Frag [33, 32] as the syntactic foundation of the téXD®Ls and for defining the meta-models of the

DSLs. Frag’s main goal is to provide a tailorable languagenofAg other things, Frag supports the tailoring of

its object system and the extension with new language elesmetence, Frag provides a good basis for defining a

UML2-based textual DSL because it is easy to define a meta-metlel on top of which we can define the UML



meta-classes. Frag automatically provides us with a syfatagefining application models using the UML2 meta-
classes. In addition to UML2 meta-models and the meta-metdel, we have defined a constraint language which
follows the OCL'’s constructs.

The model validator gets all input models and validates tirdamance of the application models to the meta-
models. It also checks all OCL constraints. Especiallyt thaans it checks the constraints given by the pattern

primitive definitions.
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Figure 2. Tool Chain Overview

After the model is validated it is transformed into an EMF ralpdvhich is understood by the code generator. We

then generate code in executable languages, such as JaB®Bhdgusing the code generator.
3.2 Model Integration Concepts: Meta-meta-model Based Irggration

The model-driven design activities and architecture deedrin the previous section only concentrate on the
individual modeling domains. For integration of the mogel® propose further integration concepts that extend
the general model-driven approach. Because they are indepe of external tools, languages, or models, in our
concept, the central point of integration are the meta-rsothat we need to define for the DSLs. Also, they are
located at the central place of the model-driven architectat the point in the tool chain where all different models
are assembled.

We propose to define the meta-models on top of one common met@model. The meta-meta-model can be
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very simple, or more elaborate like MOF. The most importaitedon for the meta-meta-model is that the elements
of the meta-meta-model allow the model validator to checkl@i®against the meta-models. In addition, it should
be possible to define a constraint language using the met@-madel, with which models can be constrained at the
meta-level and hence validated at the model level.
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Figure 3. Meta-meta-model Excerpt

As an example, Figure 3 shows the relevant excerpt of the-meta-model that we use in Frag to define UML2
meta-models. This meta-meta-model is very simple and sebs&gy’s language features wherever possible. It is
derived from the most general class in the Frag object syst@siect. The meta-meta-model classes are sub-
classes ofConst r ai nedCl ass which allows to add OCL-style constraints to classes. Theveoience class
Const r ai nt Checker looks up allConst r ai nedd ass instances via reflection and checks the constraints. Con-
straints are specified in a language similar to OCL (definétpubhe classCL). The meta-models are defined using
Cl ass. We introduce also a number of relationships between dad3ependencies, Associations, Compositions,
and Aggregations. In addition, typed attributes can beifipdc Please note that we do not define the generaliza-
tion relationship, because multiple inheritance is sijtaibedefined by Frag and we can reuse this implementation.
The St er eot ype class defines the UML2 extends-relationship; that is, dvedl to extend meta-classé&umis a

convenience class to define Enumeration types.



3.3 Model Integration Concepts: Proven Practices Based Iegration

Besides the common meta-meta-model concept, we use proaeticps descriptions as the second central model
integration concept: As explained above, we use softwattema to describe proven practices of process-driven

SOAs. Patterns have two characteristics which make thefaldse model integration across modeling domains:

e Patterns describe recurring solutions in a particular lgmmbdomain in an informal and holistic manner. Hence,
in contrast to most formal modeling notations, they do nditi@et from details that go beyond a specific
modeling domain’s abstractions, but instead explain tHes@lution. That is, if the solution has, for instance,
implications for the workflow, the organization, and theta@ire architecture, all these solution elements are

described.

e As proven practice descriptions, patterns encode theniagihemes in the same kinds of models. Hence, they
are also a good basis for defining a common meta-model for almgddomain, because patterns typically
describe the established, stable abstractions that adeagsess different modeling approaches and execution

languages.

Because patterns are defined only informally, we use patémitives as an intermediary abstraction to represent
the primitive concerns in the patterns formally. At thismipit is very important that we use a common meta-meta-
model and a common constraint language to define the metaiaihait represent the abstract syntaxes of the DSLs:
This way, the primitives can be connected via constraimg, aso primitives that cut across different models can
be defined. The model validator can check all structural gmogs and constraints in the complete model, even if

modeling domains are crossed.
4 Meta-models for Process-Driven Integration of Services

There are many modeling domains that play a role for a predegsn SOA. In our tool chain we have so far
concentrated on a sub-set of these domains that deals withtdgration of processes and services. In this domain,

the following types of languages/models are typically used

e the component architectures,

the message flow specifications,

the workflow or business process languages,

programming languages and snippets written in programmainguages,

and business object design models.
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For our tool chain, we model both, message flow specificatmasworkflow or business process languages, using
extension of UML2 activity diagrams Component architectures are modeled using UML2 compotiegrams.
Business object design models are modeled using UML2 claggains. In this paper, we will concentrate on
examples that illustrate the integration of component iggctures and flow abstractions, but the integration with
business object design models can be done analogouslyaRmotng language snippets are introduced as individual
code (as explained in Section 3.1, cf. Figure 2).

As an example for a meta-model definition let us consider #rdral flow abstractions: The different models
that are relevant for a process-driven SOA come togetheaiimws kinds of “flow” models. There are flow models
for long-running business processes, activity steps ig-lmmning processes, short-running technical processes,
activity steps in short-running technical processes. Htengh these flow models have highly different semantic
properties, they share the same basic flow abstraction pgrared at the same time they are a kind of glue for all the

other models that are involved in a process-driven SOA (sgchrchitecture and design models).

activity node
Activity ‘—* ActivityNode
0.1
0.1 activity target | 1 ZE
source| 1
* edge
incoming
ActivityEdge outg;oing ObjectNode ControlNode
*
A
| |
ForkNode JoinNode MergeNode DecisionNode InitialNode FinalNode

T,

ActivityFinalNode FlowFinalNode

Figure 4. UML2 Activity Diagram Meta-model Excerpt

Figure 4 shows the excerpt of the UML2 activity diagram meiadel that is relevant for the following examples
in this paper. We can define this meta-model by instantidhiegneta-meta-model classes from Figure 3. In the Frag
syntax, the same meta-model looks as follows:

MMM : Cl ass create Activity
MMM : Cl ass create ActivityNode

!Please note that in both cases, long running business pescasd short running technical processes, the UML2 acthidigrams must
be extended to depict relevant additional information. iRstance, to represent long running business processpsryave must also depict
organizational roles, organizational structures, bussrmesources, etc. To represent short running technicaépses properly, we must add
technical details, such as protocol information, techiniesources, or message queue details. In the examplessgbaper, we omit these

details because we want to concentrate on the processiséntéraction aspects.
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MMM : Conposition create ActivityNodes -ends {

{Activity -roleNane activity -multiplicity 0..1 -navigable 1 -aggregati ngénd 1}
{ActivityNode -rol eName node -multiplicity * -navigable 1}

}

MW : Cl ass create ActivityEdge

MMM : Conposition create ActivityEdges -ends {

{Activity -roleNane activity -multiplicity 0..1 -navigable 1 -aggregati ngend 1}
{ActivityEdge -rol eName edge -multiplicity * -navigable 1}

}

MMM : Associ ation create ActivityEdgel ncom ng -ends {
{ActivityEdge -rol eNanme incoming -multiplicity » -navigable 1}
{ActivityNode -rol eName target -nultiplicity 1 -navigable 1}

}

MMM : Associ ation create ActivityEdgeQutgoing -ends {
{ActivityEdge -rol eNane outgoing -nmultiplicity * -navigable 1}
{ActivityNode -rol eName source -nultiplicity 1 -navigable 1}

}

MW : C ass create Control Node -superclasses ActivityNode

MMM : Cl ass create CbjectNode -superclasses ActivityNode

MMM : Cl ass create Final Node -supercl asses Control Node

MMM : Cl ass create ActivityFinal Node -supercl asses Fi nal Node

MMM : Cl ass create Fl owFi nal Node - supercl asses Fi nal Node

MMM : Cl ass create ForkNode -superclasses Control Node

MMM : Cl ass create Joi nNode -supercl asses Control Node

MMM : Cl ass create MergeNode -supercl asses Control Node

MMM : Cl ass create DecisionNode -supercl asses Control Node

MMM : Cl ass create Initial Node -supercl asses Control Node
As the meta-models for class and component diagrams areedgfiietty much in the same way, we omit them

here.
5 Patterns and Pattern Primitives for Process-Driven Integation of Services

To realize our approach, we must next discuss how to extendhtta-models with pattern primitive extensions.
Before we can go into detail, we first give an overview of thégra language from which we derive the pattern

primitives.
5.1 Overview: Patterns for process-oriented integration bservices

In this section, we give an overview of the pattern languag@focess-oriented integration of services (for details
please referto [14]). In the next section, we present theifivies that we have mined from this pattern language. The
pattern language basically addresses conceptual issties 8ervice Composition Layer of a SOA, when following

a process-driven approach to services compoaosition.
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Figure 5. Overview: Pattern language for process-oriented
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The patterns and pattern relationships for designing ai@e®@omposition Layer are shown in Figure 5. In
the pattern language, the patterACRO-MICROFLOW sets the scene and lays out the conceptual basis to theloveral
architecture. The pattern divides the flow models into dledanacroflowswhich describe the long-running business
processes, anahicroflows which describe the short-running technical processes.

The PROCESSBASED INTEGRATION ARCHITECTUREpattern describes how to design an architecture based on
sub-layers for the Service Composition Layer, which isdeihg theMmACRO-MICROFLOW conceptual pattern.

The remaining patterns in the pattern language providelddtguidelines for the design of BROCESSBASED
INTEGRATION ARCHITECTURE In Figure 5 they are thus displayed within the boundariehhePROCESSBASED
INTEGRATION ARCHITECTUREpattern.

The automatic functions required by macroflow activitiemifrexternal systems are designed and exposed as ded-
icatedMACROFLOW INTEGRATION SERVICES PROCESS INTEGRATION ADAPTEREONNect the specific interface
and technology of the process engine to an integrated sy#{&uLE-BASED DISPATCHERpicks up the (macroflow)
activity execution requests and dynamically decides bagsd@usiness) rules, where and when a (macroflow) activ-
ity is executed. ACONFIGURABLE ADAPTERcONNects to another system in a way that allows to easily taiaithe
connections, considering that interfaces may change ower A CONFIGURABLE ADAPTER REPOSITORYNanages
CONFIGURABLE ADAPTERSas components, such that they can be modified at runtime wtigtffecting the systems

sending requests to the adaptersmiEROFLOW EXECUTION SERVICEabstracts the technology specific API of the
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MICROFLOW ENGINE and encapsulates the functionality of the microflow as aiservA MACROFLOW ENGINE
allows for configuring business processes by flexibly orthéag execution of macroflow activities and the related
business functions. MicROFLOW ENGINEallows for configuring microflows by flexibly orchestratingezution of
microflow activities and the relategBlUSINESSDRIVEN SERVICES To defineBUSINESSDRIVEN SERVICES high-
level business goals are mapped to to-be macroflow busimesegs models that fulfill these goals and more fine
grained business goals are mapped to activities withirethescesses.

Figure 6 shows an exemplary configuration (fROCESSBASED INTEGRATION ARCHITECTURE in which mul-
tiple macroflow engines execute the macroflows. Procesgriation adapters are used to integrate the macroflows

with technical aspects. A dispatching layer enables sit#tjyaby dispatching onto a number of microflow engines.
Business application adapters connect to backends.

Process Integration Architecture

Process Integration Activity Microflow Execution Business Application
Adapter Repository Dispatcher Adapter Repository Al [ o || =
s s I 2
Macroflow Engine A Process shelsllg
Integration = s
Adapter A > - Busllne.ss ] —
Microflow Engine A =z Application Business Application A
v L] Adapter A

Macroflow Engine B Process
Integration > ~
Adapter B Microflow Engine B Business
N W,,; Application Business Application B
Macroflow Engine C Process
Integration =
Adapter C : : :

Adapter B
. . Activity
Macroflow integration dispatching Microflow execution layer
layer layer

Service 2
Service 3
Service 4

—
Q
L
2
o)
2]

Service 1
Service 2
Service 3

Business application services layer

Figure 6. Example Configuration of a Process-based Integrat ion Architecture

5.2 Pattern primitives for Process/Service Integration

In this section, we present the pattern primitives for flowtedictions that we have mined from the pattern language
in Figure 5. We will concentrate only on one example pringtithe other flow abstraction primitives are summarized
in Table 1.

Each primitive is formally defined in the context of the UMLZta-model using OCL constraints. To illustrate
the formal definition of the primitives let us consider the dvtaMicroflow Refinement Primitive. This primitive
models the situation that Microflow Models are allowed tonefMacroflow Models. In addition to macroflows and
microflows, we must consider the Macroflow Steps and Microffps models, introduced by the Process Flow
Steps primitive: A process activity node in a macroflow or mflow can optionally be refined by a number of
sequential steps that detail the steps performed to rethiizprocess activity.
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Primitive Name

Description

Modeling Solution

Process  Flow| A macroflow or microflow is refined ust The Activity metaclass is extended with the stereotype &sElowRefinement
Refinement ing another process flow. which also introduces tagged values for identifying thenesfient.

Process  Flow| A macroflow or microflow is refined by A specialization of the ProcessFlowRefinement stereotgpited ProcessFlow
Steps a number of sequential steps. Steps, is introduced and constrained to be a strictly sdildiow.

Macroflow A macroflow can be refined by other Macroflows are modeled by a ProcessFlowRefinement steeotyalled
Model macroflows or macroflow steps. Macroflow, and macroflow steps are modeled as a specializafi®rocessFlow-

Steps, called MacroflowSteps.

Microflow A microflow can be refined by other mi- The microflow model is modeled analogous to the Macroflow Mquienitive:
Model croflows or microflow steps. The Microflow and MicroflowSteps stereotypes are introduced

Macro-Micro- Microflow Models are allowed to refing The Microflow Model primitive is extended: If refinedActiyiNode of a Mi-

flow Refinement

Macroflow Models.

croflow is not empty, the Microflow is a refinement of a MicroflaavMacroflow,

or MacroflowSteps.

Restricted Ma-
croflow Step

Types

Macroflow Steps are restricted to
kinds: process function invocation, prg
cess control data access, and process

source access.

3Respective stereotypes for the ActivityNode metaclassnareduced: InvokePro-
-cessFunction, AccessControlDataltem, and AccessPiResssirce. The stered

cessed.

Restricted Mi-

Microflow Steps are restricted to

P This primitive can be modeled using 2 stereotypes for théugNode metaclass

croflow Step| kinds: process functions invocatiorjsinvokeProcessFunction and AccessControlDataltem.

Types and process control data access.

Synchronous A service is invoked synchronously. | The SyncServicelnvocation, GetlnvocationData, and \8eteiceResult stereo|
Service Invoca- types extend the Activity Node metaclass.

tion

Asynchronous A service is invoked asynchronously. | The AsyncServicelnvocation and GetlnvocationData stgpes extend the Activ-
Service Invoca-| ity Node metaclass. An asynchronous service invocatiorhhtigve no result.
tion

Fire and Forget

A service is invoked asynchronousl

v The stereotype FireAndForgetinvocation specializes thgndServicelnvocatior

Invocation with fire and forget semantics. stereotype. No result is written for this service.

One Reply| A service is invoked asynchronously, The OneReplylnvocation stereotype specializes AsynéSsnvocation. We can-
Asynchronous and exactly one result is coming back] not guarantee that the result comes back in the same Actiuitythere must be
Invocation exactly one result for a OneReplylnvocation.

Multiple Reply| A service is invoked asynchronously, The MultipleReplylnvocation stereotype specializes ASS#rvicelnvocation. We
Asynchronous and multiple results are coming back.| cannot guarantee that the result comes back in the sameatjdbiut there must be
Invocation at least one result reception.

Process Control
Data Driven In-

vocation

A service is invoked using only dat

from the process control data.

a A service invocation is modeled by a refined Activity Nodestgyped as Process
ControlDataDrivenlnvocation. This activity must contai$ervicelnvocation, an
ReadServiceData/WriteServiceResult must be used whietiaze AccessPro

reypes introduce tagged values for identifying the data itemesource that is act

)

cessControlData.

Table 1. Flow Abstraction Pattern Primitives Overview
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«stereotype»

ProcessFlowRefinement «metaclass»

Activity

+ refinedActivity : Activity
+ refinedActivityNode : ActivityNode

A B L

«stereotype» «stereotype» «stereotype»
Microflow ProcessFlowSteps Macroflow

2 o

«stereotype» «stereotype»
MacroflowSteps MicroflowSteps

Figure 7. Macro-/Microflow: Stereotypes for the Primitives

To model this primitive, we first must introduce UML2 stergmés to distinguish the different kinds of re-
fined/refinement activities (see Figure 7) in the UML2 modelhe same extension for the Activity meta-class

looks as follows in the Frag textual syntax:
MMM : St ereotype create ProcessFl owRefi nement -extends UML2:: Activity \
-attributes {
refinedActivity UML2:: Activity
refinedActivityNode UML2:: Acti vit yNode

MMM : St ereotype create M crofl ow -supercl asses ProcessFl owRef i nenent
MMM : St er eot ype create Macrofl ow - supercl asses ProcessFl owRef i nenent
MMM : St ereotype create ProcessFl owSt eps -supercl asses ProcessFl owRef i nenment
MMM : St ereotype create M crofl owSt eps -supercl asses ProcessFl owSt eps

MMM : St ereotype create Macrofl owSt eps -supercl asses ProcessFl owSt eps

We can model the Macro-Microflow Refinement primitive by dogiging the Microflow Activities. In particular,
if the refinedActivityNode and refinedActivity tag valuesaMicroflow are not empty, the Microflow is a refinement
of another Microflow, a Macroflow, or a MacroflowSteps Actif his can be formally modeled using the following

OCL constraint:
-- If a Mcroflow Activity refines another Activity, then this other Activity
-- must be itself stereotyped as Macrofl ow, Macrofl owSteps, or M crofl ow
context Mcroflowinv:
if (self.refinedActivity->notEnpty() and
sel f.refinedActivityNode->not Enpty()) then

Macr of | ow. baseActivity->exist(a | a = self.refinedActivity) or

Macr of | owSt eps. baseActivity->exist(a |a = self.refinedActivity) or

M crof | ow. baseActivity->exist(a | a = self.refinedActivity)

endi f
The syntax of the FCL constraints, expressed in Frag, haligtalg different syntax than OCL, but are seman-

tically equivalent (i.e. the constraints can be autom#yidsanslated between OCL and FCL). Here is the same
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invariant in the FCL syntax:

M crof | ow addl nvari ant {
[FCL if {[FCL notEnpty [self refinedActivity]] &&
[FCL notEnpty [self refinedActivityNode]]} {

[FCL exists a Macrofl ow {[$a baseActivity] == [self refinedActivity]}] ||
[ FCL exists a Macrofl owSteps {[$a baseActivity] == [self refinedActivity]}] ||
[FCL exists a Mcroflow {[$a baseActivity] == [self refinedActivity]}]

}H

The task of such constraints is basically to limit the usénefgirimitives to the acceptable parameters — following
the pattern descriptions in which the primitives are usedt-nb further. For each primitive we have hence described
all such formal constraints (the others are omitted heresjpace reasons). Thus each primitive describes a formal,

parameterizable building block that can be used in the isolwf the patterns.
5.3 Modeling patterns using the pattern primitives for process-oriented integration of services

The formal, parameterizable building blocks representetthb pattern primitives are not yet linked to the patterns.
The patterns cannot be themselves formally modeled, butwédentify the pattern primitives that occur in individ-
ual patterns. For instance, some of the primitives are ntangan a pattern, others are optional, still others are only
used in specific variants, etc. This mapping of patterns tepaprimitives hence provides us with modeling con-
structs that can be differently combined for different pattinstances, but must conform to the pattern-to-primitiv
mapping. If a primitive is used in a pattern instance, alifal constraints of the primitive must be fulfilled. Hence,
the primitives formally encode the proven practices docuted in the patterns as modeling constructs.

In the remainder of this section, we illustrate our approasing the example of modeling theAcro-
MICROFLOW pattern. The other patterns are modeled following the saasickapproach. Especially we want
to model that the pattern structures a process model intokimas of processes, macroflow and microflow. The
pattern strictly separates the macroflow from the microflawg uses the microflow only for refinements of the
macroflow activities.

Both in macroflows and microflows we can observe refinemerits.dliferent kinds of refinement can be modeled
using the Process Flow Refinement primitive. Process Flofin®aent is a generic primitive that can be used for
modeling all kinds of process refinements.

The following code illustrates how the Frag textual DSL syntan be used to describe a model (we only show
the excerpt foivbdel 1 from Figure 8):

UML2:: Activity create Mbodel 1

UML2:: I nitial Node create Model 1::Initial
UML2:: ActivityNode create Mdel 1:: A

UM.2: : Deci si onNode create Model 1:: Deci si onl
UML2:: ActivityNode create Model 1::B
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Modell Model2B Model3X ModelL
{refinedActivity=Modell. {refinedActivity=Model2B. {refinedActivity=Model3X.
refinedActivityNode =B} refinedActivityNode =X} refinedActivityNode =L}

macroﬂow» macroﬂowSteps» w @croﬂow» MCroﬂowSteps» \

. @

Figure 8. Macro-Microflow modeling example 1

UML2:: ActivityNode create Mdel 1::C
UML2: : Activi tyFi nal Node create Mdel 1:: Finall
UML2: : ActivityFi nal Node create Model 1:: Final 2
UML2:: ActivityEdge create Mddel 1::Initiall -source Model 1::lnitial -target Model 1:: A
UML2:: ActivityEdge create Mddel 1:: Al -source Mdel 1:: A -target Model 1:: Deci sionl
UML2:: ActivityEdge create Mdel 1:: Deci si onlB - source Mdel 1:: ABCDeci si on -target Mdel 1:: B
UM_2: : ActivityEdge create Mdel 1:: Deci si onlC -source Mbddel 1:: ABCDeci sion -target Mdel 1::C
UML2:: ActivityEdge create Mddel 1:: Cl -source Mdel 1:: C -target Model 1::Final 1
UML2:: ActivityEdge create Mddel 1:: Bl -source Mdel 1:: B -target Model 1:: Final 2
## add all nodel elements to Mdell
foreach child [Model 1 info children] {
$child activity Mdel 1

We describe all models in Figure 8 essentially in the same witye model integration of the short-running
message flow models and the long-running business modetnis loly extending the models with the respective

stereotypes and tag values. In the textual syntax this laskellows:

SCAPrimtives:: Macrofl ow create Macrofl owivbdel 1 -baseActivity Mdel 1

SCOAPrim tives:: Macrof | owSt eps create Macrofl owSt epshbdel 2B \
-baseActivity Mdel 2B -refinedActivity Mdel 1 \
-refinedActivityNode Model 1::B

SOAPrimtives::Mcroflowcreate Mcrofl ow3X \
-baseActivity Mdel 3X -refinedActivity Mdel 2B \
-refinedActivityNode Mdel 2B: : X

SQAPrimtives::Mcrofl owSteps create Mcrofl owdlL \
-baseActivity Mdel 4L -refinedActivity Mdel 3X \
-refinedActivityNode Model 3X:: L

After these stereotypes have been defined, the OCL cortstiaithe primitives enforce that those four models can

only be composed in a way that is valid according to the Madioroflow Refinement primitive. Figure 8 hence
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shows a model conforming to the constraints.
For theMmACRO-MICROFLOW pattern it is mandatory that the Macro-Microflow Refinemairnftive is used, and
at least one Macroflow Model and one Microflow Model with a refirent relationship between them must be present

in a model. There are different specific kinds of refinemersisjide:

e Macroflows can be refined by other macroflows. That is, a Mamnofllodel refines another Macroflow Model.
¢ Microflows can be refined by other microflows. That is, a MiaafiModel refines another Microflow Model.
e Macroflows can be refined by microflows. That is, a Microflow Mbikfines another Macroflow Model.

e Often it is additionally possible to refine each activity imacroflow or microflow using a sequence of activity
steps. This can also be modeled using the Process Flow Sieptve, either at the Macroflow Model or

Microflow Model level.

The Macro-Microflow Refinement primitives allows us to modehumber of pattern variants of theACro-
MICROFLOW pattern. For instance, theACRO-MICROFLOW structure may strictly follow a refinement in macroflow
— macroflow steps— microflow — microflow steps. Figure 8 shows an example of such a refinemsng the
UML2 representations of the pattern primitives.

Another, different exemplary structure is that the macrefiat the highest level depict the main business pro-
cesses, which are then refined by other macroflows depictibgprocesses that are still business-oriented. These
macroflows are refined stepwise via other macroflows. Fintilymacroflow activities of the lowest granularity are
refined by microflows. That s, in this second example, thezea process flow steps used in the model, but multiple
refinements at the macroflow level. Figure 9 shows an exanigleah a refinement using the UML2 representations

of the pattern primitives.

«Macroflow» m acroflow» m acroflow» MCroﬂow» \

MainBusinessProcessl SubprocessB BusinessProcessActivityZ ActivityL
{refinedActivity = {refinedActivity = {refinedActivity=
MainBusinessProcess 1, SubProcessB, BusinessProcessActivity ,
refinedActivityNode =B} refinedActivityNode =2} refinedActivityNode=L}

Figure 9. Macro-Microflow modeling example 2

Numerous other variants of theACRO-MICROFLOW pattern are possible and can hence be modeled with the

primitives introduced in the previous section. Please tiwéthe flexibility of model assembly through primitives is
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a very important characteristic of our approach, becauseables us to represent the inherent variability of sogwar

pattern solutions.
6 Modeling Architectural Abstractions in Process-Driven Integration Of Services

As seen above, the ACRO-MICROFLOW pattern has implications for short-running message flowetswdnd the
long-running business models, and we were able to intetratievo model types (and even add macroflow/microflow
steps as an another kind of modeling abstraction). In ourcaah, these two kinds of models are modeled with the
same model type: activity diagrams. The patterns, howeaso, have implications for other model types, such as
the architectural components in the system or businesstoijedels. To model those abstractions, we additionally
need to consider architectural abstractions and objéeti@d design abstractions.

In UML, business objects can be modeled using class diagréwehitectural abstractions can be modeled via
component diagrams. Component diagrams are a speciafizaficlass diagrams. Therefore, our approach for
integrating those models with flow models is very similarlfoth class diagrams and component diagrams. Hence,
we demonstrate our approach only for one of those abstrectiodepth: architectural components.

Our approach is to first find suitable pattern primitives favdaling the architectural abstraction. If further inte-
gration is needed, we try to model the flow model and architatimodel in parallel, especially with overlapping
constraints. If such a “loose” integration is not enough,madel primitives and constraints that cut across model

boundaries. In the following sub-sections, we will demaaist each of these solutions in turn.
6.1 Modeling Architectural Abstractions with Pattern Prim itives

Architectural modeling with pattern primitives followsdlsame approach as introduced for the flow abstractions.
In the context of architectural abstraction, we have intic@ti similar primitives for architectural patterns (se4])3
Let us consider theROCESSBASED INTEGRATION ARCHITECTUREpattern and the Callback primitive as an ex-
ample.

In the PROCESSBASED INTEGRATION ARCHITECTUREpattern, different kinds of components are connected.
Figure 6 shows an exemplary larger configuration, in whichtiple macro-/microflow engines and a dispatcher are
used. Of course, there are also significantly smallROCESSBASED INTEGRATION ARCHITECTUREconfigura-
tions. For instance, a single macroflow engine can interetly with a single microflow engine, which connects
to backends via service-based adapters. The modeling gufimpdhe PROCESSBASED INTEGRATION ARCHF
TECTURE pattern should allow for flexibly assembling different kindf PROCESSBASED INTEGRATION ARCHF
TECTURE models. In theeROCESSBASED INTEGRATION ARCHITECTUREthis flexibility is achieved by following
asynchronous messaging patterns from [15].

The Callback primitive [34] can be used to model the readbgbavior in these patterns: A callback denotes an

invocation to a componemr® that is stored as an invocation reference in a compoderithe callback invocation is
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executed later, upon a specified set of runtime events. Behtveo componentg and B, a set of callbacks can be

defined. To capture the semantics of callbacks properly irL{\Ve propose five stereotypes:

e | Event : A stereotype that extends the ‘Interface’ metaclass anthats a number of methods that are exclu-

sively trigger events for a callback.

e | Cal | back: A stereotype that extends the ‘Interface’ metaclass anthats a number of methods that serve

exclusively as callback methods.

e Event Port : A stereotype that extends the ‘Port’ metaclass and is thyeaio interfaces: IEvent asmovided

interface and ICallback asraquiredinterface.

e Cal | backPort : A stereotype that extends the ‘Port’ metaclass and is tigydavo interfaces: ICallback as a

providedinterface and IEvent asraquiredinterface.

e Cal | back: A stereotype that extends the ‘Connector’ metaclass andifigs the semantics of a callback

connector, which connects an EventPort of a component tatehing CallbackPort of another component.

Again, we have formalized the constraints using OCL (sed) [24d defined the meta-model and constraints in
Frag, so that we can use the constraints on components firasest theeROCESSBASED INTEGRATION ARCHF
TECTURE cOmponents.

All components in @ROCESSBASED INTEGRATION ARCHITECTUREare interconnected following the callback
style because they use asynchronous communication. Tim¢ pods of each layer are listening to events from
the higher-level layer, and when an event arrives, theyiotl the lower-level layer. Once a result is received, it
is propagated back into the higher-level layer using a @akb Figure 10 shows an example UML2 model for a

Callback configuration modeling the situation from Figur& @ more formal way.

«EventPort»

‘Macroflow $:|<Ca||backpon» «Callback»

Engine
«Callback» 7] «CallbackPort» «Callback
(1 :PI_Adapter [] Por>
«EventPort» «EventPort» ‘Microflow £
Engine
g |

«Callback «Event «Callback
g ] Port» Port» _ | Port»
{1 :PI_Adapter [] <Callbacks [] Dispatcher [] <Calbacky
:Microflow
L] Engine I
g «EventPort»
{1 :PlI_Adapter [}
—haap «CallbackPort» «Callback
Port»
1 :BA_Adapter

«CallbackPort» «EventPort»

:BA_Adapter

«Callback»
«Callback»

«Callback»

:Macroflow $:|
Engine «Callback «Event
Port» Port»

[] :BA_Adapter
«Event
Port»

«EventPort»

«Callback»

M f g «Callback»
‘Macrotiow

Engine

Figure 10. UML2 Model for the Example Configuration
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6.2 Integrating Architectural and Flow Abstraction Models by Modeling in Parallel

In addition to the architectural flexibility of thieROCESSBASED INTEGRATION ARCHITECTUREpattern, we need
to model the pattern’s constraints. If the pattern impletation follows theMACRO-MICROFLOW pattern, analogous
constraints to the macro-microflow refinement in the flow medeust be introduced, such as: components that
represent the microflow should not invoke macroflow funaiay, macroflow adapters should not be used at the
microflow level and vice versa, the dispatcher should onkplke short running microflows, etc. Such issues can be
modeled “in parallel” to the flow model. That is, we do not neeinitives or constraints that cut across modeling
domains.

In this situation, we can use another architectural primifrom [34]: Layering. Layering describes groups of
components and further constrains them. Specificallytéiksnthat group members from lay&r may call into layer
X — 1 and components outside the layers, but not into layer 2 and below. To model Layering in UML2, we
introduce thdLayer stereotype, which specializes t@eoup stereotype (which itself is an extension of the Package
metaclass). We also impose the following constraints: gomorant can only be member of one layer and not multiple
layers; components who are members of la¥anay call their fellow components in layéf, as well as components
in layer X — 1 but not in other layers (e.gX — 2 and below). It is noted that there is no constraint aboutraall
components in layeX -+ 1 or above, since this is a specific issue to the pattern reimizaAlso, we introduce the
tag definition layerNumber for Layers which represents thmber of the layer in the ordered structure of layers.

Figure 11 shows an UML2 model that extends the model fromre€id0d using the Layering primitive.

«Layer» «Layer»
M«Lay(falr» M«Lay$|r>> Activity M«.Laﬁr» Business
gﬁrginzw integ?;:’[l}%nol\;vyer dispatching e;zl;:out?own application
_ & layer services
{layerNumber=5} {layerNumber=4} {layerNumber=3} {layerNumber=2} {layerNumber=1}

&P D D D P

Microflow $:|
Engine

Macroflow $:|

Engine PI_Adapter

Dispatcher BA_Adapter

Figure 11. Extending the Example Configuration with Layerin g

In this example, we have modeled the integration of the nilevemicroflow refinements at the flow model level
with the architectural components by introducing OCL caaists for the refinements between the flow models, and
by adding similar constraints to the architectural modéiaflis, the primitive Macro-Microflow Refinement was used
at the flow model level and Callback/Layering were used atattohitectural level. Sometimes this is not enough,
and it is necessary to extend this strategy and add a didatioreship between the flow models and the architectural

models. Then the solution described in the next sectionldhmiused.

22



6.3 Integrating Architectural and Flow Abstraction Models Using Cross-Model Primitives

In some cases it is necessary to introduce a formal dependeteeen different model types to model a concern
properly. For instance, to correlate the events and cadlfbhetween the components, we usually paS®RRELA-
TION IDENTIFIER [15] between the components. In the component model, wetoeaddel which components use
which CORRELATION IDENTIFIER because in RROCESSBASED INTEGRATION ARCHITECTUREMultiple CORRE
LATION IDENTIFIERS can be used. In addition, we must ensure that the macroflowracrdflow models pass a
valid CORRELATION IDENTIFIERtype to all asynchronous invocations.

To model this situation, we first introduce a new architeaityrimitive, Correlation. Like Layering, the Correla-

tion primitive also extends the Grouping primitive from [34 introduces two stereotypes:

e Correlationldentifier: A stereotype that extends the ‘Class’ metaclass and contaitag value

correl ati onG oup of the typePackage.
e Correl ati onGroup: A subclass of th&r oup stereotype which extends the ‘Package’ metaclass.

There are the following constraints: A correlation groughsge, used in the tag valger r el at i onGr oup, must
be stereotyped aSorr el ati onG oup. Each correlation group must haveCarr el ati onl denti fi er with a
correl ati onG oup tag value that points to it.

Using this primitive we can define that certain componentsrizeto a correlation group and use a specific class (or
component) as correlation identifier. For instance, themament model in Figure 12 expresses that the components

MacroflowEngine, PJAdapter, and Dispatcher form a correlation group with therelation identifier CID.

1

«CorrelationGroup»
MacroflowCorrelationGroup $:|
«Correlationldentifier»
3] Cc_ID
{correlationGroup =
MacroflowCorrelationGroup

«MacroflowEngine» PI_Adapter Dispatcher
Macroflow Engine
{activities = MFSteps, ...}

«MacroflowSteps»
MFSteps
{refinedActivity=....

refinedActivityNode=...}
«ReadServiceData» c D «AsyncServicelnvocation»
ReadData - Invoke

Figure 12. Correlation Identifier Group

To model the dependency to the macroflow/microflow modelsntreduce two new primitives for modeling the
patternSMACROFLOW ENGINE and MICROFLOW ENGINE, which are part of thee ROCESSBASED INTEGRATION

ARCHITECTURE The goal is to be able to model which macroflow models areggecon whichmACROFLOW
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ENGINE and which microflow models are executed on whigltcROFLOW ENGINE We introduce three new stereo-

types:

e ProcessEngi ne: A stereotype that extends the ‘Component’ metaclass amaics a tag valuacti viti es

of the typeActivity.

e Macrof | owEngi ne: A stereotype that subclassesocessEngi ne to specify a component that executes

macroflows.

e M crofl owEngi ne: A stereotype that subclassesocessEngi ne to specify a component that executes

microflows.

There is are OCL constraints that specify thatar of | owEngi ne can only haveact i vi ti es that are stereotyped
either as Macroflow or MacroflowSteps. M cr of | owEngi ne can only haveacti vi ti es that are stereotyped
either as Microflow or MicroflowSteps. That is, using theseniives and the constraints, we have introduced a
formal dependency between the component and flow models.

Finally, we need to specify the correlation constraintsra®&L constraint:

-- If this process engine is part of a correlation group, then
-- all AsyncServicelnvocation activity nodes of activities
-- that belong to this engine nust have an incom ng Cbject Node that is
-- of the Correlationldentifier type of the engine' s correl ation group
context ProcessEngi ne inv:
if (CorrelationG oup->exists(cg
cg. basePackage. i nport edMenber - >exi st s(cgm |
sel f. baseConponent = cgm)) then
self.activities->forAll (a |
i f (AsyncServicelnvocation->exists(ais
ai s. baseActivityNode = an)) then
an. i ncom ng->exi sts(in
Correl ationldentifier->exists(cid
i n.source. ocl | ski ndO ( Cbj ect Node) and
in. source.type->size() = 1 and
in.source.type = cid. based ass))
endi f)
endi f

Now we have ensured that all asynchronous invocations inr@lation group’s activities — at the macroflow,
macroflow steps, microflow, and microflow steps level — museha correlation identifier type of the correlation
group as an incoming object node in the activity diagram. Raneple activity for the macroflow correlation group

example is also shown in Figure 12.
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7 Related Work

A number of other approaches for the documentation of SOA@T@ractices are available. For instance, a
number of reference architectures and blueprints have pexosed [27, 5, 28]. These approaches focus on specific
technologies and apart from this specific focus neither rimglesupport nor tool support that is more universally
applicable has been proposed.

Zimmermann et al. present a generic modeling approach fér @0jects [36]. As in our approach, the approach
by Zimmermann et al. is based on project experiences antisdisbven practices from practical cases. The approach

also integrates multiple kinds of models for a SOA:
e object-oriented analysis and design,
e enterprise architecture, and
e business processes.

Even though there are many similarities to our approachetlsethe difference that the authors use rather informal
models to illustrate their approach and do not provide a epthfor explaining the conceptual building blocks of the
architecture (like the patterns in our approach). They dgonavide a concept for using the approach in the context
of MDSD.

Some other approaches define particular aspects of senvlmgsimess process composition using formal specifi-
cations, such as activity-based finite automata [11] oniatedemporal logic [24]. Desai et al. [7] propose to abstrac
business processes using interaction protocol compomgith represent an abstract, modular, publishable specifi-
cation of an interaction among different partner roles iruaibess process. In general, however, these approaches
in the first place aim to support verifiability, and hence catyanodel specific aspects of service composition. Our
approach aims for a significantly extended scope: generglose modeling of process-driven SOAs based on a
formalization of proven practices and model-driven toqisort.

Some approaches use the Semantic Web to model the integrtiyeb) services and process. OWL-S [6]
includes a process model for Web services and it uses sanzamtotations to enable dynamic composition. Cardoso
and Sheth [4] use Semantic Web ontologies to facilitate keroperability of heterogeneous Web services in the
context of workflows. This is a different — though not contchory — approach to model the integration of services
and processes than the process flow paradigm used in ouragipro

There are many modeling approaches for business procdsgesut of many examples are Event-Driven Process
Chains (EPC) [17] and the BPMN [21]. Both approaches argéa@le our approach because they focus on one (of
the many) modeling aspects of process-driven SOAs, busipescess modeling. Our approach has in common
with these approaches that we use the flow abstraction agttimcmodeling abstraction. Unlike the BPMN, our
approach is based on a formal meta-model. Among others,léihés proposed formal semantics for EPCs [18].

In contrast to modeling approaches for business processespproach allows to integrate other models covering
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aspects of software design, software architectures, mesdbows, etc. of a process-driven SOA. That is, we take a
more “integrative” view than those more specific approaches

Business process management tools, such as Adonis [1]®fX&j, describe a holistic model of business process
management, ranging from strategic decisions to the desfidgusiness processes. They also provide mappings
(imports/exports) to the realization and execution of pgses. They are integrated with standard model types and
extensible with new model types. Such tools are related tcapproach at a high level because they represent
important prior art in the field of model integration. But yh&o not — such as our approach — concentrate on models
based on proven practices. They also do not specificallysfocuthe field of process-driven SOAs; they are more
focused on the business processes. However, an extermiblsuite like Adonis can be used for providing input
models for our approach or be extended to model the DSLs iapiroach.

The workflow patterns [2] describe concepts of workflow laages. They are conceptually closer to our notion of
pattern primitives than to the pattern concept as it is usekéa pattern community. That is, the workflow patterns are
formalizable constructs (e.g., formalized in the PettHoased language YAWL). The general approach to formalize
pattern primitives using (colored) Petri nets is also agglile to our approach, e.g., if validation or verificatiothie
goal. We use a formalizable subset of the UML and OCL instesidibse our goals are a general modeling support,
model validation, and to formally integrate different mtsdef a SOA.

Our approach extends the MDSD concept proposed for instarj2zé, 12] with the idea to use one common meta-
meta-model for model integration, pattern primitives asdeling constructs based on proven practices, and model
validation tools for these concepts. In Chapter 13 of thekld®oftware Factories [12] it is briefly discussed how
typical MDSD concepts can be used to support SOA modelingphly with a focus on Web Services technology.
Essentially, the process description, e.g. in BPEL, is seea platform for implementing abstractions in a product
line, and the services are seen as product line assets fensisc reuse. This view does not contradict our approach,
but our approach goes beyond this vision. Through the conmeda-meta-model we can integrate any kind of model
types; hence, process descriptions are not only a platfbuna first-class model type. In the software factories
approach, it is advised that patterns are used as provetigesidout there is no guidance how to map them to formal
modeling constructs, like the pattern primitives in ourgeh. Of course, any MDSD approach can be extended to
support our approach.

There are a number of UML profiles for various SOA aspects. &\é&tdl. [31] propose an UML profile to model
non-functional aspects of SOAs and present an MDSD tooldoegating skeleton code from these models. Heckel
et al. [13] propose a UML profile for dynamic service discgvar a SOA by providing stereotypes that specify
the relationships among service implementations, seimiggfaces, and requirements. Gardner et al. [10] define
a UML profile to specify service orchestration with the goalmap the specification to BPEL code. Vokac and
Glattetre [30] use — as in our examples — UML profiles to defirgl® The proposed UML profile supports data
integration issues. Even though these approaches focusferedt application areas of a SOA, they share similar

characteristics: In contrast to our approach, they focua aingle type of model, not on model integration or on
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extensibility with other model types. The modeling constsuare not systematically derived from proven practices.
Hence, the approaches are very specific for the applicatemthey focus on. By redefining such profiles to conform
to a common meta-meta-model they could, however, be intsdjiato our approach.

There are also a number of related approaches for the farati@in of pattern specifications [8, 20, 25, 19]. These
approaches mainly describe simple single patterns fronin[@] formal manner. But there are a number of issues
with these approaches: First, these approaches in firse glaconly specify a specific implementation variant of
these patterns, not all possible variants. That is, theyt@rdimited in the abstractions they propose to grasp the
rich concepts found in patterns, and do not do not deal wighitherent variability found in pattern descriptions.
Secondly, they do not provide a concept for dealing with tagti@l concept of pattern languages which explain the
relationships of different pattern-based design decssionterms of sequences. We have resolved these problems
using the pattern primitive concept and applied our privedito a pattern language that is (much) more complex

than single patterns from [9] — a central prerequisite foomplex domain like process-driven SOAs.

8 Evaluation

In this paper, we have introduced a particular combinatibfeatures to model process-driven SOAs based on
proven practices. In contrast to the related work in thisaame have defined a tool chain for MDSD, which is
extensible with domain-specific modeling languages foledéht model types. We support models for business
processes, message flows, OO design, and software arahitecnd programming language code/snippets provided
as individual code in the MDSD tool chain. Our approach i€esgible with new model types, especially domain-
specific models. We plan to extend our approach in additiorlalyant modeling domains, such as organizational
models or human-interaction models. None of the relatedcgubes offers sufficient support for all these model
types. Except for the approach by Zimmermann et al., Adanis/ and MDSD/software factories, the related work
concentrates mostly on one type of modeling domain.

Adonis/Aris provide an explicit extensibility model for rdel types. MDSD/software factories provide the same
extensibility model as our approach: DSLs based on formahmwdels.

Cross-model integration is partially supported by manyhef dther approaches. However, usually there are less
modeling domains supported for specific modeling appraachde integration is often not defined formally (e.qg.
through a common meta-meta-models or a constraint lanju8gene approaches, like BPMN, provide the notion of
different kinds of abstractions, but do not introduce nulétimodeling views. MDSD/software factories, of course,
integrate the models in the code generator, but usuallytrtbeaneta-model level. In MDSD/software factories it is
generally possible to follow our approach to cross-modtgdgration. A common meta-meta-model is not enforced,
though it is common (i.e., to use the model of the generatar@smmon meta-meta-model).

Our approach is not the only approach that is based on praaatiges, but only our approach and the workflow
patterns approach combine proven practices and formal isotte YAWL, the workflow patterns are provided as

language constructs; hence in the workflow patterns appraeeflexibility of assembly of pattern primitives is not
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Modeling Formalized | Meta- Constraint Model- Cross- Extensibi-
constructs models model validation based model lity model
based on validation verification | integration | for model
proven types
practices

Reference  architect yes no no no no partially no

tures & blueprints

[27, 5, 28]

Approach by Zimmer{ yes no no no no partially no

mann et al. [36]

Formal specification| no yes no no yes no no

approaches [11, 24]

Interaction protocols| no yes no no yes partially no

[7]

Semantic Web Ser no yes partially no no partially no

vices [6, 4]

EPC[17, 18] no yes no no yes no no

BPMN [21] no no no no no partially no

Adonis [1], Aris [16] no no partially partially no partially yes

Workflow patterns +| yes yes no no yes no no

YAWL [2]

MDSD/Software Fac-{ no yes yes yes no partially yes

tories [26, 12]

UML profiles for SOA| no partially partially partially no no no

[31, 13, 10, 30]

Pattern primitives| yes yes yes yes no yes yes

based MDSD for

process-driven SOA

Table 2. Evaluation of the approach
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(yet) supported, because the variation points offered byptimitives are not offered by the workflow patterns. To
support a similar approach as ours, it would be necessaryirie higher-level patterns in workflows that provide
guidance on how to assemble the workflow patterns to largectsires.

Semantic Web Services approaches partially support nmaked validation because a certain conformance check
against the ontology can be performed. In tools like Addwis/ the model type conformance can be checked
implicitly through the tool. In general, for MDSD/softwaf&ctories it is possible to check conformance to the meta-
models and constraints. Many MDSD tools support model a#itid and constraint checking. The UML profiles do
not themselves support model validation or constraint kingg but as they are standardized, existing tools can be
used.

The more formal approaches in the related work often aim fodetbased verification. Our approach is not
designed for this goal. Of course, it is possible to definéfiadte models through meta-models and extend our
approach, but this has not yet been the focus of our work. Bneescan be assessed for the MDSD/software
factories approach.

The evaluation of our approach is summarized in Table 2. Aseaseen, none of the related work takes such an
integrative view as our approach. Therefore, modeling sfleats of process-driven SOAs was not well supported.
The related work rather concentrates on some specific aspégirocess-driven SOA, such as flow abstractions,
modeling business processes, integration of ontologiéseanvices, verification, etc. Hence, these approachestann
provide a complete foundation for a model integration apphofor process-driven SOA models.

Another distinguishing characteristic of our approactnat it is based on proven practices. In our experience, this
helps especially to find the integration spots between ttiereint models and to find adequate modeling abstractions

in the various modeling domains.
9 Conclusion

In this paper, we have introduced a concept for model-drd@relopment of process-driven SOAs that is based on
proven practices. We have especially focused on the aspeubdael integration by introducing an approach that is
based on a common meta-meta-model from which concrete medk!s for DSLs are derived. In the different DSLs
and their respective meta-models, patterns are formadiggrhttern primitives, so that the pattern’s constraintsbea
ensured for all instances of all different meta-models. \eetshown in the examples how to integrate message flow
models, business process models, and architectural mddesapproach is, however, applicable for all other kinds
of process-driven SOA models for which a formal meta-modsl be given. Our tools and DSLs can be flexibly
used in model-driven development for formally specifyinggess-driven SOAs, validating the models, and code

generation in executable languages.
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