
HyPHI – task based hybrid execution C++ library for the Intel Xeon Phi coprocessor

Jiri Dokulil, Enes Bajrovic, Siegfried Benkner, Martin Sandrieser
Research Group Scientific Computing

University of Vienna
Austria

Email: firstname.lastname@univie.ac.at

Beverly Bachmayer
Software and Solutions Group

Intel GmbH
Germany

Email: bev.bachmayer@intel.com

Abstract—The Intel Threading Building Blocks (TBB) C++
library introduced task parallelism to a wide audience of
application developers. The library is easy to use and powerful,
but it is limited to shared-memory machines. In this paper we
present HyPHI, a novel library for the Intel Xeon Phi copro-
cessor for building applications which execute using a hybrid
parallel model that exploits parallelism across host CPUs and
Xeon Phi coprocessors simultaneously. Our library currently
provides hybrid for-each and map-reduce. It hides the details of
parallelization, work distribution and computation offloading
from users while using internally TBB as its foundation. Despite
the higher level of abstraction provided by our library we show
that for certain types of applications we outperform codes that
rely on the built-in offload support currently provided by the
Intel compiler. We have performed a set of experiments with
the library and created guidelines that help the developers
decide in which situations they should use the HyPHI library.

I. INTRODUCTION

The novel architecture of the Intel Xeon Phi coprocessor
enables new ways of approaching accelerated application
development. Even though it is not 100% binary compatible
with current x86-64-based processors, (the vector unit is
different from the SSEx available in the today’s CPUs), it
is usually possible to use the same principles to develop ap-
plications for the coprocessor that one would use to develop
a traditional parallel application. The main difference is the
fact, that thread-level parallelism and vectorization play a
more important role, due to the higher number of cores and
greater emphasis on vector units.

As a result of the fairly conventional architecture,
well-designed parallel libraries targeting traditional shared-
memory systems may be used efficiently on Intel Xeon Phi
coprocessors. An example of such a library is the Intel
Threading Building Blocks (TBB) [1]. This parallel C++
library introduced the idea of task parallelism to a wide au-
dience of developers. It provides a set of parallel algorithms,
for example parallel_for, parallel_reduce, and
parallel_pipeline. These algorithms offer a high-
level programming approach for common computational
patterns but fully hybrid execution, exploiting all of the host-
and coprocessor-cores at the same time, is not supported.
The Intel C++ Composer XE 2013 compiler already offers
means for offloading computational tasks from the host

to coprocessors. This can greatly simplify development of
accelerated applications that utilize Xeon Phi coprocessors
– a large fraction of the work required for offloading is done
automatically by the compiler and runtime-system. However,
with this support it is difficult to achieve hybrid execution
and dynamically distribute the work to the host and multiple
coprocessors.

In this paper we present HyPHI, a high-level parallel
library for Xeon Phi that we designed to support fully hybrid
execution and dynamic work distribution, while maintaining
the design principles and ease of use of TBB.

The contributions of this paper are the following:

• We show the usage of existing programming ap-
proaches for Xeon Phi and give examples how the Hy-
PHI library can be utilized for fully hybrid execution.

• We introduce the design principles of HyPHI based on
well-established C++ programming techniques and pro-
vide details about the implementation such as dynamic
work distribution, data offloading and task scheduling.

• We have implemented dynamic work distribution, hy-
brid foreach and map reduce constructs, data serial-
ization facilities as well as support for different work
offload strategies for performance tuning.

• We evaluate our library via a comprehensive set of
benchmarks as well as a real-world physical simulation
application. In addition, we provide guidelines that
advise programmers when to use our library.

The remainder of this paper is organized as follows:
Section II briefly introduces the Xeon Phi hardware and key
components of the software stack. Section III discusses the
support provided by the Intel compiler for offloading compu-
tations to the Xeon Phi and outlines the parallel algorithms
provided by our HyPHI library. Section IV provides details
about the design and implementation of the library. Section
V presents experiments with synthetic benchmarks that aim
at deriving guidelines for using our library, and presents
performance results for a real world simulation application.
Related work is discussed in Section VI followed by a
summary and conclusion in Section VII.

II. XEON PHI ECOSYSTEM

Xeon Phi coprocessors comprise more than 50 Intel Ar-
chitecture (IA) cores, each with four way HyperThreading,
to produce the total of over 200 logical cores. Additionally,
Xeon Phi coprocessors include memory controllers that sup-
port the GDDR5 specification and special function devices
such as the PCI Express interface. Xeon Phi cores run
independently of each other and have very powerful vector
units. The memory subsystem provides full cache coherence.
Cores and other components of Xeon Phi are connected via
a ring interconnect. From the software point of view, a Xeon
Phi coprocessor is a shared-memory computing domain,
which is loosely-coupled to the computing domain of the
host.

The Xeon Phi coprocessor is implemented as a PCI
Express form-factor add-in card. The high-level software ar-
chitecture of a system with a host and Xeon Phi coprocessor
is depicted in Figure 1. The host software stack is based on a
standard Linux kernel. The software stack for the Xeon Phi
is based on a modified Linux kernel. The operating system
on the Xeon Phi coprocessor is in fact an embedded Linux
environment that provides basic functionality such as process
creation, scheduling, or memory management.

Application

User SCI

Application

Socket User SCI Socket

SCI
Driver

Card
Driver

Linux
Kernel

SCI
Driver

Modified Linux
Kernel

Host Intel® Xeon® Phi™ Coprocessor

PCI Express

Figure 1. Software architecture of a system with a host and a Xeon Phi
coprocessor. Acronym: Symmetric Communication Interface (SCI).

Multiple options are available for communication between
the host and the card. The card driver provides virtual
network interfaces, so it is possible to use the TCP/IP net-
work stack. This is good for management and compatibility
with existing applications. On the other hand, it cannot
provide maximum performance, since the network stack was
designed for a different purpose than communication over
PCI Express.

The specialized SCI (Symmetric Communication Inter-
face) library provides two communication options. CPU
based messaging interface similar to sockets and DMA trans-
fers. It is a low-level library so there is minimal overhead.
Its usage is similar to existing communication libraries for
sockets and DMA transfers.

The Intel C++ Composer XE compiler is used to compile
applications targeting the coprocessor. This can be done
either by cross-compiling the sources for the coprocessor, or
by using the compiler’s support to build and easily deploy
offloaded applications. These applications are started on the
host, but a binary image of the code compiled for the
coprocessor is automatically transferred to the card, started
within a process on the cards, and connected to the host’s
process by SCI. The following section explores this option
in further detail.

III. COMPARISON TO EXISTING APPROACHES

The Intel C++ Composer XE 2013 compiler provides two
ways of building offloaded applications. Both approaches
enable the programmer to add Xeon Phi support by specific
source-code annotations. The first uses C/C++ pragmas
to mark code regions for execution on the coprocessor.
Input and output data for each region has to be specified
explicitly. The second approach is based on implicit data-
management by using special memory allocation routines for
shared data in conjunction with specific offload keywords.
Both approaches do not support automatic exploitation of
all available host-cores and coprocessors in a system.

This is where the HyPHI library comes in. Unlike the
general-purpose offload solutions provided by the Intel com-
piler, we provide a set of higher-level algorithms implement-
ing computational patterns such as for-each with fully hybrid
execution support and dynamic work distribution among all
available processing resources (host-cores and coprocessor
cores).

In the following text, we present basic usage examples of
the traditional offload approaches and show how our library
can simplify hybrid application development. In all of the
examples, the goal is to apply a functor (function object) to
an array or vector with data. The functor looks like this:
struct functor {
int factor;
functor(int f) { factor=f; }
void operator()(int& x) const {
x=x*factor;

}
};

A. Using pragma-based offload

For the pragma-based explicit offloading support the
example may look like this:
int *data=new int[size];
fill_data(data);
#pragma offload target(mic) inout(data:length(size))
{
functor f(2);
tbb::parallel_for_each(data,data+size,f);

}

The block of code after the #pragma offload is
executed on the coprocessor, the array data of the size
size is sent to the coprocessor before the block starts
executing and is sent back to the host, after the block

finishes. The execution on the host resumes once the data
is back on the host. Only “plain” data structures (bitwise
copyable, without pointers, single value or contiguous array
of values) can be used.

B. Using shared-memory offload

The second option is using offload with shared-memory.
Since the Xeon Phi coprocessor uses 64bit memory address
space (just like the host), it is possible to allocate memory
in the host’s address space and the coprocessor’s address
space with the same address. This enables using pointers
inside of data structures, even with extensive use of dynamic
memory allocation. Global variables are also supported –
the variable may be marked as shared and then the value is
synchronized between the host and the coprocessor. This is
not possible in the pragma-based approach. It is important
to note, that the shared memory offloading does not provide
a true distributed shared memory. The consistency is only
maintained at two points: when the offloaded block starts
and when the offloaded block ends.

An example code may look like this (using OpenMP to
parallelize execution on the coprocessor):
_Cilk_shared void process_data(int* data, int size)
{
functor f(2);
#pragma omp parallel for
for(int i=0;i<size;++i) {
f(data[i]);

}
}
...
int* data=_Offload_shared_malloc(sizeof(int)*size);
fill_data(data);
_Cilk_offload process_data(data,size);

C. Hybrid Execution via existing approaches

Both offloading approaches lack out-of-the-box support
for hybrid execution. In addition, offloaded sections block
execution of the main host process. Using multiple copro-
cessors and the host-cores simultaneously therefore requires
manual parallelization for all computational tasks. Since the
host system and each coprocessor have distinct memory re-
gions, manual parallelization is challenging. Shared-memory
can only be synchronized when offload execution starts or
finishes but not during task execution.

However, it is possible to statically split the work and
use conventional threading for manual parallelization. The
following example demonstrates a simple case where two
coprocessors are used with mutiple host-threads and offload
pragmas:
int *data=new int[size];
fill_data(data);
int *data2=data+(size/2);
std::thread t1([&](){
#pragma offload target(mic:0) inout(data:length(size/2))
{
functor f(2);
tbb::parallel_for_each(data,data+size/2,f);

}
});

std::thread t2([&](){
#pragma offload target(mic:1) inout(data2:length(size/2))
{
functor f(2);
tbb::parallel_for_each(data2,data2+size/2,f);

}
});
// Do some work here or run t2’s work in the main thread
t1.join();
t2.join();

As shown in the previous listing, programmers have to man-
ually split data into parts and concurrently issue commands
to process each part on a coprocessor. However, it may not
always be possible to determine the optimal size of chunks.
This issue gets aggravated when processors with different
performance characteristics (such as host and coprocessors)
participate together in the computation.

D. Using the HyPHI library

In contrast to the previously introduced approaches, the
HyPHI library provides fully hybrid execution and dynamic
work distribution. This aims at simplification of program-
ming support when all available system resources need to
be exploited.

In the case of the first example in this section, the code
would look like this:
std::vector<int> data;
fill_data(data);
functor f(2);
hybrid_for_each(data.begin(),data.end(),f);

Compared to the established for-each functionalities pro-
vided by STL (C++ Standard Template Library) or TBB,
only one additional aspect needs to be considered for
our library. Due to the distributed memory regions and
required transfers to/from coprocessors, functor data and
items must be serialized/deserialized. For complex data-
types, HyPHI provides functionality for specifying custom
(de-)serialization routines. Basic data-types (such as the int
items in the example listing) and trivially copyable structures
(can be copied byte by byte, e.g., the functor’s data in the
example) are (de-)serialized automatically by the library.

The hybrid_for_each algorithm is in fact a C++
template function. It works with an input specified by two
forward iterators: beginning and end of the data. The action
is specified by the third parameter – the functor. Data
may be in a plain C array, C++ standard template library
container (e.g.,std::vector) or any other structure that
provides these iterators. The functor is a function object with
similar requirements as those imposed by TBB. These are
a superset of requirements of the C++ standard. However,
for offloading, the function object data must also be serial-
izable. Furthermore, it must be marked (using pragmas)
as offloaded code, so that the compiler includes it in the
coprocessor binary. This is true for all source codes that are
executed on the coprocessor, e.g., helper functions used by
the functor. The relevant parts of the library are also marked
this way.

Thanks to the familiar interface of the hybrid algorithms,
the application code can be easily rewritten from hybrid
to parallel (using TBB) or serial (using the standard C++
library) just by changing the call from hybrid_for_each
to a different function:
tbb::parallel_for_each(data.begin(),data.end(),f);//TBB
std::for_each(data.begin(),data.end(),f);//serial

The HyPHI library also provides hybrid_reduce,
which is a hybrid alternative of the parallel_reduce
algorithm provided by TBB. It accepts input data the same
way as hybrid_for_each, but it needs two functors. The
map functor, which is applied to every item in the sequence
to produce a new value, and reduce functor that is used to
combine these values (and intermediate results) to produce
a single value.

The hybrid reduce may be used like this to multiply each
item by two, convert it to integer, and sum all the values:
struct map {
int operator()(double x) {
return (int)(x*2);

}
};
struct reduce {
int operator()(int l, int r) {
return l+r;

}
};
int go(std::vector<double>& data) {
return hybrid_reduce(data.begin,data.end(),
0,map(),reduce(),2);

}

The zero in the argument list of reduce denotes an identity
value for the reduce operation. Via the optional last integer
argument of reduce and for-each, the number of coprocessors
to use can be given (2 in the example above). This argument
can also be 0, in case host-only execution is desired (i.e.,
for debugging). If the argument is left out, all available
coprocessors are used.

IV. DESIGN OF THE LIBRARY

We have designed the HyPHI library to provide devel-
opers with a simple way to integrate support for Xeon Phi
coprocessors in their C++ applications. HyPHI transparently
supports hybrid execution and dynamic work distribution
with a familiar C++ interface. The library may be combined
with other parallel programming approaches, e.g., TBB may
be used in parts of the application or even in user-provided
functors passed to the library.

In the following text, we will describe the overall ar-
chitecture of the library and also provide a more detailed
description of the most important components of the library.

A. Overall architecture

The HyPHI library follows the design of the TBB library.
At the core of TBB is a task scheduler. This scheduler
maintains a thread pool consisting of a fixed number of
general purpose worker threads. The threads from this pool
are then used internally by the scheduler to execute tasks

created during the execution of the parallel algorithms, while
observing task dependencies specified by the implementor
of the algorithms [1]. With this approach, there is no direct
mapping between tasks and execution threads, so it is possi-
ble to create any number of tasks without overprovisioning
the system.

The HyPHI library is built on the same principles and uses
the task scheduler from the TBB library as its foundation.
However, for supporting long running operations such as
data transfers, we had to extend the available task depen-
dency support to also consider SCI messages and DMA
transfers. The implementation is an add-on for the TBB
library which is completely outside the TBB source codes.

Our hybrid_for_each and hybrid_reduce algo-
rithms are realized as C++ template functions that execute
user-provided functor(s) on the user’s data in a pre-defined
manner. These algorithms are implemented by a set of tasks
that are combined (using task dependencies) to perform the
desired action.

A high-level view of the way in which the HyPHI library
executes the hybrid_for_each algorithm is shown in
Figure 2. As you can see from the figure, the items are
processed in batches. The host’s part of item processing
(on the very left) is performed by a few management tasks
that split (in parallel) the batch to individual items and then
create execution tasks that do the actual work, i.e., apply
the functor to the item. The number of items in a batch (and
also the number of execution tasks) is equal to the number of
host’s cores. The processing of subsequent buffer overlaps
with processing of the current buffer, to eliminate adverse
effects caused by the fact that some items may take longer
to process than the others.

The box in the middle takes care of computation offload-
ing. It has two parts. The first serializes items and sends
them to the coprocessor for processing, the second receives
serialized representation of processed items, deserializes it,
and stores the results in the array. The data batch is always
processed as a whole during these offloads, so no splitting
is performed. The management tasks use SCI messages to
synchronize their work with the coprocessor and DMA (also
provided by SCI) to transfer the data.

Local processing and offloading to the coprocessor is care-
fully coordinated by special synchronization tasks (barriers)
and some shared state. These tasks also control the number
of buffers being used on the host and the coprocessor.

The coprocessor process is created using offload
pragmas, but pragmas are only used to copy the binary
and launch the process, not to transfer data and control
execution. These tasks are handled by SCI messages and
DMA.

Item processing on the coprocessor is similar to the item
processing on the host, but there are several significant
differences. First, the number of execution tasks is much
larger to reflect the much larger number of execution threads

Figure 2. High-level overview of execution of the hybrid for-each algorithm.

on the coprocessor. Second, the execution tasks also deal
with deserialization and serialization of the items. Third,
execution is coordinated using commands (messages) from
the host, since the shared state is not available on the
coprocessor.

B. Work distribution

Our hybrid algorithms distribute the work between the
host and the coprocessors dynamically. Both the host and
the coprocessor request work in larger chunks (tens of items
for the host, hundreds of items for the coprocessor) that
are then processed in parallel. Using larger chunks on the
host and the coprocessor may reduce overhead and improve
performance. However, finding the right granularity might
be very application specific. To deal with this, the library
supports different tuning strategies (see also Section IV-E).

On the host, a chunk is requested when it is needed, i.e.,
when a worker thread on the host is idle. For the offloaded
items, the library tries to maintain (at least) double buffering,
to minimize the amount of time that the coprocessor spends
waiting for work to process. This means that while a batch is
being processed on the coprocessor, the next batch is being
prepared on the host and transferred to the coprocessor.

C. Task dependency extension

The HyPHI library uses the TBB library both as inspira-
tion and foundation. Just like in the TBB, the algorithms that
HyPHI provides are built using tasks and task dependencies.
However, since blocking tasks should be avoided, we use one
seperate thread to start the code running on the coprocessor
(via Intel’s offload). This avoids stalling a thread from the
TBB thread pool.

The task-based approach to parallel programming can be
very flexible. To deal with synchronization, usually task

dependencies are used. A dependency between task A (the
predecessor) and task B (the successor) means that the
task B cannot run before the task A finishes [1]. The
implementation of the whole mechanism is simple and can
be efficient. However, building a library that efficiently
deals with data offloading is challenging. Communication
such as messages and DMA transfers may require blocking
calls which could lead to inefficiencies with the task-based
approach.

Fortunately, in our case there are just two types of
blocking calls that we need to make – connection polling and
DMA wait-for-completion. So, we have extended the TBB
library to support additional types of dependencies than the
task-task dependency. With our extension, a task A may be
registered as a successor to a connection C. In this case,
task A cannot run until there is a message available on the
connection C. The second type of dependency is a DMA-
task dependency. This means that the dependent task cannot
run until the specified DMA transfer finishes. There may
be any number of task-task, connection-task and DMA-task
dependencies.

The implementation of our extension uses operating sys-
tem threads to perform the blocking call. This means that for
most of the time, the only active (non-suspended) threads in
the whole application are TBB worker threads.

D. Offloading items to the coprocessor

At some point during the execution of the hybrid for-
each algorithm, it is necessary (the implementation of the
algorithm decides this) to offload items I = (i1, ..., in)
to a coprocessor. This is achieved by spawning the task
Toffload(I). The task Toffload(I) spawns two more tasks:
Tget buffer and Tserialize. It also creates task Tsend and sets

it as a successor (creates task-task dependencies) of both
Tget buffer and Tserialize. The task Tget buffer sends a
message to the coprocessor, requesting a new buffer for data.
Then, it creates a connection-task dependency and sets Tsend

as a successor of the connection. The coprocessor will use
this connection to signal that the buffer is ready. As a result,
the task Tsend will only run once the data has been serialized
and a buffer on the coprocessor is ready. When that happens,
the task will initialize DMA to transfer the serialized data
(items I) to the coprocessor. It also creates task Tnotify and
sets it as a successor of the DMA – it creates a DMA-task
dependency. Once the task Tnotify executes, we know that
the data has been transfered to the coprocessor. A message
can be sent to the coprocessor to invoke the processing of
the buffer.

E. Strategies

The usual challenge created by bulk (i.e., using large
batches) dynamic work distribution is the phase of the
computation close to the end. If buffers are too large or
there are too many of them, the host may run out of
items to process, while there is still a lot to be done on
the coprocessor. On the other hand, if the buffers are too
small, the number of items ready to be processed by the
coprocessor gets too small and the coprocessor is not fully
utilized. To minimize this impact, we dynamically decrease
the size of the buffers near the end. However, finding the
optimal ratio is not easy, since we have no guarantee about
the time it takes to process different items.

For scenarios that feature unbalanced computations, the
HyPHI hybrid algorithms may be parametrized by different
strategies. This concept is analogous to partitioners in TBB.
A strategy influences the run-time and dictates the number
and size of the buffers it should use. We have implemented
three strategies:

Dynamic buffer size: The size of the buffers decreases
as the execution nears the end of the sequence. This strategy
tries to emphasize host utilization and may be suitable if the
workload performs good on the host.

Fixed buffer size: The size of the buffers is constant.
As a result, the coprocessor utilization is increased, but the
host’s resources may not be fully utilized near the end. This
is useful if the host has other work to do or the workload is
much better suited for the coprocessors.

Pure offload: This strategy completely disables item
processing on the host. This is useful if the workload is
extremely well suited for the coprocessor or the host has
other important work to do.

V. EXPERIMENTS

We evaluated the HyPHI library via synthetic bench-
marks as well as a full application. Configurable synthetic
benchmarks allow us to test many different scenarios and
thus discover under which condition it is beneficial to

use the HyPHI library. In addition, a demanding physics
simulation application (smoothed particle hydrodynamics)
was evaluated to show the usefulness of our approach.

Experiments have been performed on a machine with two
six-core Intel Xeon CPUs (X5680, 12MB Cache, 3.33 GHz,
Hyper-Threading) and two Xeon Phi coprocessors (pre-
production models – 61 cores, 1.09GHz, 8GB RAM). The
source codes were compiled with the Intel C++ Composer
XE compiler set to O3 optimization level. All reported times
are wall clock times, measured by the internal clock of the
host machine. Measured time always includes all of the
data transfers. The presented numbers are averages from five
consecutive runs of the same experiment.

A. Hybrid for-each loop

In these tests, a function (a long sequence of simple
arithmetic operations) was applied to every item in an array
(C++ vector). The configuration options of this test are
the following:

• number of items in container (COUNT) – there is
some fixed overhead associated with each call to
hybrid_for_each and it may amortize better for
larger arrays

• size of single item (SIZE) – the relation between size
(in byte) of the item and the time it takes to process
the item may be an important factor when offloading
is concerned

• processing time per item (HOST-TIME) – the average
time (in seconds) a single host thread needs to process
an item

• processor suitability (PHI-RELATIVE-TIME) – some
operations execute better on the host, some on the
coprocessor. This may significantly influence the per-
formance gained by offloading. Is the execution time
per item on Xeon Phi compared to execution time per
item on host.

• processing time balance (BALANCE) – the processing
time per item may not be constant, which may influence
the efficiency of static work distribution. x means that
the second half of items takes x-times longer to process
in total than the first half. In other words, if x = 1, the
workload is balanced.

Note, that the configuration was made at compile-
time to enable compiler optimizations. We use the fol-
lowing form to describe a concrete experiment setup:
{count:COUNT, size:SIZE, host:HOST-TIME, rel.phi:PHI-
RELATIVE-TIME, balance:BALANCE}. The HOST-TIME
and PHI-RELATIVE-TIME were measured by evaluating
the functor 10 times (in a single thread) and taking the
average. The other values are directly specified in the
experiment setup.

We have compared three approaches:
• hybrid_for_each from HyPHI with one or two

coprocessors

variant # Phi time (s) speedup Phi util.
host-only parallel (TBB) 0 125.086 1 N/A
hybrid_for_each 1 9.332 13.4 93.88%
hybrid_for_each 2 5.455 22.9 82.28%

pragma offload 1 9.760 12.8 98.91%
pragma offload 2 5.901 21.2 83.70%

Table I
COMPARISON OF DIFFERENT FOR-EACH VARIANTS.

SETUP:{COUNT:10000, SIZE:4, HOST:0.279, REL.PHI:0.83,
BALANCE:1}

• compiler’s offload pragmas combined with TBB’s
parallel_for_each and static work distribution
to run the work on one or two coprocessors (host is
idle)

• host only execution of parallel_for_each
1) Total speedup: In this experiment, we compare the

total execution time of the host-only TBB implementation
to hand-written pragma-based versions and the HyPHI
library. A synthetic benchmark code with the following
configuration was used: {count:10000, size:4, host:0.279,
rel.phi:0.83, balance:1}.

As shown in Table I, coprocessor-enabled versions can
bring significant performance improvements for this bench-
mark configuration. This is due to the good suitability
of the synthetic example configuration for the coprocessor
(0.83 relative thread performance compared to host) and the
high number of simultaneous threads (240) available on the
coprocessors.

Even though this configuration favors the coprocessor,
we observe additional performance gains over the pragma
-based versions when the hybrid for each is used.

In addition, Table I shows coprocessor utilization (where
applicable). This is reported as the percentage of time
that the coprocessors executed the user’s function without
measuring idle time or other overheads such as data transfer.
In this regard, we observe that even though the overheads
with hybrid_for_each are slightly higher, the absolute
performance improves due to utilization of the full system.

2) Processing time per item: The time necessary to
process an item on the host is an important factor to be
considered when offloading. If this time is very short, it
may not be worth utilizing full hybrid execution. There
is always some overhead associated with hybrid execution
which needs to be amortized. In this experiment, we aim at
finding the work granularity for which it pays off to use our
library, by running the same experiment with different item
processing times. The experiment setup was {count:10000,
size:4, host:0.0015-1.3, rel.phi: 0.7, balance:1}.

As observable from Figure 3, the average time for process-
ing one item does not have to be very high to beat pragma
-based offloading. With our hybrid approach, the part of the
implementation that does the host-side processing initializes
very quickly and can start processing the data even before

0

5

10

15

20

25

0,001 0,01 0,1 1 10

Sp
e

e
d

u
p

 o
ve

r
p

ar
al

le
l h

o
st

-o
n

ly
 v

e
rs

io
n

Time (sec) to process single item (single threaded host performance)

hybrid_for_each 1 coprocessor

hybrid_for_each 2 coprocessors

pragma offload 1 coprocessor

pragma offload 2 coprocessors

Figure 3. Effect of the item processing time – The hybrid approach
can outperform pragma-based versions even for workloads that favor
the coprocessor. Setup: {count:10000, size:4, host:0.0015-1.3, rel.phi: 0.7,
balance:1}

0

5

10

15

20

25

100 1000 10000 100000

Sp
e

e
d

u
p

 o
ve

r
p

ar
al

le
l h

o
st

-o
n

ly
 v

e
rs

io
n

Number of items

hybrid_for_each 1 coprocessor

hybrod_for_each 2 coprocessors

pragma offload 1 coprocessor

pragma offload 2 coprocessors

Figure 4. Effect of the number of items – for one coprocessor, 1000
items are enough to get significant speedup. To make the best use of two
coprocessors, the sequence must be at least 20 thousand items long. Setup:
{count:100-102400, size:4, host:0.013, rel.phi:0.74, balance:1}

the coprocessor-side has been fully initialized.
3) Number of items: Offloading has some fixed overhead

associated with the start-up and termination of the execution
and some overhead proportionate to the number of items. For
our library also the data serialization/deserialization of data
might be an additional overhead.

In this experiment, we investigate the impact of the total
number of items for performance. We want to derive insight
about the total work amount required for using hybrid
execution. The experiment configuration was {count:100-
102400, size:4, host:0.013, rel.phi:0.74, balance:1}.

As can be seen in Figure 4, for most cases offload
approaches (hybrid and pragma) work better when a higher
number of items is computed. In this experiment, we have
again chosen a good suitability for the coprocessor (rel.phi:
0.74). Even with this sub-optimal setup (for the host), our

0

2

4

6

8

10

12

14

16

18

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Sp
e

e
d

u
p

 o
ve

r
p

ar
al

le
l h

o
st

-o
n

y
ve

rs
io

n

Workload balance (first half vs. second half of items)

hybrid_for_each 1 coprocessor

hybrid_for_each 2 coprocessors

pragma offload 1 coprocessor

pragma offload 2 coprocessors

Figure 5. Effect of processing time balance – The hybrid approach can
adapt to imbalances via dynamic work distribution. Setup: {count:10000,
size:4, host:0.14, rel.phi:0.82, balance:1.0-2.0}

approach performs similar to the pragma version. In multiple
cases, it even achieves better performance. This emphasizes
the potential of hybrid execution.

4) Processing time balance: To process items on two
coprocessors, we need to decide which items to process on
each of the coprocessors. If pragma offloading is used, we
do that by splitting the array into two equal parts. This works
well, as long as the average processing time for both parts is
about the same. However, this may not always be the case.

Hence, we have created an experiment where the first
n/2 items take less time to evaluate than the second n/2
items. Within each half, the processing time is constant.
Using pragma based offloading it is difficult to adapt to
such situations at run-time.

Figure 5 shows experimental results for {count:10000,
size:4, host:0.14, rel.phi:0.82, balance:1.0-2.0} setup. When
2 coprocessors are used with pragma offloading, we ob-
serve a performance decrease. This effect is less severe for
our hybrid version featuring dynamic work distribution.

5) Size of item: The size of individual items may have
effects on overall performance if the processing time remains
constant. The hybrid_for_each data serialization, trans-
fer and deserialization may introduce additional overheads
depending on item size.

Therefore, we investigated different item sizes for the
following setup: {count:10000, size:4k-256k, host:0.22,
rel.phi:0.82, balance:1}. Figure 6 shows that despite the
additional overhead, good performance can be achieved for
sizes of up to 256k.

6) Relative PHI time: If the work vectorizes very well,
it is possible to get much better performance per thread
on the coprocessor than on the host. Considering the fact
that the coprocessor can run a higher number number of
threads, this performance advantage may become huge. In
such situations there might be little room for improvement
via hybrid execution.

0

5

10

15

20

25

4000 16000 64000 256000

Sp
e

e
d

u
p

 o
ve

r
p

ar
al

le
l h

o
st

-o
n

ly
 v

e
rs

io
n

Size of single item in bytes

hybrid_for_each 1 coprocessor

hybrid_for_each 2 coprocessors

pragma offload 1 coprocessor

pragma offload 2 coprocessors

Figure 6. Effect of the item size – Setup: {count:10000, size:4k-256k,
host:0.22, rel.phi:0.82, balance:1}

0

0.5

1

1.5

2

2.5

1:10 1 10:1

Sp
e

e
d

u
p

 o
f

h
yb

ri
d

 s
o

lu
ti

o
n

 o
ve

r
p

ra
gm

a
o

ff
lo

ad

Workload type - relative coprocessor item processing time

1 coprocessor

2 coprocessors

optimized for coprocessor optimized for host

Figure 7. Relative coprocessor processing time – Hybrid execution
outperforms pragma based version when the workload is favorable for
the host. Setup: {count:10000, size:4, host:0.0155-1.55, rel.phi:6.4-0.64,
balance:1}

On the other hand, there are situations where the host can
process a single item much faster than the coprocessor. In
such cases, hybrid or host-only solutions could significantly
outperform pure offload solutions.

Therefore, we created an experiment with two extreme
scenarios: code that can significantly benefit from vector
units of the Xeon Phi coprocessor and code where the host
has performance advantages. The setup was {count:10000,
size:4, host:0.0155-1.55, rel.phi:6.4-0.64, balance:1}.

Figure 7 depicts the speedup of the hybrid approach
compared to pragma based versions. We observe, that for
this experiment performance is similar if the code is highly
suitable for the coprocessor. hybrid for each provides better
performance when the single thread processing time is lower
on the host.

relative relative time improvement of hybrid over pragmas
Phi time map : reduce 1 coprocessor 2 coprocessors

7.60 1 : 100
1 : 1
100 : 1
1 : 100
1 : 1
100 : 1

1.43 1.13
7.60 1.61 1.22
7.60 1.77 1.30
0.83 0.65 0.62
0.83 1.00 0.69
0.83 1.11 1.02

Table II
HYBRID MAP-REDUCE – FIRST TWO COLUMNS SHOW EXPERIMENT

SETUP, LAST TWO COLUMNS SHOW IMPROVEMENT OF HYBRID
IMPLEMENTATION OVER PRAGMA-BASED IMPLEMENTATION.

B. Hybrid map-reduce

The overall structure of the hybrid_reduce is simi-
lar to hybrid_for_each. Unlike parallel_reduce
from TBB it uses iterators to specify input. This differs from
the TBB range concept.

With the more complicated algorithm (two functors, the
added complexity of reductions), there is a new important
workload characteristic to consider – the comparison be-
tween the time it takes to perform single map operation
(apply the first functor to a single input value) and the time
it takes to perform one reduction (reduce two mapped values
to one).

The experimental results for map-reduce are shown in
Table II. The relative reduce time is the time it takes to
perform a single reduction relative to the time it takes to
perform single map operation. The last two columns show
the speedup of the hybrid_reduce over pragma-based
offload combined with TBB parallel_reduce.

C. Smoothed-particle hydrodynamics

Besides the synthetic benchmarks, we have also imple-
mented a real-world physical simulation – the smoothed-
particle hydrodynamics [2]. It is a simulation of a gas cloud
in space (a nebula). For our purposes, the most important
feature of the SPH is the fact, that the processing times are
often greatly unbalanced because they depend on the density
of the cloud – if there are many particles in some area, those
particles take a lot of time to process.

Overall, the experiment could be approximately de-
scribed as {count:1 000 000, size:112, host:0.005, rel.phi:8,
balance:1-thousands}. Note that in this case, the imbalance
is not between the first and second half of items (that
would be 1 on average), but between the first and second
half of items ordered by the processing time. The actual
value depends on the concrete experimental setup and (more
importantly) current state of the simulated universe. Also,
the relative performance of Xeon Phi is an approximation,
since the actual value largely depends on the concrete setup –
the evaluation of a single item requires not only computation,
but also significant (and variable) amount of memory access.

Performance results can be seen in Table III. Observed
speedups are consistent with the approximated relative co-

configuration time (seconds) speedup
host only (TBB) 5185.37 1
1 coprocessor 2486.71 2.09
2 coprocessors 1533.14 3.38

Table III
SMOOTHED-PARTICLE HYDRODYNAMICS EXPERIMENT RESULTS,

HYBRID VARIANTS ONLY

processor performance (rel.phi: 8). Hence, one could assume
that the total performance of all of the host cores is slightly
lower than the total performance of all of the coprocessor’s
cores. Ideally (without overhead and latencies), the speedup
would be around 2.25 for 1 coprocessor and 3.5 for two
coprocessors.

VI. RELATED WORK

The basic set of tools provided by Intel (the offloading
compiler and SCI library) do not support hybrid execution
directly. However, when combined with OpenMP or TBB
to parallelize execution, they can provide good performance
[3]–[5]. Hybrid execution needs to be implemented by the
developer or a library. An example of such library is the
StarPU [6] system. It provides task scheduling and execution
mechanisms that can use the host, GPUs, and Xeon Phi.
StarPU also takes care of data transfers. Compared to our
library, it is a lower level solution, working with tasks rather
than high-level parallel constructs.

There is another set of libraries available for Xeon Phi –
high-level mathematical libraries like Magma [7] or MKL
[8]. These libraries use the Xeon Phi internally to speed
up the functions they provide to the user. These functions
are often high-level, linear algebra (BLAS) operations and
their implementation is highly optimized. On the other hand,
the user only has a fixed set of functions that cannot easily
be extended. In our approach, users provide their own code
and data structures. As a downside, it can be much harder to
achieve performance similar to specialized domain-specific
libraries. Our approach is more suitable for a different
set of use-cases where existing library functions are not
sufficient but some common patterns (the algorithms) can
be identified.

The C++ AMP [9] technology targets GPUs and, like
our library, relies heavily on C++. However, there are
major differences. The C++ AMP does not aim at full
hybrid execution and it requires a more explicit accelerator
programming. Still, it could probably be adapted for Xeon
Phi and hybrid execution.

The Offload compiler developed by Codeplay supports
offloading of parts of C++ applications to devices like the
IBM Cell SPEs and GPUs, with the compiler taking care
of the call graph duplication, functional duplication, and
replication of global data [10]. Theses techniques are based
on C++ language extensions. However, hybrid execution, as
with our library, is not a goal.

Intel provides an MPI library for the Xeon Phi. It may
be used to reach similar goals as our library. However, the
architecture and coding techniques are completely different
(message-passing C API rather than a C++ template library).
With message-passing, the work distribution must be con-
trolled by the user’s code.

OpenACC [11] is a relatively novel standard for pro-
gramming accelerated systems. It is based on source-code
annotations similar to OpenMP directives. The approach
enables the offloading of computational tasks from a host-
CPU to an attached accelerator. It aims at providing portable
accelerator programming. However, similarly to Intel’s of-
fload (Section III), automatic hybrid execution with multiple
accelerators is not supported.

The HyPHI library is based on our previous work [12]
but our old work was only partially based on tasks. Several
management threads were used to support offloading. We
identified this as an overhead. Apart from the serialization
support, the new library does not share any sources with
the old one. Besides the more task-centric approach, im-
provements have been made in multiple ways. For example,
HyPHI features support for different hybrid strategies to
enable performance tuning.

VII. SUMMARY AND CONCLUSION

The HyPHI library presented in this paper provides high-
level support for parallel programming constructs such as
foreach and map-reduce along the lines of TBB while
being able to utilize all CPU cores and multiple Xeon Phi
coprocessers within a hybrid parallel execution model. We
implemented this library based on our experiences from
previous work [12], using established C++ programming
techniques as well as TBB task-parallelism whenever possi-
ble.

We demonstrated the ease of use of our library constructs
by comparing it to existing programming approaches cur-
rently available for Intel Xeon Phi. Experimental results indi-
cated the viability of our approach. We observed that hybrid
execution can lead to significant performance improvements
compared to parallel host-only and offload-pragma based
codes. We evaluated a set of different performance-relevant
parameters which help to identify cases when the HyPHI
library should be used. In addition, we have shown that
a computational physics SPH simulation application can
benefit from our library and hybrid execution.

In future, we will further enhance the library with sup-
port for more hybrid programming constructs such as hy-
brid transform or hybrid pipeline. Moreover, we will extend
the tunability of the library such that it can adapt to varying
resource utilization and/or workload characteristics.

ACKNOWLEDGMENT

This work was partially supported by the European Com-
mission’s FP7, grant no. 288038, AutoTune. We thank Intel
for providing software and hardware support.

REFERENCES

[1] A. Kukanov and M. J. Voss, “The foundations for scalable
multi-core software in Intel Threading Building Blocks,” Intel
Technology Journal, vol. 11, no. 04, pp. 309–322, November
2007.

[2] R. A. Gingold and J. J. Monaghan, “Smoothed particle
hydrodynamics - Theory and application to non-spherical
stars,” Monthly Notices of the Royal Astronomical Society,
vol. 181, pp. 375–389, November 1977.

[3] L. Koesterke, J. Boisseau, J. Cazes, K. Milfeld, and
D. Stanzione, “Early experiences with the Intel Many Inte-
grated Cores accelerated computing technology,” in Proc. of
the 2011 TeraGrid Conference, ser. TG ’11. New York,
USA: ACM, 2011, pp. 21:1–21:8.

[4] A. Heinecke, M. Klemm, D. Pflger, A. Bode, and H.-J.
Bungartz, “Extending a highly parallel data mining algorithm
to the Intel Many Integrated Core architecture,” in Euro-Par
2011: Parallel Processing Workshops, ser. LNCS. Springer,
2012, vol. 7156, pp. 375–384.

[5] A. Heinecke, M. Klemm, and H. Bungartz, “From GPGPU
to many-core: Nvidia Fermi and Intel Many Integrated Core
architecture,” Computing in Science Engineering, vol. 14,
no. 2, pp. 78–83, March-April 2012.

[6] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-
nier, “StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures,” Concurrency and
Computation: Practice and Experience, Special Issue: Euro-
Par 2009, vol. 23, pp. 187–198, Feb. 2011.

[7] J. Dongarra, M. Gates, Y. Jia, K. Kabir, P. Luszczek,
and S. Tomov, “MAGMA MIC,” http://icl.cs.utk.edu/magma/
software/index.html.

[8] Intel, “Using Intel Math Kernel Library on Intel Xeon Phi
Coprocessors,” http://software.intel.com/sites/products/
documentation/doclib/mkl sa/11/mkl userguide lnx/
GUID-108D4F3E-D299-4D35-BAED-ECC5B48DA57E.
htm.

[9] Microsoft, “C++ AMP: Language and pro-
gramming model version 1.0,” August 2012,
http://download.microsoft.com/download/4/0/E/
40EA02D8-23A7-4BD2-AD3A-0BFFFB640F28/
CppAMPLanguageAndProgrammingModel.pdf.

[10] A. F. Donaldson, U. Dolinsky, A. Richards, and G. Russell,
“Automatic offloading of C++ for the Cell BE processor:
A case study using offload,” in Proceedings of the
2010 International Conference on Complex, Intelligent and
Software Intensive Systems, ser. CISIS ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 901–906. [Online].
Available: http://dx.doi.org/10.1109/CISIS.2010.147

[11] OpenACC-Standard.org, “The OpenACC Application Pro-
gramming Interface - Version 1.0,” http://www.openacc.org/
sites/default/files/OpenACC.1.0 0.pdf, 2011.

[12] J. Dokulil, E. Bajrovic, S. Benkner, S. Pllana, M. Sandrieser,
and B. Bachmayer, “Efficient hybrid execution of C++ ap-
plications using Intel Xeon Phi coprocessor,” CoRR, 2012,
http://arxiv.org/abs/1211.5530.

