
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

DSNotify – A solution for event detection and link maintenance in dynamic datasets

Niko Popitsch ⇑, Bernhard Haslhofer
University of Vienna, Research Group Multimedia Information Systems, Liebiggasse 4/3-4, A-1010 Vienna, Austria

a r t i c l e i n f o

Article history:
Available online 18 May 2011

Keywords:
Dataset dynamics
Event detection
Link maintenance
Linked data

a b s t r a c t

The dynamics of linked datasets may lead to broken links if data providers do not react to changes appro-
priately. Such broken links denote interrupted navigational paths between resources and may lead to
unavailability of data. As a possible solution, we developed DSNotify, an event-detection framework that
informs actors about various types of changes and allows them to maintain links to resources in distrib-
uted linked data sets. For representing changes we developed the DSNotify Eventset Vocabulary. Different
from other vocabularies it applies a resource-centric perspective and preserves the timely order of
changes. We further describe our reusable evaluation infrastructure, which can be extended for extract-
ing change sets from arbitrary linked datasets.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The early phase of linked data led to a large number of available
data sets from various domains [9]. These data sets form the so-
called Web of Data. With the increasing usage of these data by
applications, questions about data quality and robustness of the
supporting infrastructure get more and more weight in current re-
search. One property that may affect data quality in the Web of
Data is the dynamics of its data sets: linked data sets evolve over
time and applications that make use of these data need to be aware
of changes in order to update their local data dependencies. Not
doing so may result in several issues such as broken links, invalid
indices, or outdated data in client and server-side caches.

Research related to these problems has recently emerged under
the term dataset dynamics [45]. It investigates how to deal with
changes in various types of data sources (e.g., sensor data, archival
data) and how to handle them at different levels of granularity (tri-
ple, resource, or graph-level). The goal is to develop strategies and
build sophisticated yet simple solutions that address the men-
tioned problems at various levels, namely: (i) vocabularies for
describing the properties of a dataset with respect to its dynamics,
(ii) vocabularies for representing change information, (iii) proto-
cols for change propagation, and (iv) applications and algorithms
for change detection.

Our work in dataset dynamics is motivated by a specific use
case: link maintenance. It derives from the requirement that appli-
cations that have linked their local datasets with resources in re-
mote datasets (e.g., DBpedia) need to be informed when remote
resources and their representations change or disappear. This is
also known as the broken link problem.

We built a tool called DSNotify, which is a general-purpose
change detection framework that can be applied to linked data
sources in order to inform data-consuming actors about various
types of events (create, remove, move, update) that may occur in
these data sources. By this, these actors are enabled to fix broken
links in their local data, thus preserving link integrity, which is
one aspect of data quality. DSNotify is open source software and
publicly available at http://dsnotify.org.

In this article we describe the broken link problem in the con-
text of the ongoing dataset dynamics research. We identify events
that lead to broken links in the Web of Data in particular and pres-
ent our method to deal with them. With our DSNotify Eventset
Vocabulary we contribute a vocabulary for representing changes
in dynamic data sets. We then describe the technical details of
DSNotify, its core components and algorithms as well as its evalu-
ation including the reusable infrastructure we used therefore. Fi-
nally, we discuss our work in the context of related work from
various research areas, including hypertext research, database re-
search and semantic Web research and conclude with a compre-
hensive discussion of our contributions in the context of dynamic
linked data sources.

This article extends our works previously published in
[40,39,23] by the following: an extended discussion of our tool in
the context of dataset dynamics, an extended version of our Even-
tset Vocabulary, an extended description of architecture and
implementation of DSNotify, an extended evaluation section, and
extended related work and conclusion sections.

2. Dataset dynamics

Linked datasets change in the course of time: resource repre-
sentations and links between resources are created, updated and
removed. The frequency and dimension of such changes depends

1570-8268/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2011.05.002

⇑ Corresponding author.
E-mail addresses: niko.popitsch@univie.ac.at (N. Popitsch), bernhard.haslho-

fer@univie.ac.at (B. Haslhofer).

Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: ht tp : / /www.elsevier .com/ locate/websem

Author's personal copy

on the nature of a linked data source. Sensor data are likely to
change more frequently than archival data. Updates on individual
resources cause minor changes when compared to a complete
reorganization of a data source’s infrastructure such as a change
of the domain name. Anyway, in many scenarios linked data con-
suming applications need to deal with these kind of changes in or-
der to keep their local data dependencies consistent. Dataset
dynamics denotes a research activity that currently investigates
how to deal with that problem.

2.1. Use cases and requirements

As part of our work in the Dataset Dynamics interest group1 we
identified three representative use cases in which applications need
to be informed about changes in remote linked datasets.

� UC1 link maintenance: An application hosts resources that are
linked with remote resources and uses remote data in its local
application context. It needs to be informed when representa-
tions of these remote resources change or become unavailable
under a given URI in order to keep these links valid.
� UC2 dataset synchronization: A dataset consumer wants to mir-

ror or replicate (parts of) a linked dataset. The periodically run-
ning synchronization process needs to know which triples have
changed at what time in order to perform efficient updates in
the local dataset.
� UC3 data caching: An application that consumes data from one

or more remote datasets uses a HTTP-level cache that stores
local copies of remote data. These caches need to be invalidated
when the remote data is changed.

These use cases require for a technical infrastructure compris-
ing the following components:

1. A dataset dynamics vocabulary that can express meta-informa-
tion about the dynamics of a data set (e.g., change frequency,
dimension of changes, last update, etc.) and provide a link to
the update notification source URI. A first draft of such a vocab-
ulary is available at http://purl.org/NET/dady.

2. A change description vocabulary to express the semantics of
changes at different granularity levels. The DSNotify Eventset
Vocabulary, which will be presented in Section 4 is one such
vocabulary. Others are discussed in the related work section
(Section 7).

3. A change notification protocol that communicates changes from
a remote linked dataset to a local client application.

4. Applications for detecting changes. DSNotify, which we will dis-
cuss in the remainder of this article, is one example for such an
application.

2.2. Change description vocabularies

Regarding the previously introduced use cases we need a
change description vocabulary to express what data unit has chan-
ged, how it has changed, and in certain cases also when and why it
has changed.

The description of what has changed depends on the use case:
for dataset synchronization (UC2), changes need to be communi-
cated on the triple-level. In such cases, we speak of a triple-centric
perspective because the triple is the subject of change. If link main-
tenance (UC1) is the goal, it is sufficient to apply a resource-centric
perspective and regard the resource as the subject of change. Umb-
rich et al. [45] also introduce the entity-centric perspective, which

is a specialization of a resource-centric view. There is of course a
connection between these perspectives: a change of a resource
(entity) is a result of one or many triple changes.

The information how a certain data unit has changed is typically
expressed by operations, add and remove being the most basic
ones. From a set of atomic operations one can derive so-called com-
pound changes [6] or even higher-level changes, such as the fact
that ontology classes were merged or domains of properties chan-
ged (cf., [35]).

Timestamps or version numbers attached to change informa-
tion cover the when aspect. This allows a client to reproduce the se-
quence of changes in a certain dataset over time, which is an
important requirement for dataset synchronization (UC2).

The why aspect of a change allows dataset providers to express
additional information about the nature of a change and allows cli-
ents to filter retrieved change information for certain criteria.

2.3. Change notification protocols

Several alternatives for propagating changes from a remote
dataset to a client are currently being discussed. There is a consen-
sus in the dataset dynamics working group that the applied proto-
col should be standards-based and widely supported by clients.
The Atom Publishing Protocol [20] in combination with the Atom
Syndication Format [34] is a possible candidate protocol. It pro-
vides a generic mechanism that allows clients to check for updates
on Web resources, is widely implemented, and is the basis for
existing publisher-subscriber protocols such as pubsubhubbub.2

Alternative protocols that are currently considered are the Open
Archives Initiative Protocol for Metadata Harvesting (OAI-PMH)
[31] and the Web of Data Link Maintenance Protocol [47]. OAI-
PMH supports selective harvesting (time and set based) and keeps
track of deletions in the course of time, both features that are rel-
evant for dealing with changes in linked datasets.

2.4. The dynamics of the DBpedia dataset

To illustrate that dataset dynamics is a real-world issue, we re-
port on the changes we observed in DBpedia [4]. We observed how
the instances of four OWL classes (Person, Place, Organization,
Work) changed between two DBpedia snapshots (DBpedia 3.2
and 3.3). For this, we considered resource creations, removals
and moves. For identifying moves, we exploited so-called DBpedia
redirect links that link moved resources in DBpedia and are directly
derived from Wikipedia redirection pages. These redirection pages
are automatically created in Wikipedia when articles are renamed
and usually forward users from the HTTP URI of the outdated Wiki
page to the new article location. Table 1 summarizes the results.

These data suggest that DBpedia has grown and was consider-
ably reorganized within a period of about seven months. It must,
however, be kept in mind that these changes do not necessarily
originate in corresponding changes in the Wikipedia itself but

Table 1
Changes in the numbers of instances between the two DBpedia releases 3.2 (October
2008) and 3.3 (May 2009). Ins. 3.2 and Ins. 3.3 denote the number of instances of a
certain DBpedia class in the respective release data sets, MV the moved, RM the
removed, and CR the number of created resources.

Class Ins. 3.2 Ins. 3.3 MV RM CR

Person 213,016 244,621 2841 20,561 49,325
Place 247,508 318,017 2209 2430 70,730
Organization 76,343 105,827 2020 1242 28,706
Work 189,725 213,231 4097 6558 25,967

1
http://groups.google.com/group/dataset-dynamics/

2
http://code.google.com/p/pubsubhubbub/

N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283 267

Author's personal copy

can also result from modifications in the extraction process that is
applied by DBpedia to extract resources from Wikipedia pages.

Nevertheless, our data indicate that a considerable number of
resources either changed their types or were removed from DBpe-
dia. An even higher number of class instances became newly avail-
able in the considered time interval. A less intuitive finding was
that a noticeable number (about one magnitude smaller than the
number of created and removed instances) of resources changed
their URIs (i.e., were ‘‘moved’’) in this time period. Comparing
‘‘old’’ and ‘‘new’’ representations of moved resources revealed that
most of these changes occurred because Wikipedia articles were
renamed to better match the Wikipedia naming conventions3, a list
of currently requested article moves is available at http://

en.wikipedia.org/wiki/Wikipedia:RM. In DBpedia, such article
rename events result in the corresponding resources being re-pub-
lished under a different HTTP URI. Although our observations cannot
be generalized in any way, they give some idea why not all URIs in
the Web of Data are as cool.4

When HTTP URIs of resources change, references to these re-
sources must be updated in order to avoid broken links. In the fol-
lowing we focus on the previously described Link Maintenance Use
Case (UC1): We describe the broken link problem in the Web of
Data and discuss what kind of changes occurring in data sources
may lead to broken links.

3. The broken link problem

One aspect of linked data quality is referential integrity, i.e., the
reliability that a referenced resource can be de-referenced. As in
the Web of documents, linked data resources may be removed,
moved, or updated leading to broken links.

In the example shown in Fig. 1, an institution has linked a re-
source representing a band in their local data set with the corre-
sponding resource in DBpedia in order to publish a combination
of these data on its Web portal. At a certain point in time, the band
changed its name and renamed the title of their Wikipedia entry to
‘‘Townline’’, with the result that the corresponding DBpedia re-
source moved from its previous URI to http://dbpedia.org/re-
source/Townline.

Broken links are a considerable problem as they interrupt nav-
igational paths in a network leading to the practical unavailability
of information [28,3,32,33,43]. And broken links in a machine-pro-
cessable Web of Data are even worse than they are in the docu-
ment Web: human users are able to find alternative paths to the
information they are looking for. Such alternatives include directly
manipulating the HTTP URI they have entered into a Web browser
or using search engines to re-find the respective information. They
may even decide that they do not need this information at this
point in time. This is obviously much harder for machine actors

(although the search-engine approach was proposed by some
researchers as discussed in Section 7).

Linked data providers are usually able to preserve link integrity
within their data source (i.e., with regard to links between re-
sources in the same data source). It is however considerably harder
for them to avoid broken RDF links to remote data sources as they
are normally not aware of changes that take place there. However,
such RDF links between different data sources have a central role
in the linked data approach in general and in the LOD project in
particular.

In order to repair broken links, data providers have to (i) detect
these links and (ii) fix them. While the detection of broken links on
the Web is already supported by a number of tools, only few ap-
proaches for automatically fixing them exist [33,40]. The current
approach in the Web of Data is to rely on HTTP 404 Not Found re-
sponses and assume that data-consuming actors can deal with
inaccessibility of data.

As we consider this as insufficient in many application scenar-
ios, we propose our change detection tool DSNotify in Section 5
that can be used to automatically fix broken links in a data web.
Before we do this, we discuss what events actually lead to such
broken links.

3.1. Change events

Low-level events that may occur in (linked) data sources in-
clude create, remove and update events. Clients that are aware of
such events occurring in their considered data sources may under-
take actions that cope with the problems resulting from dataset
dynamics. Such actions include (i) repairing broken links (ii) re-
indexing of resources or (iii) cache invalidation.

A fourth, more special type of event is the move event. Things
can be moved only if they have some kind of location which is
for example not per se the case in the RDF data model. In linked
data, however, resources are identified by HTTP URIs and their rep-
resentations are accessible at these URIs. Therefore, we can state
that the definition of resource movement is feasible in linked data
as it relies on (location-bound) dereferencable HTTP-URIs.

In the following, we provide a formal definition of these events
in the context of linked data.

Definition 1 (Preliminary definitions). Let R and D be the set of
resources and resource representations, respectively, and PðAÞ be
the powerset of an arbitrary set A. Now let dt : R ! PðDÞ, be a
dereferencing function returning the set of representations of a
given resource at a given time t.

Let E be the set of all events and e 2 E be a quadruple
e ¼ ðr1; r2; s; tÞ, where r1 2 R and r2 2 R [f;g are resources
affected by the event, s 2 fcreated; removed;updated;movedg is
the type of the event and t is the time when the event took place.

Further let L# E be a set of detected events.
Using these preliminary definitions we can assert creation, re-

move and update events as follows:

http://example.com/bands/OliverBlack http://dbpedia.org/resource/Oliver_Blackrdfs:seeAlso

Source Resource Link Target Resource

Oliver Black

foaf:name

Oliver Black is a Canadian
rock group ...

dbpprop: abstract
Representation Representation

Fig. 1. Sample link to a DBpedia resource.

3 Wikipedia naming conventions can be found at http://en.wikipedia.org/

wiki/Wikipedia:Article_titles
4 See http://www.w3.org/Provider/Style/URI (i.e., stable) as they should be.

268 N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283

Author's personal copy

Definition 2 (Basic events). 8r 2 R:

dt�DðrÞ ¼ ; ^ dtðrÞ–;
) L L [fðr; ;; created; tÞg:

dt�DðrÞ–; ^ dtðrÞ ¼ ;
) L L [fðr; ;; removed; tÞg:

dt�DðrÞ–dtðrÞ
) L L [fðr; ;;updated; tÞg:

Where D is a time parameter that may become indefinitely small.
Practically, this parameter is often related to the sampling fre-
quency of an event detection tool.

Further, we define move events based on a weak equality rela-
tion between resource representations:

Definition 3 (Move event). Let r : PðDÞ � PðDÞ ! ½0;1� be a sim-
ilarity function between two sets of resource representations.
Further let H 2 ½0;1� be a threshold value.

We define the maximum similarity of a resource

rold 2 fr 2 RjdtðrÞ ¼ ;g with any other resource

rnew 2 R n froldg as

simmax
rold
� maxðrðdt�DðroldÞ; dtðrnewÞÞÞ:

Now we can assert that:

9!rnew 2 Rjdt�DðrnewÞ ¼ ;^

H < rðdt�DðroldÞ; dtðrnewÞÞ ¼ simmax
rold

) L L [fðrnew; rold;moved; tÞg:
Thus, we consider a resource as moved from one HTTP URI to

another when the resource representations were removed from
the ‘‘old’’ URI, and very similar5 representations were created at
the ‘‘new’’ URI.

3.2. Broken links

Changes in linked data sets that potentially result in broken
links can be described using the above mentioned event notations.
We distinguish two types of broken links that differ in their char-
acteristics and in the way how they can be detected and fixed:
structurally and semantically broken links.

Structurally broken links. In the context of linked data, we for-
mally define structurally broken (binary) links as follows:

Definition 4 (Structurally broken link).

We define a ðbinaryÞ link as apair

l ¼ ðrsource; rtargetÞ with rsource ^ rtarget 2 R:
Such a link is called structurally broken if

dt�DðrtargetÞ–; ^ dtðrtargetÞ ¼ ;:

That is, a link is considered structurally broken if its target resource
had representations that are not retrievable anymore.6 Remove and

move events obviously result in structurally broken links, which can
be easily read from their definitions.

Semantically broken links. Less intuitively, update events may
also result in a special kind of broken link that we call semantically
broken. We consider a link semantically broken when ‘‘the human
interpretation (the meaning) of the representations of its target re-
source differs from the one intended by the link author’’ [40].
Semantic shift of ontology concepts and properties is one reason
for semantically broken links: In [26] for example, the authors ana-
lyzed the feasibility of using Wikipedia articles as concepts in
ontologies and found that 5% of these concepts in their sample of
100 articles underwent major changes in their meaning over time.
It is comprehensible that, e.g., rdf:type links to such concepts might
be considered as ‘‘broken’’ after such a change.

The problem with semantically broken links is that they are
hard to detect and fix by machine actors (a method for capturing
semantic drift in ontologies using instance-based mapping chains
was proposed in [48]). Yet, they are detectable and fixable by hu-
man actors which is why systems for event detection and link pres-
ervation should allow for human input. In the remaining paper we
will consider only structurally broken links and leave the issues
resulting from semantically broken links to future research.

3.3. Informal definitions

The following informal definitions summarize the formal defini-
tions of events and broken links in this section:

� Resource creation events occur if some representation(s) for a
resource become dereferencable while there was no representa-
tion available in the past.
� Resource deletion events occur if no representation for a

resource is dereferencable anymore while some were available
in the past.
� Resource update events occur if some representation(s) of a

resource have changed.
� Resource move events occur if very similar representation(s) of

a resource that were removed are published in a timely close
fashion at a different URI.
� RDF links are structurally broken when their targeted resource

had some representation(s) in the past that are not dereferenca-
ble anymore.

Having defined events and broken links, we now first discuss
our change description vocabulary and then present our tool
DSNotify that is capable of detecting the above-mentioned events
in linked data sources.

4. The DSNotify Eventset Vocabulary

In order to describe sets of events we have developed an OWL-
light vocabulary that conforms to the requirements presented in
Section 2.2 and allows to describe what linked data resource has
changed how, when and why. Here we present an extended version
of the vocabulary that was first introduced in [39]. It is available at
http://dsnotify.org/vocab/eventset/.

Our DSNotify Eventset Vocabulary, depicted in Fig. 2, is built
upon two vocabularies that are used for describing data sources
and events: The Vocabulary of Interlinked Datasets (voiD) [1],
which is a vocabulary for describing datasets and linksets

and the Linking Open Descriptions of Events (LODE) [42] vocabu-
lary, which defines a core event model that was derived by consid-
ering certain relations from existing event models (such as CIDOC
CRM, ABC or the Event Ontology) upon which a stable consensus
has been reached.

5 Note that in the case that there are multiple possible move target resources with
equal (maximum) similarity to the removed resource rold , no event is issued ($!
should be read as ‘‘there exists exactly one’’).

6 Note that our definitions do not consider a link as broken if only some of the
representations of the target resource are not retrievable anymore. We consider
clarifications of this issue as a topic for further research. Further, this definition does
not cover broken links due to moved source resources. However, we assumed that
triples representing links are published together with the source resource (which is
then the subject of these triples). This means, that we assumed linked data sources to
follow a kind of embedded link model [14,40] that is by definition robust against source
moves.

N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283 269

Author's personal copy

Our vocabulary is centered around so-called Eventsets (them-
selves voiD datasets) and ResourceChangeEvents (lode events).
An eventset is a container of events (linked via the hasEvent prop-
erty) that are related to two particular datasets: The sourceData-
set is a particular voiD dataset that was changed in the past,
resulting in the targetDataset. The events that led to these
changes are described by the eventset (an example for such data-
sets are snapshots of a particular linked dataset taken at different
points in time).

Although any lode:Event can be part of an eventset, our
vocabulary focuses on a particular subclass of such events called
ResourceChangeEvents. These describe events that are directly
associated with a particular resource (the targetResource) in
the target, respectively, source dataset. We have sub-classed this
class to model the basic events that may affect resources: creation
(CreateEvent), update (UpdateEvent), and deletion (Remove-
Event). Furthermore, we defined a MoveEvent that describes that
a particular resource in the sourceDataset (the sourceRe-

source) was published under a different URI in the targetData-
set (the targetResource). In order to capture events that are
known to change resources but cannot be assigned to one of the
previously listed event classes by the actor that creates an even-
tset, we have added a generic UnknownEvent class.

In order to further specify what triples were actually affected
(i.e., removed or added) in the course of a ResourceChangeEvent,
one may optionally link to a resource that specifies these triples
(using the hasAffectedTriples property). This property intends
to bridge the gap between a triple-centric view and our resource-
based vocabulary (cf., Section 2.2). If necessary, ResourceChan-
geEvents can be directly linked to the created/modified instance
data, for example expressed using the Talis Changeset Vocabulary.7

Further, we provide a hasReason property that can be used to link
to resources that further specify the reasons for the respective
event. For example one could attach a textual description or link
to another event here. We underspecified both, the hasAffected-
Triples and the hasReason property on purpose as we expect
new vocabularies for describing these event-facets to emerge in
the near future due to currently ongoing research.

We further provide a simple datatype property (hasConfi-
dence) for capturing how confident an event detector is that a par-

ticular event actually took place. If omitted, applications should
assume a default confidence value of 1.0 (i.e., 100% confident). As
our method of event detection is based on normalized similarities
(as explained in Section 5), we use this value for this property to ex-
press how confident our algorithm is that a particular event took
place.

For eventsets we have added the possibility to directly assert
the number of contained events of a certain class using the
void:statItem mechanism of the Statistical Core Vocabulary
(SCOVO) [25]. We use ResourceChangeEvents as scovo:dimen-

sions as depicted in Listing 1, an excerpt of an eventset that
was used for the evaluation of DSNotify.

We call an eventset complete if it contains all ResourceChan-
geEvents that, when executed in their timely order, result in
the conversion of the sourceDataset into the targetDataset.
We made use of complete eventsets in the evaluation of our tool,
as described in Section 6.

Listing 1: An excerpt of an eventset derived from DBpedia data.
Namespace definitions are omitted for brevity, the complete even-
tset contained 8,380 events [40].

We have developed a Java API based on the Jena API for accessing
our vocabulary. This API allows the convenient creation and manip-
ulation of eventsets and their contained events using Java objects
that wrap respective RDF resources and properties in a Jena model.

5. Event detection with DSNotify

The DSNotify approach (cf., Fig. 3) is based on an indexing infra-
structure. A monitor periodically accesses data sources, creates an
item for each resource it encounters and extracts a feature vector
from this item’s representations. The feature vector is stored to-
gether with the item’s URI in an index. By comparing the feature
vectors of currently monitored and already indexed items, DSNoti-
fy is able to detect create, remove and update events. The detection
of resource move events is based on a heuristic comparison of in-
dexed feature vectors of recently removed and recently added re-
source representations [40].

On a technical level, DSNotify comprises a generic data model
that is shown in Fig. 4. The depicted core components of DSNotify
can be replaced easily with domain specific implementations using
a plug-in concept. This enables for example the specialization of our
tool for any dataspace [18] that uses URIs as identifiers for its con-

Fig. 2. The DSNotify Eventset Vocabulary.

7
http://vocab.org/changeset/schema.html

270 N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283

Author's personal copy

tained data items. A single DSNotify instance can detect changes in
several dataspaces. The plug-in mechanism further allows to
choose the exact composition of the used feature vectors or to re-
place the standard heuristic used for feature vector comparison.

5.1. Dataspace monitoring

The monitor component of DSNotify is responsible for the
detection of created, removed and updated resource representa-
tions in the considered dataspaces. Monitors are usually periodi-
cally invoked by DSNotify and access so-called observed regions in
the referenced dataspaces. A region corresponds to a subset of the
data hosted in a dataspace. In the case of linked data sources, a re-
gion corresponds to a subgraph of the RDF graph hosted by that
particular data source that is determined using arbitrary criteria:
subgraphs may for instance be defined to contain only resources
whose URIs match a certain syntactic pattern.

DSNotify currently contains two implementations of such re-
gions for linked data sources: The first implementation is config-
ured with an initial URI and a regular expression. When such a
region is monitored, the monitor crawls the RDF graph starting
from this URI and continues until there are no new URIs detected
that satisfy the regular expression. Our second region-implementa-
tion is configured by a SPARQL query and a SPARQL endpoint URI.
Such a region is monitored simply by periodically querying the
respective SPARQL service.

5.2. Feature vectors

Monitored resource representations are then converted to fea-
ture vectors. For this, a feature extractor component extracts config-
ured property values from the considered representation and
combines them to a feature vector (cf., Fig. 5). These feature vectors
are later used by a heuristic for detecting moved resources.

Feature vectors may contain both, datatype and object property
values. Further, each feature in a feature vector may be individually
weighted: for example, one would give features that have a high
entropy in the data higher weights to increase their influence in
a vector comparison. Note that it is also possible to store features
in a feature vector that are used by the heuristic for plausibility
checks: we have, for instance, implemented a simple RDF hashing
function that creates a fingerprint of all triples in the considered
representation. The hash-value may be stored in a single feature
of the feature vector and can be used by the heuristic to quickly de-
cide whether a representation has changed (i.e., an update event
occurred) or not. The set of extracted features, their implementa-
tion, and their extractors are configurable.

5.3. Indices and history

Feature vectors of monitored items are stored in three indices
maintained by DSNotify:

� The item index (II) that contains the current state of the data
source as known to DSNotify.
� The removed item index (RII) that contains the feature vectors of

recently removed items.
� The archived item index (AII) that contains the feature vectors of

items that were removed a longer time ago.

These three indices are constantly updated by the monitor and
the housekeeping components (see below) of DSNotify: items that
are not found anymore are moved from the II to the RII. After a
timeout period, they are moved from there to the AII.

DSNotify contains two alternative implementations for these
indices: one is based on Apache Lucene8 and stores features in Lu-
cene fields. The second implementation is a very fast but non-persis-
tent in-memory index implementation. Note that it is possible to
mix both index implementations, e.g., by using the Lucene imple-
mentation for the II and the AII and a memory index for the RII.

5.4. Event detection

Recently added items in the II and the items in the RII are peri-
odically examined by a housekeeper component. This housekeeper
calls a heuristic algorithm that tries to detect move events by com-
paring the feature vectors of recently added and recently removed
items.

The pairwise comparison of feature vectors is based on similar-
ity measures for the individual features. These similarity measures
are implemented in Java classes that comply with a certain Java
interface. Examples for already implemented functions are exact
string matching or the Levenshtein distance for comparing charac-
ter data. The similarities of the individual features are then
combined for calculating a similarity between the two considered
vectors. The implementation of this heuristic algorithm itself is also
easily replaceable using the above-mentioned plug-in mechanism.

The calculated similarities for the feature vector pairs are com-
pared with a lower threshold value to determine possible candidates
for a move event. The pairs with similarities above this threshold are
grouped by their target item (i.e., the item that was created recently)
and in a second step their similarity to possible predecessors (i.e.,
source items) for a newly created item are compared against a sec-
ond, higher threshold. If only one such source/target pair has a sim-
ilarity above this threshold, DSNotify decides that the considered
source item is an actual predecessor of the target item and issues
a move event. Otherwise, DSNotify does not decide automatically

DSNotify

linked data sources
linked data source

 owl:sameAs

 rdf:seeAlso

update

Monitoring
Event
LOG

monitor

Indices

II RII AII

Housekeeper (heuristic)

notifications

querying

user

decision making
EventChoice

Decider

data source
updater

region

Data consuming
application

Feature Extraction

Fig. 3. DSNotify architecture.

DataSpace

DataSpace
Monitor

Observed
RegionItemIndex

Heuristics Feature
Extractor

1 1..* 1..* 1

1..*

3

11

1..*

1

1 1..*

observes

Fig. 4. DSNotify generic data model. 8
http://lucene.apache.org

N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283 271

Author's personal copy

whether one of the candidate source items is a predecessor of the
considered target item and issues a so-called EventChoice. Such
event choices are representations of decisions that have to be made
outside of our system by external actors (e.g., human users) that can
resort to additional data/knowledge to make that decision. After this
move event detection step is complete, DSNotify issues create
events for all new items that had no detected predecessor.

Remove events are also issued by the housekeeper thread: when
the housekeeper is scheduled, it first moves all items that resided
longer than a timeout period in the RII to the AII. For each moved
item, a remove event is issued. This means that items that were de-
tected as missing by the monitor are represented in a ‘‘transient
deletion state’’ in the RII before being moved to the AII (which cor-
responds to a ‘‘permanent deletion state’’). The timeout value
determines for how long successor items for such transiently re-
moved items may be found. Note, that any newly detected item
may be a successor of such an item which allows to detect move
events of items being moved between different observed regions
or even items that were first moved out of any observed region
and later back in (as long as this happens within the timeout per-
iod). A pseudo-code representation of the central housekeeping
algorithm of DSNotify is depicted in Algorithm 1.

Algorithm 1. Central DSNotify housekeeping algorithm.

Data: Item indices II, RII, AII
Result: List of detected events L
begin

L ;; PMC ;;
t currentTimeðÞ;
foreach toi 2 RII:getTimeoutItemsðÞ do

L Lþ fðtoi; ;; removed; tÞg;
move toi to AII;

end
foreach ni 2 II:getRecentItemsðÞ do

pmc ;;
foreach oi 2 RII:getItemsðÞ do

sim calculateSimilarityðoi;niÞ;
if sim > lowerThreshold then

pmc pmc þ fðoi;ni; simÞg;
end

end
if pmc ¼ ;

L Lþ fðni; ;; created; tÞg;
else

PMC PMC þ fpmcg;
end

end
foreach pmc 2 PMC do

if pmc–;
ðoimax;nimax; simmaxÞ

 getElementWithMaxSimðpmcÞ;
if simmax > upperThreshold then
L
Lþ fðoimax;nimax;moved; tÞg;
move oimax to AII;
link oimax to nimax;
remove all elements from PMC
where pmc:oi ¼ oimax;

else
Issue an eventChoice for pmc;

end
end

end
return L;

end

Update events are issued by the monitor thread that simply
compares the feature vector retrieved from a representation that
was accessed in the current monitoring cycle with the current fea-
ture vector stored in the II if available. The detection of update
events can be turned off using a configuration property for perfor-
mance reasons: When considering highly dynamic data sources, it
might be sufficient to get informed about new or removed items.
Note that as the detection of update events is based on the feature
vector derived from a resource’s representation, only updates that
result in different feature vectors can be detected. However, we
don’t regard this as a shortcoming of our method as it is possible
to add a feature to the feature vector that is calculated using the
previously mentioned RDF hashing function. Such a feature is cal-
culated at monitoring time by a hashing function over the whole
representation and therefore captures all modifications to this rep-
resentation. It is further possible to plug-in own, more sophisti-
cated hashing functions to the system.

5.4.1. Monitoring, housekeeping and indices
The co-operation of monitor, housekeeper, and the indices is

depicted in Fig. 6. To simplify matters, we assume an empty data-
set at the beginning. Then four items (A, B, C, D) are created before
the initial DSNotify monitoring process starts at time m0. The four
items are detected and added to the item index II).9 Then a new
item E is created, item A is removed and the items B and C are
‘‘moved’’ to a new location becoming items F and G, respectively.
At time m1 the three items that are not found anymore by the mon-
itor are ‘‘moved’’ to the removed item index (RII) and the new
items are added to the II. When the housekeeper is started for
the first time at time h1, it acts on the current indices and compares
the recent new items (E, F, G) with the recently removed items (B,
C, A). It does not include the ‘‘old’’ item D in its feature vector com-
parisons. The housekeeper detects B as a predecessor of F and C as a
predecessor of G, moves B and C to the archived item index (AII)
and links them to their successors. Between m1 and m2 a new item
is created (H), two items (F, D) are removed and the item E is
‘‘moved’’ to item I. The monitor updates the indices accordingly
at m2 and the subsequent housekeeping operation at h2 tries to

:Tim_Berners-Lee

:London,_England

Timothy Berners-Lee 1955-06-08

:yago:EnglishScientists

yago:EnglishBloggers

foaf:name :birthDate

:birthPlace

rdf:type

rdf:type

foaf:name (0.6) =

birthDate (0.1) =

rdf:type (0.3) =

rdfHash (-) =

Timothy Berners-Lee

1955-06-08

http://.../EnglishScientists,
http://.../EnglishBloggers

3E4F123D

Fig. 5. Deriving feature vectors from RDF representations. Note that features are
weighted (weight given in parentheses) and that only a subset of the properties
contained in a representation may be used for constructing a feature vector: in this
example the birthPlace property is disregarded for constructing the vector.

9 Actually their feature vectors are added, not the items themselves. But for reasons
of readability we maintain this simplified notation throughout this section.

272 N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283

Author's personal copy

find predecessors of the items H and I. But before this operation,
the housekeeper recognizes that the retention period of item A in
RII is longer than the timeout period and moves it to the AII. The
housekeeper then detects E as a predecessor of I, moves it also to
the AII and links it to I. Between m2 and m3 no events take place
and the indices remain untouched by the monitor. At h3 the house-
keeper recognizes the timeout of the items F and D and moves
them to the AII leaving an empty RII.

5.4.2. Time-interval-based blocking
The described algorithm is based on the efficient and accurate

matching of pairs of feature vectors representing the same real-
world item at different points in time. As in record linkage and re-
lated problems (cf., Section 7), the number of such pairs grows qua-
dratically with the number of considered items resulting quickly in
unacceptable computational effort. The reduction of the number of
required comparisons is called blocking and various approaches,
mostly from the record linkage domain, have been proposed in
the past [49].

As described, our method needs to compare only the feature
vectors derived from items that were recently removed or cre-
ated, blocking out the vast majority of the items in our indices.
We consider this method a time-interval-based blocking (TIBB)
mechanism that efficiently reduces the number of feature vector
pairs that need to be compared: If x is the number of feature vec-
tors stored in our system, n is the number of new items and r is
the number of recently removed items with nþ r 6 x, then the
number of comparisons in a single DSNotify housekeeping oper-
ation is n � r instead of x2. It is intuitively clear that normally n
and r are much smaller than x and therefore n � r � x2. The actual
number of feature vector comparisons in a single housekeeper
operation depends on the vitality of the monitored data source
with respect to created, removed and moved items and on the
frequency of housekeeping operations. We have analyzed and
confirmed this behavior in the evaluation of our system (Section
6). As housekeeping and monitoring are separate operations in
DSNotify, the number of feature vector pairs to be compared
actually depends also on the monitoring frequency if lower than
the housekeeping frequency. It determines the actuality of the II
and the RII and thereby also the number of items stored in these
indices. In our experiments we always chose equal monitoring
and housekeeping frequencies.

5.5. Central data structures

DSNotify incrementally constructs three central data structures
during its operation:

(i) an event log containing all events detected by the system;
(ii) a log containing all unresolved event choices; and

(iii) a linked structure of feature vectors constituting a history of
the respective items.

These latter data are stored in the indices maintained by DSNo-
tify. Note that we consider particularly this feature vector history
as a very valuable data structure as it allows ex post analysis of
the evolution of items w.r.t. their location in a data set and the val-
ues of the indexed features.

As these data structures may grow indefinitely, a strategy for
pruning them from time to time is required. Currently we rely on
simple timeouts for removing old data items from these structures
but this method can still result in unacceptable memory consump-
tion when monitoring highly dynamic data sources. More ad-
vanced strategies are under consideration.

5.6. Interfaces and implementation

DSNotify is implemented as a pure Java application that makes
use of several open source libraries, the most central ones being
jena, apache lucene, quartz and jetty. It can be used as a library or
as a standalone application.

Various interfaces are provided for accessing the data structures
built by our tool:

(i) DSNotify comprises a content-negotiated linked data inter-
face that provides access to the above-mentioned data struc-
tures in HTML and RDF.

(ii) It further starts a simple HTML interface. This interface pro-
vides human readable access to all DSNotify data including
its configuration and allows to query the indices. This inter-
face can be disabled using a configuration flag.

(iii) Applications that embed DSNotify as a Java library may sub-
scribe directly to the event log to get actively informed
about detected events. They may also subscribe to the log
of event choices and may confirm or reject them. Further,
methods for querying the indices are available.

CA CB CC CD

m0

A
B

C D

m1

A

B
C

D

CE RA MB,F MC,G

F
E

G

h1

A
B

CD

F
E

G

CH RF RD ME,I

m2

A

B

CD

F
E

G

H
I

h2

timeout

A

I
D

F B
E

CG

H

ii rii aii

m3 h3

timeout

A

I
D

F B
E

CG

H

A

I
D

F
B

E
CG

H

t

Fig. 6. Example timeline illustrating the event detection mechanism of DSNotify. Ci;Ri and Mi;j denote create, remove and move events of items i and j. mx and hx denote
monitoring and housekeeping operations, respectively. The current index contents is shown in the gray boxes below the respective operation, the overall process is explained
in the text.

N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283 273

Author's personal copy

(iv) An XML-RPC interface for remote confirmation or rejection
of event choices is also available.

5.7. Scalability

The scalability of our DSNotify approach is limited by three
components:

(i) The scalability of its indexing infrastructure.
(ii) The scalability of the housekeeping algorithm.

(iii) The scalability of the method how clients are informed about
events detected by DSNotify.

Indexing. In terms of its indexing infrastructure, DSNotify is
roughly comparable to common indexing architectures on the
Web and in particular to other systems that build indices for
semantic Web resources such as Swoogle [17], Sindice [44] or
SWSE [22]. It is known that it is possible to build such services
for very large numbers of RDF triples. The Lucene platform that
we use for storing our feature vectors is known to scale up to sev-
eral million index entries [24]. However, as the DSNotify indexing
approach stores also outdated feature vectors in its archived item
index, this index may grow indefinitely and adequate strategies
for pruning this index need to be implemented. Currently, we sim-
ply remove archived items after some timeout period.

Housekeeping. The housekeeping frequency of DSNotify as well
as the dynamics of the considered data sources determine the
number of feature vector pairs that have to be compared. Our eval-
uation, which we will present in the following section, shows that
this number of feature vector comparisons as well as coverage and
entropy of indexed features influence the accuracy of our method.
A higher housekeeping frequency means less feature vector com-
parisons (when synchronized with the monitoring frequency)
which means that the heuristic comparison algorithm is less likely
to make a mistake. However, this increased accuracy of the method
is paid with additional computational and I/O costs for the house-
keeping operation.

Notification. Clients are informed about the events detected by
DSNotify either by actively querying the service via HTTP requests
or by notification via the XML-RPC interface (for remote notifica-
tion) or directly via the Java interface. Remote notification may re-
sult in considerable network traffic (again, depending on the data
source dynamics). DSNotify does not provide a sophisticated mech-
anism for solving this issue and we consider this as a weak point of
our system. However, we are confident to be able to improve this in
the near future as mechanisms for the propagation of changes are a
current research topic in the dataset dynamics domain.

5.8. Usage scenarios

Generally, we envision several scenarios for using DSNotify or a
comparable tool that are described in the following:

1. As a library in an application that needs to be aware of changes
in remote or local linked data sources.

2. As a standalone service: when a client notes that a resource’s
representations are not available at an expected URI, it could
post the URI to this service which would automatically forward
the HTTP request to the new URI of the resource as known by
DSNotify. For human users, an automatically generated error
page containing a link to the new URI of the resource could
be returned by this service.

3. As an indirection service: as a special case of the above-men-
tioned scenario, it would be possible to build a PURL or DOI-like
indirection service that automatically forwards requests to par-

ticular URIs to the current resource URIs as known by DSNotify.
The advantage would be that data providers do not have to
notify the service about changes in their data as DSNotify would
detect them automatically.

4. As a notification service for a particular data source that
reports changes in this data source to subscribers. This scenario
requires further considerations regarding scalability which are
a current subject of dataset dynamics research.

The DSNotify approach is applicable to event detection in vari-
ous contexts, within and also outside the linked data domain. In
the following we describe representative usage scenarios.

5.8.1. The BBC usage scenario
The BBC organizes parts of its information space according to

the linked data principles. BBC Music (http://www.bbc.co.uk/mu-
sic) assigns dereferencable URIs to artists, bands, albums, etc., pro-
vides RDF descriptions for these resources, and links these
resources with other related resources on the Web. Artists re-
sources (e.g., http://www.bbc.co.uk/music/artists/084308bd-
1654-436f-ba03-df6697104e19#artist) are for example linked to
DBpedia , Wikipedia, MySpace, the artists’ blogs and fan pages,
etc. A BBC Web page describing a particular artist is built by using
the local resource representation of this artist as well as remote
representations retrieved by dereferencing these links. Biographies
of artists, for instance, are fetched from Wikipedia (DBpedia) and
presented to the users of the BBC portal.

BBC could set up DSNotify as a notification service to monitor
subsets of dependent data sources such as DBpedia person data
and get informed about resource changes in order to keep their lo-
cal data including the links to related resources up-to-date. Fig. 7
illustrates the set-up for such a scenario.

5.8.2. Other scenarios
The DSNotify approach is applicable to event detection in vari-

ous contexts, also outside the linked data domain. We have for
example used DSNotify to enable stable URIs for files in a linked file
system [41]. DSNotify is used for detecting change events in the file
system and updating a mapping between (unstable) file URIs and
(stable) UUID-based external URIs. DSNotify detects, e.g., when a
file is moved on the local disk (and thus its file URI changes) and
updates a mapping table accordingly. Low-level file meta data
(name, creation date, etc.) was used in this case to build the feature
vectors that represent local files.

DBpedia

BBC
Music

Music
Brainz

DSNotifyBBC Portal

monitor

notify

update consume
monitor

consume

Fig. 7. BBC usage scenario. The BBC Portal consumes data from DBpedia and
MusicBrainz and exposes BBC Music data as linked data. DSNotify is set up to
monitor these dependent data sets and notifies the BBC Portal about changes. It can
then react on these changes and update its local data, e.g., the RDF links pointing to
remote resources.

274 N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283

Author's personal copy

In principle, DSNotify is also applicable to the Web of docu-
ments. However, the main issues here is the definition of proper re-
gions (cf., Section 5.1) that are monitored by the system. While it
seems common in linked data that data in a particular data source
is linked with a defined set of other data sources (that can in turn
be observed by DSNotify), this seems less common in the docu-
ment Web.

5.8.3. Summary
In a summary, we can state that DSNotify is a flexible tool for

detecting events in observed regions of specific dataspaces. Our
tool detects create, remove, update and move events and can be
used by applications, e.g., for fixing links to remote resources.
Our move detection algorithm is based on heuristic feature vector
comparisons and comprises a time-interval-based blocking ap-
proach for effectively reducing the number of required feature vec-
tor comparisons and increasing the detection accuracy. In the
following section, we discuss the evaluation of this move event
detection algorithm.

6. Evaluation

In the evaluation of our system we concentrated on two issues:
first, we wanted to evaluate the system for its applicability for real-
world linked data sources, and second, we wanted to analyze the
influence of the housekeeping frequency on the overall effective-
ness of our move event detection algorithm.

However, first we had to develop an infrastructure for executing
controlled experiments with our application and for measuring the
results in order to evaluate it.

6.1. Evaluation method

We have developed a set of extendable tools that can be com-
bined to set up an evaluation infrastructure that allows the simu-
lation of timely ordered change events in real-world datasets. This
tool set consist of three components:

1. An extractor component that extracts a complete eventset from
two versions of a data set.

2. A simulator that re-plays the events in this eventset and
applies the changes to the older of the two data set versions,
gradually converting it into the newer version. These changes
are observed by an event detecting application (in our case:
DSNotify).

3. An analyzer component compares the eventset with the events
that were detected by the application and calculates precision,
recall and F1-measure.

The co-operation of these core components of our evaluation
infrastructure are depicted in Fig. 8 and described in the following.

6.1.1. Extractor
The input data for our evaluation infrastructure consists of two

versions of a particular data set (for example, two snapshots of
the data source taken at different points in time). We call the ‘‘old-
er’’ version the source data set and the ‘‘newer’’ version the target
data set. An extractor then creates a complete eventset that was ex-
tracted from these data set versions and/or additional data.
Remember that a complete eventset contains all events that, when
executed in their timely order, convert the source- into the target
data set. In some cases, an extractor needs to resort to versioning
data or other external data in order to be able to extract an eventset.

The extracted reference eventset is the basis for the evaluation:
in the end, event detecting applications are evaluated for how good
they are at reconstructing this eventset without the external data/
knowledge the eventset extractor could resort to. We do not pro-
vide any tools for the creation of versioned data sets, as such tools
are available. Often creating such snapshots is as trivial as dumping
an RDF model to a file. Some data set providers even provide snap-
shots of their data for download as it was the case for the DBpedia
snapshots we used in our evaluation.

6.1.2. Simulator
The created reference eventset is the input for the simulator.

The eventset contains links to the respective source and target data
sets and can be configured to re-play the events contained in the
eventset within a predefined time-span, which can be much short-
er than the real-world event observation time. By doing this, the
simulator continuously updates a simulated dataset. This simulated
dataset is first initialized with the data from the source dataset and
is then continuously updated by the simulator, ultimately becom-
ing equal to the target data set (assuming a complete eventset).

By varying the time-span the simulation is allowed to run, one
can vary the event frequency in the simulated data set which can
be used to learn about the influence of this frequency on the effec-
tiveness of an event detection mechanism.

6.1.3. Analyzer
The eventset detected by the evaluated application and the ori-

ginal reference eventset serve as input to an analyzer component

Data

Extractor Simulator Analyzer

Tools

DBpedia
Eventset

Detected
Eventset

Evaluation
results

Results

DSNotify

data flow
work flow

DBpedia 3.2 subset DBpedia 3.3 subset Simulated dataset

Fig. 8. DSNotify evaluation infrastructure as used for the DBpedia Persondata Eventset evaluation.

N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283 275

Author's personal copy

that compares both eventsets and calculates the evaluation results
in the form of a simple statistical analysis of precision, recall, and
F1-measure with respect to the detected events.

The recall for a particular event type is the number of correctly
detected events of that type divided by the number of events of
that type in the reference eventset. The precision is the number
of correctly detected events of this type divided by the number
of detected events of this type. The F1-measure is the harmonic
mean of precision and recall (i.e., the F-measure with b ¼ 1Þ.

6.1.4. Evaluation infrastructure implementation
The extractor, simulator and analyzer building blocks of our eval-

uation infrastructure correspond to respective abstract Java classes
forming the foundation of our infrastructure: it comprises an ab-
stract superclass of eventset extractors that provides some useful
methods for eventset creation. Further, this class is able to create a
histogram of the extracted eventset that can be used to analyze
the distribution of events over the extraction period. We have imple-
mented two concrete extractors for the data sets described below.

Our infrastructure further comprises two simulator implementa-
tions: a simple-yet effective in-memory version and an OpenLink
Virtuoso backed simulator for simulating larger eventsets on large
RDF graphs (e.g., DBpedia snapshots). The simple simulator loads
the snapshots in memory using the Jena API and creates a memory
model for the simulated dataset. Then it re-plays the events in the
eventset within a configured time interval and continuously up-
dates the simulated dataset. The Virtuoso-backed simulator initial-
izes the simulated dataset by creating a copy of all available data
from the source dataset in Virtuoso. Then, as the simple simulator,
it re-plays the events in the eventset.

Finally, an analyzer implementation is provided that loads a ref-
erence eventset and a detected eventset and calculates the preci-
sion, recall and F1-measure as described above. It writes the
results together with some statistical data to a file.

6.2. Evaluation data

We have evaluated our application with two types of eventsets
extracted from existing datasets: the iimb-eventsets and the dbpe-
dia-eventset.10 For both types of data sets we first implemented spe-
cific extractors for deriving the reference eventsets.

All experiments were carried out on a system using two Intel
Xeon CPUs with 2.66 Ghz each and 8 GB of RAM. The used thresh-
old values were 0.8 (upperThreshold) and 0.3 (lowerThreshold).

6.2.1. The IIMB eventsets
The iimb-eventsets are derived from the ISLab Instance Matching

Benchmark [16] which contains one (source) dataset containing
222 instances and 37 target datasets that vary in number and type
of introduced modifications to the instance data. It is the goal of in-
stance matching tools to match the resources in the source dataset
with the resources in the respective target dataset by comparing
their instance data. The benchmark contains an alignment file
describing what resources correspond to each other that can be
used to measure the effectiveness of such tools. We used this align-
ment information to derive 10 eventsets, corresponding to the first
10 iimb target datasets, each containing 222 move events. The first
10 iimb datasets introduce increasing numbers of value transfor-
mations like typographical errors to the instance data. We used
random timestamps for the events (as this data is not available
in this benchmark) that resulted in an equal distribution of events
over the eventset duration.

We simulated these eventsets, monitored the changing dataset
with DSNotify and measured precision and recall of the reported
events with respect to the eventset information. For a useful fea-
ture selection we first calculated the entropy of the properties with
a coverage > 10%, i.e., only properties were considered where at
least 10% of the resources had instance values. The results are sum-
marized in Table 2. As the goal of the evaluation was not to opti-
mize the resulting precision/recall values but to analyze our
blocking approach, we consequently chose the properties tbox:co-
gito-tag and tbox:cogito-domain for the evaluation because they
have good coverage but comparatively small entropy in this data-
set. We calculated the entropy as shown in Eq. (1) and normalized
it by dividing by ln(n).

HðpÞ ¼ �
Xn

i¼1

pi lnðpiÞ ð1Þ

DSNotify was configured to compare these properties using the
Levenshtein distance and both properties contributed equally
(weight = 1.0) to the corresponding feature vector comparison.
The simulation was configured to run for 60 s, thus the monitored
datasets changed with an average rate of 222

60 ¼ 3:7 events/s.
As stated before, the goal of this evaluation was to demonstrate

the influence of the housekeeping frequency on the overall effec-
tiveness of the system. For this, we repeated the experiment with
varying housekeeping intervals of 1 s, 3 s, 10 s, 20 s, 30 s (corre-
sponding to an average rate 3.7, 11.1, 37.0, 74.0, 111.0 events/
housekeeping cycle) and calculated the F1-measure for each data-
set (Fig. 9).

Results. The results clearly demonstrate the expected decrease in
accuracy when increasing the length of the housekeeping intervals,
as this leads to more feature vector comparisons and therefore
more possibilities to make the wrong decisions. Furthermore,
Fig. 9 depicts the decreasing accuracy with the increasing dataset
number. This is also expected as the benchmarks introduces more
value transformations with higher dataset numbers, although there
are two outliners for the datasets 7 and 10.

6.2.2. The DBpedia Persondata Eventset
In order to evaluate our approach with real-world data we have

created a dbpedia-eventset that was derived from the person data-
sets of the DBpedia snapshots 3.2 and 3.3.11 The raw persondata
datasets contain 20,284 (version 3.2) and 29,498 (version 3.3) sub-
jects typed as foaf:Person each having three properties foaf:name,
foaf:surname and foaf:givenname. Naturally, these properties are
very well suited to uniquely identify persons as also confirmed
by their high entropy values (cf., Table 3). For the same reasons
as already discussed for the iimb datasets an evaluation with only

Table 2
Coverage, entropy and normalized entropy of all properties in the iimb datasets with a
coverage > 10%. The selected properties are written in bold.

Name Coverage H Hnorm

tbox:cogito-Name 0.995 5.378 0.995
tbox:cogito-first_sentence 0.991 5.354 0.991
tbox:cogito-tag 0.986 1.084 0.201
tbox:cogito-domain 0.982 3.129 0.579
tbox:wikipedia-name 0.333 1.801 0.333
tbox:wikipedia-birthdate 0.225 1.217 0.225
tbox:wikipedia-location 0.185 0.992 0.184
tbox:wikipedia-birthplace 0.104 0.553 0.102

Namespace prefix tbox: <http://islab.dico.unimi.it/iimb/tbox.owl#>

10 All data sets are available at http://dsnotify.org/.

11 The snapshots contain a subset of all instances of type foaf:Person and can be
downloaded from http://dbpedia.org/ (filename: persondata_en.nt).

276 N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283

Author's personal copy

these properties would not clearly demonstrate our approach.
Therefore we enriched both raw data sets with four properties
(see Table 3) from the respective DBpedia Mapping-based Infobox
Extraction datasets [10] with smaller coverage and entropy values.

We derived the dbpedia-eventset by comparing both datasets for
created, removed or updated resources. We retrieved the creation
and removal dates for the events directly from Wikipedia as these
data are not included in the DBpedia datasets. For the update
events we used random dates. Furthermore, we used the DBpedia
redirect dataset to identify and generate move events. This dataset
contains redirection information derived from Wikipedia’s redirect
pages that are automatically created when a Wikipedia article is
renamed (cf., Section 2.4). The dates for these events were also re-
trieved from Wikipedia.

The resulting eventset contained 3810 create, 230 remove, 4161
update and 179 move events, summing up to 8380 events.12 An ex-
cerpt of this eventset is depicted in Listing 1 in Section 4.

The histogram of the eventset depicted in Fig. 10 shows a high
peak in bin 14. About a quarter of all events occurred within this
time interval. We think that such event peaks are not unusual in
real-world data and are interested how our application deals with
such situations.

We re-played the eventsets, monitored the changing dataset
with DSNotify and measured precision and recall of the reported

events with respect to the eventset information (cf., Fig. 8). We re-
peated the simulation seven times varying the number of average
events per housekeeping interval and calculated the F1-measure of
the reported move events. In this experiment, we fixed the house-
keeping period for this experiment to 30 s and varied the simula-
tion length from 3600 s to 56.25 s. Thus the event rates varied
between 1.17 to 75.00 events/s and 35.1 to 2250.0 events/house-
keeping interval, respectively. For these calculations we considered
only move, remove and create events (i.e., 4219 events) from the
eventset as only these influence the accuracy of the algorithm.

For each simulation, DSNotify was configured to index only one
of the six selected properties in Table 3. To calculate the similarity
between datatype properties, we used the Levensthein distance.
For object properties we used a simple similarity function that
counted the number of common property values (i.e., objects of
the triples) in both resources that are compared and divided it by
the number of total values.

Furthermore, we ran the simulations indexing only one feature
containing an rdf-hash value. Our RDF hashing function calculates
an MD5 hashsum over all string-serialized properties of a resource
and the corresponding similarity function returns 1.0 if the hash-
sums are equal or 0.0 otherwise. Thus this rdf-hash is sensible to
any modifications in a resource’s instance data (cf., Section 5.4).

Additionally we evaluated a combination of the dbpedia birth-
date and birthplace properties, each contributed with equal weight
to the weighted feature vector. The coverage of resources that had
values for at least one of these attributes was 65% in the 3.2 snap-
shot and 62% in the 3.3 snapshot.

Results. The results, depicted in Fig. 11, show a fast saturation of
the F1-measure with an decreasing number of events per house-
keeping cycle. This clearly confirms the findings from our iimb
evaluation. The accuracy of DSNotify increases with increasing
housekeeping frequencies or decreasing event rates. From a prag-
matic viewpoint, this means a tradeoff between the costs for mon-
itoring and housekeeping operations (computational effort,
network transmission costs, etc.) and accuracy. The curve for the
simple rdf-hash is surprisingly good, stabilizing at about 80% for
the F1-measure. This can be attributed mainly to the high precision
rates that are expected from such a function. The curve for the
combined properties shows maximum values for the F1-measure
of about 60%.

The measured precision and recall rates are depicted in Fig. 11a
and b. Both measures show a decrease with increasing numbers of
events per housekeeping cycle. For the precision this can be ob-
served mainly for low-entropy properties whereas the recall mea-
sures for all properties are affected.

It is, again, important to state that our evaluation had not the
goal to maximize the accuracy of the system for these particular

Table 3
Coverage, type, entropy and normalized entropy of all properties in the enriched
dbpedia 3.2/3.3 persondata sets. The selected properties are written in bold. Symbols:
object property (o), datatype property (d).

Name Coverage H Hnorm

foaf:name (d) 1.00/1.00 9.91/10.28 1.00/1.00
foaf:surname (d) 1.00/1.00 9.11/9.25 0.92/0.90
foaf:givenname (d) 1.00/1.00 8.23/8.52 0.83/0.83
dbpedia:birthdate (d) 0.60/0.60 5.84/5.96 0.59/0.58
dbpedia:birthplace (o) 0.48/0.47 4.24/4.32 0.43/0.42
dbpedia:height (d) 0.10/0.08 0.65/0.51 0.07/0.05
dbpedia:draftyear (d) 0.01/0.01 0.06/0.05 0.01/0.01

Namespace prefix dbpedia: <http://dbpedia.org/ontology/>
Namespace prefix foaf: <http://xmlns.com/foaf/0.1/>

iimb−eventset number

F 1
−m

ea
su

re
 (%

)

hki=1s

hki=3s

hki=10s

hki=20s

hki=30s

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

1 2 3 4 5 6 7 8 9 10

0
10

20
30

40
50

60
70

80
90

10
0

Fig. 9. Influence of the housekeeping interval (hki) on the F1-measure in the iimb-eventsets evaluations.

12 Another 5666 events were excluded from the eventset as they resulted from
inaccuracies in the DBpedia datasets. For example there are some items in the 3.2
snapshot that are not part of the 3.3 snapshot but were not removed from Wikipedia
(a prominent example is the resource http://dbpedia.org/resource/Tim_Bern-
ers-Lee). Furthermore several items from version 3.3 were not included in version
3.2 although the creation date of the corresponding Wikipedia article is before the
creation date of the 3.2 snapshot. We decided to generally exclude such items.

N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283 277

Author's personal copy

eventsets but rather to reveal the characteristics of our time-inter-
val-based blocking approach. It shows that we can achieve good re-
sults even for attributes with low entropy when choosing an
appropriate housekeeping frequency.

6.3. Evaluation discussion

Our evaluation results confirm the feasibility of our approach
for event detection. Our time-interval-based blocking method
effectively reduces the number of feature vector pairs that have
to be compared for the detection of move events: The housekeep-
ing frequency of our tool as well as the dynamics of the considered
data source determines the number of feature vector pairs that
have to be compared. In turn, the number of these feature vector
comparisons as well as the coverage and entropy of indexed fea-
tures influence the accuracy of our method.

In summary, one can state that the less comparisons our heuris-
tic has to make, the less mistakes are possible. Just consider the
special case where only on move event took place since the last
monitoring/housekeeping cycle: our algorithm will then compare
only one feature vector pair and predecessor identification is
trivial.13

DSNotify can be configured in multiple ways, and the parameter
estimation for configuring our system (including the used thresh-
old values, housekeeping frequency, set of extracted features and
their weight, etc.) was done manually for this evaluation. However,
we used indicators such as the properties’ coverage and entropy for
the selection of indexed features. An automatic parameter
estimation approach for our system could take this as well as infor-
mation about the dynamics of a data set into account and could
then train the application with a previously determined reference
eventset.

However, entropy and coverage of the indexed features change
over time in dynamic datasets as can be seen in Table 3. This could
for example be taken into account by a function that automatically
adjusts the weights of the various features in the feature vectors.
However, first, the entropy calculation of the individual features
is a computationally expensive operation and a periodic re-calcula-
tion of these measure would probably raise performance issues.
Second, large changes of entropy and coverage could also lead to
the need to include new features in the indexed feature vectors,
respectively, to exclude others (as e.g., their entropy sunk below
a certain threshold) which would require re-indexing of the con-
sidered data source in the worst case. An algorithm that automat-
ically determines and adjusts the various parameters of DSNotify is
beyond the scope of this work.

Our evaluation infrastructure can be reused for the evaluation
of tools that, like ours, are concerned with the detection of events

occurring in linked data sources. We consider this tool set as a first
step towards a benchmark for linked data event detection tools:
Note that our infrastructure may also be used in another way as
described above: one could start with a particular source data set
and create an artificial eventset (similar to the artificial ISLab in-
stance matching benchmark alignments). This eventset could then
be applied to the source data set (using the simulator) to get the
respective target dataset. In this manner, a benchmark for event
detection tools consisting of various event patterns could be
constructed.

7. Related work

7.1. Solution strategies from hypertext research

Methods to preserve link integrity have a long history in hyper-
text research. In our previous paper [40], we discussed solution
strategies originating from hypertext research for preserving link
integrity. We have analyzed eleven existing approaches, building
to a great part on Ashman’s work [3] and extending it. Here we
want to discuss two of these methods in more detail as they are
either widely used by the linked data community (indirection ap-
proaches) or have been targeted by recent research (robust
hyperlinks).

7.1.1. Indirection
Indirection services introduce a layer of indirection between cli-

ents and content providers. URI aliases pointing to the indirection
service are used to refer to a resource. When these alias URIs are
accessed by a client, they are translated to the actual resource URIs
and the indirection service forwards the HTTP request or directly
delivers the representation retrieved from there. The content pro-
viders are responsible for keeping the translation table between
actual resource URIs and aliases up-to-date by sending respective
notifications to the indirection service.

Uniform Resource Names were proposed for such an indirection
strategy, persistent URLs (PURLs) and digital object identifiers
(DOIs) are two well known examples [2]. Permalinks use a similar
strategy, although the translation step is performed by the content
repository itself and not by a special (possibly central) service. An-
other special case on the Web is the use of small (‘‘gravestone’’)
pages that reside at the locations of moved or removed resources
and indicate what happened to the resource (e.g., by redirecting
the HTTP request to the new location using the HTTP redirect
facility).

The main disadvantage of the indirection strategy is that it de-
pends on notifications from the content providers. In principle,
DSNotify could be used to automatically create such notifications
if a content provider cannot provide these otherwise. However,
in such a case DSNotify itself could alternatively easily be set-up
as a standalone indirection service.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bins

Ev
en

ts

0
50

0
10

00
15

00
20

00

Fig. 10. Histogram of the distribution of events in the dbpedia-eventset. A bin corresponds to a time interval of about 11 days.

13 Assuming that no other fundamental changes were made to the resource that
resulted in similarity values below the upper threshold of the system.

278 N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283

Author's personal copy

A further disadvantage of current indirection services lies in
their architecture. At first sight, they are designed to be highly scal-
able and to provide high quality of service: the Handle System

(which is the technological basis of DOIs), for example, constitutes
a collection of services that provide access to one or more repli-
cated sites; for the PURL technology, activities for a federated

Fig. 11. Influence of the number of events per housekeeping cycle on the measured (a) precision (b) recall and (c) F1-measure of detected move events in the DBpedia data set.

N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283 279

Author's personal copy

architecture have been announced on the Web.14 Nevertheless,
logically centralized services that provide access to their transla-
tion services via a single service URI still constitute single points
of failure. Furthermore, these services introduce additional latency
when accessing resources (e.g., two HTTP requests instead of one).

Another issue with using indirection services is that they re-
quire client applications to actually use the alias-URIs instead of
the original ones that are usually also accessible via HTTP. This
may contribute to additional coreference problems on the Web
of Data (cf., [19]).

Nevertheless, indirection is an increasingly popular method on
the Web and is often used for the identification of semantic Web
vocabularies. Although we consider this a conceivable strategy
for this purpose, it is our believe that a general use of such URI ali-
ases for linked data resources is not feasible for the above-men-
tioned reasons.

7.1.2. Robust hyperlinks
In [38], Phelps and Wilensky propose so-called robust hyperlinks

based on URI references that are decorated with a small lexical sig-
nature composed of terms extracted from the referenced docu-
ment. When a target document cannot be accessed, this lexical
signature can be used to automatically re-find the resource using
regular Web search engines, an approach often used by humans
when faced with HTTP 404 responses (cf., Section 3). The authors
found out that five terms are enough to uniquely identify a Web re-

source in virtually all cases. Robust URIs based on lexical signa-
tures were extended by [36,21]. Another extension based on
titles of HTML pages is described in [30]. A similar approach using
key-phrases instead of single terms that exploits these terms to re-
find moved HTML pages can be found in [13].

One major disadvantage of the robust hyperlink approach is
that it requires existing URI references to be changed which is
not the case with our approach. It is not clear what happens with
such URIs when the lexical signature of a document actually
changes. Furthermore, it is unclear how to extend this method to
non-textual resources whereas our feature vector based approach
could in principle be combined with most existing multimedia fea-
ture extraction solutions.

7.1.3. Other approaches for the document Web
In [33], Morishima et al. describe Link Integrity Management

tools that focus on fixing broken links in the Web that occurred
due to moved link targets. Similar to DSNotify, they have devel-
oped a tool called PageChaser that uses a heuristic approach to find
missing resources based on indexed information (namely URIs,
page content and redirect information). An explorer component,
which makes use of search engines, redirect information, and so-
called link authorities (Web pages containing well-maintained
links) is used to find possible URIs of moved resources. They also
provide a heuristics-based method to calculate such link authority
pages. A major difference to our approach is that PageChaser was
built for fixing links in the (human) Web exploiting some of its
characteristics (like locality or link authorities), while DSNotify

Listing 1. An excerpt of an eventset derived from DBpedia data. Namespace definitions are omitted for brevity, the complete eventset contained 8,380 events [40].

14
http://purlz.org/pipermail/purl-dev/2010-March/000082.html

280 N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283

Author's personal copy

aims at becoming a general framework for event detection based
on domain-specific content features.

Peridot is a tool developed by IBM for automatically fixing links
in the Web. It is based on the patents [7,8] and the basic idea is to
calculate fingerprints of Web documents and repair broken links
based on their similarity. The method differs from DSNotify in that
we consider the structured nature of linked data and support do-
main-specific, configurable similarity-heuristics on a property level
which allows more advanced comparisons methods. Furthermore,
DSNotify introduces the described time-interval-based blocking
approach and detects also create, remove and update events.

The XChange language [11] provides the necessary means to imple-
ment reactive behavior on the Web. Web site providers can formulate
so called event queries on specific aspects of their data using common
query languages such as XQuery, incrementally evaluate those queries
and send event messages to their subscribers. The design of DSNotify,
incontrast toXChange, isdrivenby thepracticalexperiencethatconsum-
ers of linked data sources cannot rely on data providers to implement
such a notification infrastructure on top of their existing data source. At
the time of this writing, to the best of our knowledge, not a single linked
data source provides such a service. Therefore, for the majority of use
cases, we expect DSNotify to be set up as a standalone monitoring service
that detects change events in remote data sources, which are not under
the control the consuming application provider (cf., the BBC usage sce-
nario described in Section 5.8.1).

7.2. Related work from Semantic Web research

Similar to our Eventset Vocabulary, the Talis Changeset Vocab-
ulary can be used to describe changesets that encapsulate the dif-
ferences between two versions of a resource description. Our
design differs from the changeset vocabulary mainly because (i)
we do not consider the triple as subject of change but apply a re-
source-centric view (cf., Section 2), (ii) we preserve the timely or-
der of changes (iii) our model also defines a special MoveEvent
that can be considered as a simple composite event (a remove
and a create event). By our hasAffectedTriples property we
bridge the gap between the resource- and triple-centric view. If re-
quired, ResourceChangeEvents can be directly linked to the cre-
ated/modified instance data.

The Web of Data Link Maintenance Protocol (WOD-LMP) [47] is
a SOAP-based protocol for communicating changes from a server to
a client. It delivers change notifications that contain sequences of
resources that were created, removed or updated. The proposed
XML schema does not provide means to include what data associ-
ated with these resources was changed (e.g., what triples were
added/removed), a move event type is not foreseen.

Triplify [5] is a system that maps HTTP requests to SQL queries
and exposes data retrieved from relational databases as linked
data. It also provides so-called Linked Data Update Logs: The up-
dates occurring in a particular triplified data source are logged
and exposed as nested (RDF) update collections which are described
using the Triplify update vocabulary.15 This vocabulary, however,
covers only resource updates and deletions, the changed data itself
is not associated with such UpdateCollections.

In [46], the authors propose an alternative approach for dealing
with the broken link problem in the Web of Data: by exploiting
coreference and redundancy in linked data resource descriptions,
they try to find and return linked data about an URI of interest.
Their proposed algorithm is based on so-called URI discovery end-
points that are able to provide ‘‘equivalent’’ URIs to a considered
URI. However, such services (e.g., sameas.org16) are not generally

available for linked data, neither are redundant resource representa-
tions. Further, their approach cannot be used to re-find moved linked
data resources and fix broken links.

PingtheSemanticWeb17 is a central registry service that does not
index the accessed data but offers a periodically updated list of new
or updated (changed) RDF documents. This service reports creation
and update events of registered URIs on a document level but cannot
be used as a event detection framework as presented in this paper.

Finally, in a recent paper, Van de Sompel et al. discuss a protocol
for time-based content negotiation that can be used to access ar-
chived representations (‘‘Mementos’’) of resources [43]. By this,
the protocol enables a kind of time-travel when accessing archived
resources. DSNotify could be used to build such archives when a
monitor implementation was used that would store not only a fea-
ture vector derived from a resource representation but also the
representation data itself.

7.3. Related work from database research

The data dynamics problem is already well known in the data-
base domain. Chawathe et al. [12], for instance, proposed a change
detection algorithm that calculates the minimum distance be-
tween two hierarchically structured data sets. Ipeirotis et al. [29]
analyzed changes in text databases, proposed a model for repre-
senting changes over time, and predicted schedules for updating
content summaries.

Research in the area of active database systems – a survey of
which is provided by Paton and Diaz [37] – investigated how data-
base systems can automatically respond to events that are taking
place either inside or outside the database system itself. Active dat-
abases make use of monitoring devices to detect events and formu-
late so called ECA-rules (event-condition-action) to describe the
runtime strategy for specific events. In today’s DBMS such rules
are known as triggers.

DSNotify shares with active database systems the event-based
approach for describing changes. It supports the detection of prim-
itive events (insert, update, delete) and, at the moment, a single
composite event (move). The reaction on changes under given con-
ditions, however, is out of the scope of DSNotify because this is
highly application-dependent and hardly generalizable for the
use cases described in Section 2.1. Furthermore, certain assump-
tions that hold in closed (distributed) database settings, such as
global event detectors that monitor inter-site composite (events),
are inappropriate for open environments such as Linked Data or
the Web in general. Therefore, we designed DSNotify to be a prag-
matic solution for detecting changes in a set of predefined data-
spaces assuming that the application designers know which
dataspaces are relevant to be monitored for changes.

7.4. Other related work

Besides the already cited works, our research is also closely re-
lated to the areas of record linkage, a well-researched problem in
the database domain, and instance matching, which is related to
ontology alignment and schema matching.

Record linkage is concerned with finding pairs of data records
(from one or multiple datasets) that refer to (describe) the same
real-world entity. This information is useful, e.g., for joining differ-
ent relations or for duplicate detection. Record linkage is also
known under many other names, such as object identification, data
cleaning, entity resolution, coreference resolution or object consolida-
tion [49,27,15]. Record linkage is trivial where entity-unique iden-
tifiers (such as ISBN numbers or OWL inverse-functional properties

15
http://triplify.org/vocabulary/update

16
http://www.sameas.org

17
http://pingthesemanticweb.com

N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283 281

Author's personal copy

like foaf:mbox) are available. When such additional identifiers are
missing, tools often rely on probabilistic distance metrics and ma-
chine learning methods (e.g., HMMs, TF-IDF; SVM). A comprehen-
sive survey of record linkage research can be found in [15].

The instance matching problem is closely related to record link-
age but requires certain specific methods when dealing with struc-
tural and logical heterogeneities as pointed out in [16].

8. Conclusions

Some data sources like the Wikipedia (and its linked data ver-
sion DBpedia) already do track all changes of their data. In the
case of the Wikipedia this includes, for example, article rename
events which are then exploited for creating the DBpedia redi-
rect links. This information may already be used by linked data
consuming applications to fix links to respective DBpedia re-
sources. However, not all linked data sources are able to provide
this information. In such cases event detection tools such as
DSNotify are required to avoid broken links to resources in re-
mote data sets.

We presented the broken link problem in the context of linked
data as a special case of the instance matching problem and
showed the feasibility of a time-interval-based blocking approach
for systems that aim at detecting and fixing such broken links.

In the end, the various parameters of DSNotify like monitoring-
and housekeeping frequency, feature vector size, thresholds, etc.
can be used to configure the tradeoff between the system mainte-
nance costs (e.g., network transmission costs for monitoring oper-
ations, CPU and I/O costs for housekeeping, storage costs for
feature vectors, etc.) and the accuracy and timeliness of the event
detection. Additionally, this tradeoff is influenced by the dynamics
and the composition of the considered data as demonstrated by the
discussed influence of entropy, coverage and number of events per
housekeeping cycle. The automatic determination of such parame-
ter sets is left for future research.

We presented our tool for event detection and a vocabulary for
describing resulting eventsets. Further, we described a reusable
infrastructure for the evaluation of event detection tools similar
to ours. On the one hand, this infrastructure may be used by devel-
opers of dynamics-aware applications to create testbeds that are
able to reproduce the inherent dynamics of linked data sources.
On the other hand, it could be used to develop a first benchmark
for tools dealing with dataset dynamics issues.

The flexibility of our DSNotify tool is founded in its generic nat-
ure and its customizability. Consequently, the development and
evaluation of additional monitors, features and extractors, heuristics
and indices allows the application of DSNotify in other domains,
such as the file system or the Web of documents. The various inter-
faces for accessing the data structures built by DSNotify facilitate
the integration with existing applications. Further, our approach
is by design a semi-automatic solution that is capable of integrat-
ing human intelligence in the sense of human-based computation
and we plan to further elaborate on this issue.

However, DSNotify cannot ‘‘cure’’ the Web of Data from broken
links. It may rather be used as an add-on for particular data provid-
ers that want to keep a high level of link integrity and thereby
quality in their data.

Acknowledgements

We thank all members of the dady group as well as the partic-
ipants of the dataset dynamics breakout session at the W3C LOD
Camp 2010 in general and Michael Hausenblas and Jürgen Umb-
rich in particular for their valuable input to Section 2 of this article.

The work has partly been supported by the European Commis-
sion as part of the eContentplus program (EuropeanaConnect).

References

[1] K. Alexander, R. Cyganiak, M. Hausenblas, J. Zhao, Describing linked datasets –
on the design and usage of voiD, the ‘Vocabulary of Interlinked Datasets’, in:
WWW 2009 Workshop: Linked Data on the Web (LDOW2009), Madrid, Spain,
2009.

[2] W.Y. Arms, Uniform resource names: handles, purls, and digital object
identifiers, Commun. ACM 44 (2001) 68.

[3] H. Ashman, Electronic document addressing: dealing with change, ACM
Comput. Surv. 32 (2000).

[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, Dbpedia: a
nucleus for a web of open data, in: 6th International Semantic Web Conference
(ISWC), Springer, Berlin, Heidelberg, 2008, pp. 722–735.

[5] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, D. Aumüller, Triplify: light-weight
linked data publication from relational databases, in: WWW ’09, ACM, New
York, NY, USA, 2009.

[6] S. Auer, H. Herre, A versioning and evolution framework for RDF knowledge
bases, in: I. Virbitskaite, A. Voronkov (Eds.), Ershov Memorial Conference,
Springer, 2006, pp. 55–69.

[7] M. Beynon, A. Flegg, Hypertext request integrity and user experience, US
Patent 0267726A1, 2004.

[8] M. Beynon, A. Flegg, Guaranteeing hypertext link integrity, US Patent 7290131
B2, 2007.

[9] C. Heath Bizer, T.T. Berners-Lee, Linked data – the story so far, Int. J. Semant.
Web Inf. Syst. (IJSWIS) 5 (2009).

[10] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, S. Hellmann,
Dbpedia – a crystallization point for the web of data, Web Semant. 7 (2009)
154–165.

[11] F. Bry, P.L. Pa�trânjan, Reactivity on the web: paradigms and applications of the
language exchange, in: Proceedings of the 2005 ACM Symposium on Applied
Computing, ACM, New York, NY, USA., 2005, pp. 1645–1649.

[12] S.S. Chawathe, A. Rajaraman, H. Garcia-Molina, J. Widom, Change detection in
hierarchically structured information, in: SIGMOD ’96, ACM, 1996, pp. 493–
504.

[13] Z. Dalal, S. Dash, P. Dave, L. Francisco-Revilla, R. Furuta, U. Karadkar, F.
Shipman, Managing distributed collections: evaluating web page changes,
movement, and replacement, in: JCDL ’04: 4th ACM/IEEE-CS Joint Conference
on Digital Libraries, ACM, New York, NY, USA., 2004, pp. 160–168.

[14] H.C. Davis, Referential integrity of links in open hypermedia systems, in: 9th
ACM Conference on Hypertext and Hypermedia, ACM, New York, NY, USA,
1998, pp. 207–216.

[15] A.K. Elmagarmid, P.G. Ipeirotis, V.S. Verykios, Duplicate record detection: a
survey, IEEE Trans. Knowl. Data Eng. 19 (2007) 1–16.

[16] A. Ferrara, D. Lorusso, S. Montanelli, G. Varese, Towards a benchmark for
instance matching, in: Ontology Matching (OM 2008) CEUR-WS.org, 2008.

[17] T. Finin, L. Ding, R. Pan, A. Joshi, P. Kolari, A. Java, Y. Peng, 2005. Swoogle:
searching for knowledge on the Semantic Web, in: National Conference on
Artificial Intelligence (AAAI).

[18] M. Franklin, A. Halevy, D. Maier, From databases to dataspaces: a new
abstraction for information management, SIGMOD Rec. 34 (2005) 27–33.

[19] H. Glaser, T. Lewy, I. Millard, B. Dowling, On Coreference and the Semantic
Web, Technical Report, University of Southampton, 2007.

[20] J. Gregorio, B. de hOra, The Atom Publishing Protocol (RFC5023), Technical
Report, The Internet Society, 2007.

[21] T.L. Harrison, M.L. Nelson, Just-in-time recovery of missing web pages, in:
Seventeenth Conference on Hypertext and Hypermedia, ACM, New York, NY,
USA, 2006, pp. 145–156.

[22] A. Harth, A. Hogan, R. Delbru, J. Umbrich, S. O’Riain, S. Decker, 2007. Swse:
answers before links! in: Semantic Web Challenge, CEUR-WS.org.

[23] B. Haslhofer, N. Popitsch, DSNotify – detecting and fixing broken links in linked
data sets, in: 8th International Workshop on Web Semantics (WebS 09), Co-
located with DEXA 2009, 2009.

[24] E. Hatcher, O. Gospodnetic, M. McCandless, Lucene in Action, second ed.,
Manning Publications Co., Greenwich, CT, USA, 2009.

[25] M. Hausenblas, W. Halb, Y. Raimond, L. Feigenbaum, D. yers, Scovo: using
statistics on the web of data, in: ESWC 2009, Springer-Verlag, Berlin,
Heidelberg, 2009, pp. 708–722.

[26] M. Hepp, K. Siorpaes, D. Bachlechner, Harvesting wiki consensus: using
Wikipedia entries as vocabulary for knowledge management, IEEE Internet
Comput. 11 (2007) 54–65.

[27] A. Hogan, A. Harth, S. Decker, 2007. Performing object consolidation on the
semantic webdata graph, in: Proceedings of the 1st I3: Identity, Identifiers,
Identification Workshop.

[28] D. Ingham, S. Caughey, M. Little, Fixing the ‘‘broken-link’’ problem: the
W3Objects approach, Comput. Netw. ISDN Syst. 28 (1996) 1255–1268.

[29] P.G. Ipeirotis, A. Ntoulas, J. Cho, L. Gravano, Modeling and managing changes in
text databases, ACM Trans. Database Syst. 32 (2007) 14.

[30] M. Klein, M.L. Nelson, Evaluating methods to rediscover missing web pages
from the web infrastructure, in: Proceedings of the 10th Annual Joint
Conference on Digital libraries, ACM, Gold Coast, Queensland, Australia,
2010, pp. 59–58. ISBN 978-1-4503-0085-8.

282 N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283

Author's personal copy

[31] C. Lagoze, H.V. de Sompel, The open archives initiative protocol for metadata
harvesting – version 2.0, 2002. Available from: <http://www.openarchives.
org/OAI/openarchivesprotocol.html>.

[32] S. Lawrence, D.M. Pennock, G.W. Flake, R. Krovetz, F.M. Coetzee, E. Glover, F.A.
Nielsen, A. Kruger, C.L. Giles, Persistence of web references in scientific
research, Computer 34 (2001) 26–31.

[33] A. Morishima, A. Nakamizo, T. Iida, S. Sugimoto, H. Kitagawa, Bringing your
dead links back to life: a comprehensive approach and lessons learned, in:
20th ACM Conference on Hypertext and Hypermedia, ACM, New York, NY,
USA, 2009, pp. 15–24.

[34] M. Nottingham, R. Sayre, 2005. The Atom Syndication Format (RFC4287),
Technical Report, The Internet Society.

[35] V. Papavassiliou, G. Flouris, I. Fundulaki, D. Kotzinos, V. Christophides, On
detecting high-level changes in rdf/s kbs, in: ISWC ’09: Proceedings of the 8th
International Semantic Web Conference, Springer-Verlag, Berlin, Heidelberg,
2009, pp. 473–488.

[36] S.T. Park, D.M. Pennock, C.L. Giles, R. Krovetz, Analysis of lexical signatures for
improving information persistence on the world wide web, ACM Trans. Inf.
Syst. 22 (2004) 540–572.

[37] N.W. Paton, O. Dı́az, Active database systems, ACM Comput. Surv. 31 (1999)
63–103.

[38] T.A. Phelps, R. Wilensky, 2000. Robust Hyperlinks Cost Just Five Words Each,
Technical Report UCB/CSD-00-1091, EECS Department, University of
California, Berkeley.

[39] N. Popitsch, B. Haslhofer, E.M. Roochi, An evaluation approach for dynamics-
aware applications using linked data, in: 9th International Workshop on Web
Semantics (WebS 10), Co-located with DEXA 2010, 2010.

[40] N. Popitsch, B. Haslhofer, Dsnotify: handling broken links in the web of data,
in: WWW ’10: Proceedings of the 19th International Conference on World
Wide Web, ACM, 2010, pp. 761–770.

[41] B. Schandl, N. Popitsch, Lifting file systems into the linked data cloud with
TripFS, in: 3rd International Workshop on Linked Data on the Web
(LDOW2010), Co-located with WWW ’10 Raleigh, North Carolina, USA,
2010.

[42] R. Shaw, R. Troncy, L. Hardman, Lode: linking open descriptions of events, in:
ASWC, Springer, 2009, pp. 153–167.

[43] H. Van de Sompel, M. Nelson, L. Balakireva, H. Shankar, S. Ainsworth, An HTTP-
based versioning mechanism for linked data, in: LDOW2010, Co-located with
WWW ’10 Raleigh, North Carolina, USA, 2010.

[44] G. Tummarello, E. Oren, R. Delbru, Sindice.com: weaving the open linked data,
in: ISWC, Springer-Verlag, 2007, pp. 547–560.

[45] J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, S. Decker, Towards dataset
dynamics: change frequency of linked open data sources, in: LDOW2010, Co-
located with WWW ’10 Raleigh, North Carolina, USA, 2010.

[46] R. Vesse, W. Hall, L. Carr, Preserving linked data on the semantic web by the
application of link integrity techniques from hypermedia, in: LDOW2010, Co-
located with WWW ’10 Raleigh, North Carolina, USA, 2010.

[47] J. Volz, C. Bizer, M. Gaedke, G. Kobilarov, Discovering and maintaining links on
the web of data, in: ISWC, Springer, 2009, pp. 650–665.

[48] S. Wang, S. Schlobach, J. Takens, van W. Atteveldt, Mapping-chains for
studying concept shift in political ontologies, in: OM, 2009.

[49] W.E. Winkler, Overview of record linkage and current research directions,
Technical Report, U.S. Bureau of the Census, 2006.

N. Popitsch, B. Haslhofer / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 266–283 283

