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Abstract—Event-based communication styles are
potential solutions for facilitating high flexibility, scal-
ability, and concurrency of distributed systems due to
the intrinsic loose coupling of the participants. How-
ever, software developers often find the event-driven
communication style unintuitive, especially for large
and complex systems with numerous constituting el-
ements, because of its non-deterministic characteris-
tics. In this paper, we propose a novel approach based
on DERA—an event actor-based framework—which
can be used to describe distributed event-based sys-
tems with reduced nondeterminism. DERA’s graphi-
cal notations support representing a current snapshot
of an event-based system closely to the intuitive
perception of the developers. We propose a formal
specification of the event actors-based constructs and
the graphical notations based on Petri nets in order
to enable formal analysis of such snapshots. Based
on this, an automated translation from event actors-
based constructs to Petri nets using template-based
model transformation techniques is also developed.
The applicability of our approach is shown through an
industrial case study in the field of service platform
integration.
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I. Introduction

Event-driven architectures are promising for modeling
and developing loosely coupled systems to facilitate
high flexibility, scalability, and concurrency [1]. Due to
the inherent loose coupling of the participants and the
clear separation of communication from computation,
the event-based architectural style has become a viable
solution for supporting the integration of heterogeneous
components to form complex distributed software sys-
tems. The advantages of event-driven communication
styles have been extensively recognized and exploited
both in academia and industry, resulting in a substantial
amount of work in different domains such as middle-
ware infrastructure [2], event-based coordination [3],
active database systems [4], and service-oriented archi-
tectures [5], to name but a few.

Unfortunately, apart from introducing additional de-
grees of freedom and more flexibility, the loose coupling
in event-based systems also increases the complexity of

developing and understanding these systems. Due to
its non-deterministic characteristics, software developers
often find the event-driven communication style unin-
tuitive, especially for large and complex systems with
plenty of elements.

In order to analyze an event-based software system,
the developers often need to obtain an adequate rep-
resentation of the system. Unfortunately, achieving an
adequate representation of an event-based system, which
is close to the perception of the developers, for in-
stance, as that of UML diagrams, is not well-supported.
Normally, the developers have to investigate the source
code to determine the sources and targets of the events
exchanged among highly decoupled components of the
system. Next, the representation has to be translated
to some formal specifications that can be used by veri-
fication tools. To the best of our knowledge, there are
no previous attempts in literature on supporting the
developers in performing the aforementioned activities.

Our previous work [6] presented the DERA (dynamic
event-driven actors) approach that aims at enabling run-
time flexibility for supporting runtime evolution and dy-
namic adaptation while reducing the non-deterministic
nature of event-based systems. In particular, DERA
encapsulates execution elements (e.g., activities, tasks,
functions) in event actors that pose explicit, formally
specified interfaces. The event-based communication
style is exploited to loosen the dependencies among
actors. The interfaces of actors are formally specified and
constrained to enable the support for altering actors at
runtime (e.g., replacing actors or changing their execu-
tion order). In addition, well-defined interfaces of actors
also target at reducing the non-deterministic behavior of
event-based communication.

In this paper, we propose a novel approach to support-
ing the analysis and verification of event-driven architec-
tures based on DERA. Firstly, a current snapshot of an
event-driven system described using DERA concepts is
taken and visualized based on the well-defined interfaces
of the event actors and the graphical notations pro-
vided in DERA. Then, DERA constructs are described
using Petri nets—which is a well-known graphical and
mathematical modeling tool for distributed systems [7].



truckArrived

enough storage locations? no

finished?

yes

no

yes

GetFreeDock

MoveTruck
ToDock

Request
VideoStream

Inquiry
StorageLocations

Receive
VideoStream

Confirm
StorageLocations

storeUnit

Register
StorageUnit

Find
StorageLocation

TransportUnit
ToStorageLocation

Figure 1. Schematic view of the WH operator’s behavior

As a result, we can leverage a multitude of powerful
techniques and tools that have been developed for Petri
nets for performing formal analysis of a snapshot of
the underlying event-driven software system at a certain
point in time. We will show the applicability of our
approach through an industrial case study in the field
of service platform integration.

The paper is structured as following. A running exam-
ple extracted from the industrial case study is described
in Section II. Then we outline the dynamic event-driven
actors (DERA) approach in Section III and present our
approach to capturing a snapshot of an event-based
system described using DERA. Section IV explains in
detail our Petri nets-based approach that we leverage
for formalizing and analyzing the snapshots of a DERA
system. In Section V, we discuss the related work.
Section VI closes the paper with contribution summary
and future directions.

II. Running Example

We illustrate the application of our approach in this
paper using a running example based on an operator
application for a warehouse (WH) extracted from an
industrial case study in the field of service platform
integration1. In the context of this application, there
are three different domain-specific service platforms,
namely, a yard management system (YMS), a warehouse
management system (WMS), and a remote monitoring
system (RMS) that provide a wide variety of services.
The operator application shall utilize these services to
perform various necessary tasks that are triggered by
events such as the arrival of a truck that carries the
products to be stored in the warehouse.

1See http://indenica.eu/fileadmin/INDENICA/user upload/
d51-casestud.pdf

When a truck arrives in the yard, the YMS sends a
message to triggers the execution of the WH operator
application. While the process is running, the operators
need live video streams from the cameras provided by
the RMS in order to monitor every action happening
in the warehouse. Before starting to store products
in the warehouse, the operators must inquire if there
are enough storage locations. Afterwards, the operators
shall instruct the unloading of products from the truck,
registering those products in the storage records, trans-
porting them with the conveyor belts, and storing them
in the racks. The corresponding behavior of the operator
application in reality is very complex. In this paper, for
demonstration purpose, we leverage a simplified excerpt
of the WH operator’s behavior and present in Figure 1
in terms of a UML activity diagram.

This activity diagram presents a typical composition
of tasks for the operator application. However, in this do-
main often changes are required at design time (e.g., each
customer and each warehouse and yard are different and
require slightly different configurations) or even runtime
(e.g., the operator must handle exceptional situations
or failures). It is very difficult to model all possible
variations and exceptions in one activity diagram. Here,
the loose coupling in event-based systems can help to
flexibly react to design time or runtime changes. Our
approach aims to offer this flexibility together with the
possibility to predefine and visually show a typical flow
based on event actors that can flexibly be adapted to new
situations. The original and the adapted flows implied by
the event actors can be verified for avoiding undesired
properties such as deadlocks or livelocks.

III. Event-based System Development using
DERA

A. Basic concepts

In Figure 2 we present a meta-model of the primitive
concepts forming a DERA system. In summary, the
central notions of DERA are events and event actors. An
event can be considered essentially as “any happening of
interest that can be observed from within a computer” [1]
(or a software system). An event may also have some
additional attributes such as its unique identifier, corre-
lation identifiers, and so forth.

In DERA, the abstraction of a computational or data
handling unit, for instance, executing a service invoca-
tion, or accessing and transforming data, to name but
a few, is an event actor (or actor for short). In general,
each actor has a well-defined interface represented by the
ActorInterface class. The actor’s interface defines a set
of events that the actor awaits (aka input events) and a
set of events that the actor will emit after finishing its
execution (aka output events). The function of each actor
is defined through a concrete instance of the Behavior
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Figure 2. Meta-model for the primitive DERA concepts and their
relationships [6]

Table I
DERA graphical notations

EventActor Barrier Condition Trigger EventBridge

class. The execution of an actor’s Behavior, which is
triggered by the arrival of the input events, is not allowed
to alter its interface. At the end of its execution, the ac-
tor will emit its output events that, in turn, may trigger
other actors. DERA also provides primitive constructs,
namely, Condition and Barrier for describing exclusive
choices and synchronizations, respectively. A Trigger is
a special class of event actors that does not need input
events. Thus, we can use a Trigger to emit events that,
in turns, will initiate the executions of other actors. An
EventBridge, which can forward the incoming events
to target execution domains, can be used to connect
two domains. The graphical notations of the primitive
event actors are shown in Table I. Further details of the
aforementioned DERA concepts can be found in [6].

The most significant advantage over traditional event-
driven architectures is that DERA enables us to obtain
a snapshot of the current state of the system and
derive a graph that comprises event actors “virtually”
connected via their input and output events at design
time or runtime. As a result, we are able to support
monitoring as well analysis of important properties such
as reachability (safety or deadlock checking), liveness,
performance, and quality of services of the underlying
systems. In the subsequent sections, we will explain how
the snapshots of an event-based system described using
DERA can be achieved and leveraged for formal analysis
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Figure 3. DERA development tool chain and system architecture

and verification using a Petri nets-based approach.

In Figure 3, we present a “big picture” of the DERA
development tool chain and runtime architecture. The
developer can specify an event actors-based application
using the DeraDSL that provides the concepts shown
in Figure 2. The DeraDSL code will be then deployed
and enacted in a DERA engine. A snapshot of a DERA-
based application can be obtained at design time by an-
alyzing the DeraDSL code or at runtime by querying the
DERA engine. The snapshot will then be automatically
translated to Petri nets descriptions, for instance, the
Petri net Markup Language (PNML) used in this paper.
The developer can leverage existing tools to analyze and
verify the resulting Petri nets description.

B. DERA snapshots

As mentioned above, DERA enables us to capture a
snapshot of an event-based system described in terms
of event actors that are “virtually” connected via events.
Such snapshots are the basis for visualizing and analyz-
ing the underlying event-based system.

Definition 1 (DERA snapshot): At a certain point in
time, a snapshot S of a DERA application can be
described by a 4-tuple (A,E,Estart, Efinish), where

• A is a finite set of event actors that constitute the
functionality of the application. Each event actor
can be one of the following types of event actors or



module eu.indenica.casestudy.warehouse.operator
domain WarehouseOperator {
EventActor getFreeDock input[eTruckArrived] output[eGotFreeDock]
EventActor moveTruckToDock input[eGotFreeDock] output[
eTruckMoved]

EventActor requestVideoStream input[eTruckMoved] output[
eVideoRequested]

EventActor receiveVideoStream input[eVideoRequested] output[
eVideoReceived]

EventActor inquiryStorageLocations input[eTruckMoved] output[
eInquired]

EventActor confirmStorageLocations input[eInquired] output[
eConfirmed]

Barrier gate input[eConfirmed,eVideoReceived] output[eSynched]
Condition c1 input[eSynched] when-true[eEnoughLocations]
when-false[eNotEnoughLocations]

EventActor storeUnit input[eEnoughLocations, eNotFinished]
output[eStoreRequested]

EventActor registerStorageUnit input[eStoreRequested] output[
eRegistered]

EventActor findStorageLocation input[eRegistered] output[
eLocationFound]

EventActor transportUnitToStorageLocation input[eLocationFound]
output[eUnitTransported]

Condition c2 input[eUnitTransported] when-true[eNotFinished]
when-false[eNotEnoughLocations, eFinished]

Application WarehouseOperator start-with [eTruckArrived]
end-with [eFinished]

}

Listing 1. DERA description of the warehouse operator

their subtypes: EventActor, Barrier, Condition,
EventBridge, and Trigger (c.f. Figure 2).

• E is a finite set of events published and consumed
by the event actors of A;

• Estart ⊆ E and Efinish ⊆ E are finite sets of events
that indicate the start or end of the application
respectively.

Based on Definition 1, a snapshot of an event-based
system described using DERA can be represented as a
graph comprising actors that consequently trigger each
other through events. Moreover, we can visualize the
snapshot using DERA graphical notations (see Table I).
The semantics of the building blocks of a DERA system
(i.e., EventActor, Barrier, and Condition) is equiv-
alent to that of the conventional control structures of
programming languages whilst their graphical notations
are analogous to those of the existing graphical modeling
languages that are widely used in both academia and
industry for business applications such as BPMN2 and
UML Activity Diagram3 [6]. Therefore, the visualization
of the snapshot of a DERA-based system are also close
to the perception of software developers who are used to
the aforementioned development concepts and notations.

We present in Listing 1 an excerpt of the warehouse
operator system description. The behavior of the ware-
house operator is described using the programming con-
structs provided by DeraDSL [6]. Given the specification
of the actors and their interfaces, we can build an

2http://www.omg.org/spec/BPMN/2.0/PDF
3http://www.omg.org/spec/UML/2.2/Superstructure/PDF
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Figure 4. The DERA snapshot of the warehouse operator

intuitive graphical representation of a snapshot of the
application (see Figure 4) using the notation defined
in [6]. It is important to note that the dashed lines
among event actors are not real dependencies but only
“virtual” connections achieved by analyzing the inputs
and outputs of the actors captured in the snapshot of the
application. We can see that the graphical representation
shown in Figure 4 is rather similar to the schematic view
of the warehouse operator application modeled using a
UML activity diagram previously shown in Figure 1. It
is our intention to introduce the developers with the
concepts and notations that are close to their perceptions
that are based on traditional modeling languages instead
of proposing new languages and representations that
require steep learning-curves.

IV. Verification of DERA-based systems

A. Petri nets introduction

The correctness (i.e., the absence of anomalies) of the
event-based systems described using DERA are crucial.
Any flaws in the design of a DERA application may lead
to anomalies, for instance, deadlocks (when an applica-
tion is blocked and no longer proceeds), and livelocks
(when an application gets stuck in a never-ending loop).

As explained above, a snapshot of a DERA application
comprises event actors, which are are “conceptually”
connected to each other via events sent and received to
accomplish a particular goal, for instance, orchestrating
functions provided by a number of service platforms,
processing a customer order, handling a travel itinerary
request, and so forth. Thus, given such a snapshot, it
is possible to leverage existing expressive and powerful
formalisms for concurrent and distributed systems to
analyze DERA-based application snapshots. Petri nets



(PNs) [7] have been chosen in our work for formalizing
and analyzing the properties of DERA-based applica-
tions because they provide sufficient expressiveness for
modeling the DERA constructs, and they are extensively
studied and used in both academia and industry in var-
ious application domains [7]. As a result, we can benefit
from numerous analysis techniques that have been devel-
oped for Petri nets [7] as well as a plethora of verification
tools4. Nevertheless, other similar formalisms such as π-
calculus [8] or communicating sequential processes [9]
could have been used as well. Further details on Petri
nets can be found [7]. Here we recall the basic definition
of PNs.

Definition 2: A Petri net PN can be described by a
tuple (P, T, F ), where

• P is a finite set of places graphically represented as
circles. The sets of input and output transitions of
a place p are denoted by •p and p•, respectively.

• T is a finite set of transitions graphically repre-
sented as boxes. The sets of input and output
places of a transition t are denoted by •t and t•,
respectively.

• F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (relations)
graphically represented as directed arrows.

• P ∩ T = ∅ and P ∪ T 6= ∅.
A state of a Petri net is described by a marking µ :

P → N that assigns tokens to each place p ∈ P . The
dynamic behavior of a Petri net is defined as following:

• A transition t is enabled in a marking µ iff ∀p ∈ •t :
µ(p) ≥ |(p, t) ∈ F |

• An enabled transition t can fire (or execute) such
that a new marking µ′ is achieved by the firing rule:
∀p ∈ P : µ′(p) = µ(p)− |(p, t) ∈ F |+ |(t, p)| ∈ F |.

Our approach first introduces the descriptions of
DERA constructs using Petri nets. Based on these de-
scriptions, we can achieve a formal representation of a
DERA snapshot at a certain point in time in terms of
Petri nets. Such formal representation can be used to
analyze important properties of the underlying DERA-
based systems and identify various anomalies at design
time and runtime.

B. Describing DERA constructs using Petri nets

The first step in our approach to verification of DERA
snapshots is to enable the specification of DERA con-
structs using Petri nets. In Table II, we present in
detail the formal mapping rules for describing DERA
constructs in terms of Petri nets’ elements such as places,
transitions, and arcs. The first four rules are for specify-
ing DERA event actors. Please note that the execution
of an EventActor or a Condition will be triggered

4An exhaustive list of Petri nets tools is available at http://www.
informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html).

by one of its input events. Therefore, a guarded Petri
net is placed in front of an EventActor or Condition

to satisfy this rule. Regarding Barrier and Trigger,
the rules are slightly different. A Barrier is triggered
when all of its input events arrive, whilst a Trigger will
automatically fire all of its output events. An Event-

Bridge just forwards all of its incoming events. The last
rule illustrates the representation of the “connections”
between the event actor a having the output event e
and a number of actors bi, i = 1..n, who are waiting
for the event e. Please note that these connections are
not real but rather deducted from the interfaces of the
aforementioned actors captured at a certain point in
time. We can see that the Petri net representation of
a DERA actor also exposes the places corresponding to
the input and output events of the actor’s interfaces. The
grey box of each Petri net shown in Table II denotes the
internal structure of the corresponding event actor.

Definition 3 (Mapping M): A DERA application
snapshot S = (A,E,Estart, Efinish) captured at a
certain point in time can be mapped to a Petri nets
representation M(S) = (PM, TM, FM),where PM =⋃

x∈A P
M
x , TM =

⋃
x∈A T

M
x , and FM =

⋃
x∈A F

M
x .

The corresponding PMx , TMx , and FMx can be achieved
by applying the rules in Table II.

Among various types of PNs, free-choice Petri nets
are special sub-class of Petri nets that can support the
notions of concurrency and choice and exhibit a clear
distinction between these notions. A free-choice Petri
net (FCPN) is an ordinary Petri net PN = (P, T, F )
in which every arc from a place is either a unique
outgoing arc or a unique incoming arc to a transition,
i.e., ∀p ∈ P, |p • | ≤ 1 or •(p•) = {p}. Therefore, FCPNs
are sufficient and appropriate to model DERA constructs
and DERA snapshots. In addition, the significant ad-
vantage of using FCPNs is that the verification of some
important properties such as liveness and boundedness
can be established in polynomial time [7]. We will prove
that the results of the mapping a DERA snapshot into
Petri nets according to Definition 3 are FCPNs.

Lemma 1: Let M(S) = (PM, TM, FM) be the Petri
nets representation of a DERA application snapshot S
according to Definition 3. Then, M(S) is free-choice.
Proof. According to the mapping rules mentioned

in Table II, the Petri nets representation of a DERA
snapshot, except for the mapping of a Condition, con-
sists of places that have only at most once outgoing
arc connecting to a transition. That is, |p•| = 1. A
Condition is mapped to a Petri net that contains a place
pa with two outgoing arcs: (pa, tb1) goes to the transition
tb1 (in case the associated Predicate is evaluated to
true) and (pa, tb2) goes to the transition tb2 (in case
the associated Predicate is evaluated to false). Thus,
we need to prove that, •(pa•) = {pa}. Indeed, the



Table II
Mapping of DERA constructs to Petri nets

DERA Construct (x) Petri netsM(x) Mapping rules
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two transitions tb1 and tb2 belong to the Petri nets
corresponding to the internal structure of a Condition.
Hence, there are no other arcs from/to tb1 and tb2 except
(pa, tb1) and (pa, tb2) (see Table II). The mapping rules
yield pa• = {tb1, tb2} and •tb1 = {pa} and •tb2 = {pa}.
That implies •(pa•) = •({tb1, tb2}) = •tb1 ∪ •tb2 = {pa}.
Therefore, the Petri net is free-choice.�

C. Petri nets-based analysis of DERA snapshots

The Petri nets representationM(S) of a DERA snap-
shot S captured either at design time or runtime will
become inputs to verification tools for analyzing the
application to ensure the absence of anomalies such as
deadlocks and livelocks. In particular, we can support

the verification of the properties such as “absence of
dead event actors” and “proper completion” (i.e., no
undesirable situations such as deadlocks or livelocks). In
Figure 5, we illustrate some simple examples of DERA
snapshots that can lead to such anomalies along with
the corresponding Petri nets. For the sake of clarity,
we have annotated the resulting Petri nets with event
actors’ names and reduced some redundant elements.

In Figure 5(a), two EventActors a12 and a13 are
dead because they are either missing input or output
events. As a result, a12 can never be performed. The
execution of a13 likely leads to a deadlock because
no subsequent firing and execution can happen after it



Trigger a11 output[e11]
EventActor a12 input[] output[e12]
EventActor a13 input[e12] output[]
EventActor a14 input[e12] output[e13]

a11 a12
a14

a13

(a) Dead event actors (no input or output)

Trigger a21 output[e21]
Condition a22 input[e21] when-true[e22] when-false[e23]
Barrier a23 input[e22, e23] output[e24]

a21 a22 a23

(b) Deadlocks (jamming before reaching the end)

Trigger a31 output[e31]
EventActor a32 input[e31] output[e32]
Condition a33 input[e32] when-true[e31] when-false[e33]
Barrier a34 input[e33] output[e31,e34]

a31 a33a32

a34

(c) Livelocks (trapping in endless cycles)

Figure 5. Illustration of potential anomalies

finishes. Figure 5(b) illustrates a deadlock scenario in
which the Barrier a23 waits for two events e22 and
e23 forever because only one of these events is fired
by the Condition a22. The last scenario in Figure 5(c)
demonstrates that a livelock situation may happen in
two cases. Unless the associated Predicate of the Con-

dition a33 returns false, there will be a possibly
unintentional never-ending loop. Even worse, we see that
the Barrier a34 will emit simultaneously two events e31
and e34. The event e31 is fed back to the EventActor

a32, and therefore, triggers the execution of a32. As a
consequence, this always yields endless execution cycles.

Please note that the aforementioned anomalies may
occur due to unintended design and development mis-
takes of DERA-based applications. Therefore, the huge
benefit of using formal specifications and verifications,
e.g., Petri nets, is to help reducing and eliminating such
anomalies early at design time or during the course of the
execution of DERA applications. The verification can
also be used for analyzing DERA applications before the
deployment or actor substitutions at runtime [6].

D. Implementation and tool support

There are a diversity of existing tools that support
the verification of Petri nets representations. Fortu-
nately, many of these tools adopt the Petri Net Markup

Language (PNML) defined by the standard ISO/IEC
159095. PNML is an XML-based interchange format for
Petri nets aiming at the openness and extensibility (i.e.,
allow everyone to extend the fundamental set of general
features of all types of Petri nets and devise specific
features of a concrete Petri net type). In this work,
we introduce a template-based model transformation
approach for automatically mapping DERA constructs
and applications onto Petri nets according to the formal
definition in Table II.

class DERA2PNML {
val index = new AtomicInteger
...
def dispatch map(Barrier barrier){
val inputs = barrier.input
val outputs = barrier.output
’’’
<!-- Barrier "«barrier.name»" -->
«FOR i : 1..inputs.size»
<place id="«inputs.get(i-1).name»" />
<arc id="arc_«index.andIncrement»" source="«inputs.get(i-1)
.name»" target="barrier_«barrier.name»_ta" />

«ENDFOR»
<transition id="barrier_«barrier.name»_ta" />
«FOR i : 1..outputs.size»
<place id="«outputs.get(i-1).name»" />
<arc id="arc_«index.andIncrement»" source="barrier_«barrier
.name»_ta" target="«outputs.get(i-1).name»" />

«ENDFOR»
’’’

}
def dispatch map(EventActor actor){
val inputs = actor.input
val outputs = actor.output
’’’
<!-- EventActor "«actor.name»" -->
«FOR i : 1..inputs.size»
<place id="«inputs.get(i-1).name»" />
<transition id="«actor.name»_ta_«i»" />
<arc id="arc_«index.andIncrement»" source="«inputs.get(i-1)
.name»" target="«actor.name»_ta_«i»" />

<arc id="arc_«index.andIncrement»" source="«actor.name»_ta_
«i»" target="actor_«actor.name»_pa" />

«ENDFOR»
<place id="actor_«actor.name»_pa" />
<transition id="actor_«actor.name»_tb" />
<arc id="actor_«actor.name»_arc_«index.andIncrement»" source=
"actor_«actor.name»_pa" target="actor_«actor.name»_tb" />

«FOR i : 1..outputs.size»
<place id="«outputs.get(i-1).name»" />
<arc id="arc_«index.andIncrement»" source="actor_«actor.
name»_tb" target="«outputs.get(i-1).name»" />

«ENDFOR»
’’’

}
def dispatch map(Condition condition){
val inputs = condition.input
val trueOutputs = condition.^true
val falseOutputs = condition.^false
’’’
<!-- Condition "«condition.name»" -->
«FOR i : 1..inputs.size»
<place id="«inputs.get(i-1).name»" />
<transition id="«condition.name»_ta_«i»" />
<arc id="arc_«index.andIncrement»" source="«inputs.get(i-1)
.name»" target="«condition.name»_ta_«i»" />

<arc id="arc_«index.andIncrement»" source="«condition.name»
_ta_«i»" target="condition_«condition.name»_pa" />

«ENDFOR»
<place id="condition_«condition.name»_pa" />
<transition id="condition_«condition.name»_tb1" />

5http://www.iso.org/iso/catalogue detail.htm?csnumber=
43538



<transition id="condition_«condition.name»_tb2" />
«FOR i : 1..trueOutputs.size»
<place id="«trueOutputs.get(i-1).name»" />
<arc id="arc_«index.andIncrement»" source="condition_«
condition.name»_tb1" target="«trueOutputs.get(i-1).name»"
/>

«ENDFOR»
«FOR i : 1..falseOutputs.size»
<place id="«falseOutputs.get(i-1).name»" />
<arc id="arc_«index.andIncrement»" source="condition_«
condition.name»_tb2" target="«falseOutputs.get(i-1).name»"
/>

«ENDFOR»
’’’

}
...

}

Listing 2. An excerpt of the code for mapping DERA to PNML

The DeraDSL used in the previous example has been im-
plemented using the Eclipse Xtext DSL framework6. The
DeraDSL editor generated by Xtext can support several
powerful features such as syntax highlighting, content
assist and auto-completion, validation and quick fixes,
automated external cross-references resolutions, and so
on. The transformation of DERA constructs to PNML is
implemented using Xtend7, a statically-typed language
built on top of Java provided by the Xtext framework.
We present in Listing 2 an excerpt of the Xtend code
for mapping basic DERA constructs such as Barrier,
Condition, and EventActor onto PNML, respectively.
The mapping of other actors can be achieved in the
same way. Please note that the generation templates are
defined inside the pair of three apostrophes (i.e., “‘...”’).

We illustrate in Table III the transformation of an
excerpt of the warehouse operator defined in Listing 1
onto the corresponding PNML. The resulting PNML
description can be used in existing Petri nets-based tools
for analysis and verification.

For instance, we can use the tool Workflow Petri net
Designer (WoPeD) 3.0.28, to import the PNML descrip-
tion that is automatically generated from a snapshot of
the warehouse operator (see Figure 1 and Listing 1).
The graphical view of the Petri nets representation is
shown in the left-hand side of Figure 6 and the analysis of
properties of the Petri nets representation such as well-
structuredness, boundedness, and liveness, are shown in
the right-hand side, respectively.

V. Related work

The advantages of event-driven architectures have
been extensively studied in different areas such as mid-
dleware infrastructure [2], event-based coordination [3],
active database systems [4], workflow and business pro-
cess management [10], and service-oriented architec-
tures [5]. Event-condition-action (ECA) rules – proposed

6http://www.eclipse.org/Xtext
7http://www.eclipse.org/xtend
8http://www.woped.org

Table III
Example of translating DERA constructs to PNML

D
E

R
A

EventActor confirmStorageLocations input [eInquiried] output
[eConfirmed]

Barrier gate input [eConfirmed, eVideoReceived] output [
eSynched]

Condition c1 input [eSynched] when-true [eEnoughLocations]
when-false [eNotEnoughLocations]

P
N

M
L

<!-- EventActor "confirmStorageLocations" -->
<place id="eInquiried" />
<transition id="confirmStorageLocations_ta_1" />
<arc id="arc_0" source="eInquiried" target="
confirmStorageLocations_ta_1" />

<arc id="arc_1" source="confirmStorageLocations_ta_1" target
="actor_confirmStorageLocations_pa" />

<place id="actor_confirmStorageLocations_pa" />
<transition id="actor_confirmStorageLocations_tb" />
<arc id="actor_confirmStorageLocations_arc_2" source="
actor_confirmStorageLocations_pa" target="
actor_confirmStorageLocations_tb" />

<place id="eConfirmed" />
<arc id="arc_3" source="actor_confirmStorageLocations_tb"
target="eConfirmed" />

<!-- Barrier "gate" -->
<place id="eConfirmed" />
<arc id="arc_4" source="eConfirmed" target="barrier_gate_ta"

/>
<place id="eVideoReceived" />
<arc id="arc_5" source="eVideoReceived" target="
barrier_gate_ta" />

<transition id="barrier_gate_ta" />
<place id="eSynched" />
<arc id="arc_6" source="barrier_gate_ta" target="eSynched"
/>

<!-- Condition "c1" -->
<place id="eSynched" />
<transition id="c1_ta_1" />
<arc id="arc_7" source="eSynched" target="c1_ta_1" />
<arc id="arc_8" source="c1_ta_1" target="condition_c1_pa" />
<place id="condition_c1_pa" />
<transition id="condition_c1_tb1" />
<transition id="condition_c1_tb2" />
<place id="eEnoughLocations" />
<arc id="arc_9" source="condition_c1_tb1" target="
eEnoughLocations" />

<place id="eNotEnoughLocations" />
<arc id="arc_10" source="condition_c1_tb2" target="
eNotEnoughLocations" />

in active database systems [11] – are a declarative ap-
proach using rules for enabling reactions as a certain
event occurs and particular conditions hold. A number of
studies have been conducted aiming at using ECA rules
for executing business processes [12]. However, most of
the ECA-based approaches have limitations with regard
to their applicability as it is tedious to generate or
extract, manage, and analyze ECA rules for complex
processes [13]. Our approach, in contrast, offers easy-
to-understand graphical notations and formalisms for
the stakeholders and an automated mapping from the
graphical notations onto the formal representations.

There are a considerable amount of studies focusing
on formalizing and supporting model checking of event-
based systems. In his dissertation work, Madl presented
an approach that defines a semantic domain based on
timed automata and discrete event systems to support



Figure 6. Petri nets-based analysis of a snapshot of the warehouse operator

the formalization and verification of distributed real-
time embedded systems [14]. Madl’s approach rather
focuses on low-level and fine-grained concepts such
as machines, execution threads, tasks, schedulers, and
buffers whilst our notions and formalism presented in
this paper are of high-level of abstraction and rather
closer to the developers’ perception. Another approach
proposed by Atlee and Gannon [15] concentrates on
formalizing event-driven system requirements based on
computational tree logic (CTL). Our approach can be
extended to be able to verify the conformance of event-
based systems design and implementation using DERA
constructs based on formal requirement specifications
achieved by using this approach.

There are a rich body of existing work on specification
and verification of distributed event-based systems based
on temporal logic [16], trace semantics [17], algebraic
semantics [18], ontology [19], π-calculus [20], and op-
erational semantics [21]. To the best of our knowledge,
the aforementioned approaches mainly target the pub-
lish/subscribe messaging patterns. The dynamic event
actors-based framework that we consider in this paper
relies on asynchronous communication style to realize
the event channels, and therefore, can benefit from the
formal foundations resulting in these approaches. Unfor-

tunately, none of these approaches aims at introducing
appropriate representations and formalisms of event-
based systems that are close to the developers’ percep-
tion. Moreover, our approach also provide an automated
mapping between the system’s graphical and formal
representations.

The theoretical foundation of our work benefits from
existing literature on Petri nets, especially on the formal-
ization of concurrency and choice constructs [7]. Nev-
ertheless, other formalisms such as π-calculus [22] and
Communicating Sequential Processes (CSP) [9] strongly
support these constructs, and therefore, are also appli-
cable in our approach. Petri nets has been chosen as
the underlying formalism in our approach because of
the intuitive graphical representation backed by powerful
formalization along with a plethora of existing commer-
cial and open-source tools support.

VI. Conclusion

We present in this paper a novel approach that lever-
ages graphical representations of event-based systems
with reduced non-determinism that are closer to the
developers’ perception. In particular, the dynamic event
actors framework (DERA) is used for describing the
underlying event-based systems. The snapshots of a
DERA-based description obtained at design time or



runtime shall be automatically translated into corre-
sponding Petri net representations. Formal analysis and
verification of the event-based systems under consider-
ation are performed based on the resulting Petri nets.
We developed a proof-of-concept implementation of our
approach and showed the applicability of our approach
through an industrial case study. Our follow-on endeav-
ors aim at further investigating relevant open issues not
covered yet in the scope of this paper. Among the open
topics is to reduce the complexity of analyzing Petri
nets of the event actors-based application spanning over
multiple execution domains. Another potential task is
to enable the capability of intuitively monitoring and
debugging event-based systems based on the captured
snapshot and the corresponding graphical representa-
tions.

Acknowledgment

This work was partially supported by the EU’s
Seventh Framework Programme Project INDENICA
(http://www.indenica.eu), Grant No. 257483 and the
Wiener Wissenschafts-, Forschungs- und Technologie-
fonds (WWTF), Grant No. ICT12-001.

References
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