
On the Interdependence and Integration of Variability and
Architectural Decisions

Ioanna Lytra
Software Architecture

Research Group
University of Vienna, AT

ioanna.lytra@univie.ac.at

Holger Eichelberger
Institute of Computer Science
University of Hildesheim, DE
eichelberger@sse.uni-

hildesheim.de

Huy Tran
Software Architecture

Research Group
University of Vienna, AT

huy.tran@univie.ac.at

Georg Leyh
Siemens AG
Erlangen, DE

georg.leyh@siemens.com

Klaus Schmid
Institute of Computer Science
University of Hildesheim, DE

schmid@sse.uni-
hildesheim.de

Uwe Zdun
Software Architecture

Research Group
University of Vienna, AT

uwe.zdun@univie.ac.at

ABSTRACT
In software product line engineering, the design of assets for reuse
and the derivation of software products entails low-level and high-
level decision making. In this process, two major types of deci-
sions must be addressed: variability decisions, i.e., decisions made
as part of variability management, and architectural decisions, i.e.,
fundamental decisions to be made during the design of the architec-
ture of the product line or the products. In practice, variability de-
cisions often overlap with or influence architectural decisions. For
instance, resolving a variability may enable or prevent some archi-
tectural options. This inherent interdependence has not been ex-
plicitly and systematically targeted in the literature, and therefore,
is mainly resolved in an ad hoc and informal manner today. In this
paper, we discuss possible ways how variability and architectural
decisions interact, as well as their management and integration in
a systematic manner. We demonstrate the integration between the
two types of decisions in a motivating case and leverage existing
tools for implementing our proposal.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures;
D.2.13 [Reusable Software]: Reuse Models

Keywords
Variability Decisions, Architectural Decisions, Software Product
Lines, Product Derivation

1. INTRODUCTION
Variability management and architecture-centric development

are fundamental aspects of software product line engineering [9].
Variability management aims at the explicit modeling of differ-
ences (variabilities) among the products that can be derived from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
VaMoS ’14 January 22 - 24, 2014, Sophia Antipolis, France
Copyright 2014 ACM 978-1-4503-2556-1/14/01 ...$15.00.
http://dx.doi.org/10.1145/2556624.2556634.

a product line and, in particular, the interdependencies among in-
dividual variabilities. From a variability management perspective,
the software architecture of a product line describes the design
of all products in a product line in terms of reusable assets. This
requires, first of all, that commonalities and variabilities among the
different products of a given product line are identified. The aim of
software product line engineering is to create a single architecture
for a range of related products that can be tailored and customized
to meet the requirements of the derivable products, for instance,
imposed by different customers. This architecture is often called
the reference architecture of the product line and may contain
variabilities to represent the differences among the products [9].
Finally, each product has its own architecture derived from the
reference architecture.

From an architectural perspective, variabilities may reflect differ-
ent architectural options considered during the design of the prod-
uct line that are independent of the products’ features. Bachmann
and Bass pointed out two causes of variability in the software archi-
tecture of a product line: (1) product line architectures encompass
a collection of different alternatives that must be resolved during
product configuration, and (2) at design time multiple alternatives
may exist and need to be captured [1].

Currently, variability management and architectural design are
mostly treated as separate activities. For their respective needs,
product line and architecture communities use a variety of methods
and tools for modeling, documenting, and making specific types of
decisions. The product line community has mainly adopted feature
models (e.g., [8]) and decision models (e.g., [14]) to specify vari-
ability. The software architecture community has exploited tech-
niques from variability modeling (such as COVAMOF [18]) and
used architectural decision modeling to describe variabilities and
connect them to quality attributes [20]. Existing variability man-
agement approaches focus on describing variabilities in a prod-
uct line and managing their impact on the derived products. On
the other hand, existing architectural design and decision support
tools [17] cover various architectural aspects, views, and reasoning
of decisions but lack adequate support for interaction with variabil-
ity decisions. To the best of our knowledge, the interdependence
and integration of variability and architectural decisions have nei-
ther been studied nor addressed in a systematic way, yet. This work
intends to fill this gap and proposes the systematic integration of the
two types of decisions.

Based on a motivating case, we discuss the interdependence of

variability decisions and architectural decisions in the development
of the product line and the derived products. We propose
to systematically integrate these two types of decisions and
suggest integrated tool support based on two existing tools:
ADvISE1—a tool for assisting architectural decision making—and
EASy-Producer2—a tool for variability management.

The remainder of the paper is structured as follows. In Section 2,
we briefly present the background for variability decisions and ar-
chitectural decisions in product line engineering, as well as the im-
plicit relations of both kinds of decisions documented in the liter-
ature. In Section 3, we introduce a motivating example from an
industrial case study and discuss variability and architectural deci-
sion interdependencies in this context. We present our proposal in
Section 4 and discuss its implementation in Section 5. In Section 6,
we compare our approach to related work and, finally, in Section 7
we conclude and outline future work.

2. BACKGROUND
In this section, we provide background definitions that are rele-

vant to this paper. We also provide a basic discussion of the depen-
dencies between variability decisions and architectural decisions.

2.1 Product Line Engineering
To understand product line engineering it is important to notice

a fundamental characteristic: the separation between development
at the level of the product line as a whole and the level of an in-
dividual product; namely the domain engineering and the applica-
tion engineering, respectively. We will use the simplifying terms
product line level and product level though in this paper. At the
product line level, all engineering activities that are relevant to a
range of products—the product line—are performed. The logically
first step is to determine what variability needs to be supported by
the product line as a whole. As a basis for this, the scoping ac-
tivity identifies which variability should actually be supported in
a reusable manner [14]. Together with domain analysis, a precise
model of the product line is derived from this. It should be noted
that this excludes product-specific parts from further consideration.
Variability decisions are captured in a variability (decision) model,
which represents all variabilities (differences among the individual
products) at an abstract level, as well as constraints among the in-
dividual variabilities. In later stages, the variability model is used
to derive a valid product configuration for instantiation.

The reference architecture defines the realization of the product
line, i.e., any decisions made in the reference architecture will be
available in all products. The reference architecture may also con-
tain variability in the sense that some architectural decisions are not
finally taken for the product line as a whole, but several resolutions
remain possible for the different variants. Thus, the fundamental
potential architectural decisions are determined at the product line
level. Besides, some architectural decisions may also be introduced
as part of product-specific parts of the system.

It may also happen at the product level that product requirements
are not fully covered by the product line. Thus, one of two situa-
tions may occur: (a) the additional requirements can be covered as
product-specific functionality as they interfere only little with the
parts covered by the product line, and (b) there is a strong impact
(e.g., the change relates to some variability, but would require a
variability option which is not available). In the latter case, it is

1
http://swa.univie.ac.at/Architectural_Design_Decision_Support_

Framework_(ADvISE)
2
http://sse.uni-hildesheim.de/en/fb4/institutes/ifi/

software-systems-engineering-sse/research/projects/
easy-producer/

necessary to re-evaluate the existing variability. This may lead to
introducing new variabilities to the variability model; likewise, the
architecture needs to be extended.

2.2 Variability and Architectural Decisions
When creating reference architectures, a large number of deci-

sions must be made, such as how to model a certain variability or
which design pattern provides adequate support for covering partic-
ular variabilities. Other decisions are left open until product deriva-
tion time. We refer to the decisions taken as part of variability man-
agement activities as variability decisions. Further, we will call the
decisions related to the software design of the architectures of the
product line and the products architectural decisions.

Conceptually, variability decisions and architectural decisions
may pose distinctive as well as overlapping information. Variabil-
ity decisions are any decisions that describe differences among
different products in a product line and are relevant to reuse (i.e.,
excluding product-specific aspects). Typically, variabilities are
described in terms of optional (yes-no), alternative (one-out-
of-many), or multiple (many-out-of-many) selections [9]. An
architectural decision is the result of the evaluation of alternative
design options in terms of architectural elements such as patterns,
components, or connectors and the selection of the best-fitting
solution and are considered both at product line and product level.
At product line level architectural decisions can also be postponed
to the product level. These open decisions become variabilities.

Architectural decisions at different levels of granularity are usu-
ally taken in the early stages of design. Later, throughout the soft-
ware development process, as well as the evolution of a product
line, new architectural decisions may be considered and existing
decisions might have to be revised. However, this is not a one-time
process, as both engineering activities at the product line level may
provide feedback to requirements engineering or variability man-
agement [4]. In particular, the variability supported by the product
line has to be re-examined whenever new products are developed
and introduce the need for new variabilities. A variability in a sys-
tem can be implicit (present at higher levels of abstraction), de-
signed (explicit) and bound (to a particular variant) [19].

In general, there are two potential options for dealing with such
feedback from later stages to variability modeling: (a) by using
a single variability model that captures variability on all levels in
a homogeneous way, and (b) by using a so-called staged configu-
ration approach in which multiple models are used, and informa-
tion in one model is used to configure the subsequent level [5].
In practice—especially in commercial tools—usually an approach
with a single central variability model is used to simplify manage-
ment and development.

3. MOTIVATING EXAMPLE
As a motivating example for the proposed approach, we lever-

age a software product line for warehouse management systems.
Based on the product line, custom-made software products for spe-
cific warehouses can be derived. The product line targets automated
warehouses only; that is, goods in a warehouse are moved on pallets
by conveyors or stapler cranes. Usually, a warehouse management
system is accompanied by an Enterprise Resource Planning (ERP)
system that handles all financial aspects of warehouse transactions
and a base automation system that directly controls the conveyors
and stapler cranes. This overall system architecture is typically lay-
ered, consisting of a Resource Planning Layer, a Warehouse Man-
agement Layer and a Basic Automation Layer (see Figure 1).

The most important business process of a warehouse is “Order
Processing” as illustrated in Figure 2. The process is triggered

ERP System

Warehouse Management System

Basic Automation

Figure 1: Architecture of a warehouse management system

Place Order Stock Determination

Picking Packing Shipping

Transport

Figure 2: Goods out process of a warehouse

when a client orders some goods stored in the warehouse. Next, the
ERP system notifies the warehouse management system about what
shall be delivered (“Place Order”). The warehouse management
system then maps the orders to boxes of goods that are stored in the
warehouse management system (“Stock Determination”). Trans-
port orders are sent to the base automation. The base automation
will transport the boxes to a picking station (“Transport”). There,
a human worker picks up the goods that are specified by the order
(“Picking”). Finally, the goods are packed (“Packing”) and sent to
the customer (“Shipping”).

3.1 Variability Decisions
To create a product line of warehouse management systems, the

variability of the domain must be managed. A selected set of vari-
abilities (variability decisions, possible values, and binding times)
that we will use throughout this paper as running example is sum-
marized in Table 1. The binding time is the latest point in the lifecy-
cle when a variability decision at product level must be made. One
of the variabilities we consider is the scale of the warehouse that
can range from high (e.g., handling thousands of orders per day),
medium (e.g., handling hundreds orders per day), and low (e.g.,
handling few dozen orders per day). Another variability concerns
the strategy for handling partial pallet quantities that considers ei-
ther speed or optimal reduction. The high speed strategy tries to
only pick from a single box whilst it may possibly leave a lot of
partial pallet quantities, while the optimal reduction strategy will
remove as much partial pallet quantities as possible (thereby cre-
ating space in the warehouse), which leads to a higher amount of
picks. The third variability represents different strategies for stapler
cranes with one or several forks. The forth variability investigated
in this example captures the user interface (UI) options including
support for desktop/laptop computers or mobile devices.

Table 1: Selected variability decisions and their values in the
warehouse product line

ID Variability Decision Possible Values Binding Time

VP1 Picking rate High/Medium/Low Design time
VP2 Partial pallet strategy High speed/Optimal reduction Runtime
VP3 Stapler crane strategy Single fork/Multiple forks Design time
VP4 UI device Computer/Mobile device Design time

3.2 Architectural Decisions
Table 2 presents a subset of the design space under consideration

that provides the basis for making architectural decisions at product
line level. In our motivating case, we prefer an asynchronous call-
oriented to a message-oriented interaction style because it leads to
less complex and more readable code (cf. AD1); we prefer fix to
variant interprocess communication (IPC) because fix IPC provides
higher performance (cf. AD2); and we prefer a service-oriented to
resource-oriented API style as the underlying infrastructure func-
tionality is already provided in terms of services (cf. AD3).

Table 2: Exemplary architectural decisions at product line level
ID Decision Point Options

AD1 Interaction Style
Asynchronous calls interaction
Message-oriented interaction
Synchronous calls interaction

AD2 Interprocess Communication
(IPC)

Fix
Variant

AD3 API Style
Service-oriented
Object-oriented
Resource-oriented

Exemplary architectural decisions at the product level are shown
in Table 3 along with the related variabilities. Some architectural
decisions are influenced by the variabilities identified previously.
For instance, we cannot select a single interprocess communication
solution for AD4 because of VP1. For low picking rate, the option
IPC open source is sufficient, while for medium and high picking
rates, IPC very expensive is necessary. This decision brings us to
other subsequent architectural decisions. For instance, we need to
decide if we will provide an abstraction interface for IPC invoca-
tions (cf. AD5) and depending on decision AD4 we will create a
wrapper component for IPC or even adapt its interface in order to
support VP1 (cf. AD6 and AD7). Similar to the decision for an IPC
solution, the deployment cannot be decided until VP1 is chosen. A
single server is necessary for low picking rates but multiple servers
with a round-robin strategy should be used with respect to medium
picking rates. For high picking rates, multiple servers with load
monitoring are needed. In our example, we decided to always use a
client side business delegate to identify the server, knowing that it
is not necessary, and therefore, costly for single server deployment,
in order to limit the variability of the architecture (cf. AD9). In
summary, the aforementioned architectural decisions are related to
and influenced by the variation point VP1 as follows:

• Low picking rate implies IPC open source (AD4) and Single
server (AD8)

• Medium picking rate implies IPC very expensive (AD4) and
Multiple server with round-robin (AD8)

• High picking rate implies IPC very expensive (AD4) and
Multiple server with load monitoring (AD8)

4. PROPOSED APPROACH
In this section, we introduce our approach for integrating vari-

ability and architectural decisions in a systematic manner. Our ap-
proach is presented in the context of both variability and architec-
tural decision making processes at product line and product level
for designing reference architectures and product architectures re-
spectively. In particular, we present the steps of variability man-
agement and architectural decision making and their relationships
along with our solutions for eliciting the interdependencies among
the two kinds of decisions.

Table 3: Exemplary architectural decisions at product level
ID Decision Point Options Variability Decision

AD4 IPC
IPC open source VP1-low
IPC medium price -
IPC very expensive VP1-medium/high

AD5 IPC invocations
No abstraction interface -
Abstraction interface(facade) -
Abstraction interface(gateway) -

AD6 IPC open source Adapt IPC open source -
Create a wrapper component -

AD7 IPC very
expensive

Create a wrapper component -
Other -

AD8 Deployment
devices

Single server VP1-low
Multiple servers/round-robin VP1-medium
Multiple servers/load monitoring VP1-high

AD9 Server
identification

Business delegate proxy -
Business delegate adapter -

4.1 Approach Overview
An overview of our approach is provided in Figure 3. First of

all, the variability model at the product line level is derived from
scoping and subsequent domain analysis. It leads through a man-
ual process of derivation to a corresponding architectural decision
model. As part of variability modeling, dependencies among vari-
abilities are expressed using constraints, for instance, selecting a
certain kind of warehouse restricts the range of applicable partial
pallet handling strategies. To support the creation of the refer-
ence architecture, architectural decisions for the product line are
identified in the architectural decision model. Our approach for-
mally elicits the dependencies between the variabilities and archi-
tectural decisions in terms of mappings between the corresponding
elements. At product line level, the resulting reference architecture
will be designed to cover the whole range of variability specified
by the variability decision model by selecting the appropriate ar-
chitectural solutions from the architectural decision model.

At the product level, the variabilities of the product are resolved
in order to obtain a valid configuration, i.e., all variability con-
straints are satisfied by the decisions made. Using the aforemen-
tioned formal mappings as input, we can automatically constraint
the available architectural options that correspond to variability de-
cisions made at product level. For example, if a specific variability
option is chosen in the configuration, the resolution of the afore-
mentioned predefined mappings ensure that only architectural op-
tions that are associated with that specific variability option can still
be chosen in the architectural decision model. At this point, further
architectural decisions can be made for the needs of the product ar-
chitecture. This way, variability and architectural decisions are kept
consistent to each other and the product architecture conforms both
to the variability and architectural constraints. A reference of the
variability and architectural decision models used in our approach
can be found in [16] and [10] respectively.

4.2 Product Line Level
The key idea of our approach is to first determine necessary vari-

ability decisions based on the requirements, as well as possible ar-
chitectural solutions for implementing the required variability (also
architectural decisions not related to variability). Then, the possible
variability resolutions (variants) are mapped to the corresponding
architectural options. This is realized in the following steps:

S1. Identify Variabilities: Based on scoping and an analysis of
the requirements, we identify potential variabilities. This is often
done by determining main features that are relevant to specific sys-

S1. Identify Variants

S3. Model Variability
Decisions

Pr
od

uc
t L

ev
el

S4. Create Architectural
Decision Model

S7. Design Reference
Architecture

S6. Product Line Level
Architectural Decisions

S8. Resolve
Variability Decisions

Application Engineering

S10. Product Level
Architectural Decisions

S11. Further Product Level
Architectural Decisions

S2. Define Architectural
Decisions Design Space

correspond to

S12. Design Product
Architecture

input for

input for use for

input for

input for

use for

use for

use for

Pr
od

uc
t L

in
e

Le
ve

l D
om

ain Engineering
Variability Management Architectural Decisions

input for

correspond to

S5. Define Mapping

S9. Give Feedback

Figure 3: Approach overview

tem instances [14].
S2. Define Architectural Decisions Design Space: We consider
existing architectural knowledge, such as reusable architectural
models (e.g., [21]), to define the architectural decisions design
space, i.e., architectural options and alternatives for the various
decision points related to the design of the reference and product
architectures. This information will be used as input for creating
the architectural decision model.
S3. Model Variability Decisions: The individual variants that
vary along an identifiable theme can be described as variability
decisions. The advantage of having them as variability decisions—
rather than using other variability modeling techniques such as
feature modeling—is mostly that we make the inherent dimension
of variability explicit3.
S4. Create Architectural Decision Model: The analysis made in
S2 helps us define the architectural decision model that will be used
as guidance for making architectural decisions at product line and
product level4.
S5. Define Mapping: The product line architects identify which
variability decisions correspond to architecturally relevant require-
ments. They determine potential architectural decisions that corre-
spond to the individual variants, and make this interdependencies
explicit by introducing a mapping between the two models. For
instance, a variability decision may exclude or enforce a related
architectural decision.
S6. Product Line Level Architectural Decisions: The archi-
tectural decisions that will cover the desired variability are
derived manually. The aim is to create a strategy that covers
the whole range of variants described by a variability decision,
considering the architectural alternatives and options provided by
the architectural decision model. The architectural decisions at
product line level are reflected in the reference architecture and
3Note that we will use a decision modeling approach [16] as the
tool that we will discuss later (EASy-Producer) is based on this
approach. However, decision modeling and feature modeling are
rather similar today and can even be equivalent for some cases [7].
4Note, that we will apply decision modeling based on Questions,
Options and Criteria [11] as the ADvISE-tool for decision mak-
ing support used in our approach is based on this. However, other
architectural decision models could be used as well.

can be reconsidered at product line evolution. Also, changing the
product line architecture may lead to new architectural alternatives
for the design of the products.
S7. Design Reference Architecture: The architectural decisions
that are made to cover the whole range of variants implied in
the variability decision model will be realized in the reference
architecture.

4.3 Product Level
The major goal at the product level is to derive configurations

based on the reference architecture to create particular products.
At this level, the architecture of a concrete product may incorporate
additional features apart from the base configuration. The follow-
ing steps are leveraged to accomplish a product architecture:

S8. Resolve Variability Decisions: Let us assume that, at the
product line level, the kind of variability decisions and architectural
decisions described in the previous section have been determined.
We can distinguish three situations for handling variability and
architectural decisions: a) the variability identified at the product
line level fits to the product level, thus we resolve the product line
variability, b) the variability determined at the product line level
has not yet supported all product-relevant functionality, however,
the additional functionality is only relevant to a single product, or
c) the variability identified in the previous step is insufficient and
the needed variability is important for a range of products. The
last case requires product line evolution [15]. Each situation will
trigger the next steps for handling and resolving the variability and
architectural decisions.
S9. Give Feedback, S10. Product Level Architectural Decisions:
The case S8(a) is rather straightforward. In this case, fitting
variability decisions have already been developed at the product
line level. The decisions are taken and related to corresponding
architectural decisions. Thus, selecting the variants constraints
the architectural decisions through the mappings achieved in
S5. If the variability decisions are sufficiently fine-grained, the
architectural decisions can be automatically resolved. Otherwise,
the architectural decisions are constrained and the architect
performs a tradeoff decision among the remaining cases. In both
cases the binding time of the architectural decisions can be the
same or later than the variability decisions binding time.
S11. Further Product Level Architectural Decisions: The case
S8(b) is related to additional product-specific functionality that
needs to be designed. Therefore, the variability decisions do not
provide further orientation as this is outside the scope of the func-
tionality supported by reusable assets (hence product-specific).
This case is not fundamentally different from architecting a
single-system. The only distinguishing point is that the existing
architectural decisions have to be considered. This can be
resolved automatically as constraints among decision points and
architectural options are available in the architectural decision
model. The case S8(c) denotes that, at the product level, the
capabilities provided by the reusable assets (and hence the
variabilities) are insufficient. There are two possible approaches
for handling this circumstance. In the ideal case, we can go back
to the product line level and evolve the product line infrastructure
to cover the special case. This would entail augmenting the
variability model providing (if needed) additional architectural
decisions and establishing the relations between them. As a result,
the steps from S3 to S7 are repeated and the variability decision
model, architectural decision model, and their interdependencies
are reconsidered. Afterwards, the rest can be achieved similarly to
the first situation. Nevertheless, sometimes, especially if there is
an urgent need for shipping the product, a different decision can

be made: changes are made at the product level that might raise
inconsistencies at the product line level. In this case, the product
line level should be evolved or adapted at a later point in time.
S12. Design Product Architecture: The resulting product archi-
tecture based on the reference architecture will be created based
on both variability decisions and product-related architectural de-
cisions made in the previous stages.

5. MOTIVATING EXAMPLE REVISITED
In this section, we present the implementation of the motivating

example discussed in Section 3. For this, we have developed an
integration of two tools, namely EASy-Producer—for variability
management—and ADvISE—for architectural decision support. In
the subsequent section, we describe the main features of these tools
and demonstrate their integration.

5.1 EASy-Producer
The EASy-Producer tool aims at providing modeling and real-

ization support for software product lines and software ecosystems.
It provides capabilities that are standard to all product line engi-
neering tools, like variability modeling and support for the con-
figuration process by determining consistency and consequences
of a partial configuration (e.g., some value may be derived based
on constraints and other given values). In addition, the tool has
many capabilities that are well suited for our case. One is that it
provides a very generic approach for instantiating artifacts (i.e., re-
quirements, different forms of code, or, as in our case, architectural
information). Another characteristic is that it has a powerful lan-
guage for describing variability per se as well as constraints. The
constraint language can also be used to describe implementation
related decisions. While the tool can help to support consistency
among the two levels, it allows for temporary violations. Thus, we
can perform cases, where we first extend the product level and only
later add it to the product line level.

5.2 Architectural Design Decision Support
Framework (ADvISE)

ADvISE is an Eclipse-based tool that supports the modeling of
reusable architectural decisions using Questions, Options and Cri-
teria (QOC) [11] for systematizing the design space and providing
decision support. In particular, it assists the architectural decision
making process by introducing for a group of design issues a set of
questions along with potential options, answers and related (often
design pattern based) solutions, as well as dependencies and con-
straints between them. ADvISE has been developed with focus on
reusable architectural knowledge that can be also transformed into
reusable architecture designs rather than on product lines. How-
ever, it is generic enough to support both product line as well as
product related architectural decision making. The advantage of
the reusable architectural decision models is that the models need
to be created only once for a recurring design situation. In similar
application contexts, corresponding questionnaires can be automat-
ically instantiated and used for making concrete decisions.

5.3 Decision Integration Tool Support
As discussed in Section 4, the first step in the tool support (cf.

S3) is to represent the variability outlined in Table 1 (cf. S1) in
the form of an EASy-Producer decision model. EASy-Producer
supports two representations for variability models: an interactive
view, where a configuration of the variability can be determined in
an interactive manner (see Figure 4(a)) and a textual view where
the variability can be described in a programmatic manner (see
Figure 4(b)). In our example, four types of variability decisions

(a) Interactive view of the WMS example

(b) Textual view of the WMS example

Figure 4: Variability model of the WMS example modeled in
EASy-Producer

are defined (“PickingRateType”, “PartialPalletStrategy-
Type”, “StaplerCraneStrategyType”, and “UIDeviceType”)
along with their resolutions (lines 5–8). These types are used to de-
fine the variability decisions “VP1” to “VP4” of Table 1. The vari-
ability decisions “VP1”, “VP3”, and “VP4” will be bound at design
time (lines 15–16) and “VP2” at runtime (lines 17–19).

Afterwards, we model the architectural decisions summarized in
Table 2 and 3 (cf. S2) using ADvISE (cf. S4). The architectural
decisions editor allows us to edit for each decision point a list of
questions, and for each question a number of options which may
be mapped to specific solutions and can be related to follow-on de-
cisions and questions or constrained by other architectural options.
In Figure 5, we give an example of the product-level architectural
decision AD4 of Table 3 that defines the types of IPC that can be
used in the warehouse product. While Figure 5(a) gives general in-
formation about the underlying architectural decision, we can see
the alternative options related to a specific question in the detailed
view of Figure 5(b). In this example, the alternative options “IPC
open source”, “IPC medium price”, and “IPC very expen-
sive” are provided for the question “IPC type of software”.

The next step of our approach (cf. S5) requires that we define the
mapping between the variability and architectural decisions. For

<mappings >
<aModel >ADModelIndenica </aModel >
<vModel >PL_WMS </vModel >
<vp name="VP1">

<relation type="excludes">
<vd id="PickingRateType.medium"/>
<add id="AD4.IPC type of software.IPC

open source"/>
</relation >

</vp>
...

</mappings >

Listing 1: Example of mapping between variability and
architectural decisions

(a) Architectural decisions

(b) Options related to a question

Figure 5: ADvISE architectural decisions model editor

this purpose, we establish a set of mappings from the variability
decision model elements (i.e., variants) onto the corresponding ar-
chitectural decision model elements (i.e., architectural options) in
XML format.

In particular, for each variability decision, relations of specific
type (e.g., excludes, enforces, etc.) can be specified onto an ar-
chitectural option. In Listing 1, the variability decision “Pick-
ingRateType.medium” is mapped to the architectural option “IPC
open source” of the architectural decision AD4 with type of rela-
tion “excludes”. It means that selecting the medium picking rate
will result in the rejection of IPC open source.

After designing the reference architecture to cover the whole
range of variability (cf. S6-S7), it is now time to apply it to the
problem of creating the product architecture. In step S8, we re-
solve the variability decisions by assigning values to the variability
decisions. This is shown in Figure 6, where the lines 6–10 contain
the decisions made for each variation point at design time. For in-
stance, in our running example, the value “PickingRate.medium”
was selected for “VP1”. The case above actually corresponds only
to step S8(a), thus the configuration is straightforward. If we have
the case of S8(b) or S8(c), the situation becomes more complex. An
example of S8(b) would be that our customer requires an integra-
tion to a specialized ERP system, while the product line typically
only supports SAP-integration. Then, a typical approach would be
to introduce an extension point and a connector to this specialized
ERP-system. This would not necessarily be visible in the variabil-
ity model or it would be simply modeled as an option to activate

the extension point. An example for S8(c) would be that a new cus-
tomer would like to have a Partial Pallet Strategy, which is not yet
supported, like max two (i.e., at most two pallets may be opened
for one type of article). In order to support this in the future we
would extend the “PartialPalletStrategyType” to include the
“maxTwo” option.

The configuration given in Figure 6 defines the product from a
variability perspective. Based on the connections to the architec-
tural decisions a number of architectural decisions can be automat-
ically derived and further ones can be constrained. In our example,
the mapping we defined in Listing 1 will enable us to reflect vari-
ability decisions on the architectural decision model at the product
level design (cf. S9-S10). To support architectural decision mak-
ing, ADvISE tooling provides automatically generated question-
naires from the architectural decision models for guiding software
architects. In Figure 7, the selection of the variant “PickingRate-
medium” will cause the option “IPC open source” in the related
ADvISE questionnaire to be deactivated. At this point, further ar-
chitectural decisions for the product architectural design, related to
variability or not, can be made (cf. S11-S12).

Figure 6: Variability decisions in the WMS example

Figure 7: Architectural option deactivated due to variability
decision

Discussion.
Through our motivating case, we observed that in many cases,

interdependencies between variability and architectural decisions
exist but are mainly kept implicit. Very often, these decisions are
made by different stakeholders and with different tools and their
overlaps and inconsistencies are resolved in an ad hoc and man-
ual manner. We showed that formally eliciting the interdependen-
cies requires additional efforts at the beginning but it leads to bet-
ter automated support in integrating and harmonizing variability
management and architectural decision making in the long run. By
capturing and formalizing the links between variabilities and archi-
tectural options at the product line level, the architectural decision
making process can be harmonized with the variability decision
making process. As a result, architectural decisions can be changed
or adapted whenever the variability is resolved. The advantage of
our approach is that variability and architectural decisions remain
consistent at product derivation. Also, the introduction of mappings
between the two kinds of decisions can significantly enrich the doc-

umentation of the design rationale. For instance, the rejection or
selection of an architectural option can be justified by following
the dependencies with the corresponding variability decisions.

In our approach, we assume that the variability decisions guide
the architectural decisions for the product line and product design.
In practice, an architectural decision may also influence a variabil-
ity decision. For instance, a decision to use a low-cost software
solution because of cost constraints may cause some variabilities
to be invalid. However, that would mean that the variability needs
to be reconsidered and possibly redesigned (i.e., repeat steps S3 to
S7 in Figure 3).

We discussed the interaction of variability and architectural deci-
sions with the focus on product line design and product derivation
and have not investigated the evolution and maintenance of product
lines and products. As architectural decisions contain also interde-
pendencies, reconsidering a variability decision may cause incon-
sistencies to existing architectural decisions. It is challenging to be
able to handle this situation and also predict the impact variabil-
ity decisions will have on the product architecture, but we plan to
address this in our future work.

6. RELATED WORK
Variability and architectural decisions have been studied often

in the literature in the same context. Variability decisions mainly
refer to decisions related to the differences among the products
that derive from a product line. The variabilities described as op-
tional, alternative or multiple selections [9] are often related to ar-
chitectural elements. For instance, the Feature-Oriented Domain
Analysis (FODA) [8] usually mixes architecture-related decisions
with domain properties and system configurations. Feature mod-
els mainly describe the solution space (i.e., focuses on modeling
of commonalities and variabilities) and do not provide any guid-
ance for selecting between alternative variants and reasoning about
them. However, many approaches propose to enrich variability
management with design rationale and decision support by intro-
ducing variability decision models [14]. In an approach that com-
bines both methods, Perovich et al. [12] consider product line archi-
tectures as a set of architectural decisions, and use feature models
to represent the decisions associated with the product features and
transformation models to transform decisions into product architec-
tures. The aforementioned approaches mainly focus on variability
decisions and handle architectural decisions also as variability de-
cisions without setting any boundary between the two.

Many approaches in the literature deal with modeling of reusable
architectural decisions [21] or provide tool support for architectural
decision making [17]. Unlike decision models for product lines that
describe a set of variabilities relevant to product derivation, archi-
tectural decision models focus mainly on architecture-related op-
tions and alternatives for designing a software architecture. Some
approaches suggest to integrate variability management with archi-
tectural knowledge and design rationale. For instance, Dhungana et
al. suggest to capture variabilities in variability management as de-
cisions and establish relationships between assets, such as compo-
nents and decisions, explicitly [6]. Also, Capilla and Babar suggest
to integrate architectural decision models with variability models
to support ADDs for product line architectures [3]. For this, they
map design decisions to variabilities and binding times to docu-
ment reasoning about decisions related to product lines. A number
of approaches in software product line engineering focus on docu-
menting architectural design decisions and their rationale [3]. Un-
like variability management approaches based on feature models
[8] or decision models [14], these approaches propose to view ar-
chitectural design decisions in modeling and managing of product

line variability models as first class citizens. For this, they distin-
guish between variations considered at product configuration and
architectural decisions made at early stages of the design phase. As
before, these approaches consider the design of product line and
product architectures as an architectural decision making process
and do not distinguish it from variability management. None of
these approaches studies, elicits, and resolves the interdependence
between variability and architectural decisions.

Some researchers have proposed the characterization of variabil-
ity decisions according to the stage they are resolved. For exam-
ple, Rosenmüller et al. apply multi-dimensional separation of con-
cerns in variability modeling, that is, they create different variabil-
ity models for different stakeholder concerns and use generalization
and specialization mechanisms to model extension, composition
and configuration of the variability dimensions [13]. Bidian et al.
introduce variability decision boundaries at the different stages of
requirements definition, architecture, and detailed design and run-
time, according to their resolution time [2]. In both approaches,
variability and architectural decisions are considered to have over-
laps and interrelationships. However, our approach is the first pro-
posal for investigating and supporting the interaction between these
two kinds of decisions systematically.

7. CONCLUSIONS
In this paper, we studied the interdependence of variability and

architectural decisions during product line and product design. Al-
though variability decisions constraint and influence architectural
decisions in practice, this inherent interdependence has not been
studied or addressed systematically in the literature yet. We pro-
pose to make the interdependence of variability management and
architectural decision making explicit and to manage variability
and architectural decisions in an integrated manner. To ensure that
variability and architectural decisions remain consistent to each
other at product level, we introduce at the product line level depen-
dency mappings between them, for instance, a specific variability
decision may exclude or enforce a related architectural decision.
These mappings are leveraged at the product derivation and give
feedback—mainly introduce constraints—to the architectural de-
cisions. In the context of a motivating scenario, we documented
variability and architectural decisions and their interdependencies
and demonstrated our approach using EASy-Producer, ADvISE,
and their integration. In the future, we plan to study further these
interdependencies in various case study scenarios, classify and for-
malize them. The systematic integration of architectural and vari-
ability decisions is important not only when creating reference ar-
chitectures and derive products but also during the evolution and
maintenance of product lines and products. We consider the latter
to be an open challenge and plan to investigate different forms of
integrating both kinds of decisions as well as the impact of chang-
ing these decisions during product line and product evolution.

Acknowledgement This work was partially supported by the EU
FP7 project INDENICA (http://www.indenica.eu), grant no.
257483.

8. REFERENCES
[1] BACHMANN, F., AND BASS, L. Managing Variability in

Software Architectures. In Symposium on Software Reusability:
Putting Software Reuse in Context (SSR) (2001), ACM,
pp. 126–132.

[2] BIDIAN, C., AND YU, E. S. K. Towards Variability Design as
Decision Boundary Placement. In 10th Workshop on
Requirements Engineering (WER) (2007), pp. 139–148.

[3] CAPILLA, R., AND ALI BABAR, M. On the Role of
Architectural Design Decisions in Software Product Line

Engineering. In 2nd European Conference on Software
Architecture (ECSA) (2008), Springer, pp. 241–255.

[4] CLEMENTS, P., AND NORTHROP, L. Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, MA, 2002.

[5] CZARNECKI, K., HELSEN, S., AND EISENECKER, U. Staged
Configuration Through Specialization and Multi-Level
Configuration of Feature Models. Software Process Improvement
and Practice 10, 2 (2005), 143–169.

[6] DHUNGANA, D., GRÜNBACHER, P., AND RABISER, R.
DecisionKing: A Flexible and Extensible Tool for Integrated
Variability Modeling. In 1st International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS)
(2007), pp. 119–128.

[7] EL-SHARKAWY, S., DEDERICHS, S., AND SCHMID, K. From
Feature Models to Decision Models and Back Again: An Analysis
Based on Formal Transformations. In 16th International Software
Product Line Conference (SPLC) (2012), ACM, pp. 126–135.

[8] KANG, K. C., COHEN, S. G., HESS, J. A., NOVAK, W. E.,
AND PETERSON, A. S. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Tech. rep., Carnegie-Mellon
University Software Engineering Institute, November 1990.

[9] LINDEN, F., SCHMID, K., AND ROMMES, E. Software Product
Lines in Action - The Best Industrial Practice in Product Line
Engineering. Springer, 2007.

[10] LYTRA, I., SOBERNIG, S., AND ZDUN, U. Architectural
Decision Making for Service-Based Platform Integration: A
Qualitative Multi-Method Study. In Joint 10th Working
IEEE/IFIP Conference on Software Architecture & 6th European
Conference on Software Architecture (WICSA/ECSA), Helsinki,
Finland (2012), IEEE.

[11] MACLEAN, A., YOUNG, R., BELLOTTI, V., AND MORAN, T.
Questions, Options, and Criteria: Elements of Design Space
Analysis. Human-Computer Interaction 6 (1991), 201–250.

[12] PEROVICH, D., ROSSEL, P. O., AND BASTARRICA, M. C.
Feature Model to Product Architectures: Applying MDE to
Software Product Lines. In Joint Working IEEE/IFIP Conference
on Software Architecture European Conference on Software
Architecture (2009), vol. 11, IEEE, pp. 201–210.

[13] ROSENMÜLLER, M., SIEGMUND, N., THÜM, T., AND SAAKE,
G. Multi-dimensional Variability Modeling. In 5th Workshop on
Variability Modeling of Software-Intensive Systems (VaMoS)
(2011), ACM, pp. 11–20.

[14] SCHMID, K. A Comprehensive Product Line Scoping Approach
and its Validation. In International Conference on Software
Engineering (ICSE’24) (2002), ACM, pp. 593–603.

[15] SCHMID, K., AND EICHELBERGER, H. A Requirements-Based
Taxonomy of Software Product Line Evolution. Electronic
Communications of the EASST 8 (2007).

[16] SCHMID, K., AND JOHN, I. A Customizable Approach to Full
Lifecycle Variability Management. Sci. Comput. Program. 53, 3
(Dec. 2004), 259–284.

[17] SHAHIN, M., LIANG, P., AND KHAYYAMBASHI, M. R.
Architectural Design Decision: Existing Models and Tools. In
Joint Working IEEE/IFIP Conference on Software Architecture
and European Conference on Software Architecture
(WICSA/ECSA), Cambridge, UK (2009), IEEE, pp. 293–296.

[18] SINNEMA, M., VAN DER VEN, J., AND DEELSTRA, S. Using
Variability Modeling Principles to Capture Architectural
Knowledge. Quality 31, 5 (2006), 5.

[19] VAN GURP, J., BOSCH, J., AND SVAHNBERG, M. On the Notion
of Variability in Software Product Lines. In Working IEEE/IFIP
Conference on Software Architecture (WICSA) (2001), IEEE,
pp. 45–54.

[20] ZDUN, U. Systematic Pattern Selection Using Pattern Language
Grammars and Design Space Analysis. Software Practice &
Experience 37 (July 2007), 983–1016.

[21] ZIMMERMANN, O., GSCHWIND, T., KÜSTER, J., LEYMANN,
F., AND SCHUSTER, N. Reusable Architectural Decision Models
for Enterprise Application Development. In 3rd International
Conference on Quality of Software Architectures (QoSA),
Medford, MA, USA (2007), Springer, pp. 15–32.

