
Predicting Change Propagation Impacts in Collaborative
Business processes∗

Walid Fdhila
University of Vienna

Faculty of Computer Science
Austria

walid.fdhila@univie.ac.at

Stefanie Rinderle-Ma
University of Vienna

Faculty of Computer Science
Austria

stefanie.rinderle-ma@univie.ac.at

ABSTRACT
During the life cycle of a Business-to-Business (B2B) collab-
oration, companies may need to redesign or change parts of
their service orchestrations. A change request proposed by
one partner will, in most cases, result in changes to other
partner orchestration. An accurate prediction of the behav-
ior of a change request and an analysis of its impacts on
the collaboration allows to avoid significant costs related to
unsuccessful propagation, e.g. negotiation fail. This pa-
per focuses on predicting the likelihood of a change request
propagation as well as its ripple effects on the overall col-
laboration. To estimate these values, the approach analyses
the collaboration structure through a priori analysis. We
will show how the prediction models can be specified and
implemented within a proof-of-concept prototype. Discus-
sion will be provided on visualization possibilities and model
validation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Prediction, change propagation, impact analysis, collabora-
tive business processes

1. INTRODUCTION
Process flexibility has been identified as key concern in

the Business Process Management (BPM) area [1]. While
mature solutions to provide design and runtime time flexi-
bility have been developed for single service orchestrations
[15], flexibility and change in collaborative settings have only

∗The work presented in this paper has been funded by the
Austrian Science Fund (FWF):I743.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

recently been paid attention to [10]. However, different ap-
plication scenarios demand for enabling flexibility in collab-
orative orchestrations as well. Examples comprise virtual
factories [17] and supply chains [16]. Figure 1 depicts the
collaboration, i.e., choreography model of a trip booking pro-
cess [3] that describes the interactions between four partners
Traveler, TravelAgency, Acquirer, and Airline with the
corresponding process activities as well as the control flow
of the process. Figures 3 and 2 illustrate the views on the
orchestration of partner Acquirer. Its private view (cf. Fig.
3) contains all peculiarities which are abstracted to the other
partners by providing a public view (cf. Fig. 2) for confi-
dentiality reasons.

As argued before, enabling partners to adapt their orches-
trations when participating in a collaboration is of high need
in many applications. The specific challenge when compared
to single orchestrations is to propagate change effects from
one partner to the other [10, 16]. Assume, for example,
that the TravelAgency wants to send a questionnaire about
customer satisfaction after booking the ticket to the Trav-

eler. This would be accomplished by inserting associated
activities into the private orchestration of the TravelAgency,
e.g., DevelopQuestionnaire (not visible to other partners)
as well as SendQuestionnaire (in the public process) and a
respective change request to Traveler who should be able
to receive the corresponding message and respond to it.

Change propagation in collaborative orchestrations might
become quite complex [10]. Assume that in the example
above, not the TravelAgency initiates collection of customer
feedback, but the Airline through the Acquirer and the
TravelAgency. In this case the initial change will cause tran-
sitive effects over several partners. As handling the effects of
change propagation at the partners’ sides can be neither en-
forced nor checked automatically as the information on the
private partner processes is not available, change propaga-
tion might necessitate tenacious negotiations between part-
ners [10]. A change propagation that fails in the end after
many successful negotiations is costly and hampers the suc-
cess of the collaboration. Hence, being able to predict the
change request behavior of partners in order to assess change
impacts on the choreography beforehand would be of great
importance. Generally, change impact analysis enables de-
velopers and project leaders to ask ”what if...?” questions,
and to simulate alternative scenarios without having to im-
plement them [18] and allows to judge the amount of work
required to implement a change [4]. Particularly for col-
laboration of service orchestrations, predicting the results
of negotiations that could be affected by the change might

F0

F1

F2 F3

F4

F5

F6 F7

0.7

0.3

0.4

0.6

0.8

0.2

Book Trip Operation

book reserve

Traveler

TravelAgency

check and cash

TravelAgency

Acquirer

not if icate failure

Acquirer

TravelAgency

notif icat ion failure

Acquirer

Airline

not if icate failure

Acquirer

TravelAgency

credit card not
approved

TravelAgency

Traveler

t icket purshase
cancelled

Airline

Traveler

approval

Acquirer

TravelAgency

t icket

Airline

TravelAgency
payment ok

Acquirer

Airline

total value

TravelAgency

Traveler

Purchase confirmation

Airline

TravelAgency

Fail

Ok

walidus fd 1 of 1 07.05.2012

Fig. 2. Global Choreography: Book Trip Operation []

collaboration

Tra
vel

er

book
reserve

credit card
not

approved

total
value

t icket
purshase
cancelled

Tra
vel

 Ag
enc

y book
reserve

total
value

check
and cash

t icket

approval

not if icat ion
failure

credit card
not approved

Purshase
confirmation

Air
line

payment
ok

t icket

not if icat ion
failure

t icket
purchase
cancelled

Purshase
confirmation

Acq
uir

er check
and cash

notif icat ion
failure

payment
ok

not if icat ion
failure

approval

walidus fd 1 of 1 08.05.2012

Fig. 3. Book Trip Operation: Local Views

Book Trip Operation

book reserve

Traveler

TravelAgency

check and cash

TravelAgency

Acquirer

not if icate failure

Acquirer

TravelAgency

notif icat ion failure

Acquirer

Airline

not if icate failure

Acquirer

TravelAgency

credit card not
approved

TravelAgency

Traveler

t icket purshase
cancelled

Airline

Traveler

approval

Acquirer

TravelAgency

t icket

Airline

TravelAgency
payment ok

Acquirer

Airline

total value

TravelAgency

Traveler

Purchase confirmation

Airline

TravelAgency

Fail

Ok

walidus fd 1 of 1 07.05.2012

Fig. 2. Global Choreography: Book Trip Operation []

collaboration

Tra
vele

r

book
reserve

credit card
not

approved

total
value

t icket
purshase
cancelled

Tra
vel

Age
ncy

book
reserve

total
value

check
and cash

t icket

approval

not if icat ion
failure

credit card
not approved

Purshase
confirmation

Airl
ine

payment
ok

t icket

not if icat ion
failure

t icket
purchase
cancelled

Purshase
confirmation

Acq
uire

r check
and cash

notif icat ion
failure

payment
ok

not if icat ion
failure

approval

walidus fd 1 of 1 08.05.2012

Fig. 3. Book Trip Operation: Local Views

AND-split/join

interaction

Choreography task

Sender

Receiver

walid fdhila 1 of 1 08.08.2012

Book Trip Operation.bpmn

book reserve

Traveler

TravelAgency

check and cash

TravelAgency

Acquirer

payment ok

Acquirer

Airline

t icket

Airline

TravelAgency

Purchase confirmation

Airline

TravelAgency

approval

Acquirer

TravelAgency

total value

TravelAgency

Traveler

credit card not
approved

TravelAgency

Traveler

t icket purshase
cancelled

Airline

Traveler

Airline failure
not if icat ion

Acquirer

Airline

TravelAgency failure
not if icat ion

Acquirer

TravelAgency

Ok

Fail

walid fdhila 1 of 1 07.08.2012

Book Trip Operation.bpmn

book reserve

Traveler

TravelAgency

check and cash

TravelAgency

Acquirer

payment ok

Acquirer

Airline

t icket

Airline

TravelAgency

Purchase confirmation

Airline

TravelAgency

approval

Acquirer

TravelAgency

total value

TravelAgency

Traveler

credit card not
approved

TravelAgency

Traveler

t icket purshase
cancelled

Airline

Traveler

Airline failure
not if icat ion

Acquirer

Airline

TravelAgency failure
not if icat ion

Acquirer

TravelAgency

Ok

Fail

walid fdhila 1 of 1 07.08.2012

XOR-split/join Message received Message sent Interaction

Book Trip Operationv3.bpmn (Copy)

book trip

Traveler

TravelAgency
check and cash

TravelAgency

Acquirer

payment ok

Acquirer

Airline

approval

Acquirer

TravelAgency

credit card not
approved

TravelAgency

Traveler

Airline failure
not if icat ion

Acquirer

Airline

TravelAgency
failure not if icat ion

Acquirer

TravelAgency

e- t icket

Airline

TravelAgency

post_t icket

Airline

TravelAgency

Fail

Ok

walid fdhila 1 of 1 27.03.2013

Figure 1: Choreography Model: Book Trip Opera-
tion [3]

avoid unsuccessful negotiations and the overall cost of a
change request before initiating negotiation could be esti-
mated. Further on, change impact analysis could support
the redesign of orchestrations by minimizing change prop-
agation through preventative measures. In [5], the authors
realized that retrofitting design changes (from a late require-
ment or from a delayed problem realization) costs about five
times more than an early design change and contracts may
have to be renegotiated for them.

acquirer (Copy)

Ac
qu

ire
r

Send(Airline,
payment_ok)

Send(Travel
Agency,
approval

Receive(
TravelAgency ,

check_cash)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

walid fdhila 1 of 1 06.03.2013

0.7

0.3

0.8

0.2

F0 F1 F2

F3

Figure 2: Public View

PrivateAcquirer

Ac
qu

ire
r

Acquirer

Send(Airline,
payment_ok)

Send(Travel
Agency,
approval

Receive(
TravelAgency ,

check_cash)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)Private

act ivity 1

Private
act ivity 2

Private
act ivity 3

walid fdhila 1 of 1 06.03.2013

0.7

0.3

0.8

0.2

F0 F1 F2

F3

F4

F5

Figure 3: Private View

Change in collaborative settings has been mainly tackled
by providing correctness criteria and algorithms for change
propagation, e.g., in [10]. Change impact analysis has been
studied for complex systems [4, 12, 13, 5, 18, 7, 6], but
not in the context of collaborative orchestration settings so
far. In this paper, we provide first a priori techniques for
change impact analysis and prediction in collaborative busi-
ness processes. More precisely, these techniques generate
models that enable the prediction of ripple effects of a change
request and estimates its impact on the partners within a
choreography. A priori techniques do not necessitate any
information about change requests and change propagation
that have been applied in the past, but are purely based on
choreography model information. As a result, partners par-
ticipating in the choreography can be classified with respect
to their probability to absorb, carry on, or multiply changes
[6] providing a first risk assessment by means of a static

Change
Propagation

Change
Negotiation

Change
Validation

Change
Implementation

Change
Impact

Analysis
Change

Definition

Impact Analysis
 Risk Evaluation

 Change propagation Mining

Choreography Model
Public view Models
Change propagation Logs

Figure 4: Change Propagation Procedure Including
Change Impact Analysis

cost function. Assessing dynamic impacts, we evaluate the
choreography structure equipped with information such as
decision probabilities and number of running instances. This
constitutes a major difference to change impact analysis in
complex systems, taking into consideration information on
orchestration executions.

Section 2 presents fundamentals. In Section 3, a priori
techniques for change impact analysis are provided. Section
4 constitutes the evaluation of the approach. In Section 5,
we compare our work to existing approaches for change pre-
diction. Section 6 summarizes the contribution and outlines
future work.

2. FUNDAMENTALS
Figure 4 describes the change propagation procedure in

collaborative business processes (green boxes) as proposed
in literature [8, 10, 16, 20]. After application of the change
at a partner side (Change Definition), it is checked whether
the change is just local or may affect other partners. If the
change should be propagated, then all the partners affected
directly or transitively by the change are identified, and the
changes to be propagated to each of these partners are com-
puted. Then, a negotiation process is initiated with all these
partners in order to validate or cancel the change. If negoti-
ations succeed, then soundness criteria (e.g. compatibility,
consistency, etc.) are checked to see if the choreography
would stay sound after the propagation of the changes. If
so, then the changes are implemented and the process mod-
els as well as the choreography model are updated. Cor-
rectness criteria are checked after negotiation because some
transitive effects could not be determined by the initiator,
and also because the negotiation may lead to a modification
of the initial change request itself. In this procedure, the
change propagation and the negotiation phases could have
significant costs. As emphasized, the aim of this work is
then to anticipate this negotiations and predict the impact
of changes on the other partners (purple box).

In this paper, we adopt the Refined Process Structure Tree
(RPST) [19] to represent process and choreography models.
RPST provides a structured representation, where the mod-
els are considered as trees whose leaves represent activities
or interactions respectively and whose internal nodes repre-
sent either sequence (SEQ), parallel (PAR), choice (CHC),
repeat loop (RPT), or while loop (WHILE) constructs. The
elements inside a repeat loop are executed at least one time,
while the elements inside a while loop are executed zero or
more times. Structured models are simpler to analyze and
easier to comprehend, and recent work has shown that most
unstructured process models can be automatically trans-
lated into structured ones [14]. In the following, we dis-
tinguish between the choreography model G (c.f. Figure 1),
the local model (also called public view) of a partner p de-
noted Lp (c.f. Figure 2), and its executable process model
(called private view) denoted πp (c.f. Figure 3).

Definition 1. [(Structured) Choreography Model] A chore-
ography model G is a description of the coordinated interac-
tions between all partners involved in the collaboration. It is
defined as a tree with the following structure (type definition
syntax of the ML language):
ChoreographyModel ::= CNode

CNode ::= Interaction | ControlNode |Event
Interaction ::= I (Source,Destination,Message)

ControlNode ::= SEQ([CNode]) | CHC ([P × CNode])

|PAR({CNode}) | RPT (CNode × P)

|WHILE(P × CNode)

Event ::= Start | End

where P is the range of real numbers from 0.0 to 1.0, de-
noting probabilities.

In the choreography example of Figure 1, the fragment F3

is represented by a choreography node (CNode) as follows:
CHC(0.8 × SEQ(I(TA failure notification, acquirer, TravelA-
gency), I(credit card not approved, TravelAgency, Traveler)),
0.2 × I(Airline failure notification, Acquirer, Airline))

Definition 2. [Local Public Model] A local public model
Lp of partner p states the external behavior of p and is also
denoted public view. It includes the interactions with other
partners as well as the constraints between them from the
viewpoint of this partner:

LocalModel ::= LNode

LNode ::= Send(Message,Destination)

| Receive(Message,Sender)

| ControlNode|Event

where ControlNode and Event have the same definitions
as in Definition 1.

Definition 3. [Change Operation] A change operation is
a tuple (δ,σ) where σ is either the local public model or the
global choreography model to be changed, and δ: σ 7→ σ′

is the change pattern that transforms σ into σ′. A change
pattern allows to insert, delete, or replace a fragment in a
given process model.

Figure 5 represents a subset of change patterns as defined
in [10, 16, 20]. As emphasized, a change operation (δ,σ)
alters the source model σ to a new model σ′. In a col-
laboration context, this change could have impacts on the
other collaborating partners. The problem is then to prop-
agate this well-behaved change δ on σ to the collaborating
partners σi, such that the updates on the different partners
affected by the change lead to a consistent collaboration.

INSERT
Fragment

DELETE
Fragment

REPLACE
Fragment

UPDATE
Activity

Parallel Choice Sequence

Change Patterns

Figure 5: Change patterns

Definition 4. [Change Propagation] We define change
propagation as a function κ: (δ,σ) 7→ {(δi, σi)}i=1..n such
as ∀i, δi 6= δ. The propagation function takes a change op-
eration on a partner’s orchestration and computes the ex-
act effects on the different collaborating partners. For more
details about change propagation in collaborative orchestra-
tions, the reader may refer to [10, 16, 20, 9, 8].

acquirer (Copy)

A
c
q

u
ir

e
r

Send(Airline,
payment_ok)

Send(Travel
Agency,
approval

Receive(
TravelAgency ,

check_cash)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
Airline,

not if icat ion_
failure)

walid fdhila 1 of 1 07.03.2013

F2

Replace(F2, Send(TravelAgency,
notification_failure)))

0.8

0.2

acquirer (Copy)

A
cq

u
ir

er

Send(Airline,
payment_ok)

Send(Travel
Agency,
approval

Receive(
TravelAgency ,

check_cash)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

walid fdhila 1 of 1 07.03.2013

acquirer (Copy)

A
c
q

u
ir

e
r

Send(Airline,
payment_ok)

Send(Travel
Agency,
approval

Receive(
TravelAgency ,

check_cash)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

walid fdhila 1 of 1 07.03.2013

acquirer (Copy)

A
c
q

u
ir

e
r

Send(Airline,
payment_ok)

Send(Travel
Agency,
approval

Receive(
TravelAgency ,

check_cash)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

walid fdhila 1 of 1 07.03.2013

acquirer (Copy)

A
c
q

u
ir

e
r

Send(Airline,
payment_ok)

Send(Travel
Agency,
approval

Receive(
TravelAgency ,

check_cash)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

walid fdhila 1 of 1 07.03.2013

acquirer (Copy)

A
c
q

u
ir

e
r

Send(Airline,
payment_ok)

Send(Travel
Agency,
approval

Receive(
TravelAgency ,

check_cash)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

walid fdhila 1 of 1 07.03.2013

acquirer (Copy)

A
cq

ui
re

r

Send(Airline,
payment_ok)

Send(Travel
Agency,
approval

Receive(
TravelAgency ,

check_cash)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

walid fdhila 1 of 1 07.03.2013

acquirer (Copy)

A
c
q

u
ir

e
r

Send(Airline,
payment_ok)

Send(Travel
Agency,
approval

Receive(
TravelAgency ,

check_cash)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Send(
Airline,

not if icat ion_
failure)

Send(
TravelAgency,
not if icat ion_

failure)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

Send(
Traveler,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
TravelAgency,

credit_Card_No
t_Approved)

Receive(
Acquirer,

not if icat ion_
failure)

walid fdhila 1 of 1 07.03.2013

F'2

Replace(F'2,
Sequence(Receive(Acquirer,

notification_failure), Send(Traveler,
Credit_card_Approved)))

Replace(F''2, Receive(TravelAgency,
credit_Card_not_Approved))) Delete(F'''2)

F''2 F'''2
0.8

0.2

0.8

0.2

0.8

0.2

Impact on TravelAgency Impact on Traveler Impact on Airline

Original
Fragment

New
Fragment

Change
Request

Original change Request on Acquirer

Figure 6: Book Trip Operation: Change Propaga-
tion Scenario

Figure 6 illustrates a simple example of change propa-
gation, where the change is initiated by the Acquirer and
propagated to the other partners. The initial change re-
quest consists in replacing F2 by a single activity (first col-
umn). The computation of the exact effects of the initial
change request on the Acquirer leads to the propagation κ
of the derived changes to the TravelAgency, the Traveler

and the Airline. The third line of the table corresponds
to the changes requests as defined previously. In this ex-
ample, the impact on the Traveler was propagated tran-
sitively through the TravelAgency since there is no direct
dependency between the Traveler and the Acquirer in the
choreography model. This transitivity makes the propaga-
tion more complex and could not be calculated directly by
the change initiator. Besides, the change requests negotia-
tion as well as the transitivity effects could have significant
costs. Thus the need for a prediction model to avoid costly
unsuccessful propagations.

Definition 5. [α function] Let lp be a local public model,
G a choreography model and F ∈ lp a single entry single exit
fragment of lp. Then, αG(F) is a function that returns the
smallest fragment that contains all the corresponding ele-
ments of F in the model G. We also consider a mapping
function f : lp → G such as ∀LNode ∈ lp\{ControlNode},
∃I ∈ G/f(LNode) = I.
απ(F) = Minsize(F′){F ′ ∈ G/∀ o ∈ F , o ∈ F ′}

The smallest fragment that encapsulates the fragment F2

of the Acquirer, in the global choreography model G is
αG(F2 ∈ Lacquirer)= F3 ∈ G (cf. Figure 1)

3. CHANGE IMPACT ANALYSIS
In this section, we present techniques for predicting change

propagation behavior in collaborative business processes. The
main idea is to create a propagation model which allows the
anticipation of further change requests impact. This work is
mainly inspired from existing research and studies on change
impact analysis in software and complex systems, and an-
alyzes the applicability and transferability of the proposed
techniques to process choreographies. In the following, we
present two complementary techniques for analyzing change
propagation behavior: (i) a static impact analysis which
focuses on the choreography structure and uses the chore-
ography model and the public views in order to asses the
probability of propagating changes to other partners as well
as the respective costs. (i) a dynamic impact analysis which
analyzes the effects of a change on the collaboration behav-
ior at run-time. This theoretical study uses mainly the data

and the control dependencies between partner interactions
as well as information about the running instances (e.g. the
status of an instance).

3.1 Static Impacts
This prediction is based on an analysis of the choreog-

raphy structure, the exchanged messages and the changed
fragments. In particular it studies the likelihood of prop-
agating a change to another partner as well as the impact
of this change on the partner. This could be represented as
a graph with the partners as vertices, and the probability
of transition from one partner is the likelihood of propaga-
tion. Each vertex has a value which represents the impact of
changing the corresponding partner. If we consider (δi,lpi)
as a change request on the public model of pi, then the cor-
responding estimated cost over the choreography is given as
follows.

static costi =
∑
j

cj × P ((δi, lpi)/(δj , lpj)) (1)

where P ((δi, lpi)/(δj , lpj)) represents the probability that
a change on lpi would be propagated to lpj , and cj the es-
timated cost for changing lpj . The propagation probability
between two partners pi and pj could be estimated through
their dependency in terms of interactions I (cf. Equation 2).
P ((δi, lpi)/(δj , lpj)) is then given by calculating the transi-
tive closure of the dependency matrix.

dij =

∑
I∈G (ζij(I) + ζji(I))∑

I∈G,k 6=i (ζik(I) + ζki(I))

with ζij(I) =

 1 ifsource(I) = pi and dest(I) = pj

0 otherwise

(2)

To compute this, we start by identifying all the depen-
dencies between the partners. It should be noted that, in
a choreography, a partner pi may have several interactions
with a same partner pj , and with various message impor-
tance ϕ(m). ϕ is a function which assigns a value to an ex-
changed message based on its size, its sensitivity, etc. Equa-
tion 2 measures the dependency between two partners as a
fraction between the number of times pi sends or receives a
message from pj , and all interactions I involving pi. This
equation could also be weighted by the importance of the
exchanged messages ϕ(m).

In order to compute the cost cj of propagating a change
request to a partner pj , we use two different attributes: (i)
the centrality and (ii) the risk factor.

3.1.1 The centrality ψ
The centrality of a partner p is a function which evaluates

the importance of p in the collaboration by measuring its ca-
pacity in propagating change requests. A partner with high
centrality has a higher probability to propagate changes, in
contrast, a partner with low centrality has more probability
to absorb the changes. Different mathematical techniques
introduced in graph theory or social networks could be used
to measure the centrality of a given node [11, 13] such as: de-
gree centrality, eigenvector centrality, betweenness central-
ity, page-rank or closeness centrality. For instance, Eigen-
vector centrality is based on the idea that a relationship to a
more interconnected node contributes to the own centrality
to a greater extent than a relationship to a less well intercon-
nected node. In graph theory, this means that a node can
acquire high centrality either by being connected to a lot of
other nodes, or by being connected to others that themselves
are highly central. In the context of business choreographies,

A TA T Ar
Acquirer(A) 0 0.6 0 0.4

TravelAgency(TA) 0.44 0 0.28 0.28
Traveler(T) 0 1 0 0
Airline(Ar) 0.5 0.5 0 0

Table 1: Dependency Matrix

Partner Centrality
Acquirer(A) 0.27

TravelAgency(TA) 0.29
Traveler(T) 0.07
Airline(Ar) 0.19

Table 2: Centrality: Eigenvector Values

this could be used in order to determine the capability of a
partner in propagating changes. The higher he is central,
the most he propagates changes and the overall cost for the
initial change increases.

Table 1 represents the dependency matrix between the
partners of the book trip operation example, while Table 2
represents the centrality matrix based on Eigenvector val-
ues. The latter uses the first table and, through an iterative
algorithm, computes the centrality of each of the partners
(for more details about Eigenvector algorithm the reader
may refer to [13]). Here, we remark that the TravelAgency

is very central and has high propagation factor in contrast
to the Traveler which has low centrality.

3.1.2 The risk factor R
In a choreography, several compliance, security or privacy

rules could be shared by different partners. These rules are
presented as constraints on activities of different partners.
Therefore, a change on one partner process may invalidate
or violate some of these rules and lead to a renegotiation of
the agreements. In this sense, a partner which is implied
in several rules is more subject to violate some of them if
his process has to be changed. Then, the risk factor R is
computed according to the number and the importance of
the constraints a partner is involved in, and helps to evalu-
ate the risk of violating these constraints. If we consider βij
as a function that returns the number of constraints shared
between two partners pi and pj , then the risk of violating
pi’s constraints is calculated as a fraction between the total
number of constraints involving pi, and the number of in-
teractions it has. This ratio could be superior to 1, and the
higher it is, the more the probabilty of violating constraints
on the corresponding partner increases.

Ri =

∑
j 6=i βij∑

I∈G,k 6=i (ζik(I) + ζki(I))
(3)

Business designers are able to influence the relative impor-
tance given to the risk factor R versus the centrality ψ of
the partner affected by the change, by setting two weights.
Then, the impact of propagating change to a given partner
pj is a weighted product of the costs related to the defined
attributes:

cj = w1 ∗ Rj + w2 ∗ ψj with
∑

wi = 1 (4)

3.2 Dynamic Impacts
In general, the choreography model is not executable, but

serves as a contract to monitor the execution of the collabo-
rating processes; i.e. private processes. It also gives a global
view on the interactions between all the partners. In this
section, we estimate the impact of a partner change request
on the running instances over the choreography. During

runtime, each partner executes his process in coordination
with the other partners and following the agreements defined
by the choreography (in addition to the compliance rules).
Therefore, several instances run simultaneously and are ex-
ecuted by the corresponding partners according to the case
scenarios. Let an instance represent the execution scenario
of the whole choreography and not from a viewpoint of a
single partner, i.e., a single instance is executed by several
collaborating partners and its execution status is defined by
its status in the choreography model. In the following, we
consider only structural effects of changes to measure the
impact of a change request on running instances, but the
approach could be extended with an analysis of semantic
effects. Even though the choreography model is not exe-
cutable, we use the term execution of an interaction in the
choreography model to refer to the execution of the cor-
responding send and receive activities on the actual exe-
cutable orchestrations.

Consider N as the average number of running instances
and F as the fragment to be changed in the partner’s local
public model Lp. αG(F) represents the smallest fragment
that encapsulates all the interactions in F , in the global
choreography model G (cf. Definition 5). The instances that
could be affected by the change are those which according
to their status, are executing or already executed αG(F).
Then, the dynamic impact of a change request is as follows.

Dynamic Cost =N × [P (S ∈ αG(F)) + P (S > αG(F)\αG(F))]

× AdaptationCost
(5)

• where S is a discrete random variable and corresponds
to the status of an instance in the choreography model.
The possible values of the random variable S is equal
to the set of all interaction nodes in G; i.e. {I/I ∈ G}.

• P (S ∈ αG(F)) is a probability distribution function
for discrete random variables. It defines a distribution
of the instances status over the choreography model.
In particular, it considers the instances that are still
executing interactions I ∈ αG(F).

• P (S > αG(F)\αG(F)) is a probability distribution
function of the instances which already executed αG(F)
and have not reached the end event yet. It is possible
that the status of a given instance in the choreogra-
phy model comes after αG(F), without having exe-
cuted αG(F) (e.g. the case of a XOR). In this case,
the instance does not need to be adapted to the new
model since it is not concerned by the change. Only
instances that executed or still executing αG(F) need
to be adapted.

• AdaptationCost is the cost for migrating, or restart-
ing running instances affected by the change [15]. The
adaptation of an instance depends mainly of the ex-
ecuted interactions (i.e. visited path) from the root
node until S.

3.2.1 Computing probabilities P (S ∈ αG(F))

The nodes in a choreography model do not have the same
probability of execution during runtime. Then, the nodes
with high probability of execution have more chance to be
executed by the running instances. If we consider the paths
between the start and end events, then a path with a high

aggregated execution probability over the nodes it contains
(i.e. the average of execution probabilities of its nodes) has
more chance to be visited by the running instances, than the
ones with low probabilities. In this sense, the distribution
of the running instances is not equitable over the different
execution paths, but depends of the execution probabilities
of the nodes in each of these paths. For example, let’s as-
sume two different paths ρ1 and ρ2 linking start to the end
event, and have as aggregated probabilities 0.1 and 0.9 re-
spectively. Then, if at time t there are N instances on the
start event, then the probability at time t′ > t that these
instances are distributed over the nodes of ρ2 is equal to 0.9.

It should be noted that the nodes on a same path do not
have the same probability of holding an instance status at
a time t. Indeed, two different paths ρ1 and ρ2 could share
a subset of nodes ω = {I ∈ ρ1 ∩ ρ2}. For N instances, the
probability of having instances with status in nodes of ω
is higher than the probability over the other nodes. This
is due to the fact that the nodes of ω could be reached
through different paths. Through these two observations we
can conclude that the distribution of the instances through
the choreography model depends mainly on the execution
probability of each interaction. If we consider Pexec(S = I)
as the probability that the discrete random variable S has
the interaction I as value (i.e. the status of the instance is
I), then:

P (S ∈ αG(F)) =
∑

I∈αG(F)

P (S = I) (6)

where P (S = I) is a probability function of execution
of I, i.e. Pexec(I). The execution probability of I in the
choreography tree model (RPST) (c.f. Def. 1) is given by
Alg. 1. We traverse the tree model from node I in the root
(start event), and for each traversed conditional control flow
arc (XOR gateway), the execution probability is multiplied
by the probability attached to the latter. For each traversed
loop, the execution probability is multiplied by 1

1−(1−P)Pl
if

it is a repeat loop and by Pl
1−(1−P)Pl

if it is a while loop.

Proof: If P is the probability of executing I inside the loop,

then (1−P) corresponds to the probability that I would not be ex-

ecuted. Assume Pl is the probability of staying in a repeat loop,

then in order to execute I one time, we have two possibilities: (i)

executing directly I with the probability P , or (ii) looping a num-

ber of times on the paths that do not pass by I inside the loop and

executing I at the next iteration. This is formulated as follows.

Pexec(I) = P+(1−P)PlP+(1−P)2P 2
l P+...+(1−P)nPnl P+...=

P
∑
i ((1− P)Pl)

i = P × limn→∞
1−((1−P)Pl)n
1−(1−P)Pl

= P
1−(1−P)Pl

(geometric series).

3.2.2 Computing probabilities P (S > αG(F)\αG(F))

This distribution function concerns only the instances which
have already executed αG(F) and have not reached the end
event. It could be obtained using the formula of Bayes, by
multiplying P (S > αG(F)) by the probability of reaching
the status S from the exit node of αG(F). The procedure is
similar to the Algorithm 1.

3.2.3 Computing AdaptationCost

In general, the adaptation cost is different from one in-
stance to one another according to their run-time status
which could be known through real time monitoring [2].
However, since this is a priori assessment of change impact

Algorithm 1: Execution Probability of an Interaction

1 Input: -G /*Choreography tree Model*/, I /*an Interaction in
G*/

2 begin
3 current ← the parent node of I in the Rpst model of G;

P ← 1;
4 while current 6= root do
5 if current = cb ∈ conditionBranches then
6 P ← P × cb
7 else if current = l ∈ loops then
8 P ← P

1−(1−P)Pl
// if l is a repeat loop;

P ← PlP

1−(1−P)Pl
// if l is a while loop;

9 end
10 current ← carrent.parent

11 end

12 end

on running instances, we consider an average adaptation cost
according to the discrete distribution function presented pre-
viously. The adaptation cost depends mainly on the number
of activities to be migrated weighted by their execution num-
ber. The execution number of an interaction I in a loop free
model is equal to its execution probability. In a presence of
loops this number depends on the type of the loop; i.e. a
repeat loop or a while loop. For instance, let’s consider l as
a loop in the process model, with Pl as the probability of
staying in the loop, and Fl as the fragment containing all
interactions encapsulated by the loop.

- Repeat loop: the repeat loop induces at least one exe-
cution of Fl. For each iteration of a repeat loop corresponds
exactly one execution of Fl. Then the number of executions
of Fl is given as follows.

Nbexec(Fl) =
1

1− pl
(7)

Proof: Since l is a repeat loop, then Fl is at least executed one

time. The probability of executing Fl a second time is given by

the probability of staying in the loop after the first execution Pl.

At the nth iteration, the probability of executing Fl is given by∏
i=1..n Pl = (Pl)

n. Then, the total number of executions of Fl
is considered as the sum of the execution probability of Fl for

all the iterations i.e. 1 + Pl + P 2
l + ... + Pnl + ... =

∑∞
i=0(Pl)

i.

The last equation represents an infinite geometric series with as

a result limn→∞
1−(Pl)

n

1−Pl
= 1

1−Pl
.

- While loop: the while loop induces zero or more ex-
ecutions of Fl since the loop condition is examined before
the execution of the loop’s elements. Then the number of
executions of Fl is given as follows.

Nbexec(Fl) =
pl

1− pl
(8)

Proof: The difference with the repeat loop is that the first ex-

ecution of Fl is equal to Pl instead of 1. Then the total number

of executions of Fl is: Pl + P 2
l + ...+ Pnl + ... = (

∑∞
i=0(Pl)

i)− 1

= limn→∞
1−(Pl)

n

1−Pl
− 1 = 1

1−Pl
− 1 = Pl

1−Pl

The equations 7 and 8 represent estimations of the number
of times the whole bloc inside the loop (i.e. Fl) would be
executed. However, Fl is a non empty set of interactions,
fragments, and possibly loops. Then, the execution number
of a single interaction I in the loop lis calculated as the
its execution number inside Fl multiplied by the execution
number of Fl.

• If Fl is loop free then the probability of execution of

an interaction inside Fl is given by multiplying the
probabilities of the conditional branches cb that appear
in the path from the entry of the loop to the interaction
I. Pexec(I ∈ loop) =

∏
cb∈CondBranches P (cb).

• if Fl is contains nested loops such that I is encapsu-
lated by a subset of them, then we employ a recursive
method starting by the most inner loop.

Assume that co represents the average adaptation cost of
one interaction. The adaptation cost of an instance depend
on the status of the latter in the choreography model. If the
status S is inside αG(F), then the cost is quantified by the
execution number of all nodes on the critical path in αG(F),
i.e. the path with highest aggregated number of executions
(according to the nodes it contains). If the status S is out-
side αG(F) but already executed αG(F) before, then co is
quantified by the critical path from the entry node of αG(F)
until S. If S did not execute αG(F) then the adaptation
cost is equal to zero. The dynamic and static impact analy-
ses give an overview on the possible ripple effects of a given
change in a collaboration and its impacts on the running
instances.

4. PROOF-OF-CONCEPT AND USAGE
We assume that the probabilities of the choice and re-

peat patterns as well as the average number of running in-
stances are known. They could be computed based on the
statistics gathered from the monitoring of the collaboration’s
normal execution. The approach can be extended with new
attributes that enhance the risk assessment of changing a
part of the choreography.

4.1 Implementation
We have implemented the proposed techniques for impact

analysis and integrated them with our prototype for change
propagation in the context of the C3Pro project1. The tool
takes as inputs a set of collaboration models; i.e. inter-
connected public models lp, and the set of corresponding
choreography models described in BPMN, and generates the
prediction models as described throughout the paper. The
experiments were conducted using the models defined in [3].
We also used Signavio2 to edit the models in BPMN and
annotate them with branching probabilities and costs. The
models were exported to our tool as xml files and trans-
formed into RPST representations (as defined in Section
2) using the JBPT library3. Our experimental setup uses
an Intel processor Core i7, 2.2 GHz, a 4 GB memory and
Eclipse Juno environment. The generated results are di-
rected graphs with the partners as vertices. The edges are
weighted with the probability of propagation. The vertices
are annotated with their centrality degree and the average
costs of changing the correspondent partner model. For the
dynamic impacts we considered that the probability that
a status of an instance is executing a given interaction as
equal to the execution probability of I. We assumed that
the adaptation cost of an affected instance is equal to the
sum of the execution number of each activity affected by
the change multiplied by its cost (the cost is edited manu-
ally with Signavio). For each collaboration model, we gener-

1http://www.wst.univie.ac.at/communities/c3pro
2http://academic.signavio.com
3http://code.google.com/p/jbpt/

Acquirer

Change
Manager

Change impacts
Predictor

Change
propagator

Public View Choreography model

Change
Propagation

LogPrivate View

Workflow Engine

P
rivateA

cquirer

Acquirer

A
cq
u
irer

Sen
d

(A
irlin

e,
p

aym
en

t_o
k)

Sen
d

(T
ravel

A
g

en
cy,

ap
p

ro
val

R
eceive(

T
ravelA

g
en

cy ,
ch

eck_cash
)

Sen
d

(
T

ravelA
g

en
cy,

n
o

tificatio
n

_
failu

re)

Sen
d

(
A

irlin
e,

n
o

tificatio
n

_
failu

re)
Private

activity 1

Private
activity 2

Private
activity 3

w
alid fdhila

1 of 1
06.03.2013

0
.7

0
.3

0
.8

0
.2

F
0

F
1

F
2

F
3

F
4

F
6

F
7

Book Trip Operationv3.bpmn

book business class

Traveler

TravelAgency

check and cash

TravelAgency

Acquirer

payment ok

Acquirer

Airline

approval

Acquirer

TravelAgency

credit card not
approved

TravelAgency

Traveler

Airline failure
not if icat ion

Acquirer

Airline

TravelAgency failure
not if icat ion

Acquirer

TravelAgency

e- t icket

Airline

TravelAgency

post_t icket

Airline

TravelAgency

walid fdhila 1 of 1 05.03.2013

Shared Resources
Change requests

Delete(F1)
Delete(a1)

Replace(F5,F4)

Execution
Logs

a
c
q
u
ir
e
r
 (

C
o
p
y
)

Acquirer

S
e

n
d

(
A

i
r
l
i
n

e
,

p
a
y
m

e
n

t
_
o

k
)

S
e

n
d

(
T

r
a
v
e

l
A

g
e

n
c
y
,

a
p

p
r
o

v
a
l

R
e

c
e

i
v
e

(
T

r
a
v
e

l
A

g
e

n
c
y

,

c
h

e
c
k

_
c
a
s
h

)

S
e

n
d

(
T

r
a
v
e

l
A

g
e

n
c
y
,

n
o

t
i
f
i
c
a
t
i
o

n
_

f
a
i
l
u

r
e
)

S
e

n
d

(
A

i
r
l
i
n

e
,

n
o

t
i
f
i
c
a
t
i
o

n
_

f
a
i
l
u

r
e
)

w
a
lid

 fd
h
ila

1
 o

f 1
0
6
.0

3
.2

0
1
3

0
.7

0
.3

0
.8

0
.2

F
0

F
1

F
2F
3

Impact Analyzer

TTAA Ar

Airline Ar

Traveler T

TravelAgency
TA

Acquirer A

Impact Analyzer

0.3

0.1

0.7

0.2

0.3

0.9

0.15

0.35

0.4

Absorbers

Multipliers
Carriers

Figure 7: Change Propagation Architecture

ated automatically a set of random change scenarios on each
partner, and for each scenario we used the change propaga-
tion prototype to compute the exact propagation. Then, we
gathered all the propagations logs and computed statistics
related to: (i) the number of times a partner is affected by
the propagation through all change scenarios (i.e. the cen-
trality) , and (ii) the number of times a partner is affected by
the propagation following a change initiated by an another
partner (i.e. the dependency matrix). Then, we compared
the results with the prediction algorithms proposed in this
paper. The results proved a very similar behavior in the
propagation to the exact algorithms. Table 3 presents the
results obtained by the propagation of 198 change scenarios
on the book trip operation example presented in the paper.
Compared with Table 1 and 2, the propagation probabil-
ity between pair of partners is to a certain extent similar
as well as the centrality measures. However, the central-
ity of the airline is lower than the TravelAgency in the
prediction (0.19) but higher in the exact algorithms (0.33).
This is mainly due to the change operations of type Insert
which can add new interactions with different partners and
consequently augment their centrality.

A TA T Ar Centrality
Acquirer(A) 0 0.5 0 0.5 0,23

TravelAgency(TA) 0.37 0 0.25 0.37 0,29
Traveler(T) 0 1 0 0 0,12
Airline(Ar) 0.33 0.66 0 0 0,33

Table 3: Change propagation Results

4.2 Usage:
The results of the impact analysis can be used to, for ex-

ample, categorize the business partners according to their
behavior for change propagation, and assessing the mag-
nitude of a change request based on several criteria. For
this purpose, we transfer existing classifications of nodes in
complex product structures with respect to their change be-
havior [7] to the partners participating in a choreography.

• Constants: not affected by the changes. They do not
appear in the propagation model.

• Absorbers: they propagate fewer changes than they are
impacted by. In the propagation model, the probabil-
ity of propagating is less than the probability of receiv-
ing change requests:

∑
ij P (Li/Lj)−

∑
ij P (Lj/Li) < 0.

• Carriers: they propagate as many changes they are
impacted by:

∑
ij P (Li/Lj) −

∑
ij P (Lj/Li) = 0.

• Multipliers: they propagate more changes than they
are impacted by:

∑
ij P (Li/Lj)−

∑
ij P (Lj/Li) > 0.

As each change and its propagation causes effort and com-
plexity, particularly multipliers can be critical regarding the
effect of change propagations. Hence, identifying partners
as multipliers can help, for example, to avoid propagating
changes to them by restructuring the initial change request
and privilege propagation to carriers or absorbers. Besides,
the prediction models allow to measure the magnitude of a
change request by following the possible propagation paths
scenarios and considering the predicted impacts on the dif-
ferent partners. These results could be visualized and ana-
lyzed using visualization techniques [5, 12].

4.3 Architectural Considerations
Figure 7 sketches an architecture for change management

in collaborative process scenarios, i.e., we provide an inte-
grated view on usual change propagation techniques and the
results of this paper. Each partner maintains two models:
the private and public views, and share the global chore-
ography model. The private view represents its executable
process, should be consistent with its public view, and con-
tains additional private activities. Each partner maintains
four components; i.e. change manager, change propagator,
change impacts predictor, and impact analyzer. The first
component is responsible for defining, implementing, vali-
dating (e.g. correctness) and managing changes from the
point of view of a single partner. The second one is respon-
sible for calculating the partners affected by the change as
well as the changes to propagate to each of them, and for
the negotiation part. The change predictor predicts the be-
havior of a change request and assesses its impact on the
choreography. It also estimates if a change request would be
achieved or not, and prevents several costs related to unsuc-
cessful negotiation. The change predictor component can
be extended by further change impact analysis techniques,
for example, based on change propagation logs. The predic-
tion and impact analysis components are independent from
the change propagation methods and depend only on the
choreography structure and the different constraints of the
collaboration (e.g. compliance rules).

5. RELATED WORK
Change impact analysis is required for constantly evolving

systems to support the comprehension, implementation, and
evaluation of changes [18] and has been widely studied in dif-
ferent domains, in particular, in large complex systems and
software engineering [4, 12, 13, 5, 18, 7, 6]. In [18], a litera-
ture review of 150 studies about impact analysis in software
systems was investigated and a classification based on the
evaluation of the taxonomy and its criteria was proposed.
In [12], an analysis for change propagation in complex sen-
sor systems using a data set of 41,500 change requests is
presented. The authors use design documentation in order
to create a change design structure matrix DSM to repre-
sent the change propagation structure, and introduce three
relationship types between the changes requests (Motifs) in
order to analyze the change networks. They also use three
indices to quantify each area in the system in terms of its
propensity for accepting, reflecting or propagating changes.
In [5, 7], the authors present an analysis of change behav-
ior based on a case study in GKN Westland Helicopters.
In particular, they discuss prediction and management of
changes to an existing product resulting from faults or new
requirements. The proposed approach is based on math-

ematical models to predict the likelihood and impact of a
change. These approaches predict change impacts either in
large complex systems or in software systems. This work is
inspired by them, but analyzes the applicability and trans-
ferability of these techniques to process choreographies. The
problem is different due to the structure of the choreography
and the additional constraints it has in terms of compliance,
privacy, or running instances.

In the context of web service choreographies, only few pa-
pers tackled the impact analysis of changes propagation. In
[13], the authors present a prototype for dynamic adaptation
in choreographies. Adaptations are mainly reconfigurations
of service endpoints. The aim of the prototype is to support
dynamic reconfiguration of collaborative BPEL processes,
and to assess the impact of changing services. Their work is
based on a use case defined in BPEL rather than a general
approach for business process choreographies and they do
not assess the risk of the propagation. In [21], the authors
present a dependency and entropy based impact analysis
model for service oriented systems evolution. This approach
combines dependency analysis to measure the importance of
a given service in the collaboration, and information entropy
to allow quantification measures of the system. Both ap-
proaches consider only static impacts of changes and do not
assess the dynamic effects on running instances. Moreover,
they do not consider previous change propagation experi-
ence to enhance the prediction models. The model adopted
in our work allows more precise analysis since it employs
transition probabilities in control patterns and quantifies the
loops effects, instead of using simple dependencies between
the services.

6. CONCLUSION
Change propagation in collaborative process scenarios might

lead to costly negotiations and increased complexity. Hence,
estimating the effects of necessary change propagations on
partners can be of crucial help. This paper focused on ana-
lyzing the choreography structure and the dynamic aspects
of business process collaborations, to outline a change prop-
agation model through a priori prediction technique. Based
on the change propagation model, partners can be catego-
rized along their behavior in case of change propagation.
In particular, identifying partners that potentially multiply
the propagation requests might avoid propagating changes
to them by restructuring the initial change request and priv-
ilege propagation to carriers or absorbers. The presented
technique has been implemented prototypically and its em-
bedding in a change propagation framework has been dis-
cussed. In future work, we will elaborate a posteriori tech-
niques exploiting the information on previous change prop-
agations and we will investigate visualization techniques for
results of change impact analysis.

7. REFERENCES
[1] W. M. P. v. d. Aalst. A decade of business process

management conferences: Personal reflections on a
developing discipline. In BPM, LNCS, pages 1–16.
2012.

[2] A. Baouab, W. Fdhila, O. Perrin, and C. Godart.
Towards decentralized monitoring of supply chains. In
ICWS, pages 600–607, 2012.

[3] F. M. Besson, P. M. Leal, and F. Kon. Towards
verification and validation of choreographies. technical
research report, University of São Paulo, 2011.

[4] S. A. Bohner and R. S. Arnold. Software change
impact analysis. IEEE Computer Society, 1996.

[5] P. J. Clarkson, C. Simons, and C. Eckert. Predicting
Change Propagation in Complex Design. Journal of
Mechanical Design, 126(5):788–797, 2004.

[6] C. Eckert, W. Zanker, and P. J. Clarkson. Aspects of
a better understanding of changes. In ICED,
volume 1, 2001.

[7] C. M. Eckert, R. Keller, C. Earl, and P. J. Clarkson.
Supporting change processes in design: Complexity,
prediction and reliability. Reliability Engineering and
System Safety, 91(12):1521–1534, 2006.

[8] W. Fdhila, A. Baouab, K. Dahman, C. Godart,
O. Perrin, and F. Charoy. Change propagation in
decentralized composite web services. In
CollaborateCom, pages 508–511, 2011.

[9] W. Fdhila, S. Rinderle-Ma, A. Baouab, O. Perrin, and
C. Godart. On evolving partitioned web service
orchestrations. In SOCA, pages 1–6. IEEE, 2012.

[10] W. Fdhila, S. Rinderle-Ma, and M. Reichert. Change
propagation in collaborative processes scenarios. In
CollaborateCom, Pittsburgh, USA, October 2012.

[11] L. C. Freeman. Centrality in social networks
conceptual clarification. Social Networks, pages 215 –
239, 1978.

[12] M. Giffin, O. de Weck, G. Bounova, R. Keller,
C. Eckert, and P. J. Clarkson. Change propagation
analysis in complex technical systems. Journal of
Mechanical Design, 131(8), 2009.

[13] G. A. Oliva, G. de Maio Nogueira, L. F. Leite, and
M. A. Gerosa. Choreography Dynamic Adaptation
Prototype. Technical report, Universidade de São
Paulo, 2012.

[14] A. Polyvyanyy, L. Garcia-Banuelos, and M. Dumas.
Structuring acyclic process models. Information
Systems, 37(6):518–538, 2012.

[15] M. Reichert and B. Weber. Enabling Flexibility in
Process-Aware Information Systems - Challenges,
Methods, Technologies. Springer, 2012.

[16] S. Rinderle, A. Wombacher, and M. Reichert.
Evolution of process choreographies in DYCHOR. In
CoopIS, LNCS, pages 273–290, 2006.

[17] S. Schulte, D. Schuller, R. Steinmetz, and S. Abels.
Plug-and-play virtual factories. IEEE Internet
Computing, 16(5):78–82, 2012.

[18] L. Steffen. A review of software change impact
analysis. Technical report, Universitätsbibliothek
Ilmenau, 2011.

[19] J. Vanhatalo, H. Vôlzer, and J. Koehler. The refined
process structure tree. In Business Process
Management, volume 5240, pages 100–115, 2008.

[20] M. Wang and L. Cui. An impact analysis model for
distributed web service proces. In Computer Supported
Cooperative Work in Design (CSCWD), 2010.

[21] S. Wang and M. A. M. Capretz. Dependency and
entropy based impact analysis for service-oriented
system evolution. In Web Intelligence, pages 412–417,
2011.

