
Supporting Architectural Decision Making for
Systems-of-Systems Design under Uncertainty

Ioanna Lytra and Uwe Zdun
Faculty of Computer Science
University of Vienna, Austria

E-Mail: firstname.lastname@univie.ac.at

ABSTRACT
For the design and integration of complex systems-of-systems,
various architectural decisions for recurring design problems
need to be made. This requires that the software architects
consider various design issues and alternatives, make trade-offs
for competing requirements, and adapt the decisions to spe-
cific technologies and systems. Documentations of reusable
architectural design decisions (ADDs), e.g., pattern-based de-
cisions, provide rather informal guidelines for making recur-
ring ADDs. These and other factors introduce many sources
of uncertainty in the architectural decision making process.
Existing approaches do not consider this inherent uncertainty
of architectural decision making, which has been until now
largely ad hoc and informal, without explicit, automated sup-
port. Apart from that, the design rationale for repeated ADDs
often remains undocumented, leading to loss of architectural
knowledge. To address these problems we propose to provide
semi-automated support for decision making and documenta-
tion of reusable ADDs under uncertainty using a fuzzy logic
expert system. We motivate our approach using a systems-of-
systems example from the industry automation area in which
our approach has been applied.

Keywords
Architectural Design Decisions, Design Pattern Selection, Ar-
chitectural Knowledge, Systems-of-Systems, Fuzzy Logic

1. INTRODUCTION
During the design of software intensive systems that inte-

grate or reuse existing software systems, leading to complex
Systems-of-Systems (SoS), various recurring and non-recurring
design problems, high-level as well as technology and system
specific, need to be resolved. For the software architects, the
process of selecting and implementing the right solutions con-
tains multiple steps that require a certain amount of expertise
and domain-specific knowledge. First of all, relevant alter-
native ADDs along with their forces and consequences need
to be considered. Afterwards, the software architects need to
understand how the selected ADDs will fit into the overall ar-
chitecture. Finally, application-generic ADDs also have to be
adapted to technology and system specific contexts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

In this work, we target mainly recurring decisions rather
than design issues that require creative thinking and problem
solving. Let us consider, for instance, pattern-based ADDs
which can be used as a foundation to document recurring
ADDs [6, 15]. To find the appropriate software patterns dur-
ing the decision making process alternative design patterns,
pattern variants and implementations need to be considered.
Also, various forces and consequences in the context of these
alternative options and numerous competing requirements –
often vague and imprecise – need to be balanced. Usually,
pattern documentations are written in informal and narrative
style and are subject to the reader’s interpretation, as infor-
mation concerning forces, consequences and technology map-
ping are imprecise and often scattered, not searchable, and not
cross-referenced in the pattern texts.

In other words, the task of making rational ADDs contains
many sources of uncertainty. Uncertainty is caused by impre-
cisely known or unknown information such as desired require-
ments and quality attributes of design solutions. For recurring
design issues in large-scale software systems, the task of resolv-
ing the uncertainty of decision making is on the one hand com-
plex and on the other hand tedious and time-consuming: It is
complex because the human mind is weak in reasoning with
large amounts of inter-related information that contain un-
certainty [14]; tedious and time-consuming because the same
decision making process has to be performed many times for
similar design issues, sometimes by different architects. In our
approach, we suggest to provide semi-automated support for
architectural decision making under uncertainty using a fuzzy
logic expert system. We motivate our approach with a SoS
illustrative example and give some examples where decision
making and documentation can be partly automated.

The remainder of the paper is structured as follows. In the
following subsections we summarize the research challenges
and present our proposal for addressing these challenges. In
Section 2 we introduce a motivating example of SoS design
based on an industrial case study and provide some exam-
ples of recurring ADDs. In Section 3 we present our fuzzy
logic based approach for semi-automated decision support. We
compare our approach to related work in Section 4. Finally,
we conclude and discuss future work in Section 5.

1.1 Research Challenges
In the following, we summarize the research questions we

address in our work.
RQ1: How to resolve the inherent uncertainty in architec-

tural decision making? For a design problem at hand software
architects need to consider competing and imprecise require-
ments, various design alternatives and technology implemen-
tations, informal documentations and domain expertise. All
these factors introduce many sources of uncertainty. It is very
challenging to make this uncertainty explicit during the deci-
sion making process.

RQ2: How to adapt application-generic ADDs to technol-
ogy and system specific contexts? Software architects need
to consider not only the general ADDs but also system and
technology options. It is an open challenge to consider both
application-generic and application-specific knowledge cover-
ing the whole design space at design time.

RQ3: How to provide (semi-)automated support for making
and documenting reusable ADDs? For recurring design prob-
lems in a specific context making and documenting ADDs can
be very tedious. Thus, an open challenge in designing com-
plex software systems is to support the selection of the most
appropriate solutions for a design situation at hand.

The proposed solutions to RQ1 and RQ2 will be used as
basis for addressing RQ3.

1.2 Proposed Approach
Until now, decision making has been performed mainly ad

hoc and informally without any automated support. A consid-
erable amount of tools (e.g., ADDSS [4]) and methodologies
(e.g., ATAM [3]) have been developed for assisting architec-
tural decision making. However, the existing approaches do
not consider the inherent uncertainty of reusable ADDs and
their adaptation to technology or system specific contexts.

We propose to address the aforementioned research ques-
tions by introducing a fuzzy logic expert system for providing
semi-automated decision support for recurring ADDs under
uncertainty. Fuzzy logic helps us to deal with the imprecision
and ambiguity of the decision making process. In particu-
lar, we integrate reusable ADDs and fuzzy logic by creating
fuzzy models leveraging experts’ knowledge (RQ1), and pro-
vide a fuzzy inference system to give automated guidance on
reusable ADDs (RQ3). Along with the general fuzzy models
we derive specialized fuzzy models for specific technologies and
system contexts (RQ2). All fuzzy models are described using
a domain-specific language (DSL) and get stored in a reposi-
tory, thus providing reusable assets for architectural decision
making.

Our overall approach is semi-automated, combining the hu-
man decision making by the architects with automated guid-
ance for recurring decisions where the human decision maker
requires help. The final decision is left to the software archi-
tect. After the decision is made the ADD rationale can be
documented automatically.

2. MOTIVATING CASE
To illustrate the research questions we demonstrate an ex-

ample of SoS design from the industry automation area which
deals with service-based platform integration. Three hetero-
geneous platforms, a Warehouse Management System (WMS)
for handling the storage of the goods into racks, a Yard Man-
agement System (YMS) for coordinating the trucks in a yard
and a Remote Maintenance System (RMS) for monitoring in-
cidents and communicating with operators in the warehouse,
need to be integrated to allow an operator application to uti-
lize the services provided by these platforms.

The operator system uses the services of the three platforms
via a domain-specific virtual service platform (VSP) which
performs service-based platform integration. The VSP must
handle various integration aspects including interface adapta-
tion between the platforms; integration of service-based and
non-service-based solutions; routing, enriching, aggregation,
splitting, etc. of messages and events; handling synchroniza-
tion and concurrency issues, and so on. To design the de-
tails of such integration solutions and the systems on top of
it, for all the integration aspects, high-level, application and
technology-specific architectural decisions must be made.

In many cases, the software architects need to consider al-
ternative design solutions, variants and implementations with

different properties and quality attributes and balance impre-
cise requirements to come up with the best-fitting solutions.
In this context, this task has to be performed multiple times
and by different software architects with different experience
and domain expertise. For instance, in our motivating case
each of the three platforms (WMS, YMS and RMS) offers nu-
merous services and for each single service its adaptation to
the VSP (e.g., using adapter or proxy), its communication
style (e.g., synchronous or asynchronous), and so on need to
be decided separately, which leads to a big number of recur-
ring ADDs. Also, general architectural decisions have to be
grounded in specific technologies. Thus, both levels of deci-
sions – application-generic and application-specific – need to
be considered at the decision making process.

Example of Reusable ADDs.
For the needs of the design of the warehouse automation case

study, we have consolidated in our previous work [8] a service-
based platform integration pattern language and a reusable
ADD model, covering high-level and low-level design issues.
These reusable ADDs, which have to be repeated many times
during the design process, constitute the basis for our fuzzy
logic based approach. In particular, the existing knowledge
and the expert experience about making these decisions re-
peatedly will be reflected in the fuzzy models using fuzzy rules.

Figure 1(a) depicts an excerpt of a pattern-based decision
on asynchronous invocations, and Figure 1(b) shows an ex-
cerpt of a technology specific decision from the implementa-
tion of this decision using the Apache CXF1 framework. Asyn-
chronous invocations allow client applications to resume their
work while waiting for response from a remote invocation [13],
thus improving scalability and performance. In this exam-
ple, three alternative design patterns (fire and forget, sync
with server and result callback) are linked to the quality at-
tributes performance, reliability and (supports) acknowledg-
ment which are positive (solid lines) or negative (dotted lines)
assessed during architectural decision making. Information
about the forces and consequences of the aforementioned pat-
terns, as well as the input requirements are usually imprecise.
For instance, performance (see 1(a)) can be high, medium
or low, but the understanding of these three linguistic values
as well as the boundaries between them are usually vague.
The implementation of the application-generic ADD using the
Apache CXF framework requires that complementary quality
attributes (supported, transport neutral) are also considered for
the decision making.

Design Issue:
Asynchronous
Invocation

fire and forget performance

sync with server acknowledgment

result callback reliability

(a) Application-generic ADD

Design Issue:
Apache CXF
Asynchronous
Invocation

sync with server

fire and forget
with ws-*

transport neutral

result callback
with ws-*

supported

(b) Application-specific ADD

Positive Assessment Negative Assessment

Figure 1: Reusable ADDs

1http://cxf.apache.org/

http://cxf.apache.org/

3. APPROACH OVERVIEW
Our proposed methodology aims to provide semi-automated

support for specific recurring ADDs and resolve their inherent
uncertainty. Rather than creating a new design from scratch,
it automates the decision making for design problems that
emerge repetitively in a specific context. Our purpose is to
cover the whole design space for a design situation at hand
consisting of generic, as well as technology-specific decisions.
To address uncertainty we use Fuzzy Logic [14], which allows
the numerical encoding of the vague linguistic values software
engineers use to describe requirements as well as forces and
consequences of reusable ADDs. Key concepts of Fuzzy Logic
are fuzzy sets and their membership functions, which express
degrees of membership spanned in the interval [0, 1] for the
elements of the fuzzy sets. These linguistic values can be in-
terpreted using fuzzy sets which get mapped to overlapping
membership functions (e.g., gaussian, trapetzoidal, etc.). For
example, the property performance could be described as high,
medium or low and these linguistic values can be mapped to
overlapping membership functions, as shown in Figure 2.

Figure 2: Gaussian membership functions for 3 lin-
guistic values of property performance

Figure 3 presents an overview of our approach, namely the
participating tools and roles. We distinguish between two
stakeholder roles: software architect (expert) and software ar-
chitect (user). That is, different levels of experience are ex-
pected for architects who create the fuzzy logic models and
users of our approach. The software architects (experts) use
the Fuzzy Decisions Models Editor (a textual DSL editor) to
capture architectural knowledge. A decision model contains
alternative design solutions along with their properties and
quality attributes and a set of expert IF–THEN fuzzy rules
that guide the design decisions. From these decision models we
derive specialized fuzzy decision models in which domain and
technology specific knowledge can be included. Both kinds of
decision models get stored in a Fuzzy Decision Model Repos-
itory for reuse by a Fuzzy Inference System. The software
architects (users) use the Requirements Editor to give the de-
sired requirements in crisp values using a grading system (e.g.,
1–10) for fuzzy input variables like performance and reliability
and binary values (i.e., 0, 1) for variables that accommodate
only two values (e.g., Yes, No) like supports acknowledgment.

The Fuzzy Inference System returns the appropriate design
alternatives and their ranking for the given requirements by
evaluating and combining the fuzzy rules already defined in the
fuzzy models. The list of the best-fitting design solutions is
supposed to be used as a decision aid for the software architect
who makes the final decision. After that, the input require-
ments and the inferred design solutions can be synthesized to
produce ADD Documentations.

3.1 Fuzzy Application-generic and Application-
specific Decision Models

Elements of architectural knowledge get mapped to fuzzy
logic. In particular, design solution alternatives, variants and
implementations get mapped to (binary-valued) fuzzy outputs.
Forces and consequences of alternative ADDs, which consti-

Fuzzy
Decision
Model

Repository

Fuzzy Decision
Models Editor Decision

Documentation
Generator

ge
n

er
al

sp
ec

ia
liz

ed

extends

store

1.fire and forget
2.result callback
3.poll object

input

infer

input

input

input

store

Fuzzy Inference
System

ADD
Documentation

give
requirements Requirements

Editor
edit fuzzy
models

architect
(expert)

architect
(user)

select
option

architect
(user)

Figure 3: Fuzzy Logic Based Approach for Supporting
Architectural Decision Making

tute major decision criteria, are mapped to fuzzy inputs and
membership functions. In the example of our DSL in List-
ing 1 two quality attributes (reliability and (supports)
acknowledgment) are mapped to three gaussian (for the val-
ues low, medium and high) and two singleton (for the values
no and yes) membership functions respectively.

attributes
reliability gauss {low medium high}
acknowledgment singleton {no yes}

end

Listing 1: Example of fuzzy outputs

The relationship between fuzzy outputs (i.e., design alter-
natives) and fuzzy inputs (i.e., their forces and consequences)
can be expressed using IF–THEN fuzzy rules, as in Listing 2.

if performance is high and reliability is medium then
result_callback

Listing 2: Example of fuzzy rule

To adapt general architectural knowledge to concrete sys-
tem and technology contexts we derive specialized decision
models by inheriting the general fuzzy models (i.e., fuzzy out-
puts and fuzzy rules). Architectural knowledge gets special-
ized by adding, prioritizing or deleting choices, forces, conse-
quences and rules. Thus, the general architectural knowledge
gets transferred to and combined with the technology-specific
knowledge.

3.2 Derivation of ADDs and Documentation
A Mamdani-based fuzzy inference system [9] is used to in-

fer best-fitting solutions for given requirements in crisp values
(e.g., on a scale 1–10). In particular, the fuzzy inference sys-
tem fuzzifies the input requirements, evaluates the fuzzy rules
and aggregates the outputs, which produces an ordered list of
possible design solutions with different weights. The outputs of
the fuzzy inference system can be manipulated by changing the
fuzzy models, namely the forces and consequences and their
membership functions, the rules or the weight of the rules. So
far, the fuzzy decision models need to be tuned manually; we
plan, however, to semi-automate this process by suggesting
and improving membership functions and rules.

Another important contribution of this approach is the auto-
matic generation of architectural decision documentation. The
input requirements, information of the fuzzy rules, the actual
ADDs and the alternative ADDs get synthesized to produce
design decision documentation.

4. RELATED WORK
Although there have been many works on making architec-

tural decisions an explicit part of the architecture (e.g., [7])
their inherent uncertainty has not been studied systematically
in the literature. In our work we define the sources that intro-
duce uncertainty at the decision making process and discuss
how to deal with this uncertainty.

Our approach is not the first one to systematize reusable
application-generic and application-specific knowledge and pro-
vide decision making support. For instance, Zimmermann et.
al [15] propose a reusable architectural decision model for SOA
and a wiki-based decision support tool. Other research works
document reusable pattern-based design decisions for web ser-
vices [11] and service-based platform integration [8]. However,
these approaches do not provide any automated support for ar-
chitectural decision making and fail to cover the whole solution
space and resolve the inherent uncertainty of ADDs. A num-
ber of approaches (e.g., [12, 15]) capture technology-specific
knowledge in the fields of decision meta-models or decision
templates. These approaches consider many levels of design
knowledge during decision making, but usually the knowledge
levels are only depicted as fields in decision meta-models and
templates. So far, an automated support for specialization
or generalization of design knowledge and a mapping between
application-generic and application-specific knowledge, as pro-
posed by our approach, has not been studied in the literature.

In many approaches, architectural decisions are the result
of making trade-offs for the quality attribute requirements.
For example, in the Architecture Tradeoff Analysis Method
(ATAM) and Attribute-Driven-Design Method (ADD) [3] the
analysis of architectural trade-offs is an important part of the
architectural decision making process. Bachmann et. al [2]
suggest a reasoning framework with quality attribute knowl-
edge to help architects make trade-offs that impact individual
quality attributes in an architecture. Both techniques focus
on the quality attributes of software architectures as a whole
and not on the quality attributes of single ADDs. Also, they
do not deal with the inherent uncertainty of ADDs.

Aksit and Marcelloni [1] use fuzzy logic based techniques
to defer the elimination of design alternatives, in order to en-
hance object-oriented methods. Moaven et al. [10] propose
a multi-criteria decision support system for the selection of
architectural styles using fuzzy Choquet integral. The last
approach requires that quality attributes like flexibility and
maintainability for each of the architectural styles (pipes &
filters, layered, etc.) have been evaluated using a grading sys-
tem through an online survey. None of these approaches has
been extended to cover reusable ADDs. Esfahani and Malek
[5] suggest a framework (GuideArch) for guiding ADDs un-
der uncertainty. In their approach they fuzzify and prioritize
properties of architectural design alternatives based on exist-
ing measurements and compare architectures based on fuzzy
requirements. They assume that they already have all possible
implementations and measurements of optimistic, pessimistic,
and anticipated properties values in order to calculate the op-
timal architecture. In contrast, our approach provides semi-
automated decision support at design time.

5. CONCLUSIONS AND FUTURE WORK
The introduced fuzzy logic based approach for design deci-

sion making addresses key challenges in the area of architec-
tural decision support, especially for SoS design where same or
similar ADDs have to be repeated many times. It is the first
approach to provide automated guidance for recurring ADDs
under uncertainty. It is our goal to support the software ar-
chitects in recurring design making processes, so that they
have more time left to spend on the challenging problems that

require creative thinking. The whole design space, including
application-generic as well as application-specific decisions is
modeled once, however, the fuzzy logic decision models can
be retrieved many times from the fuzzy model repository to
derive appropriate solutions for desired requirements.

In the first stages of this research work we have created a
DSL for specifying the fuzzy decision models and implemented
a fuzzy inference system for deriving best-fitting design solu-
tions. We have implemented this DSL for describing general
and specialized design knowledge for an excerpt of the design
space of the case study from Section 2 and plan to use our
tools for making and documenting all recurring decisions in
the context of this case study. We would like to evaluate the
complexity and efficiency of our method with practitioners in
various design situations that require reuse of decisions.

Our fuzzy logic based approach for decision making support
launches new challenges for the future. We are interested in
studying how to modify the fuzzy decision models and fuzzy
inference system in order to integrate inter-decision dependen-
cies, which are very common, for instance, in pattern-based
decision making. Another open challenge is the automatic tun-
ing of the expert system (i.e., the fuzzy rules and membership
functions) by giving feedback from existing design decisions.
Finally, we would also like to study the possibility of inferring
generic knowledge from technology-specific knowledge.

6. ACKNOWLEDGMENTS
This work was partially supported by the EU FP7 project
INDENICA (http://www.indenica.eu), grant no. 257483.

References
[1] Aksit, M., and Marcelloni, F. Deferring Elimination of Design

Alternatives in Object-Oriented Methods. Concurrency and Com-
putation 13, 14 (2001), 1247–1279.

[2] Bachmann, F., Bass, L., Klein, M., and Shelton, C. Designing
software architectures to achieve quality attribute requirements.
Software, IEEE Proc. 152, 4 (Aug. 2005), 153–165.

[3] Bass, L., Clements, P., and Kazman, R. Software architecture in
practice. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1998.

[4] Capilla, R., Nava, F., Pérez, S., and Dueñas, J. C. A web-based
tool for managing architectural design decisions. SIGSOFT Soft-
ware Engineering Notes 31, 5 (Sept. 2006).

[5] Esfahani, N., and Malek, S. Guided Exploration of the Architec-
tural Solution Space in the Face of Uncertainty. Tech. Rep. GMU-
CS-TR-2011-3, Department of Computer Science, George Mason
University, 2011.

[6] Harrison, N., Avgeriou, P., and Zdun, U. Using Patterns to Cap-
ture Architectural Decisions. IEEE Software 24, 4 (2007), 38–45.

[7] Jansen, A., and Bosch, J. Software Architecture as a Set of Archi-
tectural Design Decisions. In The 5th Working IEEE/IFIP Conf.
on Software Architecture (2005), IEEE Comp. Soc., pp. 109–120.

[8] Lytra, I., Sobernig, S., and Zdun, U. Architectural Decision Mak-
ing for Service-Based Platform Integration: A Qualitative Multi-
Method Study. In Joint 10th Working IEEE/IFIP Conf. on Soft-
ware Architecture & 6th European Conf. on Software Architecture
(2012), IEEE Comp. Soc., pp. 111–120.

[9] Mamdani, E. H., and Assilian, S. An Experiment in Linguistic
Synthesis with a Fuzzy Logic Controller. Int’l Journal of Man-
Machine Studies 51, 2 (1999), 135–147.

[10] Moaven, S., Habibi, J., Ahmadi, H., and Kamandi, A. A Decision
Support System for Software Architecture-Style Selection. In Proc.
of the 6th Int’l Conf. on Software Engineering Research, Man-
agement and Applications (2008), IEEE Comp. Soc., pp. 213–220.

[11] Pautasso, C., Zimmermann, O., and Leymann, F. RESTful Web
Services vs. “Big” Web Services: Making the Right Architectural
Decision. In Proc. of the 17th Int’l Conf. on World Wide Web
(2008), WWW ’08, ACM, pp. 805–814.

[12] Tyree, J., and Akerman, A. Architecture Decisions: Demystifying
Architecture. IEEE Software 22, 2 (2005), 19–27.

[13] Voelter, M., Kircher, M., and Zdun, U. Remoting Patterns. John
Wiley & Sons, 2004.

[14] Zadeh, L. A. Fuzzy sets. Information and Control 8, 3 (1965),
338–353.

[15] Zimmermann, O., Zdun, U., Gschwind, T., and Leymann, F. Com-
bining Pattern Languages and Reusable Architectural Decision
Models into a Comprehensive and Comprehensible Design Method.
In 7th Working IEEE/IFIP Conf. on Software Architecture
(2008), IEEE Comp. Soc., pp. 157–166.

http://www.indenica.eu

	Introduction
	Research Challenges
	Proposed Approach

	Motivating Case
	Approach Overview
	Fuzzy Application-generic and Application-specific Decision Models
	Derivation of ADDs and Documentation

	Related Work
	Conclusions and Future Work
	Acknowledgments

